
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

GBi-CGSTAB(s, L):
IDR(s) with Higher-Order Stabilization Polynomials

Masaaki TANIO and Masaaki SUGIHARA

METR 2009–16 April 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

GBi-CGSTAB(s, L):
IDR(s) with Higher-Order Stabilization

Polynomials

Masaaki TANIO and Masaaki SUGIHARA

Department of Mathematical Informatics
Graduate School of Information Science and Technology

University of Tokyo
m sugihara@mist.i.u-tokyo.ac.jp

April 2009

Abstract

IDR(s) is now recognized as one of the most effective methods, often su-
perior to other Krylov subspace methods, for large nonsymmetric linear sys-
tems of equations. In this paper we propose an improvement upon IDR(s) by
incorporating a higher-order stabilization polynomial into IDR(s). The pro-
posed algorithm, named GBi-CGSTAB(s, L), shares desirable features with
both IDR(s) and Bi-CGSTAB(L).

1 Introduction

Recently there has been proposed a new method called IDR(s) [9, 10] for solv-
ing large nonsymmetric systems of equations Ax = b. Here A is a given N × N
matrix and b is a given vector. IDR(s) has a feature that it requires at most
N + N/s matrix-vector multiplications to compute an exact solution in exact arith-
metic, while the Bi-CG based methods such as CGS [8, 13], BiCGSTAB [12, 13],
BiCGSTAB(L) [5], GP-BiCG [13,14] require at most 2N matrix-vector multiplica-
tions. Numerical experiments also report that IDR(s) is competitive with or supe-
rior to most Bi-CG based methods. It is known, however, that IDR(s) is inferior to
BiCGSTAB(L) (L > 1) when applied to equations with nearly skew-symmetric co-
efficient matrices. The weakness against skew-symmetry comes from the fact that
the order of the stabilization polynomials in IDR(s) is one, whereas BiCGSTAB(L)
uses higher order stabilization polynomials. As mentioned in [9, 10], to overcome
this weakness it is natural to incorporate higher order stabilization polynomials into
IDR(s).

1

A milestone in this direction is the Sleijpen–Sonneveld–van Gijzen paper [6].
As is well known, the idea behind the IDR(s), so-called IDR principle, is different
from that of the standard Krylov methods, which makes it difficult to incorporate
a higher order stabilization polynomial into IDR(s). The paper shows that IDR(s)
can also be put into the standard framework of the Krylov method. To be specific,
the paper proposes a variant of Bi-CG with multiple shadow residuals and the first
order stabilization polynomials, and shows that it is mathematically equivalent to
IDR(s).

In this paper we first present another variant of Bi-CG with multiple shadow
residuals, called GBi-CG(s), which is different from that introduced in [6]. Then
we incorporate L-th order stabilization polynomials into this variant to obtain the
method we propose in the paper. The derivation of this method is parallel to that
of Bi-CGSTAB(L), which is obtained from Bi-CG with L-th order stabilization
polynomials. The proposed algorithm is named GBi-CGSTAB(s, L). This method
with L = 1 is mathematically equivalent to IDR(s).

This paper is organized as follows. Section 2 is a preliminary section, de-
scribing Bi-CG and Bi-CGSTAB(L). In Section 3, we first explain the variant of
of Bi-CG due to Sleijpen–Sonneveld–van Gijzen, and then introduce GBi-CG(s),
another variant that serves as the basis of our method. In Section 4, we derive GBi-
CGSTAB(s, L), the method we propose in this paper. Section 5 shows numerical
results and Section 6 concludes the paper.

Notation and Definition

Notation 1 For R̃ ∈ CN×s and v ∈ CN we write “v ⊥ R̃” to mean that v is orthog-
onal to all column vectors of R̃. We denote by R̃⊥ the (maximal) linear subspace
that is orthogonal to all column vectors R̃.

Notation 2 For an N × s matrix C and for j = 1, 2, . . . , s we denote by Ce j the
j-th column vector of C.

Notation 3 Let C and R̃ be N × s matrices, and v an N dimensional vector. By the
expression:

u = v −Cβ such that u ⊥ R̃,

we mean that (i) we choose an s dimensional coefficient vector β such that v−Cβ ⊥
R̃ and (ii) we update the vector u by computing u = v − Cβ. More generally, if A
is an N × N matrix, the expression:

u = v −Cβ such that Au ⊥ R̃,

means that (i) we choose β such that Av − ACβ ⊥ R̃ and (ii) we update the vector
u by computing u = v −Cβ.

2

Definition 1 For B ∈ CN×N , R̃ ∈ CN×s and a natural number k, the linear subspace
Kk(B, R̃) is defined as

Kk(B, R̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−1∑
j=0

Bj R̃γ j | γ j ∈ Cs

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1)

We refer toKk(B, R̃) as the block Krylov subspace [1]. Note that, if s = 1,Kk(B, R̃)
is the Krylov subspace in the usual sense.

2 Preliminaries: Bi-CG and Bi-CGSTAB(L)

2.1 Bi-CG

The Bi-CG algorithm [4] generates approximate solutions xk according to the fol-
lowing recurrences:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rk+1 = rk − αkAuk such that rk+1 ⊥ r̃k,

xk+1 = xk + αkuk,

r̃k+1 = r̃k − αkA∗ũk,

uk+1 = rk+1 − βk+1uk such that Auk+1 ⊥ r̃k,

ũk+1 = r̃k+1 − βk+1ũk.

(2)

A crucial property is that the residuals rk and the auxiliary vectors Auk satisfy
global bi-orthogonality:

rk, Auk ⊥ Kk(A∗, r̃0). (3)

By introducing a vector s̃k = q̃k(A∗)r̃0 with a polynomial q̃k(t) of degree k, and by
replacing r̃k with s̃k, the Bi-CG algorithm can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rk+1 = rk − αkAuk such that rk+1 ⊥ s̃k,

xk+1 = xk + αkuk,

uk+1 = rk+1 − βk+1uk such that Auk+1 ⊥ s̃k.

(4)

In exact arithmetic, the residuals rk and the approximate solutions xk generated by
(2) coincide with those by (4). In (4) the coefficients αk and βk+1 are computed as
follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
αk =

(rk, s̃k)
(Auk, s̃k)

,

βk+1 =
(Ark+1, s̃k)
(Auk, s̃k)

=
τk
τk+1

(rk+1, s̃k+1)
(Auk, s̃k)

,
(5)

where τk is a scalar representing the leading coefficient of the polynomial q̃k(t).

3

Recently, a number of improvements of the Bi-CG algorithm have been pro-
posed on the basis of the following two observations: (i) the degree of freedom
in the choice of the shadow residuals s̃k can profitably be exploited, and (ii) the
variable s̃k appears only in the formulas for the coefficients αk and βk+1, which can
be avoided by using the relations:

(rk, s̃k) = (rk, q̃k(A∗)r̃0) = (q̃k(A)rk, r̃0), (Auk, s̃k) = (Aq̃k(A)uk, r̃0). (6)

It is indeed possible [5, 8, 12,14] to generalize the Bi-CG method according to the
following strategies.

(i) Instead of rk, uk, xk, and s̃k, we update the transformed residual q̃k(A)rk,
the auxiliary vector q̃k(A)uk and a vector x′k representing the approximate
solution for which q̃k(A)rk is the residual. The initial shadow residual r̃0 is
kept throughout, without being updated.

(ii) The polynomial q̃k(t), often called the stabilization polynomial, is chosen so
that the norm of the transformed residual q̃k(A)rk may be smaller.

(iii) The coefficients αk and βk+1 are computed by using the relations (5) and (6).

2.2 Bi-CGSTAB(L)

We review the Bi-CGSTAB(L) algorithm. It is derived from Bi-CG with a stabi-
lization polynomial that is a product of polynomials of degree L.

Suppose that we are given a sequence of polynomials pi(t) of degree L for
i = 1, 2, . . . satisfying pi(0) = 1. For k = mL, the k-th stabilization polynomial
Qk(t) is defined as Qk(t) = pm(t) · · · p2(t)p1(t). Note that Qk(t) is of degree k. We
also say that Qk(t) is an L-th order stabilization polynomial to mean that each factor
pi(t) is a polynomial of degree L.

We then set the residual rk and the auxiliary vector uk−1 as

rk = Qk(A)rB
k , uk−1 = Qk(A)uB

k−1,

where rB
k and uB

k−1 are the residual and the auxiliary vector in Bi-CG, denoted as rk

and uk−1 in Section 2.1. Furthermore, we define approximate solutions xk and x̂(i)
k

as those vectors which respectively satisfy

b − Axk = rk = Qk(A)rB
k , b − Ax̂(i)

k = rk+i = Qk(A)rB
k+i.

In an iteration of Bi-CGSTAB(L), the vectors rk, uk and xk are updated to rk+L,
uk+L−1 and xk+L, respectively. The iteration consists of the Bi-CG part and the MR
part (Figure 1), where “MR” stands for “Minimal Residual.”

Bi-CG part: In this part, QkrB
k , QkuB

k−1 and xk are given. Then the i-th step, to
be specified later, is performed successively for i = 0, 1, . . . , L−1. Finally, vectors
QkrB

k+L, . . . , A
LQkrB

k+L; QkuB
k+L−1, . . . , A

LQkuB
k+L−1, and x̂(L)

k are computed. An
execution of the Bi-CG part can be done with 2L matrix-vector multiplications.

4

Iteration Bi-CG part

given:
QkrB

k
QkuB

k−1
xk

↓
Bi-CG part
.
MR part
↓

product:
Qk+LrB

k+L
Qk+LuB

k+L−1
xk+L

given:
QkrB

k
QkuB

k−1
xk

↓
For i = 0, . . . , L − 1

the i-th step (see below)
end

↓
product:

QkrB
k+L, AQkrB

k+L, . . . , A
LQkrB

k+L
QkuB

k+L−1, AQkuB
k+L−1, . . . , A

LQkuB
k+L−1

x̂(L)
k

MR (Minimal Residual) part The i-th step of Bi-CG part

given:
QkrB

k+L, AQkrB
k+L, . . . , A

LQkrB
k+L

QkuB
k+L−1, AQkuB

k+L−1, . . . , A
LQkuB

k+L−1
x̂(L)

k↓
Find Qk+L(t) = pm+1(t)Qk(t)

such that min ‖Qk+LrB
k+L‖

↓
product:

Qk+LrB
k+L

Qk+LuB
k+L−1

xk+L

given:
QkrB

k+i, AQkrB
k+i, . . . , A

iQk rB
k+i

QkuB
k+i−1, AQkuB

k+i−1, . . . , A
iQkuB

k+i−1
x̂(i)

k↓

Compute βk+i and αk+i

↓
product:
QkrB

k+i+1, AQkrB
k+i+1, . . . , A

i+1QkrB
k+i+1

QkuB
k+i, AQkuB

k+i, . . . , A
i+1QkuB

k+i

x̂(i+1)
k

Figure 1: An iteration of Bi-CGSTAB(L)

5

MR part: In this part, by using the output of Bi-CG part, we choose the
parameters γ(m+1)

1 , γ(m+1)
2 , . . . , γ(m+1)

L in the polynomial pm+1(t) = 1 − ∑L
i=1 γ

(m+1)
i

such that the norm of the new residual rk+L is minimum. When the polynomial
pm+1(t) is determined, we make the following updates on the basis of the relation
Qk+L(t) = pm+1(t)Qk(t):

Qk+LrB
k+L = QkrB

k+L −
L∑

i=1

γ(m+1)
i AiQkrB

k+L, (7)

Qk+LuB
k+L−1 = QkuB

k+L−1 −
L∑

i=1

γ(m+1)
i AiQkuB

k+L−1, (8)

xk+L = x̂(L)
k +

L−1∑
i=0

γ(m+1)
i AiQkrB

k+L. (9)

It is mentioned that in practical implementations the residual Qk+LrB
k+L is computed

with the aid the modified Gram-Schmidt orthogonalization process; see [5] for
detail and Algorithm 1 below.

Detail of the Bi-CG part: We now describe the Bi-CG part in Bi-CGSTAB(L)
at some length, as it is useful for our exposition of our algorithm in Section 4.2.

The Bi-CG part consists of L steps, from the 0-th to the (L−1)-st step. The i-th
step in the Bi-CG part is shown in Figure 1 (bottom-right), where i = 0, 1, . . . , L −
1. Given AjQkrB

k+i, AjQkuB
k+i−1(j = 0, . . . , i) and x̂(i)

k , the i-th step computes

AjQkrB
k+i+1, AjQkuB

k+i (j = 0, . . . , i + 1) and x̂(i+1)
k .

Figure 2: Flowchart of the Bi-CG part of Bi-CGSTAB(2)

We refer to Figure 2, which illustrates the Bi-CG part in the case of L = 2. The
computation proceeds from row to row, replacing vectors from the previous row by
vectors on the next row. Vector updates derived from the Bi-CG relations (2) are
indicated by arrows in Figure 2.

The i-th step for i = 0 consists of the first row to the third in Figure 2. In the
transition from the first row to the second, after the computation of the coefficient

6

βk in Bi-CG, we update the vector such that QkuB
k = QkrB

k − βkQkuB
k−1. Then the

vector AQkuB
k is obtained by multiplication by the matrix A. From the second to

the third, after the computation of the coefficient αk in Bi-CG, we compute the
vector such that QkrB

k+1 = QkrB
k − αkAQkuB

k . Moreover, xk is replaced to x̂(1)
k as

x̂(1)
k = xk + αkQkuB

k (this update is not indicated in Figure 2). Then the vector
AQkrB

k+1 is obtained by multiplication by the matrix A.
Next, we show the i-th step for i = 1 in a similar way. From the third row to

the fourth, after the computation of the coefficient βk+1, we update the vectors such
that QkuB

k+1 = QkrB
k+1−βk+1QkuB

k and AQkuB
k+1 = AQkrB

k+1−βk+1AQkuB
k . Then the

vector A2QkuB
k+1 is obtained by multiplication by the matrix A. From the fourth to

the fifth, after the computation of the coefficient αk+1, we update the vectors such
that QkrB

k+2 = QkrB
k+1 − αk+1AQkuB

k+1 and AQkrB
k+2 = AQkrB

k+1 − αk+1A2QkuB
k+1.

Moreover, x̂(1)
k is replaced to x̂(2)

k as x̂(2)
k = x̂(1)

k + αk+1QkuB
k+1 (this update is not

indicated in Figure 2). Then the vector A2QkrB
k+2 is obtained by multiplication by

the matrix A. Finally, the vectors QkrB
k+2, AQkrB

k+2, A2QkrB
k+2, QkuB

k+1, AQkuB
k+1,

A2QkuB
k+1 and x̂(2)

k are given. The Bi-CG part ends at this point if L = 2.
Now, we show the i-th step for a general i. It is assumed for the moment

that the coefficients for Bi-CG in (2) can be computed, which will be discussed
later. First, after the computation of the coefficient βk+i in Bi-CG, by the relation
(2), we update AjQkuB

k+i−1 → AjQkuB
k+i (j = 0, 1, . . . , i) such that AjQkuB

k+i =

AjQkrB
k+i − βk+iA jQkuB

k+i−1. Then the vector Ai+1QkuB
k+i is obtained by multiplica-

tion by the matrix A. Second, after the computation of the coefficient αk+i in Bi-CG,
we use the relation (2) to update AjQkrB

k+i → AjQkrB
k+i+1 such that AjQkrB

k+i+1 =

AjQkrB
k+i − αk+iA j+1QkuB

k+i (j = 0, 1, . . . , i). Then the vector Ai+1QkrB
k+i+1 is

obtained by multiplication by the matrix A. Moreover we update x̂(i)
k → x̂(i+1)

k

such that x̂(i+1)
k = x̂(i)

k + αk+iQkuB
k+i. Finally the vectors AjQkrB

k+i+1, A
jQkuB

k+i

(j = 0, 1, . . . , i + 1) and x̂(i+1)
k are output and the i-th step is completed.

It remains to explain how to compute the coefficients αk+i and βk+i.

Computation of αk+i

Before the computation of the coefficient αk+i, we are given AjQkrB
k+i (j = 0, . . . , i)

and AjQkuB
k+i (j = 0, . . . , i + 1). Consider the vector s̃k+i in (4) for Bi-CG, though

it is not available at hand. For the choice of s̃k+i = (A∗)iQk(A∗)r̃0, the coefficient
αk+i is calculated by (5) and (6) as

αk+i =
(rB

k+i, (A
∗)iQk(A∗)r̃0)

(AuB
k+i, (A

∗)iQk(A∗)r̃0)
=

(AiQk(A)rB
k+i, r̃0)

(Ai+1Qk(A)uB
k+i, r̃0)

.

This expression affords a computable formula for αk+i, since the vectors AiQkrB
k+i,

Ai+1QkuB
k+i and r̃0 are available.

For the efficient computation of αk+i as well as βk+i below, it is convenient to
employ auxiliary variables ρ(k)

i = (AiQkrB
k+i, r̃0) and γ(k)

i+1 = (Ai+1QkuB
k+i, r̃0). We

then have αk+i = ρ
(k)
i /γ

(k)
i+1, which will be used in practical implementations.

7

Computation of βk+i

For i > 0: Before the computation of the coefficient βk+i, we are given AjQkrB
k+i (j =

0, . . . , i) and AjQkuB
k+i−1 (j = 0, . . . , i). Consider the vector s̃k+i−1 in (4) for Bi-

CG. For the choice of s̃k+i−1 = (A∗)i−1Qk(A∗)r̃0, the coefficient βk+i is calculated
by (5) and (6), as

βk+i =
(ArB

k+i, (A
∗)i−1Qk(A∗)r̃0)

(AuB
k+i−1, (A

∗)i−1Qk(A∗)r̃0)
=

(AiQk(A)rB
k+i, r̃0)

(AiQk(A)uB
k+i−1, r̃0)

.

This expression affords a computable formula for βk+i. Furthermore, by rewriting
the right-hand side above we obtain

βk+i =
(Ai−1Qk(A)rB

k+i−1, r̃0)

(AiQk(A)uB
k+i−1, r̃0)

· (AiQk(A)rB
k+i, r̃0)

(Ai−1Qk(A)rB
k+i−1, r̃0)

= αk+i−1
ρ(k)

i

ρ(k)
i−1

.

This expression is more suitable for practical implementations.

For i = 0: Before the computation of the coefficient βk, we have the vectors
ALQk−LrB

k , QkrB
k and ALQk−LuB

k−1, which are given in the previous iteration of Bi-
CGSTAB(L). Consider the vector s̃k−1 in (4) for Bi-CG. For the choice of s̃k−1 =

(A∗)L−1Qk−L(A∗)r̃0, the coefficient βk is calculated by (5) and (6) as

βk =
(ArB

k , (A
∗)L−1Qk−L(A∗)r̃0)

(AuB
k−1, (A

∗)L−1Qk−L(A∗)r̃0)
=

(ALQk−L(A)rB
k , r̃0)

(ALQk−L(A)uB
k−1, r̃0)

.

This expression affords a computable formula for βk. For practical implementa-
tions, we rewrite the right-hand side above to obtain

βk =
(AL−1Qk−L(A)rB

k−1, r̃0)

(ALQk−L(A)uB
k−1, r̃0)

· (ALQk−L(A)rB
k , r̃0)

(AL−1Qk−L(A)rB
k−1, r̃0)

= αk−1 ·
(ALQk−L(A)rB

k , r̃0)

(AL−1Qk−L(A)rB
k−1, r̃0)

= αk−1 ·
(QkrB

k , r̃0)/(−γ(m)
L)

(AL−1Qk−L(A)rB
k−1, r̃0)

= αk−1 ·
ρ(k)

0 /(−γ(m)
L)

ρ(k−L)
L−1

.

Here we have used the relation −γ(m)
L (ALQk−LrB

k , r̃0) = (QkrB
k , r̃0), which follows

from (3) and (7).
The following is the Bi-CGSTAB(L) algorithm in full detail:

Algorithm 1: Bi-CGSTAB(L) algorithm [5]

1. k = −L
2. choose x0 and r∗0, r0 = b − Ax0

8

3. u−1 = 0, ρ0 = 1, α = 0, ω = 1
4. repeat until ‖rk+L‖ < ε (tolerance)
5. k = k + L
6. û0 = uk−1, r̂0 = rk, x̂0 = xk, ρ0 = −ωρ0

7. for j = 0, 1, . . . , L − 1
8. ρ1 = (r̂ j, r∗0), β = αρ1

ρ0
, ρ0 = ρ1

9. ûi = r̂i − βûi (i = 0, 1, . . . , j)
10. û j+1 = Aû j, γ = (û j+1, r∗0), α = ρ0

γ
11. r̂i = r̂i − αûi+1 (i = 0, 1, . . . , j)
12. r̂ j+1 = A r̂ j, x̂0 = x̂0 + αû0

13. end for
14. for j = 1, 2, . . . , L
15. τi j =

1
σi

(r̂i, r̂ j), r̂ j = r̂ j − τi j r̂i (i = 1, 2, . . . , j − 1)

16. σ j = (r̂ j, r̂ j), γ′j =
1
σ j
= (r̂ j, r̂0)

17. end for
18. γL = γ

′
L, ω = γL

19. γ j = γ
′
j −

L∑
i= j+1

τ jiγi (j = L − 1, . . . , 1)

20. γ′′j = γ j+1 +

L−1∑
i= j+1

τ jiγi+1 (j = 1, . . . , L − 1)

21. x̂0 = x̂0 + γ1 r̂0, r̂0 = r̂0 − γ′L r̂L, û0 = û0 − γLûL

22. û0 = û0 − γ jû j (j = 1, . . . , L − 1)
23. x̂0 = x̂0 + γ

′′
j r̂ j, r̂0 = r̂0 − γ′j r̂ j (j = 1, . . . , L − 1)

24. uk+L−1 = û0, rk+L = r̂0, xk+L = x̂0

25. end repeat

3 Bi-CG with Multiple Shadow Residuals

In the Bi-CG algorithm the residual rk is updated so that the condition

rk ⊥ Kk(A∗, r̃0)

is satisfied. Similarly, in an algorithm with multiple shadow residuals the residual
rk is updated on the basis of the condition:

rk ⊥ Kk(A∗, R̃0), (10)

where R̃0 is an N × s matrix consisting of s column vectors chosen at the beginning
of the algorithm.

We show two such algorithms below. The first is due to Sleijpen–Sonneveld–
van Gijzen [6], and the second is ours, which will be improved in Section 4 to the
proposed algorithm of the present paper.

9

3.1 Bi-CG(s)

The algorithm of [6] is described here as Algorithm 2 below. For convenience
of reference we name it Bi-CG(s), although no name was given in [6]. For the
condition (10) it employs an N × s matrix Uk, which consists of multiple auxiliary
vectors corresponding to the auxiliary vector uk in Bi-CG. It also uses an N × s
matrix R̃k such that, for any K ≥ 1, the column vectors of R̃0, R̃1, . . . , R̃K−1 span
the subspaceKK(A∗, R̃0). The simplest choice is R̃k = (A∗)kR̃0. Another possibility
is R̃k = Φk(A∗)R̃0 with a polynomial Φk(t) of degree k.

Algorithm 2: Bi-CG(s) algorithm [6]

choose x0, r0 = b − Ax0

set N × s matrix U0 = [r0, Ar0, . . . , As−1r0]
k = 0
repeat until ‖rk‖ < ε (tolerance)

rk+1 = rk − AUkαk such that rk+1 ⊥ R̃k

xk+1 = xk + Ukαk

v = rk+1

for j = 1, . . . , s
Uk+1e j = v − Ukβ

(j)
k+1 such that AUk+1e j ⊥ R̃k

v = AUk+1e j

end for
k = k + 1, update R̃k

end repeat

In Bi-CG(s), the residual and the auxiliary matrix have the following relation:

Proposition 1 ([6]) Assume that no breakdown occurs till the k-th iteration of Bi-
CG(s) and that αi(s) � 0 for every i with 0 ≤ i < k, where αi(s) means the s-th
element of the s-dimensional vector αi. Then the following are true.
a) rk ∈ Kks+1(A, r0) \ Kks(A, r0).
b) rk, AUke j ⊥ Kk(A∗, R̃0), where j = 1, . . . , s.

In the generic case, the assumptions in Proposition 1 are satisfied. Moreover, in
the generic case, the overall computational cost of Bi-CG(s) for solving a system
of equations can be estimated roughly as follows. The subspaceK[N/s](A∗, r̃0) is an
N-dimensional space, which implies that the GBi-CG(s) terminates after [N/s] it-
erations. In an iteration, 2s MATVECs (matrix-vector multiplications) are needed,
and therefore, 2s × N/s = 2N MATVECs are needed for computing the exact
solution.

3.2 GBi-CG(s)

Our variant, to be called GBi-CG(s), is based on the observation that in Bi-CG(s)
the auxiliary column vectors of Uk used in computing Uk+1e j may be replaced by

10

the corresponding column vectors of Uk+1 if they are already computed. By using
the newest vectors available, this algorithm is expected to have improved numerical
stability. The algorithm reads as follows.

Algorithm 3: GBi-CG(s) algorithm

choose x0, r0 = b − Ax0

set N × s matrix U0 = [r0, Ar0, . . . , As−1r0]
k = 0
repeat until ‖rk‖ < ε (tolerance)

rk+1 = rk − AUkαk such that rk+1 ⊥ R̃k

xk+1 = xk + Ukαk

Uk+1e1 = rk+1 − Ukβ
(1)
k+1 such that AUk+1e1 ⊥ R̃k

v = AUk+1e1

for j = 2, . . . , s
set U(j)

k = [rk+1, AUk+1e1, . . . , AUk+1e j−2,Uke j, . . . ,Ukes]

Uk+1e j = v − U(j)
k β

(j)
k+1 such that AUk+1e j ⊥ R̃k

v = AUk+1e j

end for
k = k + 1, update R̃k

end repeat

To state the properties of GBi-CG(s) we define

σk = R̃∗kAUk, σ
(j)
k = R̃∗kAU (j)

k (j = 2, . . . , s), σ′k = R̃∗kU
′
k,

where U′k is an N × s matrix defined as U′k = [rk, AUke1, . . . , AUkes−1].

Proposition 2 Suppose that the matrices σi, σ
(j)
i (j = 2, . . . , s), σ′i are nonsingular

for all i < k. Then the following are true.
a) The algorithm does not break down in the k-th step.
b) rk ∈ Kks+1(A, r0) \ Kks(A, r0).
c) AUke j ∈ Kks+ j+1(A, r0) \ Kks+ j(A, r0), where j = 1, . . . , s.
d) rk, AUke j ⊥ Kk(A∗, R̃0), where j = 1, . . . , s.

Proof a) The coefficients αi and β(j)
i+1 are computed as follows:

αi = (R̃∗i AUi)
−1R̃∗i ri = (σi)

−1R̃∗i ri,

β(1)
i+1 = (R̃∗i AUi)

−1R̃∗i Ari+1 = (σi)
−1R̃∗i Ari+1,

β(j)
i+1 = (R̃∗i AU (j)

i)−1R̃∗i v = (σ(j)
i)−1R̃∗i v (j = 2, . . . , s).

By the assumption of the nonsingularity of σi, σ
(j)
i , GBi-CG(s) does not break

down in the k-th step.

11

b), c) We prove ri ∈ Kis+1(A, r0) \ Kis(A, r0) and AUie j ∈ Kis+ j+1(A, r0) \
Kis+ j(A, r0) (j = 1, . . . , s) by induction on i = 1, 2, . . . , k.

(i) When i = 1, the residual is updated as

r1 = r0 − AU0α0 = r0 − A[r0, Ar0, . . . , A
s−1r0]α0. (11)

Therefore, to prove the relation r1 ∈ Ks+1(A, r0)\Ks(A, r0), it is sufficient to prove
α0(s) � 0. By left-multiplying (11) with R̃∗0 we obtain R̃∗0r0 = R̃∗0AU0α0. Then we
have dim{R̃∗0r0, R̃∗0Ar0, . . . , R̃∗0As−1r0} = s by the assumed nonsingularity of σ′0 =
R̃∗0U0 = R̃∗0[r0, Ar0, . . . , As−1r0]. Therefore R̃∗0r0 � span{R̃∗0Ar0, . . . , R̃∗0As−1r0} =
span{R̃∗0AU0e1, . . . , R̃∗0AU0es−1}, which implies α0(s) � 0. Hence follows r1 ∈
Ks+1(A, r0) \ Ks(A, r0).

The update AU1e1 is made as

AU1e1 = Ar1 − AU0β
(1)
1 ,

where Ar1 ∈ Ks+2(A, r0) \ Ks+1(A, r0) and AU0e j ∈ Ks+1(A, r0) (j = 1, 2, . . . , s).
Thus AU1e1 ∈ Ks+2(A, r0) \ Ks+1(A, r0) follows. By the same argument as AU1e1,
we can show AU1e j ∈ Ks+1+ j(A, r0) \ Ks+ j(A, r0) (j = 2, . . . , s).

(ii) When i = m (< k), we assume rm ∈ Kms+1(A, r0) \Kms(A, r0) and AUme j ∈
Kms+1+ j(A, r0) \ Kms+ j(A, r0). Since

rm+1 = rm − AUmαm, (12)

to prove rm+1 ∈ K(m+1)s+1(A, r0)\K(m+1)s(A, r0), it is sufficient to show that αm(s) �
0, which can be proved by the same argument as above. In the same manner we
can show that AUm+1e j ∈ K(m+1)s+1+ j(A, r0) \ K(m+1)s+ j(A, r0) (j = 1, . . . , s).

d) We prove ri, AUie j ⊥ Ki(A∗, R̃0) (j = 1, . . . , s) by induction on i =
1, 2, . . . , k.

(i) When i = 1, we can see r1, AU1e j ⊥ R̃0 (i.e., ⊥ K1(A∗, R̃0)) (j = 1, . . . , s)
by the assumptions that σ0, σ

(j)
0 (j = 2, . . . , s) are nonsingular.

(ii) When i = m(< k), we assume that rm, AUme j ⊥ Km(A∗, R̃0) (j = 1, . . . , s).
Then the update of the residual, rm+1 = rm − AUmαm, shows the orthogonality
rm+1 ⊥ Km(A∗, R̃0). We also have rm+1 ⊥ R̃m by the assumption of nonsingularity
of σm. From these two we obtain rm+1 ⊥ Km+1(A∗, R̃0), where we make use of
the relation Km(A∗, R̃0)⊥ ∩ R̃⊥m = Km+1(A∗, R̃0)⊥, which follows from the fact that
R̃m = Φm(A∗)R̃0 with a polynomial Φm(t) of degree m.

Next, we consider AUm+1e j for j = 1, . . . , s in turn. For j = 1, AUm+1e1 is
updated as

AUm+1e1 = Av − AUmβ
(1)
m+1, (13)

where v = rm+1. Since v(= rm+1) ⊥ Km+1(A∗, R̃0), we have Av ⊥ Km(A∗, R̃0). We
also have AUmβ

(1)
m+1 ⊥ Km(A∗, R̃0) from the assumption of AUme j ⊥ Km(A∗, R̃0)

(j = 1, . . . , s). Then (13) shows AUm+1e1 ⊥ Km(A∗, R̃0). On the other hand,

12

we have AUm+1e1 ⊥ R̃m by the nonsingularity of σm. Combination of these two
implies AUm+1e1 ⊥ Km+1(A∗, R̃0).

By the same argument, AUm+1e j ⊥ Km+1(A∗, R̃0) for j = 2, . . . , s can be
proved successively. Here we demonstrate the case of j = 2. The vector AUm+1e2

is updated as

AUm+1e2 = Av − AU (2)
m β

(2)
m+1,

where v = AUm+1e1. The vector AU (2)
m e1(= Arm+1) satisfies AU (2)

m e1 ⊥ Km(A∗, R̃0),
the vectors AU (2)

m e j(= AUme j) (j = 2, . . . , s) also satisfy AU (2)
m e j ⊥ Km(A∗, R̃0)

(j = 2, . . . , s) and the vector Av(= A2Um+1e1) satisfies Av ⊥ Km(A∗, R̃0) since v(=
AUm+1e1) ⊥ Km+1(A∗, R̃0). Therefore the orthogonality AUm+1e2 ⊥ Km(A∗, R̃0)
follows. Moreover by the assumption of nonsingularity of σ(2)

m , we see AUm+1e2 ⊥
R̃m. Thus AUm+1e2 ⊥ Km+1(A∗, R̃0) is proved.

This completes the proof of Proposition 2.

In the generic case, the assumptions in Proposition 2 are satisfied. GBi-CG(s)
requires 2N matrix-vector multiplications for computing the exact solution, the
same as Bi-CG(s).

4 GBi-CGSTAB(s, L)

GBi-CGSTAB(s, L), the proposed algorithm, is derived from GBi-CG(s) through
the introduction of the stabilization polynomial. The overall structure of GBi-
CGSTAB(s, L) is similar to that of Bi-CGSTAB(L).

We start by giving the overview of the GBi-CGSTAB(s, L) algorithm, whereas
the details will be explained subsequently.

4.1 Overview

Suppose that we are given a sequence of polynomials pi(t) of degree L for i =
1, 2, . . . satisfying pi(0) = 1. For k = mL, the k-th stabilization polynomial Qk(t)
is defined as Qk(t) = pm(t) · · · p2(t)p1(t).

In this section we denote the vector rk and the matrices Uk and U(j)
k (j =

2, . . . , s) in GBi-CG(s) as rGB
k , UGB

k , U(j),GB
k , respectively. We then set the residual

rk and the auxiliary matrix Uk−1 as

rk = Qk(A)rGB
k , Uk−1 = Qk(A)UGB

k−1.

Furthermore, we define approximate solutions xk and x̂(i)
k as those vectors which

respectively satisfy

b − Axk = rk = Qk(A)rGB
k , b − Ax̂(i)

k = rk+i = Qk(A)rGB
k+i.

In an iteration of GBi-CGSTAB(s, L), the vectors rk and xk and the matrix
Uk−1 are updated to rk+L, xk+L and Uk+L−1, respectively. The iteration consists of

13

the GBi-CG(s) part and the MR part (Figure 3), where “MR” stands for “Minimal
Residual,” as before.

GBi-CG(s) part: In this part, QkrGB
k , QkUGB

k−1 and xk are given. Then the i-th
step, to be specified later, is performed successively for i = 0, 1, . . . , L−1. Finally,
the vectors QkrGB

k+L, . . . , A
LQkrGB

k+L and x̂(L)
k and the matrices QkUGB

k+L−1, . . . , A
LQkUGB

k+L−1
are given. An execution of the GBi-CG(s) part can be done with (s + 1)L matrix-
vector multiplications.

MR part: In this part, by using the output of the GBi-CG(s) part, we choose
the parameters γ(m+1)

1 , γ(m+1)
2 , . . . , γ(m+1)

L in the polynomial pm+1(t) = 1−∑L
i=1 γ

(m+1)
i

such that the norm of the new residual rk+L is minimum.
When the polynomial pm+1(t) is determined, we make the following updates

on the basis of the relation Qk+L(t) = pm+1(t)Qk(t):

Qk+LrGB
k+L = QkrGB

k+L −
L∑

i=1

γ(m+1)
i AiQkrGB

k+L, (14)

Qk+LUGB
k+L−1 = QkU

GB
k+L−1 −

L∑
i=1

γ(m+1)
i AiQkU

GB
k+L−1, (15)

xk+L = x̂(L)
k +

L−1∑
i=0

γ(m+1)
i AiQkrGB

k+L. (16)

4.2 Detail of the GBi-CG(s) part

We describe the GBi-CG(s) part in GBi-CGSTAB(s, L). Note the parallelism with
the Bi-CG part of Bi-CGSTAB(L) described in Section 2.2.

The GBi-CG(s) part consists of L steps, from the 0-th to the (L − 1)-st step.
The i-th step in the GBi-CG(s) part is shown in Figure 3 (bottom-right), where
i = 0, 1, . . . , L − 1. Given AjQkrGB

k+i, AjQkUGB
k+i−1 (j = 0, . . . , i) and x̂(i)

k , the i-th

step computes AjQkrGB
k+i+1, AjQkUB

k+i (j = 0, . . . , i + 1) and x̂(i+1)
k .

We refer to Figure 4, which illustrates the GBi-CG(s) part in the case of (s, L) =
(2, 2). The computation proceeds from row to row, replacing vectors from the
previous row by vectors on the next row. Vector updates derived from GBi-CG(s)
relations (3) are indicated by arrows in Figure 4.

The i-th step for i = 0 consists of the first row to the fourth in Figure 4. In the
transition from the first row to the second, after the computation of the coefficient
β(1)

k in GBi-CG(s), we update the vector such that QkUGB
k e1 = QkrGB

k −QkUGB
k−1βk.

Then the vector AQkUGB
k e1 is obtained by multiplication by the matrix A. We

note that the matrix QkU
(2),GB
k−1 (= [AUGB

k e1,UGB
k−1e2]) is then available. From the

second row to the third, after the computation of β(2)
k in GBi-CG(s), we update the

vector such that QkUGB
k e2 = QkrGB

k − QkU
(2),GB
k−1 β(2)

k . Then the vector AQkUGB
k e2

is obtained by multiplication by the matrix A. From the third to the fourth, after
the computation of αk in GBi-CG(s), we update the vector such that QkrGB

k+1 =

14

Iteration GBi-CG(s) part

given:
QkrGB

k
QkUGB

k−1
xk

↓
GBi-CG(s) part
.

MR part
↓

product:
Qk+LrGB

k+L
Qk+LUGB

k+L−1
xk+L

given:
QkrGB

k
QkUGB

k−1
xk

↓
For i = 0, . . . , L − 1

the i-th step (see below)
end

↓
product:

QkrGB
k+L, AQkrGB

k+L, . . . , A
LQkrGB

k+L
QkUGB

k+L−1, AQkUGB
k+L−1, . . . , A

LQkUGB
k+L−1

x̂(L)
k

MR (Minimal Residual) part The i-th step of GBi-CG(s) part

given:
QkrGB

k+L, AQkrGB
k+L, . . . , A

LQkrGB
k+L

QkUGB
k+L−1, AQkUGB

k+L−1, . . . , A
LQkUGB

k+L−1
x̂(L)

k↓
Find Qk+L(t) = pm+1(t)Qk(t)

such that min ‖Qk+LrGB
k+L‖

↓
product:

Qk+LrGB
k+L

Qk+LUGB
k+L−1

xk+L

given:
QkrGB

k+i, AQkrGB
k+i, . . . , A

iQkrGB
k+i

QkUGB
k+i−1, AQkUGB

k+i−1, . . . , A
iQkUGB

k+i−1
x̂(i)

k↓

Compute β(1)
k+i, . . . , β

(s)
k+i,αk+i

↓
product:
QkrGB

k+i+1, AQkrGB
k+i+1, . . . , A

i+1QkrGB
k+i+1

QkUGB
k+i , AQkUGB

k+i , . . . , A
i+1QkUGB

k+i
x̂(i+1)

k

Figure 3: An iteration of GBi-CGSTAB(s, L)

15

Figure 4: Flowchart of the GBi-CG(s) part of GBi-CGSTAB(2, 2)

QkrGB
k −AQkUGB

k αk. Then the vector AQkrGB
k+1 is obtained by multiplication by the

matrix A.
Next, we show the i-th step for i = 1. From the fourth to the fifth, after the

computation of the coefficient β(1)
k+1, we update the vectors such that QkUGB

k+1e1 =

QkrGB
k+1 − QkUGB

k+1β
(1)
k+1 and AQkUGB

k+1 = AQkrGB
k+1 − AQkUGB

k β
(2)
k+1. Then the vec-

tor A2QkUGB
k+1e1 is obtained by multiplication by the matrix A. We note that the

matrix QkU
(2),GB
k (= [AUGB

k+1e1,UGB
k e2]) and AQkU

(2),GB
k are now available. From

the fifth to the sixth, after the computation of the coefficient β(2)
k+1, we update

the vectors such that QkUGB
k+1e2 = QkrGB

k+1 − AQkU
(2),GB
k+1 β(2)

k+1 and AQkUGB
k+1e2 =

AQkrGB
k+1 − A2QkU

(2),GB
k β(2)

k+1. Then he vector A2QkUGB
k+1e2 is obtained by multipli-

cation by the matrix A. From the sixth to the seventh, after the computation of the
coefficient αk+1, we update the vectors such that QkrGB

k+2 = QkrGB
k+1 − AQkUGB

k+1αk+1

and AQkrGB
k+2 = AQkrGB

k+1 − A2QkUGB
k+1αk+1. Moreover, x̂(1)

k is replaced to x̂(2)
k as

x̂(2)
k = x̂(1)

k + QkUGB
k+1αk+1 (this update is not indicated in Figure 4). Then the

vector A2QkrGB
k+2 is obtained by multiplication by the matrix A. Finally, the vectors

QkrGB
k+2, AQkrGB

k+2, A2QkrGB
k+2, x̂(2)

k and the matrices QkUGB
k+1, AQkUGB

k+1 and A2QkUGB
k+1

are given. The GBi-CG(s) part ends at this point if L = 2.
Now, we show the i-th step for a general i. It is assumed for the moment that

the coefficient vectors for GBi-CG(s) in Algorithm 3 can be computed, which will
be discussed later.

The update of the auxiliary matrix U can be done in s substeps as follows.
In the first substep, after the computation of the coefficient β(1)

k+i in GBi-CG(s),
by the relation in Algorithm 3, we update AjQkUGB

k+i−1e1 → AjQkUGB
k+ie1 (j =

0, 1, . . . , i) such that AjQkUGB
k+ie1 = AjQkrGB

k+i − AjQkUGB
k+i−1β

(1)
k+i. Then the vector

Ai+1QkUGB
k+ie1 is obtained by multiplication by the matrix A. We note that the ma-

16

trices AjU(2),GB
k−1 (j = 0, 1, . . . , i), to be used in the 2nd substep, are now available.

In the second substep, after the computation of the coefficient β(2)
k+i in GBi-CG(s),

by the relation in Algorithm 3, we update AjQkUGB
k+i−1e2 → AjQkUGB

k+ie2 such that

AjQkUGB
k+ie2 = AjQkrGB

k+i − AjQkU
(2),GB
k+i−1 β

(2)
k+i (j = 0, 1, . . . , i). Then the vector

Ai+1QkUGB
k+ie2 is obtained by multiplication by the matrix A. We note that the ma-

trices AjU(3),GB
k−1 (j = 0, 1, . . . , i), to be used in the 3rd substep, are now available.

We continue in the same way. In the t-th substep, where t = 3, . . . , s, we update
the vectors AjQkUGB

k−1et → AjQkUGB
k et (j = 0, . . . , i) and compute Ai+1QkUGB

k .
Then the update of the matrices: AjQkUGB

k−1 → AjQkUGB
k (j = 0, 1, . . . , i) and the

computation of the matrix Ai+1QkUGB
k are done.

The update of the residual r can be done as follows. Firstly, after the compu-
tation of the coefficient αk+i in GBi-CG(s), by the relation (Algorithm 3), we up-
date AjQkrGB

k+i → AjQkrGB
k+i+1 such that AjQkrGB

k+i+1 = AjQkrGB
k+i − Aj+1QkUGB

k+iαk+i

(j = 0, 1, . . . , i). Then the vector Ai+1QkrGB
k+i+1 is obtained by multiplication by the

matrix A.
The i-th step ends by returning the vectors AjQkrGB

k+i+1 (j = 0, 1, . . . , i + 1) and

x̂(i+1)
k , and the matrices AjQkUGB

k+i (j = 0, 1, . . . , i + 1)

It remains to explain how to compute the coefficients αk+i and β(1)
k+i, . . . ,β

(s)
k+i.

Computation of αk+i

Before the computation of the coefficient αk+i, we are given AjQkrGB
k+i (j = 0, . . . , i)

and AjQkUGB
k+i (j = 0, . . . , i+1). Consider the matrix R̃k+i in GBi-CG(s) (Algorithm

3), though it is not available at hand. For the choice of R̃k+i = (A∗)iQk(A∗)R̃0, the
vector αk+i is calculated as

αk+i = (R̃∗k+iAUGB
k+i)
−1(R̃∗k+ir

GB
k+i)

= {((A∗)iQk(A∗)R̃0)∗AUGB
k+i }−1{((A∗)iQk(A∗)R̃0)∗rGB

k+i}
= {R̃∗0Ai+1Qk(A)UGB

k+i }−1{R̃∗0AiQk(A)rGB
k+i}.

This expression affords a computable formula for αk+i, since the vector AiQkrGB
k+i,

and the matrices Ai+1QkUGB
k+i and R̃0 are available.

For the efficient computation of αk+i as well as β(1)
k+i, . . . ,β

(s)
k+i below, it is conve-

nient to employ auxiliary s× s matrix M(k)
i+1 = R̃∗0Ai+1QkUGB

k+i and an s-dimensional

vector m(k)
i = R̃∗0AiQkrGB

k+i. We then have αk+i = (M(k)
i+1)−1m(k)

i , which are used in
our implementation.

Computation of β(1)
k+i

For i > 0: Before the computation of the coefficient β(1)
k+i, we are given AjQkrGB

k+i (j =

0, . . . , i) and AjQkUGB
k+i−1 (j = 0, . . . , i). Consider the matrix R̃k+i−1 in GBi-CG(s)

17

(Algorithm 3). For the choice of R̃k+i−1 = (A∗)i−1Qk(A∗)R̃0, the vector β(1)
k+i is

calculated as

β(1)
k+i = (R̃∗k+i−1AUGB

k+i−1)−1(R̃∗k+i−1ArGB
k+i)

= {((A∗)i−1Qk(A∗)R̃0)∗AUGB
k+i }−1{((A∗)i−1Qk(A∗)R̃0)∗ArGB

k+i}
= {R̃∗0AiQk(A)UGB

k+i−1}−1{R̃∗0AiQk(A)rGB
k+i}

= (M(k)
i)−1m(k)

i .

This formula is used in our implementation.

For i = 0: Before the computation of the coefficient β(1), we have the vectors
ALQk−LrGB

k and QkrGB
k and the matrix ALQk−LUGB

k−1, which are given in the previ-

ous iteration of Bi-CGSTAB(L). Consider the matrix R̃k−1 in GBi-CG(s) (Algo-
rithm 3). For the choice of R̃k−1 = (A∗)L−1Qk−L(A∗)R̃0, the coefficient vector β(1)

k
is calculated as

β(1)
k = (R̃∗k−1AUGB

k−1)−1(R̃∗k−1ArGB
k)

= {((A∗)L−1Qk−L(A∗)R̃0)∗AUGB
k }−1{((A∗)L−1Qk−L(A∗)R̃0)∗ArGB

k }
= {R̃∗0ALQk−L(A)UGB

k−1}−1{R̃∗0ALQk−L(A)rGB
k }.

This expression affords a computable formula for β(1)
k . For practical implementa-

tions, we rewrite the right-hand side above to obtain

β(1)
k = {−γ(m)

L R̃∗0ALQk−L(A)UGB
k−1}−1{−γ(m)

L R̃∗0ALQk−L(A)rGB
k }

= {−γ(m)
L M(k−L)

L }−1{R̃∗0QkrGB
k }

= {−γ(m)
L M(k−L)

L }−1m(k)
0 .

Here we have used the relation

−γ(m)
L R̃∗0ALQk−LrGB

k = R̃∗0QkrGB
k , (17)

which follows from Proposition 2, d) and (14).

Computation of β(t)
k+i (t = 2, . . . , s)

For i > 0: Before the computation of the coefficient β(t)
k+i, we have AjQkrGB

k+i
(j = 0, . . . , i), AjQkUGB

k+iev (j = 0, . . . , i + 1; v = 1, . . . , t − 1) and AjQkUGB
k+i−1ev

(j = 0, . . . , i; v = t, . . . , s). Thus AjQkU
(t),GB
k+i−1 (j = 0, . . . , i) are also available.

Consider the matrix R̃k+i−1 in GBi-CG(s) (Algorithm 3). For the choice of R̃k+i−1 =

(A∗)i−1Qk(A∗)R̃0, the coefficient vector β(t)
k+i is calculated as

β(t)
k+i = (R̃∗k+i−1AU (t),GB

k+i−1)−1(R̃∗k+i−1A2UGB
k+iet−1)

= {((A∗)i−1Qk(A∗)R̃0)∗AU (t),GB
k+i }−1{((A∗)i−1Qk(A∗)R̃0)∗A2UGB

k+iet−1}
= {R̃∗0AiQk(A)U(t),GB

k+i−1 }−1{R̃∗0Ai+1Qk(A)UGB
k+iet−1}

= [m(k)
i ,M

(k)
i+1e1, . . . ,M

(k)
i+1et−2,M

(k)
i et, . . . ,M

(k)
i es]

−1M(k)
i+1et−1.

18

For the last equality note that

U(t),GB
k+i−1 = [rGB

k+i, AUGB
k+ie1, . . . , AUGB

k+iet−2,U
GB
k+i−1et, . . . ,U

GB
k+i−1es].

The above expression of β(t)
k+i is used in our implementation.

For i = 0: Before the computation of the coefficient β(t)
k , we have the vectors

QkrGB
k , AQkUGB

k ev (v = 1, . . . , t − 1) and the previous vectors ALQk−LUGB
k−1ev (v =

t, . . . , s). Consider the matrix R̃k−1 in GBi-CG(s) (Algorithm 3). For the choice of
R̃k−1 = (A∗)L−1Qk−L(A∗)R̃0, the coefficient vector β(t)

k is calculated as

β(t)
k = (R̃∗k−1AU (t),GB

k−1)−1(R̃∗k−1A2UGB
k et−1)

= {((A∗)L−1Qk−L(A∗)R̃0)∗AU (t),GB
k }−1{((A∗)L−1Qk−L(A∗)R̃0)∗A2UGB

k et−1}
= {R̃∗0ALQk−L(A)U(t),GB

k−1 }−1{R̃∗0AL+1Qk−L(A)UGB
k et−1}

= {−γ(m)
L R̃∗0ALQk−L(A)U(t),GB

k−1 }−1{−γ(m)
L R̃∗0AL+1Qk−L(A)UGB

k et−1} (18)

= [m(k)
0 ,M

(k)
1 e1, . . . ,M

(k)
1 et−2,−γ(m)

L M(k−L)
L et, . . . ,−γ(m)

L M(k−L)
L es]

−1M(k)
1 et−1,

where the equality between (18) and the last line can be shown as follows. First
note

U(t),GB
k−1 = [rGB

k , AUGB
k e1, . . . , AUGB

k et−2,U
GB
k−1et, . . . ,U

GB
k−1es].

Also note

−γ(m)
L R̃∗0AL+1Qk−L(A)UGB

k ev = R̃∗0AQk(A)UGB
k ev (v = 1, . . . , t − 1), (19)

which follows from Proposition 2, d) and (15). For the first factor of (18) we have

−γ(m)
L R̃∗0ALQk−L(A)U(t),GB

k−1

= −γ(m)
L R̃∗0[ALQk−LrGB

k , A
L+1Qk−LUGB

k e1, . . . , A
L+1Qk−LUGB

k et−2,

ALQk−LUGB
k−1et, . . . , A

LQk−LUGB
k−1es]

= R̃∗0[Qk rGB
k , AQkU

GB
k e1, . . . , AQkU

GB
k et−2,

− γ(m)
L ALQk−LUGB

k−1et, . . . ,−γ(m)
L ALQk−LUGB

k−1es]

= [m(k)
0 ,M

(k)
1 e1, . . . ,M

(k)
1 et−2,−γ(m)

L M(k−L)
L et, . . . ,−γ(m)

L M(k−L)
L es],

where (17) and (19) are used. The second factor of (18) can be rewritten by (19) as

−γ(m)
L R̃∗0AL+1Qk−L(A)UGB

k et−1 = R̃∗0AQk(A)UGB
k et−1 = M(k)

1 et−1.

The following is the GBi-CGSTAB(s, L) algorithm in full detail:

19

Algorithm 4: GBi-CGSTAB(s, L) algorithm

1. choose x0 and N × s matrix R̃0

2. set U0 = [r0, Ar0, . . . , As−1r0], U1 = AU0

3. r0 = b − Ax0

4. M = R̃∗0U1, m = R̃∗0r0

5. solve Mβ = m for β
6. r0 = r0 − U1β, x0 = x0 + U0β
7. r1 = Ar0, iter = 0, ω = −1
8. repeat until ‖r0‖ < ε (tolerance)
9. M = −ωM
10. for i = 0, 1, . . . , L − 1
11. if (iter = 0)∧(i = 0) i = 1
12. m = R̃∗0ri

13. for j = 1, . . . , s
14. if (j = 1)
15. solve Mβ = m for β

16. Uke j = rk −
s∑

q=1

Ukeqβ(q) (k = 0, . . . , i)

17. else
18. solve [m,Me1, . . . ,Me j−2,Me j, . . . ,Mes]β = Me j−1 for β

19. Uke j = Uk+1e j−1−rkβ(1)−
j−2∑
q=1

Uk+1eqβ(q+1)−
s∑

q= j

Ukeqβ(q)

(k = 0, . . . , i)
20. end if
21. Ui+1e j = AUie j

22. Me j = R̃∗0Ui+1e j

23. end for
24. solve Mβ = m for β
25. rk = rk − Uk+1β (k = 0, . . . , i)
26. x0 = x0 + U0β
27. ri+1 = Ari

28. end for
29. for j = 1, 2, . . . , L
30. τi j =

1
σi

(ri, r j), r j = r j − τi jri (i = 1, 2, . . . , j − 1)

31. σ j = (r j, r j), γ′j =
1
σ j
= (r j, r0)

32. end for
33. γL = γ

′
L, ω = γL

34. γ j = γ
′
j −

L∑
i= j+1

τ jiγi (j = L − 1, . . . , 1)

35. γ′′j = γ j+1 +

L−1∑
i= j+1

τ jiγi+1 (j = 1, . . . , L − 1)

20

36. x0 = x0 + γ1r0, r0 = r0 − γ′LrL, U0 = U0 − γLUL

37. U0 = U0 − γ jU j (j = 1, . . . , L − 1)
38. x0 = x0 + γ

′′
j r j, r0 = r0 − γ′jr j (j = 1, . . . , L − 1)

39. iter =iter +(s + 1)L
40. end repeat

A remark is in order about the initial vectors. In the above algorithm we set
U0 = [r0, Ar0 . . . , As−1r0] for ease of description. In practical implementations,
however, it is recommended that some orthogonalization procedure be applied to
r0, Ar0 . . . , As−1r0 to avoid or mitigate numerical instability due to rounding er-
rors. We have in fact adopted this idea in our numerical experiments reported in
Section 5.

4.3 GBi-CGSTAB(s, L) with preconditioning

We describe the right-preconditioned GBi-CGSTAB(s, L). For a matrix Â that is
close to the given matrix A, we consider the right-preconditioned system

AÂ−1y = b, y = Âx.

GBi-CGSTAB(s, L) applied to this system of equations in y can be translated to an
iteration in x as follows.

Algorithm 5: GBi-CGSTAB(s, L) algorithm with preconditioning

1. choose x0 and N × s matrices R̃0 and U0

2. set U0 = [r0, Ar0, . . . , As−1r0], Û0 = Â−1U0

3. U1 = AÛ0

4. r0 = b − Ax0

5. M = R̃∗0U1,m = R̃∗0r0

6. solve Mβ = m for β
7. r0 = r0 − U1β, x0 = x0 + Û0β
8. r̂0 = Â−1r0

9. r1 = A r̃0, iter = 0, ω = −1
10. repeat until ‖r0‖ < ε (tolerance)
11. M = −ωM
12. for i = 0, 1, . . . , L − 1
13. if (iter = 0)∧(i = 0) i = 1
14. m = R̃∗0ri

15. for j = 1, . . . , s
16. if (j = 1)
17. Solve Mβ = m for β

18. Uke j = rk −
s∑

q=1

Ukeqβ(q) (k = 0, . . . , i)

21

19. Ûke j = r̂k −
s∑

q=1

Ûkeqβ(q) (k = 0, . . . , i − 1)

20. else
21. solve [m,Me1, . . . ,Me j−2,Me j, . . . ,Mes]β = Me j−1 for β

22. Uke j = Uk+1e j−1−rkβ(1)−
j−2∑
q=1

Uk+1eqβ(q+1)−
s∑

q= j

Ukeqβ(q)

(k = 0, . . . , i)

23. Ûke j = Ûk+1e j−1− r̂kβ(1)−
j−2∑
q=1

Ûk+1eqβ(q+1)−
s∑

q= j

Ûkeqβ(q)

(k = 0, . . . , i − 1)
24. end if
25. Ûie j = Â−1Uie j

26. Ui+1e j = AÛie j

27. Me j = R̃∗0Ui+1e j

28. end for
29. solve Mβ = m for β
30. rk = rk − Uk+1β (k = 0, . . . , i)
31. r̂k = r̂k − Ûk+1β (k = 0, . . . , i − 1)
32. x0 = x0 + Û0β
33. r̂i = Â−1ri

34. ri+1 = A r̂i

35. end for
36. for j = 1, 2, . . . , L
37. τi j =

1
σi

(ri, r j), r j = r j − τi jri (i = 1, 2, . . . , j − 1)

38. σ j = (r j, r j), γ′j =
1
σ j
= (r j, r0)

39. end for
40. γL = γ

′
L, ω = γL

41. γ j = γ
′
j −

L∑
i= j+1

τ jiγi (j = L − 1, . . . , 1)

42. U0 = U0 − γ jU j (j = 1, . . . , L)
43. x0 = x0 + γ j+1 r̂ j, r0 = r0 − γ′j+1r j+1 (j = 0, . . . , L − 1)
44. iter =iter +(s + 1)L
45. end repeat

4.4 The relation between IDR(s) and GBi-CGSTAB(s, 1)

In this section, we reveal a relation between the residuals of GBi-CGSTAB(s, 1)
and IDR(s) in exact arithmetic. For linearly independent vectors p1, . . . , ps, put
R̃0 = [p1, . . . , ps] and define p j for j > s by pms+i = (A∗)m pi (1 ≤ i ≤ s, m ≥ 1).

Proposition 3 Suppose that the assumption of Proposition 2 for GBi-CG(s) holds
for some k. Also suppose that IDR(s) with S = R̃⊥0 does not break down before the

22

(s + 1)k-th step. If, in addition, the matrices

S ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∗1Ar0 p∗1A2r0 . . . p∗1Amsr0

p∗2Ar0 p∗2A2r0 . . . p∗2Amsr0
...

...
...

p∗msAr0 p∗msA
2r0 . . . p∗msA

msr0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

are nonsingular for all m with 0 < m ≤ k, then the residual rm in GBi-CGSTAB(s, 1)
is identical with the residual r(s+1)m in IDR(s) for all m with 0 < m ≤ k.

Proof First, we show how the two residuals are represented by the matrix A and
the initial residual r0. After the m-th step, the residual of GBi-CGSTAB(s, L) is
represented as

rm = Qm(A)rGB
m ,

where Qm(t) = p1(t)p2(t) · · · pm(t) is the m-th stabilization polynomial. The coeffi-
cient of pm(t) = 1 − ωmt is determined from

min
ωm
‖(I − ωmA)Qm−1rGB

m ‖.

Secondly, by [10], the residual r(s+1)m in IDR(s) is represented as

rm(s+1) = Ωm(A)Ψms(A)r0,

whereΩm(t) = (1−ω′mt)(1−ω′m−1t) · · · (1−ω′1t) is the m-th stabilization polynomial
in IDR(s). The coefficient ω′m is determined from

min
ω′m
‖(I − ω′mA)v‖,

where v = Ωm−1(A)Ψms(A)r0.
Now it is sufficient to show that rGB

m = Ψmsr0. By Proposition 2 and [10],
both rGB

m and Ψmsr0 belong to Kms+1(A, r0) and hence they are both represented
as (I − c1A − · · · − cmsAms)r0. The coefficients ci here are determined from the
orthogonality of rGB

m and Ψmsr0 to Km(A∗, R̃0) = span{p1, p2, . . . , pms}, i.e., from

S ms[c1, . . . , cms]
 = [p∗1r0, . . . , p

∗
msr0],

where S ms is a nonsingular matrix (by the assumption). Hence the coefficients
c1, . . . , cms for rGB

m and Ψmsr0 are identical, which means rGB
m = Ψmsr0.

4.5 Computational cost and memory requirement

Computational cost of GBi-CGSTAB(s, L) can be evaluated roughly as follows un-
der the assumption that no breakdown occurs. In an iteration of GBi-CGSTAB(s, L),
(s+ 1)L MATVECs (matrix-vector multiplications) are needed. The algorithm ter-
minates in [N/sL] iterations. Hence, the number of MATVECs is (s+1)L×N/sL =

23

N + N/s in solving linear equations by GBi-CGSTAB(s, L). Recall that “N + N/s
MATVECs for convergence” is a feature shared by IDR(s).

Other computational cost and memory requirements are summarized in Table1.
We follow the convention of [10] to scale numbers of operations by the number of
matrix-vector multiplications.

• AXPY means the number of operations of the form “(scalar) × (vector) +
(vector),” where an addition of two vectors and a scalar multiplication of a
vector is weighted 0.5.

• DOT means the number of inner products.

• MEMORY shows the memory requirements in terms of the number of N di-
mensional vectors, including storage for the right-hand side and the solution
and excluding storage for the system matrix and the preconditioner.

It should be noted that GBi-CGSTAB(s, 1) has an advantage over IDR(s) in
the number of AXPY. They are mathematically equivalent, but have difference in
algorithms.

Table 1: Numbers of vector operations and memory requirements

Method MVs AXPY DOT MEMORY

Bi-CGSTAB(L) 1 3
4 (L + 3) 1

4 (L + 7) 2L + 5
IDR(s) 1 2s + 3

2 +
1

s+1 s + 2
s+1 3s + 5

GBi-CGSTAB(s, L) 1 s(L+1)
2 + 2 + L−1

2s+2 s + L+3
2s+2 sL + L + 2s + 3

GBi-CGSTAB(1, L) 1 3
4 (L + 3) 1

4 (L + 7) 2L + 5
GBi-CGSTAB(s, 1) 1 s + 2 s + 2

s+1 3s + 4

5 Numerical Experiments

5.1 A 3-dimensional convection-dominated problem

The first problem, taken from [5, 10], arises from a discretization of a partial dif-
ferential equation. We consider

uxx + uyy + uzz + 1000ux = F

on [0, 1] × [0, 1] × [0, 1] with the Dirichlet boundary condition, where the function
F is specified in such a way that u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz) is a
solution to this problem. Discretization by central differences is adopted. The
number of grid points is 52 in each direction of the xyz-space, and a system of
125,000 linear equations results. The coefficient matrix is nearly skew-symmetric,

24

0 50 100 150 200 250 300
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

Bi-CGSTAB(1)
Bi-CGSTAB(2)
Bi-CGSTAB(3)
Bi-CGSTAB(4)

Figure 5: Convergence of Bi-CGSTAB(L) (Example 1)

and it is observed in [5, 10] that this causes slow convergence for methods with
linear (L = 1) stabilization polynomials.

We have applied Bi-CGSTAB(L), IDR(s) and GBi-CGSTAB(s, L) with pa-
rameters s ∈ [1, 4] and L ∈ [1, 4]. No preconditioning is used. We start with
x0 = [0, 0, . . . , 0] and stop the iterations when the residual norm, scaled by the
norm of the right-hand side vector, drops below 10−8. Figures 5, 6, 7 and 8 show
the convergence. While it is confirmed that the algorithms with L = 1 has poor
convergence, we see that algorithms with L > 1 are significantly more efficient.
In particular the proposed algorithm GBi-CGSTAB(s, L), with L > 2, converges
faster than IDR(s) and is comparable to Bi-CGSTAB(L). The total numbers of
matrix-vector multiplications needed to solve the problem are tabulated in Tables
2 and 3.

All the experiments, including those in Sections 5.2 and 5.3, are performed
using a home-made program with MATLAB 7.5.

5.2 Helmholz-like equation

Second, we consider the following Helmholz-like equation:

uxx + uyy + σ
2u + 0.1ux = F

with the Dirichlet boundary condition, where the function F is specified in such a
way that u(x, y) = sin(

√
σ2 − 1/2 x) cos(y/2) is a solution to this problem. We set

σ = 4.16. A discretization results in a system of 40,000 linear equations.
We have applied Bi-CGSTAB(L), IDR(s) and GBi-CGSTAB(s, L) with param-

eters s ∈ [1, 4] and L ∈ [1, 4]. We have adopted a standard preconditioner of

25

0 500 1000 1500 2000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

S
ca
le
d
re
si
du
al
 n
or
m

Number of MATVECS

IDR(1)
IDR(2)
IDR(3)
IDR(4)

Figure 6: Convergence of IDR(s) (Example 1)

0 50 100 150 200 250 300
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

GBi-CGSTAB(1,1)
GBi-CGSTAB(2,2)
GBi-CGSTAB(3,3)
GBi-CGSTAB(4,4)

Figure 7: Convergence of GBi-CGSTAB(s, L) (Example 1)

26

0 200 400 600 800 1000 1200
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

Bi-CGSTAB(4)
IDR(4)
GBi-CGSTAB(4,4)

Figure 8: Comparison of the three methods with s = 4, L = 4 (Example 1)

Table 2: Number of matrix-vector multi-
plications in Bi-CGSTAB(L) and IDR(s)
(Example 1)

METHOD MATVECS

Bi-CGSTAB(1) 2112
Bi-CGSTAB(2) 252
Bi-CGSTAB(3) 294
Bi-CGSTAB(4) 208

IDR(1) 2044
IDR(2) 1947
IDR(3) 1660
IDR(4) 1150

Table 3: Number of matrix-vector mul-
tiplications in GBi-CGSTAB(s, L) (Ex-
ample 1)

������s
L

1 2 3 4

1 2070 240 252 224
2 1983 234 270 252
3 1396 232 252 240
4 1155 240 255 240

27

0 1000 2000 3000 4000 5000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

Bi-CGSTAB(1)
Bi-CGSTAB(2)
Bi-CGSTAB(3)
Bi-CGSTAB(4)

Figure 9: Convergence of Bi-CGSTAB(L) (Example 2)

ILU(0). We start with x0 = [0, 0, . . . , 0] and stop the iterations when the resid-
ual norm, scaled by the norm of the right-hand side vector, drops below 10−8.
Figures 9, 10, 11 and 12 show the convergence. We see that higher-order stabi-
lization polynomials and higher-dimensional shadow residuals are effective. GBi-
CGSTAB(s, L) with L > 1 tends to converge faster than IDR(s).

5.3 University of Florida sparse matrix collection

Finally we consider the matrices of the University of Florida sparse matrix collec-
tion [2] (Table 6). We choose b = A[1, 1, . . . , 1] as the right vectors. We fix the
parameters (s, L) = (4, 4). We start with x0 = [0, 0, . . . , 0] and stop the iterations
when the residual norm, scaled by the norm of the right-hand side vector, drops
below 10−8.

The numbers of matrix-vector multiplications needed to solve the problems by
Bi-CGSTAB(4), IDR(4) and GBi-CGSTAB(4, 4) are compared in Table 7, (a) with
no preconditioner and (b) with a preconditioner of ILU(0). For most of the prob-
lems in Table 6, the convergence of GBi-CGSTAB(s, L) turned out to be roughly
the same as that of IDR(s).

6 Conclusion

We have proposed GBi-CGSTAB(s, L), a new variant of Bi-CGSTAB with multiple
(s > 1) shadow residuals and with higher order (L > 1) stabilization polynomials.

28

0 1000 2000 3000 4000 5000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

IDR(1)
IDR(2)
IDR(3)
IDR(4)

Figure 10: Convergence of IDR(s) (Example 2)

0 1000 2000 3000 4000 5000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

GBi-CGSTAB(1,1)
GBi-CGSTAB(2,2)
GBi-CGSTAB(3,3)
GBi-CGSTAB(4,4)

Figure 11: Convergence of GBi-CGSTAB(s, L) (Example 2)

29

0 500 1000 1500 2000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of MATVECS

S
ca
le
d
re
si
du
al
 n
or
m

Bi-CGSTAB(4)
IDR(4)
GBi-CGSTAB(4,4)

Figure 12: Comparison of the three methods with s = 4, L = 4 (Example 2)

Table 4: Number of matrix-vector multi-
plications in Bi-CGSTAB(L) and IDR(s)
(Example 2) (“n.c.” means no conver-
gence within 10000 matrix-vector multi-
plications .)

METHOD MATVECS

Bi-CGSTAB(1) 4220
Bi-CGSTAB(2) 2356
Bi-CGSTAB(3) 2196
Bi-CGSTAB(4) 1736

IDR(1) n.c.
IDR(2) 1656
IDR(3) 780
IDR(4) 1120

Table 5: Number of matrix-vector mul-
tiplications in GBi-CGSTAB(s, L) (Ex-
ample 2)

������s
L

1 2 3 4

1 4842 2440 2382 1648
2 1419 942 909 696
3 944 784 708 736
4 690 590 585 660

30

Table 6: Size and the number of nonzero entries of the matrices (Example 3)

size entries

add20 2395 17319
add32 4960 23884
epb3 84617 463625
memplus 17758 126150
poisson3Da 13514 352762
poisson3Db 85623 2374949
raefsky2 3242 293551
sme3Da 12504 874887
sme3Db 29067 2081063
wang4 26068 177196

This method, GBi-CGSTAB(s, L), has the property that, in exact arithmetic, it can
compute the exact solution with at most N + N/s matrix-vector multiplications.
Through the numerical experiments we have shown that GBi-CGSTAB(s, L) shares
good features with both IDR(s) and Bi-CGSTAB(L).

Acknowledgements

The authors wish to express their sincere gratitude to Professor Kazuo Murota of
the University of Tokyo for his comments and suggestions. This work is supported
by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan

After the completion of this manuscript the authors learned about a recent re-
port [7] on a closely related topic by G. L. G. Sleijpen and M. B. van Gijzen. The
proposed algorithms are similar but different in updating the auxiliary vectors, de-
noted as Uk in the present paper. Our algorithm is to theirs what the Gauss-Seidel
iteration is to the Jacobi iteration.

References

[1] J. I. Aliaga, D. L. Boley, R. W. Freund and V. Hernandez, A Lanczos-type
method for multiple starting vectors, Mathematics of Computation, Vol. 69
(2000), pp. 1577–1602.

[2] A. Bayliss, C. I. Goldstein and E. Turkel, An iterative method for the
Helmholtz equation, Journal of Computational Physics, Vol. 49 (1983),
pp. 443–457.

31

Table 7: Number of matrix-vector multiplications to solve the problems (Exam-
ple 3) (“n.c.” means no convergence within 10000 matrix-vector multiplications.)

(a) Without preconditioner
Bi-CGSTAB(4) IDR(4) GBi-CGSTAB(4,4)

add20 576 515 440
add32 104 105 100
epb3 6376 4265 3940
memplus 1480 1185 1100
poisson3Da 200 190 220
poisson3Db 392 335 340
raefsky2 640 450 460
sme3Da n.c. 4995 3600
sme3Db n.c. 6615 4660
wang4 680 460 500

(b) With preconditioner ILU(0)
Bi-CGSTAB(4) IDR(4) GBi-CGSTAB(4, 4)

add20 184 205 160
add32 48 55 60
epb3 120 130 140
memplus 312 395 280
poisson3Da 64 70 60
poisson3Db 160 130 140
raefsky2 64 55 60
sme3Da 1856 570 600
sme3Db 1856 800 720
wang4 80 70 80

32

[3] T. Davis, University of Florida sparse matrix collection,
http://www.cise.ufl.edu/research/sparse/matrices/index.html.

[4] R. Fletcher, Conjugate gradient methods for indefinite systems, in Proceed-
ings of the Dundee Biennal Conference on Numerical Analysis 1974, G. A.
Watson, ed., Springer-Verlag, New York, 1975, pp. 73–89.

[5] G. L. G. Sleijpen and D. R. Fokkema, BICGSTAB(L) for equations involving
unsymmetric matrices with complex spectrum, Electronic Transactions on
Numerical Analysis, Vol. 1 (1993), pp. 11–32.

[6] G. L. G. Sleijpen, P. Sonneveld and M. B. van Gijzen, Bi-CGSTAB as an
induced dimension reduction method, Reports of the Department of Applied
Mathematical Analysis, REPORT 08-07 (2008), Delft University of Technol-
ogy.

[7] G. L. G. Sleijpen and M. B. van Gijzen, Exploiting BiCGstab(�) strategies to
induce dimension reduction, Reports of the Department of Applied Mathe-
matical Analysis, REPORT 09-02 (2009), Delft University of Technology.

[8] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tem, SIAM Journal on Scientific and Statistical Computing, Vol. 10 (1989),
pp. 36–52.

[9] P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and fast algo-
rithms for solving large nonsymmetric systems of linear equations, Reports of
the Department of Applied Mathematical Analysis, REPORT 07-07 (2007),
Delft University of Technology.

[10] P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations, SIAM
Journal on Scientific Computing, Vol. 31 (2008), pp. 1035–1062.

[11] M. Tanio and M. Sugihara, GIDR(s, L): generalized IDR(s) (in Japanese),
The 2008 annual conference of the Japan Society for Industrial and Applied
Mathematics, pp. 411–412, Chiba, Japan, September, 2008.

[12] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on
Scientific and Statistical Computing, Vol. 13 (1992), pp. 631–644.

[13] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems,
Cambridge University Press, 2003.

[14] S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG
for solving nonsymmetric linear systems, SIAM Journal on Scientific Com-
puting, Vol. 18 (1997), pp. 537–551.

33

