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Abstract

IDR(s) is now recognized as one of the most effective methods, often su-
perior to other Krylov subspace methods, for large nonsymmetric linear sys-
tems of equations. In this paper we propose an improvement upon IDR(s) by
incorporating a higher-order stabilization polynomial into IDR(S). The pro-
posed algorithm, named GBi-CGSTAB(s, L), shares desirable features with
both IDR(s) and Bi-CGSTAB(L).

1 Introduction

Recently there has been proposed a new method called IDR(s) [9, 10] for solv-
ing large nonsymmetric systems of equations Ax = b. Here Alis a given N x N
matrix and b is a given vector. IDR(S) has a feature that it requires at most
N + N/s matrix-vector multiplications to compute an exact solution in exact arith-
metic, while the Bi-CG based methods such as CGS [8, 13], BiCGSTAB [12,13],
BiCGSTAB(L) [5], GP-BICG [13,14] require at most 2N matrix-vector multiplica-
tions. Numerical experiments also report that IDR(S) is competitive with or supe-
rior to most Bi-CG based methods. It is known, however, that IDR(S) is inferior to
BiCGSTAB(L) (L > 1) when applied to equations with nearly skew-symmetric co-
efficient matrices. The weakness against skew-symmetry comes from the fact that
the order of the stabilization polynomials in IDR(S) is one, whereas BICGSTAB(L)
uses higher order stabilization polynomials. As mentioned in [9, 10], to overcome
this weakness it is natural to incorporate higher order stabilization polynomials into
IDR(s).



A milestone in this direction is the Sleijpen—Sonneveld—van Gijzen paper [6].
As is well known, the idea behind the IDR(s), so-called IDR principle, is different
from that of the standard Krylov methods, which makes it difficult to incorporate
a higher order stabilization polynomial into IDR(s). The paper shows that IDR(S)
can also be put into the standard framework of the Krylov method. To be specific,
the paper proposes a variant of Bi-CG with multiple shadow residuals and the first
order stabilization polynomials, and shows that it is mathematically equivalent to
IDR(s).

In this paper we first present another variant of Bi-CG with multiple shadow
residuals, called GBi-CG(s), which is different from that introduced in [6]. Then
we incorporate L-th order stabilization polynomials into this variant to obtain the
method we propose in the paper. The derivation of this method is parallel to that
of Bi-CGSTAB(L), which is obtained from Bi-CG with L-th order stabilization
polynomials. The proposed algorithm is named GBi-CGSTAB(s, L). This method
with L = 1 is mathematically equivalent to IDR(S).

This paper is organized as follows. Section 2 is a preliminary section, de-
scribing Bi-CG and Bi-CGSTAB(L). In Section 3, we first explain the variant of
of Bi-CG due to Sleijpen—Sonneveld—van Gijzen, and then introduce GBi-CG(s),
another variant that serves as the basis of our method. In Section 4, we derive GBi-
CGSTAB(s, L), the method we propose in this paper. Section 5 shows numerical
results and Section 6 concludes the paper.

Notation and Definition

Notation 1 For R € CN*s andv e cN we write “v L R’ to mean that v is orthog-
onal to all column vectors of R. We denote by R* the (maximal) linear subspace
that is orthogonal to all column vectors R.

Notation 2 For an N x smatrix C and for j = 1,2,...,swe denote by Ce; the
j-th column vector of C.

Notation 3 Let C and Rbe N x smatrices, and van N dimensional vector. By the
expression:

u=v-Cpg suchthatu L R,

we mean that (i) we choose an sdimensional coefficient vector g such that v—CB L
R and (ii) we update the vector u by computing u = v— CB. More generally, if A
isan N x N matrix, the expression:

u=v—Cp suchthat Au L R,

means that (i) we choose 8 such that Av — ACB8 L Rand (ii) we update the vector
u by computing u = v— CgB.



Definition 1 For B C™N, R € CN*S and a natural number k, the linear subspace
Kk(B, R) is defined as

k-1
Ki(B,R) = {Z BIRy; | 7, € CS}. (1)

j=0

We refer to Ki(B, R) as the block Krylov subspace [1]. Note that, if s = 1, %i(B, R)
is the Krylov subspace in the usual sense.

2 Preliminaries: Bi-CG and Bi-CGSTAB(L)
2.1 BI-CG

The Bi-CG algorithm [4] generates approximate solutions xy according to the fol-
lowing recurrences:

Mke1 = Mk — axAug such that ryq L T,

Xk+1 = Xk + akUk,

Tre1 = Ty — e A", 2)
Uk+1 = ket — BreaUk such that Augia L Ty,

Okt = T — Brrr Ok

A crucial property is that the residuals ri and the auxiliary vectors Auy satisfy
global bi-orthogonality:

e, Aug L Ki(A*, To). 3)

By introducing a vector & = Gx(A*)Tp with a polynomial G(t) of degree k, and by
replacing Tk with %, the Bi-CG algorithm can be rewritten as follows:

ks1 = Nk — axAuk such that riq L,
Xks1 = Xk + kU, 4)
Uk+1 = M1 — Bkr1Uk such that Augeg L &

In exact arithmetic, the residuals ry and the approximate solutions xx generated by
(2) coincide with those by (4). In (4) the coefficients ayx and Bk.1 are computed as
follows:

A ("', %)
Auk,ék)’ -
3 EAI’kJrl,Sk) Tk (rke1s Sket) ®)
Br+1

(AU E) Tk (Au )

where 7 is a scalar representing the leading coefficient of the polynomial Gg(t).



Recently, a number of improvements of the Bi-CG algorithm have been pro-
posed on the basis of the following two observations: (i) the degree of freedom
in the choice of the shadow residuals 5 can profitably be exploited, and (ii) the
variable S appears only in the formulas for the coefficients ay and Bk.1, which can
be avoided by using the relations:

(res %) = (e, Gk(A)To) = (k(A)rk, fo),  (Auk, %) = (AG(A)uk, o). (6)

It is indeed possible [5,8,12,14] to generalize the Bi-CG method according to the
following strategies.

(i) Instead of rg, uk, Xk, and &, we update the transformed residual Gx(A)rk,
the auxiliary vector gk(A)uk and a vector x| representing the approximate
solution for which Gx(A)ry is the residual. The initial shadow residual Ty is
kept throughout, without being updated.

(if) The polynomial &k(t), often called the stabilization polynomial, is chosen so
that the norm of the transformed residual &x(A)rk may be smaller.

(iii) The coefficients ak and Bk.1 are computed by using the relations (5) and (6).

2.2 Bi-CGSTAB(L)

We review the Bi-CGSTAB(L) algorithm. It is derived from Bi-CG with a stabi-
lization polynomial that is a product of polynomials of degree L.

Suppose that we are given a sequence of polynomials p;j(t) of degree L for
i =1,2,... satisfying pi(0) = 1. For k = mL, the k-th stabilization polynomial
Qk(t) is defined as Qk(t) = pm(t) - - - p2(t)pr(t). Note that Q(t) is of degree k. We
also say that Q(t) is an L-th order stabilization polynomial to mean that each factor
pi(t) is a polynomial of degree L.

We then set the residual ry and the auxiliary vector uy_1 as

= QAIE, U1 = QAU |,

where rE and uE_l are the residual and the auxiliary vector in Bi-CG, denoted as ry

and uy_z in Section 2.1. Furthermore, we define approximate solutions xx and 5(9
as those vectors which respectively satisfy

b-Axc == QAIE, b AR = ri = QuAIE,;.

In an iteration of Bi-CGSTAB(L), the vectors ry, ux and Xy are updated to ry,,
UkrL—1 and Xy, respectively. The iteration consists of the Bi-CG part and the MR
part (Figure 1), where “MR” stands for “Minimal Residual.”

Bi-CG part: In this part, Qcrg, Qup ; and X are given. Then the i-th step, to
be specified later, is performed successively fori = 0,1, ... ,L—1. Finally, vectors
Qur . ANQEB QB ... ARQE  , and X are computed. An
execution of the Bi-CG part can be done with 2L matrix-vector multiplications.
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Iteration
given:
Qurg
Quui
Xk
!
Bi-CG part

product:
B
Qk+L I;gk"'l‘
QLU g
Xic+L

MR (Minimal Residual) part

Bi-CG part

given:
B
riBk
Qe
Xk

!

Fori=0,...,L-1
the i-th step (see below)
end

l

product:

B B LO, B
(gkrk+L’ Angk+L’ A Lrik+BL
QiU 15 AQkuk+L—J)’ s ATQEU
%

The i-th step of Bi-CG part

given:

B B LO, B
(gkrk+L’ Angk+L’ A Lrik+
QUi 1 AQkuk+L—Jj’ AT QU
s

given:

B B iy, B
%krk+i’AriBk+i’ e ’A?krk+é
QUi AQkuk+i—_}’ e AQU
%{

K

y

!

Find QL (t) = Pme1 (D Q1)
such that min [|Qu.rg, |l

Compute Bx.i and ak.i

! !
product: product:
B B B i+l (B
Qk+'—;k+|_ rik+iE1’ArikJrBi+1’ e "?‘H riBk+i+1
Qk+Luk+|__1 Qkuk+i’ AQkuk+', LA Qkuk+i
D
Xic+L Xk

Figure 1: An iteration of Bi-CGSTAB(L)




MR part: In this Eart by using the output of Bi-CG part, we choose the
parameters ™1 ™ (™ in the polynomial pma(t) = 1 - Xk, ™D
such that the norm of the new residual ry,, is minimum. When the polynomial

Pm+1(t) is determined, we make the following updates on the basis of the relation

QusL(t) = Pms2 (1) Qk(t):

QuLfer = QR - Zy(m”’A'ri%L, (7)
Qustlig 1 = QU g Zy(m+1)Aleul|<3+L—l’ (8)
Xl = +Zy(m“’A'riE+L- ©)

Itis mentioned that in practical implementations the residual Qk+LrE+L is computed
with the aid the modified Gram-Schmidt orthogonalization process; see [5] for
detail and Algorithm 1 below.

Detail of theBi-CG part: We now describe the Bi-CG partin Bi-CGSTAB(L)
at some length, as it is useful for our exposition of our algorithm in Section 4.2.

The Bi-CG part consists of L steps, from the 0-th to the (L — 1)-st step. The i-th
step in the Bi-CG part is shown in Flgure 1 (bottom- rlght) wherei=0,1,...,L-
1. Given AJrikH, Al Qkuk+| 1(J = ,i) and xk , the i-th step computes

AIQrE ., AIQuE. (j= Ji+ 1) and x('+1)

Ouuip | Owr}
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Figure 2: Flowchart of the Bi-CG part of Bi-CGSTAB(2)

We refer to Figure 2, which illustrates the Bi-CG part in the case of L = 2. The
computation proceeds from row to row, replacing vectors from the previous row by
vectors on the next row. Vector updates derived from the Bi-CG relations (2) are
indicated by arrows in Figure 2.

The i-th step for i = 0 consists of the first row to the third in Figure 2. In the
transition from the first row to the second, after the computation of the coefficient



By in Bi-CG, we update the vector such that QeuP = Qurp — BQuuP ;. Then the
vector AQkuE is obtained by multiplication by the matrix A. From the second to
the third, after the computation of the coefficient ay in Bi-CG, we compute the
vector such that Qyr® , = QurP — e AQUP. Moreover, x is replaced to X(kl) as

&(kl) = Xk + akauE (this update is not indicated in Figure 2). Then the vector
AQrE, , is obtained by multiplication by the matrix A.

Next, we show the i-th step for i = 1 in a similar way. From the third row to
the fourth, after the computation of the coefficient Bk, 1, we update the vectors such
that QkuB+1 = riE+1 —ﬁk+1QkuE and AQkUE+1 = AriE+1 —ﬁk+1AQkUE. Then the
vector A QkuE+1 is obtained by multiplication by the matrix A. From the fourth to
the fifth, after the computation of the coefficient ax.1, we update the vectors such
that riE+2 = riE+1 - a/k+1AQkUE+1 and AriE+2 = AriE+1 - a/k+1A2QkuE+1.
Moreover, X" is replaced to %% as %@ = %! + ;1 QUE , (this update is not
indicated in Figure 2). Then the vector AZrik+2 is obtained by multiplication by
the matrix A. Finally, the vectors Qurp. ,, AQkry,,, AZriE+2, Qup,,, AQuP.
A2Q|<u|';:"+1 and i(kz) are given. The Bi-CG part ends at this point if L = 2.

Now, we show the i-th step for a general i. It is assumed for the moment
that the coefficients for Bi-CG in (2) can be computed, which will be discussed
later. First, after the computation of the coefficient B, in Bi-CG, by the relation
(2), we update AIQuuE, | — AIQuE, (j = 0.1,... i) such that AlQuug; =
A QyrR . — BiiAIQeuP. .. Then the vector A**Qup . is obtained by multiplica-
tion by the matrix A. Second, after the computation of the coefficient ay.; in Bi-CG,
we use the relation (2) to update AIQurE,, — AIQrE . | such that AIQurB. | =

) . k+i+1 . K+i+1
AIQIB, — aii AP QEUB (j = 0,1,...,i). Then the vector A'*lerE+i+1_ is
obtained by multiplication by the matrix A. Moreover we update X" — %'*
such that RS”) = f(ﬂ) + _C¥k+iQkUE+i- Finally the vectors AJQurE . . AIQuuE .
(j=0,1,...,i+1)and f(ﬂ*l) are output and the i-th step is completed.

It remains to explain how to compute the coefficients ay.; and By,i.

Computation of ayi

Before the computation of the coefficient e, we are given Al riE+i (j=0,...,0)
and AijUE+i (j=0,...,i+1). Consider the vector §; in (4) for Bi-CG, though
it is not available at hand. For the choice of &, = (A")'Q«(A")F, the coefficient
a4 Is calculated by (5) and (6) as

(s (A") Qu(A")To) B (AQAI,;» Fo)
(AU (A)IQ(A")To)  (ATTQ(AE,., To)
T_his expression affords a computable formula for ay.i, since the vectors Al riE+i,
A*1QuB.; and Ty are available.
For the efficient computation of ax.i as well as By,; below, it is convenient to
employ auxiliary variables pi(k) = (AQr2 7o) and yi(f)l = (AMQEU ., To). We

then have ay,i = pi(k) /yi(f)l, which will be used in practical implementations.

Ak+i



Computation of By,

Fori>0: Beforethe computation of the coefficient By.i, we are given Al riE+i (j=
0,...,i)and AijUE+i_1 (j = 0,....i). Consider the vector §i_; in (4) for Bi-
CG. For the choice of §.i_1 = (A*)'1Qk(A")To, the coefficient B,; is calculated
by (5) and (6), as

5 (Arg . (AT Qu(A")To) (AQAIR,;» Fo)

ki = — — = — —.

TAUR ) (A IQUAYT)  (AQUANE, . To)

This expression affords a computable formula for Bx,i. Furthermore, by rewriting
the right-hand side above we obtain

sy~ AIOAG ) AQAET) o¥
k+i (Ai Qk(A)UE+i_1’ fo) (Ai_le(A) rE+i—1’ o) k+|_lpi(E)l .

This expression is more suitable for practical implementations.

For i = 0: Before the computation of the coefficient Bk, we have the vectors
A-Qi-LrB, Qurp and A~Qi_Lu2 |, which are given in the previous iteration of Bi-
CGSTAB(L). Consider the vector S in (4) for Bi-CG. For the choice of §_1 =
(A1 Qi L (A¥)To, the coefficient By is calculated by (5) and (6) as

_ (AR (AL (AYT)  (ANQL(A)IE o)
“T AU (AYTQOL(A)T)  (ALQL(AUE |, To)

This expression affords a computable formula for gx. For practical implementa-
tions, we rewrite the right-hand side above to obtain

(A1 Q- L(A)IE . To) . (A-Qu-L(A)IE. Fo)
(ALQi-L(AUE . Fo) (A 1Q-L(A)E ;. To)
(A-Qi-L(A)IP. To)

Bk =

= K- ~
(A~1Q-L (AR 1. o)
o (QkrB, o)/ (—™) o P /(™)
= el TR e Y =
(A1Q-L(A)ry 4, To) o

Here we have used the relation —y(Lm)(ALQk_LrE,Fo) = (Q«rg. To), which follows
from (3) and (7).
The following is the Bi-CGSTAB(L) algorithm in full detail:

Algorithm 1: Bi-CGSTAB(L) algorithm [5]

1.k=-L
2. choose xg and rg, ro = b—AXxg
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u1=0,00=1 =0, w=1
4. repeat until ||ri. || < & (tolerance)

20.

21.
22.
23.
24.

k=k+L
o = Uk-1, To = Ik, Xo = Xk, po = —~wpo
forj=0,1,...,L-1
p1 = (Fj.15), B=ab, po=p1
i =1%-pBG;(i=0,1,...,)
Oji1 = Alj, ¥ = (Qji1, 1), @ = 2
fi=Ffi—-al(=01,...,))
?J‘+1 ZAfj, )A(O = )A(0+al’.\lo
end for
forj=12,...,L
Tij = %(fi,?j), fj=Ff-mhi (i=1,2,...,j-1)
oj= (1) 7y =5 = (7. F)

end for
VL=, =YL
L
Yi=vi~ Z Tivi (j=L-1,...,1)
i=j+1
L-1
)’]’ =Yj+1 + Z Tiivier (j=1,...,L=1)
i=j+1

Xo = Xo +y1T0, To = To— 7y TL, Uo = U —yL0L
Go=0o—-yi0;(j=1,...,L=-1)
%0 =%o+¥{F, fo=fo-¥Fj(j=1....L-1)
Uk+L-1 = Uo, kL = To, Xk+L = Xo

25. end repeat

3 Bi-CG with Multiple Shadow Residuals

In the Bi-CG algorithm the residual ry is updated so that the condition

is satisfied. Similarly, in an algorithm with multiple shadow residuals the residual

re L Ki(A",To)

rg is updated on the basis of the condition:

where Ry is an N x smatrix consisting of scolumn vectors chosen at the beginning

rk L Ki(A", Ro),

of the algorithm.

We show two such algorithms below. The first is due to Sleijpen—Sonneveld-
van Gijzen [6], and the second is ours, which will be improved in Section 4 to the

proposed algorithm of the present paper.



31 Bi-CG(S)

The algorithm of [6] is described here as Algorithm 2 below. For convenience
of reference we name it Bi-CG(s), although no name was given in [6]. For the
condition (10) it employs an N x smatrix Uy, which consists of multiple auxiliary
vectors corresponding to the auxiliary vector ug in Bi-CG. It also uses an N x s
matrix Ry such that, for any K > 1, the column vectors of Ro, Ry, ... , Rk_1 span
the subspace Kk (A*, Ry). The simplest choice is R = (A*)XRy. Another possibility
is R = D(A*)Ry with a polynomial @y (t) of degree k.

Algorithm 2: Bi-CG(s) algorithm [6]

choose Xg, rg=b-Axg
set N x smatrix Ug = [rg, Aro, ..., ASrq]
k=0
repeat until ||rg|| < & (tolerance)
M1 = Mk — AUgay such that reg L Ry
Xir1 = Xk + Ukak
V =Tkl
for j=1,...,s _
Uks16) = V — UkB(k‘zl such that AUy,1€j L Ry
V= AUg,1€
end for
k = k + 1, update Ry
end repeat

In Bi-CG(s), the residual and the auxiliary matrix have the following relation:

Proposition 1 ([6]) Assume that no breakdown occurstill the k-th iteration of Bi-
CG(s) and that aj(s) # 0 for every i with 0 < i < k, where a;(s) means the s-th
element of the s-dimensional vector «;. Then the following are true.

a) rk € Kis+1(A ro) \ Kis(A, ro).-

b) re, AUej L Kk(A",Ro), wherej=1,...,s.

In the generic case, the assumptions in Proposition 1 are satisfied. Moreover, in
the generic case, the overall computational cost of Bi-CG(s) for solving a system
of equations can be estimated roughly as follows. The subspace K, (A*, To) is an
N-dimensional space, which implies that the GBi-CG(s) terminates after [N/g] it-
erations. In an iteration, 2s MATVECs (matrix-vector multiplications) are needed,
and therefore, 2s x N/s = 2N MATVECs are needed for computing the exact
solution.

32 GBi-CG(S)

Our variant, to be called GBi-CG(9), is based on the observation that in Bi-CG(S)
the auxiliary column vectors of Uy used in computing Uy, 1€ may be replaced by

10



the corresponding column vectors of Uy, if they are already computed. By using
the newest vectors available, this algorithm is expected to have improved numerical
stability. The algorithm reads as follows.

Algorithm 3: GBi-CG(s) algorithm

choose xg, o= b—Axp
set N x smatrix Ug = [ro, Aro, ..., AS1rq]
k=0
repeat until ||ry]| < & (tolerance)
M1 = 'k — AUgag such that reeq L ﬁk
Xkl = Xk + Ukag .
U181 = Myt — Uk,B(ki)l such that AUy.1€1 L Ry
V=AU 1€
forj=2,...,s
set Ul((J) = [rke1, ‘AU|‘(+1€1, o5 AU €0, Uiy, ..., U]
Uks1€) = V — Ulﬁ’)ﬂ(kfl such that AUk1€j L R«
V= AUy, 1€j
end for
k = k + 1, update Ry
end repeat

To state the properties of GBi-CG(s) we define
ok=RAU oV =RAUD (j=2,....9, o =RU,
where Uy is an N x smatrix defined as U; = [rx, AUkey, ... , AUg€s 1].

Proposition 2 Suppose that thernatricesm,cri(')(j =2,...,9),0] arenonsingular
for all i < k. Then the following are true.

a) The algorithm does not break down in the k-th step.

b) rx € Kis+1(A, ro) \ Kis(A, ro).

¢) AUkej € Kis+j+1(A To) \ Kis+j(A To), where j=1,...,s.

d) re, AUgej L Ki(A",Rp), where j=1,...,s.

Proof a) The coefficients «; and Bi(i)l are computed as follows:

ai = (RAU)RT = (00)*'RT,
BY = (RAU) R Ar = (1) RiAr,,
BY = RAU TR = (D) Rv (j=2....9).

By the assumption of the nonsingularity of o, cri(j), GBi-CG(s) does not break
down in the k-th step.

11



b), c) We prove ri € Kisi1(A, o) \ Kis(A ro) and AUjej € Kisij+1(A, ro) \
Kis+j(A,r0) (J=1,...,9) by inductiononi=1,2,... k.
(i) When i = 1, the residual is updated as

ry =rg—AUgpag = g — A[I’o, Arg, ... ,AS_l I'()]a/o. (11)

Therefore, to prove the relation ry € 7(s+1LA, ro) \7(S(A,~ro), it iisufﬁcient to prove
ap(s) # 0. By left-multiplying (11) with R} we obtain Rjro = RyAUoao. Then we
have dim{R;ro, RiAro, ... , R{AS 1o} = s by the assumed nonsingularity of o
R;Uo = R[ro, Aro, ..., ASro]. Therefore Riro ¢ span{R;Aro, ... , RSAS 1o}
span{R;AUger, . ... , RiAUges 1}, which implies aq(s) # 0. Hence follows ry

Ksr1(A 1) \ Ks(A, 19).
The update AU1€; is made as

m

AU:e = Ar — AUBY,

where Ary € Ksi2(A, 1o) \ Kse1(A, o) and AUgej € Ksi1(Aro) (J = 1,2,...,9).
Thus AU1e; € Ksi2(A, 1) \ Ksr1(A, rg) follows. By the same argument as AU e,
we can show AU1€j € Ksi14j(A, 10) \ Ksrj(A o) (j=2,...,9).

(i) When i = m(< k), we assume r'm € Kims1(A, o) \ Kms(A, ro) and AUpej €
Kims+1+j (A 10) \ Kinstj (A, o). Since

to prove rme1 € Kmeys+1 (A, o)\ Kmr)s(A, ro), itis sufficient to show that am(s) #
0, which can be proved by the same argument as above. In the same manner we
can show that AU, 1€ € 'K(,TH1)S+1+J-(A,~r0) \ Kmpsej(Aro) (j=1,...,9).

d) We prove ri,AUig; L Ki(A",Ro) (j = 1,...,9) by induction oni =
1,2,....k

(i) When i = 1, we can see r1, AUsej L Ry (i.e., L Ki(ARo)) (j=1,...,9
by the assumptions that cro,o-é‘)(j =2,...,9) are nonsingular.

(i) When i = m(< k), we assume that rp, AUygj L KA R) (j=1,...,9).
Then the update of the residual, rmy1 = rm — AUmam, shows the orthogonality
Frme1 L Kn(A*, ﬁo). We also have rme1 L Rm by the assumption of nonsingularity
of o From these two we obtain rp. L Wm+1(A*,ﬁ0), where we make use of
the relation Kn(A*, Ro)* N R = Kine1 (A, Ro)*, which follows from the fact that
Rm = ®m(A*)Ry with a polynomial ®p,(t) of degree m.

Next, we consider AUm,1€j for j = 1,...,sinturn. For j = 1, AUm,1€ is
updated as
AUp.161 = AV = AURBY (13)

where V = fm,1. Since V(= Ime1) L K (A, Ro), we have Av L Kn(A", Ry). We
also have AU,8Y . 1 Km(A", Ro) from the assumption of AUme; L Km(A", Ro)

m+1

(j = 1,...,9). Then (13) shows AUmp.1e1 L Km(A*, Ry). On the other hand,

12



we have AUmi1€1 L Rn by the nonsingularity of o,. Combination of these two
implies AUm.1€1 L Kt (A%, Ry).

By the same argument, AUp,1€j L Wml(A*,ﬁo) for j = 2,...,scan be
proved successively. Here we demonstrate the case of j = 2. The vector AU, 1€
is updated as

AUm1e = Av - AUR P

m+1°

where v = AUn.1€;. The vector AU,(ﬁ)el( Arm1) satisfies AU,(ﬁ)el 1L Kn(A*, Ro)
the vectors AU(Z)e,( AUme)) (j = 2,...,9) also satisfy AU(Z)eJ 1L Km(A*, Ro)
(j=2,...,s) and the vector Av(= A? Umlel) satisfies Av L Kn(A*, Ro) since V(=
AUm+161) L Kme1(A*, Ry). Therefore the orthogonality AUm,1& L Kim(A*, Ry)
follows. Moreover by the assumption of nonsingularity of Ufﬁ), we see AUp16 L
Rm. Thus AUpns1€ L Kime1(A*, Ro) is proved.

This completes the proof of Proposition 2.

In the generic case, the assumptions in Proposition 2 are satisfied. GBi-CG(s)
requires 2N matrix-vector multiplications for computing the exact solution, the
same as Bi-CG(s).

4 GBIi-CGSTAB(s L)

GBi-CGSTAB(s, L), the proposed algorithm, is derived from GBi-CG(s) through
the introduction of the stabilization polynomial. The overall structure of GBI-
CGSTAB(s, L) is similar to that of Bi-CGSTAB(L).

We start by giving the overview of the GBi-CGSTAB(s, L) algorithm, whereas
the details will be explained subsequently.

41 Overview

Suppose that we are given a sequence of polynomials p;(t) of degree L fori =
1,2,... satisfying pj(0) = 1. For k = mL, the k-th stabilization polynomial Q(t)

is deflned as Qx(t) = pm(t) - - - p2(t) pr(t).
In this section we denote the vector rx and the matrices Uy and U(’) (j =

,9) in GBi-CG(s) as rg8, UZE, U(’)GB respectively. We then set the residual
rk and the auxiliary matrix Uk 1S

e = Qu(AIEE,  Ukr = QAULE

Furthermore, we define approximate solutions xx and f(ﬂ) as those vectors which
respectively satisfy

b— Axc = rc = QUAIEE,  b- A = ri = QuAIEE.

In an iteration of GBi-CGSTAB(s, L), the vectors rix and xx and the matrix
Uk_1 are updated to ry,, Xk:1 and Uy, 1, respectively. The iteration consists of

13



the GBi-CG(s) part and the MR part (Figure 3), where “MR” stands for “Minimal
Residual,” as before.
GBi-CG(s) part: In this part, QcrCE, QkU 1 and x are given. Then the i-th

step, to be specified later, is performed successwely fori=0,1,...,L-1. Finally,
the vectors QureB ..., AFQyrSB and & L) and the matrices QkUE+B|_ 1o ARQRUEE |

are given. An execution of the GBi- CG(s) part can be done with (s+ 1)L matrix-
vector multiplications.

MR part: In this part by usm? the output of the GBi-CG(s) part, we choose
the parameters y{™ ™D ™D in the polynomial pm1(t) = 1-3-, ™Y
such that the norm of the new residual r,. is minimum.

When the polynomial pm.1(t) is determined, we make the following updates

on the basis of the relation Q. (t) = Pm+1(t) Qk(t):

Quirgh = Qureh - Z%”‘”’A'Q Kt (14)
Qk+LUk+L 1 = QkUk+L 1 ZVW%DAIQ Uk+L 1 (15)
Xkl = A(L) + Z 7(m+1)A'Q KMot (16)

4.2 Detail of the GBi-CG(s) part

We describe the GBi-CG(s) part in GBi-CGSTAB(S, L). Note the parallelism with
the Bi-CG part of Bi-CGSTAB(L) described in Section 2.2.

The GBi-CG(s) part consists of L steps, from the 0-th to the (L — 1)-st step.
The i-th step in the GBi-CG(s) part is shown in Figure 3 (bottom-right), where
i =0,1,...,L—1. Given AJrik+|, AJQkUkH L (i =0,....i)and ¥, the i-th
step computes AQreE | AIQUE. (j= i+1)and X A('J'l)

We refer to Figure 4, Whlch |Ilustrates the GBI -CG(s) part |n the case of (s, L) =
(2,2). The computation proceeds from row to row, replacing vectors from the
previous row by vectors on the next row. Vector updates derived from GBi-CG(S)
relations (3) are indicated by arrows in Figure 4.

The i-th step for i = 0 consists of the first row to the fourth in Figure 4. In the
transition from the first row to the second, after the computation of the coefficient
,B(l) in GBi-CG(s), we update the vector such that QuUSBe; = Qcr® — QUZB B,
Then the vector AQUZBe, is obtained by multlpllcatlon by the matrix A. We
note that the matrix QkU(Z)’GB (= [AUZBe;, USB &y]) is then available. From the
second row to the third, after the computation of ,3(2) in GBi-CG(s), we update the
vector such that QuUSPe, = QurS® — Q« UI((Z_)leBﬁ(kz). Then the vector AQUCBe,
is obtained by multiplication by the matrix A. From the third to the fourth, after
the computation of ey in GBi-CG(s), we update the vector such that Qcre8 =

14



Iteration GBIi-CG(s) part

given: given:
I’GB rGB
QkU‘&B QkUl&B
Xk Xk
! !
GBi-CG(s) part Fori=0,...,L-1
.............. the i-th step (see below)
MR part end
l !
product: product:
Qk+|_ rGBL riE+BL, AriéGéBL’ .. ALriGB|G
QUi 1 QkUk+L 1 AQUT } L A-Q Uk+BI_ 1
Xk+L 5\(k
MR (Minimal Residual) part The i-th step of GBIi-CG(s) part
given: given: .

Qkfk+B|_, ArigéBL, .. A"QKFGB,G rifﬁ, Arigg, . A'riff,
QkUk+L 1 AQkUk+L ALQkUk+|3|_ 1 Q Uk+| l’AQkUkH 10 AIQ Uk+| 1
N 2®
Xy k
l !

Find QuiL(t) = Pmea (1) Qu(t) .
such that min [| QLS8 | Compute B2 ..., B, i
! !
product: product
Qk+L réG+BL rik—Hal’ Arik+ +1’ t AH—ler%Hl
QI“fl-Uk-f-EI)_—l QkUk-H ’ AQKUk+| [N AI+1Q Uk+|
X &(1+1)
k+L Xk

Figure 3: An iteration of GBi-CGSTAB(s, L)
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Figure 4: Flowchart of the GBi-CG(s) part of GBi-CGSTAB(2, 2)

Qure® — AQUSBay. Then the vector AQurgE is obtained by multiplication by the
matrix A.

Next, we show the i-th step for i = 1. From the fourth to the fifth, after the
computation of the coefficient ,Bk+1, we update the vectors such that QkUk+1e1 =
Quree - Qkukﬂ,g(ki)1 and AQUSE = AQrSE — AQWEBAY), . Then the vec-
tor A2QUC k+ e is obtained by multiplication by the matrix A. We note that the
matrix QkUl((z)’GB( [AUk+1e1, UEBeZ]) and AQkUI((Z)’GB are now available. From
the fifth to the sixth, after the computation of the coefficient ﬁ(k2+)1’ we update
the vectors such that QUSBe, = QureE - AQkuﬁ?iGBﬁ(ki)l and AQWUSBe, =
AQ(rSE — A2QU P GB,B(Z) Then he vector AQUEE e is obtained by multipli-
cation by the matrlx A From the sixth to the seventh, after the computation of the

coefficient a/k+1, we update the vectors such that Qcrgs, = Qure? — AQUZE a1
and Ari = Arik+1 AZQkUk+1ak+1 Moreover, x(k) is replaced to k(kz) as

A(z) (1) + QkUk+1ark+1 (this update is not indicated in Figure 4). Then the
vector AZrik+2 is obtained by multiplication by the matrix A. Finally, the vectors

QreE, AQures, A2Qir s, k(z) and the matrices QU8B , AQWUSE and A*QUSE
are given. The GBi-CG(s) part ends at this point if L = 2.

Now, we show the i-th step for a general i. It is assumed for the moment that
the coefficient vectors for GBi-CG(s) in Algorithm 3 can be computed, which will
be discussed later.

The update of the auxiliary matrix U can be done in s substeps as follows.
In the first substep, after the computation of the coefficient ,B(l). in GBIi-CG(s),

by the relation in Algorithm 3, we update AIQUSE 1e1 - A‘QkUk+,el (j =

0,1,. |) such that Al QkU el Al rik+| AlQy Uk+| 1,B(k1+)i. Then the vector
A'+1QkU e is obtained by multlpllcatlon by the matrix A. We note that the ma-

k+|
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trices AjUff_)iGB (j=0,1,...,i), to be used in the 2nd substep, are now available.

In the second substep, after the computation of the coefﬁcientﬁ in GBIi-CG(9),
by the relation in Algorithm 3, we update Al QkUk+| 18— Al QkUkHez such that

AQUSBe, = AIQrS8 — AIQUPCEER (j = 0,1,...,i). Then the vector

k+i—1 FFk+i

A'+1QkUGBe2 is obtalned by multiplication by the matrix A We note that the ma-

trices AJU(el)lGB (j=0,1,...,10), to be used in the 3rd substep, are now available.
We continue in the same way. In the t-th substep, where t = 3,...,s, we update
the vectors AJQkUk & - AJQkUGBa (] = 0,...,i) and compute A'+1Q Uge.
Then the update of the matrices: AJQkU - AJQkUGB (j=0,1,...,i)and the
computation of the matrix A*1QUSE are done

The update of the residual r can be done as follows. Firstly, after the compu-
tation of the coefficient ay,; in GBIi-CG(s), by the relation (Algorithm 3), we up-
date AiriEfj — AIQrgB | such that Al riEle = AIQree — AIFLQUEB .
(j=0,1,...,i). Then the vector A'+1rik+I+l is obtained by multiplication by the
matrix A

The i-th step ends by returning the vectors AlQyr
§((|+1)
K

k+|+1(j:01 ,i+1)and
, and the matrices AJQkUk+i (j=0,1,...,i+1)
It remains to explain how to compute the coefficients ay.j and ,Bfi)i, ... ,,ijr)i.

Computation of ay,

Before the computatlon of the coefficient e, we are given Al rik+| (j= )
and Al QkUk+| (j = . ,i+1). Consider the matrix Re.; in GBi-CG(s) (Algorlthm

3), though it is not avallable at hand. For the choice of R = (A*) Q(A*)Ry, the
vector ay. is calculated as

(ﬁliﬂ UI?E 1(Rk+|rk+|
{((A") QAR AUEP.} {((A") Qu(A")Ry) T e8]
(ROA T QUAUEE HRA Qu(ArER).

This expression affords a computable formula for ay.i, since the vector A rifﬁ,
and the matrices A‘+1QkU|f+'? and R, are available.

For the efficient computation of ay.; as well as,B(klfi, .. ,B(k‘j)l below, it is conve-
nient to employ auxiliary sx smatrix Ml(':)l R:A*1QUEE and an s-dimensional

vector m W - RSA' krk+I We then have @y, = (M(k)l) m(k) which are used in
our implementatlon

A+i

Computation of ,Bfifi

Fori > 0. Beforethe computation of the coefficient ,B(l) we are given Al rik+I (j =

.,i)and AIQRUCE_ (j =0,...,i). Consider the matrix Rei_1 in GBi-CG(s)
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(Algorithm 3). For the choice of Rei_1 = (A*)"1Qu(A*)Ry, the vector ,B(l)
calculated as

BY = R AU DR 1ArEP.>

(A7) L QuUAY)RY)* Auk+. H((A) 1 Qu(A")Ro) AT}
RAQAULE JHRAQUAIEE)

= (M) Lnf®.

This formula is used in our implementation.

For i = 0: Before the computation of the coefficient 8Y), we have the vectors
A-Qi-LrP8 and Qurg® and the matrix A~Q_ U, which are given in the previ-
ous iteration of Bi-CGSTAB(L). Consider the matrix Re_; in GBi-CG(s) (Algo-
rithm 3). For the choice of Re1 = (A")-"1Qx- (A")Ry, the coefficient vector B
is calculated as

(1)
By

(ﬁ; 1AU|?%)_1(§; 1ArEB)
(A QL (A)R) AU B H((A) - Qe L (A")Ro)*Ar g
(REA"QuL (A)USB I HR AN Qi (A)rEB)

This expression affords a computable formula for ,B(kl). For practical implementa-
tions, we rewrite the right-hand side above to obtain

BY = - <”‘)§3ALQk_ (A)uGB HPRA QL ATER)
{ (m)M(k L) RSQ r
( ) (k—L) (Y
A B
Here we have used the relation
V(Lm)ﬁ(*)ALQk—LrEB = RyQ«re®, (17)

which follows from Proposition 2, d) and (14).

Computation of,Bf(tJ)ri (t=2,...,9

For i > 0: Before the computation of the coefficient ,B(kt)l, we have AJriGB

(j=0,....0), AQUEBe, (j = 0,...,i+L;v=1,...,t - 1) and AQUZE &,
(j=0,...,i5v=t,...,9). Thus AJQkUQIG? j = 0 . ,1) are also available.

Consider the matrix Re.i_1 in GBi-CG(s) (Algorithm 3). For the choice of Ri_1 =
(A1 Q(A")Ry, the coefficient vector ,Bf(t)i is calculated as
t B t),GB
ﬁ(kll = (Rli+i 1AU()| 1) 1(Rk+| lAZUI?Eet 1)
= {((A) T QAR AuSl,GB (A QuA)R) AU e 1)
= (RAQAUI I HRA™ QAU e 1)
= [Wﬁk) M(klel,-- MY e s, Mi(k)et,-- M(k)es] MK e

i+1 |+1
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For the last equality note that

v.GB _ GB
Uizt [rk+|’ k+iel"" Uk+|Q Z’Uk+l 18- U 6],

The above expression ofﬁ(ktli is used in our implementation.
For i = 0: Before the computation of the coefficient ,B(t) we have the vectors
Qre®, AQUZBe, (v =1,...,t— 1) and the previous vectors A-Q,_ U8 e, (v =

,S). Consider the mgtrlx Re_1 in GBIi-CG(s) (Algorithm 3). For the ch0|ce of
1 = (A 1Qu-L (AR, the coefficient vector ,B(kt) is calculated as

BY = ROLAUD) RO AUEe )
= {(A) QL (AN)Ro) AU B (A QL (A)Ro) A2U SRy )
= R;;ALQk LAV HRAMLQ L (AUSBe. 1)
= (RA QAU - PRA T Qe L (AU Pe 1) (18)
_ [ k) MW MW . y(m>M(k Dey.....—y™MEDegtmMe ;.

where the equality between (18) and the last line can be shown as follows. First
note

UOSE = [rEB, AUSBe,, ... ,AUSBE», USB A, ... ,USBe].

Also note
YPRAYI QL (AUCBe, = RIAQAUSBe, (v=1,...,t-1), (19
which follows from Proposition 2, d) and (15). For the first factor of (18) we have
)RBALQK— (A)U(t)GB
_ _ M5 L L+1 L+1
= N PRIA QoL g, A QoL Uy, ... AM Qi UL Pe,
ALQk_LuGlet,.. A QLU e
=R8[ri AQkU AQkUk &-2,

)ALQk_Luk_la,... ™A Qe UCBey]
Kk Kk K k— k—
=[m§)),M§)e1,...,M§>a_z,—y§m)M£ Ye,...,—yMmE ey,

where (17) and (19) are used. The second factor of (18) can be rewritten by (19) as
~NPRAQL(AUPa 1 = RAQAUEPa 1 = MPe 4.

The following is the GBi-CGSTAB(s, L) algorithm in full detail:
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10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.

32.
33.

34.

35.

Algorithm 4: GBi-CGSTAB(s, L) algorithm

choose X and N x s matrix Ry
set Ug = [ro, Arg, ... ,AS1rg], Uy = AUg
ro=b-Axg
M = ?R’(*)Ul: m= ﬁSro
solve MB = mfor B
o = I'o—U]ﬁ, X0=X0+U0ﬂ
ri = Arg, iter=0,w=-1
repeat until ||rg|| < & (tolerance)
M= -wM
fori=0,1,...,L-1
if (iter=0)A>(i=0)i=1
m=Rr;
forj=1,...,s
if (j=1)
solve MB = mfor B
S

Ukej = rc— ) UkegB(@) (k=0,... ,i)
g=1

else
solve [m, Mey, ..., Mej_», Mgj,... , Meg]B = Me;_; for 8

j-2 s
Ukej = Uksr€j-1— (1) - > Ukieyf(a+1)- ) Ukey(a)
=1 =
k=0,....i) ! i
end if
Uis1€ iAUiej
Mej = RjUi 1€
end for

solve MB = mfor 8
gk = I’k—Uk+1ﬂ(k=0,... ,i)
Xo = Xo + Uoﬂ
liz1 = A
end for

forj=1,2,...,L
Tij = %(ri,rj), rj = I’j —Tijri (i = 1,2,... ,j—l)
Tj =(I’j,|’j), y] =%=(rj,r0)
end for
VL=V, W=V
L
Yi=V- Z Tivi (j=L-1,....1)
i=j+1
L-1
Y =vin+ Z Tiivier (j=1,...,L=1)
i=j+1
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36.  Xo = Xo+7Y1ro, fo="ro—7y_ rL, Uo=Uo -y UL
37. Up=Upg-yUj(j=1,...,L=-1)

38. xO:x0+y]’rj, rO:ro—y]rj(jzl,...,L—l)
39. iter =iter +(s+ 1)L

40. end repeat

A remark is in order about the initial vectors. In the above algorithm we set
Uo = [ro, Arg...,AStrg] for ease of description. In practical implementations,
however, it is recommended that some orthogonalization procedure be applied to
ro, Arg...,AStrg to avoid or mitigate numerical instability due to rounding er-
rors. We have in fact adopted this idea in our numerical experiments reported in
Section 5.

4.3 GBIi-CGSTAB(s, L) with preconditioning

We describe the right-preconditioned GBi-CGSTAB(s, L). For a matrix A that is
close to the given matrix A, we consider the right-preconditioned system

AAly=b, y=Ax

GBIi-CGSTAB(s, L) applied to this system of equations in y can be translated to an
iteration in x as follows.

Algorithm 5: GBi-CGSTAB(s, L) algorithm with preconditioning

1. choose X and N x s matrices Ry and Ug
2. setUg = [ro, Arg,... ,As_ll’o], Oo = A_1U0
3. Uy = AU

4, rg=b-AXg

5. M =RU;,m=Rjro
6. solve MB = mfor 8

7. 1= I'o—U]ﬁ, X0=X0+Uoﬂ
8. fo = A_lro

9. ry = Arg,iter=0,w = -1

10. repeat until ||rg|| < & (tolerance)
11. M =-wM

12. fori=0,1,...,L-1

13. if (iter=0)A>1=0)i=1

14. m= Ryri

15. forj=1,...,s

16. if(j=1)

17. Solve Mg = r?for,B

18. Ukej = e — ) UkegB(0) (k=0,... ,i)
g=1
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19.

20.
21.

22.

23.

24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.

39.
40.

41.

42.
43.
44,

S
Ukej = fi— ) UkegB(0) (k=0,...,i - 1)

o=1
else

solve [m, Mey,...,Mej_», Mgj,... , Meg]B = Mej_; for 8

j-2 S
Ukej = Uk+1ej—1—rkﬁ(1)—z Uk+1€98(0+ 1)—2 UkegB(0)
q=1 j

(k=0,....0)

a=]

j-2 s
Ukej = Ukarej1-1B(1)- > Ukiaeyf(a+1)- ) | Ukey(a)
=1 =]

(k=0,...,i-1)
end if
Oiej = A‘lgiej
Ui iAUiej
Mej = R Ui, 16
end for
solve MB = mfor B
Mg = I‘k—lngrlﬁ(k:O,... )
fk=Tk—UB(k=0,...,i—1)
Xo = Xo + ljoﬂ
fi = A_ll'i
lie1 = AT
end for
forj=12,...,L

Tij= (), fp=rp-nnii=12...,j-1)

o= (1) vj =7 = (1},10)
end for
VL=, =YL
L
Yi=vi~ Z Tivi (j=L-1,...,1)
i=j+1 '
Up=Ug—-»yU;(j=1,...,L)

Xo = Xpo +7j+1fj, fo=1"19 _7]+lrj+1 (] =0,

iter =iter +(s+ 1)L

45. end repeat

7L_1)

4.4 Thereation between IDR(s) and GBi-CGSTAB(s, 1)

In this section, we reveal a relation between the residuals of GBi-CGSTAB(s, 1)
and IDR(s) in exact arithmetic. For linearly independent vectors p;, ...
Ro=1[p---

Proposition 3 Suppose that the assumption of Proposition 2 for GBi-CG(s) holds
for some k. Also suppose that IDR(s) with S = R does not break down before the

22
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(s+ 1)k-th step. If, in addition, the matrices

pArG  pBAG ... LA™
* s N2 * AMS
IOZAfo pZA ro ... pZA ro
Sms = . . . (20)
p:fnsAl'o p:‘nSAZ o ... p;‘nSAmsro

arenonsingular for all mwith0 < m < k, thentheresidual rp, in GBi-CGSTAB(S, 1)
isidentical with the residual r(s.1ym in IDR(s) for all mwith0 < m< k.

Proof First, we show how the two residuals are represented by the matrix A and
the initial residual ro. After the m-th step, the residual of GBi-CGSTAB(s, L) is
represented as

rm= Qm(A)rse,

where Qm(t) = pr(t)p2(t) - - - pm(t) is the m-th stabilization polynomial. The coeffi-
cient of pm(t) = 1 — wmt is determined from

H GB
T}m (I = wmA)Qm-1ry” II-
m

Secondly, by [10], the residual r(s,1ym in IDR(S) is represented as

Mms+1) = Qm(A)Pms(A)ro,

where Qm(t) = (1-wipt)(1-w/, ;1) - - - (L-w]t) is the m-th stabilization polynomial
in IDR(S). The coefficient wy, is determined from

min||(I — oAV,
wm

where V.= Qm_1(A)Pms(A)ro.

Now it is sufficient to show that r6® = W.sro. By Proposition 2 and [10],
both r%B and Wmsro belong to Kimsi1(A, ro) and hence they are both represented
as (I — ctA— -+ — cmsA™)ro. The coefficients ¢ here are determined from the
orthogonality of r?nB and Wmsro to Km(A*, ﬁo) = span{p;, Py, - - - » Pmgh 1.€., from

SmslCt.... ,Cms]" = [piro..-., p:ner]T,
where Sps is a nonsingular matrix (by the assumption). Hence the coefficients
CL. .. ,Cms for r6B and Wpsro are identical, which means r8 = Wpsro.
45 Computational cost and memory requirement

Computational cost of GBi-CGSTAB(s, L) can be evaluated roughly as follows un-
der the assumption that no breakdown occurs. In an iteration of GBi-CGSTAB(s, L),
(s+ 1)L MATVECs (matrix-vector multiplications) are needed. The algorithm ter-
minates in [N/sL] iterations. Hence, the number of MATVECs is (s+1)LxN/sL =
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N + N/sin solving linear equations by GBi-CGSTAB(s, L). Recall that “N + N/s
MATVECs for convergence” is a feature shared by IDR(S).

Other computational cost and memory requirements are summarized in Tablel.
We follow the convention of [10] to scale numbers of operations by the number of
matrix-vector multiplications.

e AXPY means the number of operations of the form “(scalar) x (vector) +
(vector),” where an addition of two vectors and a scalar multiplication of a
vector is weighted 0.5.

e DOT means the number of inner products.

e MEMORY shows the memory requirements in terms of the number of N di-
mensional vectors, including storage for the right-hand side and the solution
and excluding storage for the system matrix and the preconditioner.

It should be noted that GBi-CGSTAB(s, 1) has an advantage over IDR(S) in
the number of AXPY. They are mathematically equivalent, but have difference in
algorithms.

Table 1: Numbers of vector operations and memory requirements

| Method | MVs | AXPY| DOT|  MEMORY |
Bi-CGSTAB(L) 1 SL+3) | 2(L+7) 2L +5
IDR(9) 1 25+3+ o7 | S+ 3s+5
GBi-CGSTAB(s L) 1] 24+ B s+ B3 [ sl +L+25+3
GBi-CGSTAB(L, L) 1 SL+3) | 2(L+7) 2L +5
GBi-CGSTAB(s, 1) 1 s+2 | s+ 3s+4

5 Numerical Experiments

5.1 A 3-dimensional convection-dominated problem

The first problem, taken from [5, 10], arises from a discretization of a partial dif-
ferential equation. We consider

Uxx + Uyy + Uz + 1000uy = F

on [0,1] x [0, 1] x [0, 1] with the Dirichlet boundary condition, where the function
F is specified in such a way that u(x,y,2) = exp(xyz) sin(xx) sin(ry) sin(zz) is a
solution to this problem. Discretization by central differences is adopted. The
number of grid points is 52 in each direction of the xyz-space, and a system of
125,000 linear equations results. The coefficient matrix is nearly skew-symmetric,
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Figure 5: Convergence of Bi-CGSTAB(L) (Example 1)

and it is observed in [5, 10] that this causes slow convergence for methods with
linear (L = 1) stabilization polynomials.

We have applied Bi-CGSTAB(L), IDR(s) and GBi-CGSTAB(s, L) with pa-
rameters s € [1,4] and L € [1,4]. No preconditioning is used. We start with
Xo = [0,0,...,0]" and stop the iterations when the residual norm, scaled by the
norm of the right-hand side vector, drops below 1078, Figures 5, 6, 7 and 8 show
the convergence. While it is confirmed that the algorithms with L = 1 has poor
convergence, we see that algorithms with L > 1 are significantly more efficient.
In particular the proposed algorithm GBi-CGSTAB(s, L), with L > 2, converges
faster than IDR(s) and is comparable to Bi-CGSTAB(L). The total numbers of
matrix-vector multiplications needed to solve the problem are tabulated in Tables
2and 3.

All the experiments, including those in Sections 5.2 and 5.3, are performed
using a home-made program with MATLAB 7.5.

5.2 Helmholz-like equation

Second, we consider the following Helmholz-like equation:
Uk + Uy + 02U+ 0.1uy = F

with the Dirichlet boundary condition, where the function F is specified in such a
way that u(x,y) = sin(+/o2 — 1/2 x) cos(y/2) is a solution to this problem. We set
o = 4.16. A discretization results in a system of 40,000 linear equations.

We have applied Bi-CGSTAB(L), IDR(s) and GBi-CGSTAB(s, L) with param-
eters s € [1,4] and L € [1,4]. We have adopted a standard preconditioner of
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Table 2: Number of matrix-vector multi-

plications in Bi-CGSTAB(L) and IDR(s) .
Table 3: Number of matrix-vector mul-

(Example 1) L .

tiplications in GBi-CGSTAB(s, L) (Ex-
[METHOD [ MATVECS]| amplel)
Bi-CGSTAB(L) 2112 -
Bi-CGSTAB(2) 252 s 1 2 | 3| 4
g:_gggﬁggg - 1 | 2070 | 240 | 252 | 224

2 1983 | 234 | 270 | 252

IDR(1) 2044 3 | 1396 | 232 | 252 | 240
IDR(2) 1947 4 | 1155 | 240 | 255 | 240
IDR(3) 1660
IDR(4) 1150
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Figure 9: Convergence of Bi-CGSTAB(L) (Example 2)

ILU(0). We start with xo = [0,0,...,0]" and stop the iterations when the resid-
ual norm, scaled by the norm of the right-hand side vector, drops below 108,
Figures 9, 10, 11 and 12 show the convergence. We see that higher-order stabi-
lization polynomials and higher-dimensional shadow residuals are effective. GBi-
CGSTAB(s, L) with L > 1 tends to converge faster than IDR(S).

5.3 University of Florida sparse matrix collection

Finally we consider the matrices of the University of Florida sparse matrix collec-
tion [2] (Table 6). We choose b = A[1,1,...,1]" as the right vectors. We fix the
parameters (s, L) = (4, 4). We start with xo = [0,0,...,0]" and stop the iterations
when the residual norm, scaled by the norm of the right-hand side vector, drops
below 1078,

The numbers of matrix-vector multiplications needed to solve the problems by
Bi-CGSTAB(4), IDR(4) and GBi-CGSTAB(4, 4) are compared in Table 7, (a) with
no preconditioner and (b) with a preconditioner of 1LU(0). For most of the prob-
lems in Table 6, the convergence of GBi-CGSTAB(s, L) turned out to be roughly
the same as that of IDR(S).

6 Conclusion

We have proposed GBi-CGSTAB(s, L), a new variant of Bi-CGSTAB with multiple
(s> 1) shadow residuals and with higher order (L > 1) stabilization polynomials.
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Table 4: Number of matrix-vector multi-
plications in Bi-CGSTAB(L) and IDR(s)

1500

2000

(Example 2)  (“n.c.” means no conver- Taple 5: Number of matrix-vector mul-
gence within 10000 matrix-vector multi- tjp|jcations in GBi-CGSTAB(s, L) (Ex-
plications .) ample 2)
| METHOD | MATVECS |
Bi-CGSTAB(1) 4220 1 2 3 4
Bi-CGSTAB(2) 2356 S
Bi-CGSTAB(3) 2196 1 4842 | 2440 | 2382 | 1648
Bi-CGSTAB(4) 1736 2 1419 | 942 | 909 | 696
IDR(1) n.c. 3 944 | 784 | 708 | 736
IDR(2) 1656 4 690 | 590 | 585 | 660
IDR(3) 780
IDR(4) 1120
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Table 6: Size and the number of nonzero entries of the matrices (Example 3)

\ \ size\ entries\

add20 2395 17319
add32 4960 23884
epb3 84617 | 463625

memplus 17758 | 126150
poisson3Da | 13514 | 352762
poisson3Db | 85623 | 2374949
raefsky?2 3242 | 293551
sme3Da 12504 | 874887
sme3Db 29067 | 2081063
wang4 26068 | 177196

This method, GBi-CGSTAB(s, L), has the property that, in exact arithmetic, it can
compute the exact solution with at most N + N/s matrix-vector multiplications.
Through the numerical experiments we have shown that GBi-CGSTAB(s, L) shares
good features with both IDR(s) and Bi-CGSTAB(L).
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