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Lévy’s zero-one law in game-theoretic probability

Glenn Shafer1,2, Vladimir Vovk2, and Akimichi Takemura3

May, 20009

Abstract

We prove a game-theoretic version of Lévy’s zero-one law, and deduce
several corollaries from it, including Kolmogorov’s zero-one law, the er-
godicity of Bernoulli shifts, and a zero-one law for dependent trials. Our
secondary goal is to explore the basic definitions of game-theoretic prob-
ability theory, with Lévy’s zero-one law serving a useful role.

1 Introduction

In this article we continue the investigation of zero-one laws of game-theoretic
probability theory started in [7]. Our main result is a game-theoretic version of
Lévy’s [5] zero-one law, from which we deduce game-theoretic versions of Bártfai
and Révész’s [1] zero-one law, Kolmogorov’s zero-one law ([4], Appendix), and
the ergodicity of Bernoulli shifts (see, e.g., [3], Section 8.1, Theorem 1). The
last two results have been established in [7], but our proofs are different: we
obtain them as easy corollaries of our main result.

We start our exposition in Section 2 by introducing our general prediction
protocol and defining the game-theoretic notions of expectation and probability.
For more information on game-theoretic probability theory, see, e.g., [6]. In
Section 3 we prove Lévy’s zero-one law for our prediction protocol, and in Section
4 we derive other zero-one laws as corollaries.

We will be using the standard notation N = {1, 2, . . .} for the set of all
natural numbers and R = (−∞,∞) for the set of all real numbers. Alongside R
we will often consider sets, such as (−∞,∞] and [−∞,∞], obtained from R by
adding −∞ or ∞ (or both). We set 0 ×∞ := 0 (but do not assign any default
value to ∞+ (−∞)). The indicator function of a subset E of a given set X will
be denoted IE ; i.e., IE : X → R takes the value 1 on E and the value 0 outside
E. The words such as “positive” and “negative” are to be understood in the
wide sense of inequalities ≥ and ≤ rather than > and <.
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2 Game-theoretic expectation and probability

We consider a general perfect-information game between three players, called
Forecaster, Skeptic, and Reality. The game proceeds in discrete time. First we
describe the game formally, and then briefly explain the intuition behind the
formal description.

Let X be a fixed set, which we will call the outcome space, and let (−∞,∞]X

stand for the set of all functions f : X → (−∞,∞]. A function E : (−∞,∞]X →
[−∞,∞] is called a superexpectation functional if it satisfies the following ax-
ioms:

1. If f, g ∈ (−∞,∞]X satisfy f ≤ g, then E(f) ≤ E(g).

2. If f ∈ (−∞,∞]X and c ∈ (0,∞), then E(cf) = cE(f).

3. If f, g ∈ (−∞,∞]X , then E(f +g) ≤ E(f)+E(g) (with the right-hand side
understood to be ∞ when E(f) = ∞ or E(g) = ∞).

4. For each c ∈ (−∞,∞], E(c) = c, where the c in parentheses is the function
in (−∞,∞]X that is identically equal to c.

5. For any sequence of positive functions f1, f2, . . . in (−∞,∞]X ,

E

( ∞∑
k=1

fk

)
≤

∞∑
k=1

E (fk) . (1)

Let E be the set of all superexpectation functionals.
Axiom 4 implies E(0) = 0 (so that we can allow c = 0 in Axiom 2). This, in

combination with Axiom 1, implies

f ≥ 0 =⇒ E(f) ≥ 0. (2)

Axioms 3 and 4 imply that

E(f + c) = E(f) + c (3)

for each c ∈ R (indeed, E(f + c) ≤ E(f) + E(c) = E(f) + c and E(f) ≤ E(f +
c) + E(−c) = E(f + c) − c). From (2) and (3) we can see that

E(f) ≤ 0 =⇒ inf
x∈X

f(x) ≤ 0. (4)

We will refer to property (4) as coherence. Replacing the = in Axiom 2 with ≤
would lead to an equivalent statement.

Axioms 1–5 are relaxations of the standard properties of the expectation
functional: cf., e.g., Axioms 1–5 in [9] (Axioms 2 and 3 are weaker than the
corresponding standard axioms, Axioms 1 and 4 are stronger than the corre-
sponding standard axioms but follow from standard Axioms 1–4, and Axiom
5 follows from standard Axiom 5 in the presence of our Axiom 3). The most
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controversial axiom is Axiom 5. It is satisfied in many interesting cases, such
as in the case of finite X and for many protocols in [6].

The most noticeable difference between our superexpectation functionals and
the standard expectation functionals is that the former are defined for all func-
tions f : X → (−∞,∞] whereas the latter are defined only for functions that are
measurable w.r. to a given σ-algebra. The notion of superexpectation functional
is more general since every expectation functional can be extended to the whole
of (−∞,∞]X as the corresponding upper integral. Namely, E(f) can be defined
as the infimum of the expectation of g (taken to be ∞ whenever the expectation
of max(g, 0) is ∞) over all measurable functions g ≥ f . The extension may no
longer be an expectation functional but is still a superexpectation functional.

Remark. It is sometimes useful to have the stronger form

f > 0 =⇒ E(f) > 0 (5)

of (2). (In this article we do not really need (5): it would merely slightly simplify
the proof of Lemma 1 below.) Even the strong form (5) follows from Axioms
1–5. Indeed, if f > 0 but E(f) = 0, Axioms 1–5 imply

1 4= E I{f>0} = E I∪∞
n=1{nf≥1}

1
≤ E

∞∑
n=1

I{nf≥1}
5
≤

∞∑
n=1

E I{nf≥1}
1
≤

∞∑
n=1

E(nf) 2= 0

(over each relation symbol we write the ordinal number of the axiom that jus-
tifies it; we could avoid using Axiom 2 by using (2) and Axiom 3 instead).

The most general protocol that we consider in this article is as follows.

Protocol 1. General prediction protocol
Parameters: non-empty sets P1,P2, . . . and function E : p ∈ ∪nPn 7→ Ep ∈ E
Protocol:
Skeptic announces K0 ∈ R.
FOR n = 1, 2, . . .:

Forecaster announces pn ∈ Pn.
Skeptic announces fn such that Epn(fn) ≤ Kn−1.
Reality announces xn ∈ X .
Kn := fn(xn).

END FOR

At the end of each trial n Reality chooses the outcome xn of this trial. At the
beginning of this trial Forecaster gives his prediction pn for xn; the prediction is
chosen from a set Pn, the prediction space for trial n. We will use the notation P
for ∪nPn. After Forecaster’s move Skeptic chooses a gamble, which we represent
as a function fn on X : fn(x) is the payoff of the gamble if Reality chooses x
as the trial’s outcome. The gambles available to Skeptic are determined by
Forecaster’s prediction (via the function E : P → E). Skeptic’s capital after
the nth trial is denoted Kn. He is allowed to choose his initial capital K0 and,
implicitly, also allowed to throw away part of his capital at each trial.
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Remark. Another version of the general prediction protocol is where Forecaster
chooses the superexpectation functional directly. This is a special case of our
protocol with Pn = E for all n and with E : P → E the identity function. The
reader will also notice that allowing E to depend not only on Forecaster’s last
move but also on his and Reality’s previous moves is straightforward but does
not lead to stronger results: the seemingly more general results easily follow
from our results.

Remark. In [7] we considered a different but essentially equivalent prediction
protocol.

We call the set Ω :=
∏∞

n=1(Pn × X ) of all infinite sequences of Forecaster’s
and Reality’s moves the sample space. The elements of the set

∪∞
n=0

∏n
i=1(Pi ×

X ) of all finite sequences of Forecaster’s and Reality’s moves are called post-
situations, and the elements of the set

∪∞
n=0 (

∏n
i=1(Pi ×X ) × Pn+1) are called

pre-situations. The term situation will be applied to both pre-situations and
post-situations. For each situation s we let Γ(s) ⊆ Ω stand for the set of all
infinite extensions in Ω of s (i.e., Γ(s) is the set of all ω ∈ Ω such that s is a
prefix of ω). Let 2 be the empty situation.

The level of a situation s is the number of predictions in s. In other words,
n is the level of pre-situations of the form p1x1 . . . pn−1xn−1pn and of post-
situations of the form p1x1 . . . pnxn. The level of 2 is 0. If ω ∈ Ω and n ∈
{0, 1, . . .}, ωn is defined to be the unique post-situation of level n that is a
prefix of ω.

If we fix a strategy Σ for Skeptic, Skeptic’s capital Kn becomes a function
of the current post-situation s of level n. We write KΣ(s) for Kn resulting from
Skeptic following Σ and from Forecaster and Reality playing s. The function
KΣ, defined on the set of all post-situations and taking values in (−∞,∞], will
be called the capital process of Σ; we will omit Σ when it is clear from context.
A function S is called a (game-theoretic) supermartingale if it is the capital
process, S = KΣ, of some strategy Σ for Skeptic. Sometimes we will extend
the domain of game-theoretic supermartingales S to include pre-situations: if
s is a pre-situation, S(s) is interpreted as S(s−), where s− is s with the last
prediction removed. We will often write Sn(ω) to mean S(ωn).

Remark. The definition of a martingale is obtained from that of a supermartin-
gale by replacing the condition Epn(fn) ≤ Kn−1 in Protocol 1 by Epn(fn) =
Kn−1. Martingales are less useful for us since the sum of two martingales may
fail to be a martingale (the inequality in Axiom 3 may be strict), whereas the
sum of two supermartingales is always a supermartingale.

For each function ξ : Ω → [−∞,∞] and each (pre- or post-) situation s, we
define the (conditional) upper expectation of ξ given s by

E(ξ | s) := inf
{

a | ∃S : S(s) = a and

lim inf
n→∞

Sn(ω) ≥ ξ(ω) for all ω ∈ Γ(s)
}

(6)
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where S ranges over the supermartingales that are bounded below, and we define
the lower expectation of ξ given s by

E(ξ | s) := −E (−ξ | s) .

If E is any subset of Ω, its upper and lower probability given a situation s are
defined by

P(E | s) := E(IE | s), P(E | s) := E(IE | s), (7)

respectively. In what follows we sometimes refer to functions ξ : Ω → R as
variables, to functions ξ : Ω → [−∞,∞] as extended variables, and to sets
E ⊆ Ω as events.

Lemma 1. For all situations s and all variables ξ : Ω → (−∞,∞), E(ξ | s) ≤
E(ξ | s). In particular, P(E | s) ≤ P(E | s) for all events E ⊆ Ω.

Proof. Suppose E(ξ | s) > E(ξ | s), i.e., E(ξ | s) + E(−ξ | s) < 0. Then there
exist supermartingales S1 and S2 such that S1(s) + S2(s) < 0 and, on Γ(s),
lim infn S1

n ≥ ξ and lim infn S2
n ≥ −ξ. Then the supermartingale S := S1 + S2

satisfies S(s) < 0 and lim inf Sn(ω) ≥ 0 for all ω ∈ Γ(s). Let us show that this
is impossible. Set ε := −S(s). By coherence (see (4)), Reality can choose the
outcomes after the situation s so that

S(s) = S(ωk) ≥ S(ωk+1) − ε/4 ≥ S(ωk+2) − ε/4 − ε/8 ≥ · · · ,

where k is the level of s and ω ∈ Γ(s) is the realized path; this path ω will
satisfy lim infn Sn(ω) ≤ lim supn Sn(ω) ≤ Sk(ω) + ε/2 < 0.

Important special cases are where s = 2 (unconditional upper and lower
expectations and probabilities). We set E(ξ) := E(ξ | 2), E(ξ) := E(ξ | 2),
P(E) := P(E | 2), and P(E) := P(E | 2). We say that an event E is almost
certain, or happens almost surely (a.s.), if P(E) = 1; in this case we will also
say that E, considered as a property of ω ∈ Ω, holds for almost all ω. More
generally, we say that E holds almost surely on B (or for almost all ω ∈ B), for
another event B, if the event (B ⇒ E) := (Bc ∪E) is almost certain. An event
E is almost impossible, or null, if P(E) = 0.

In [6] we defined the lower probability of an event E as 1 − P(Ec). The
following lemma says that this definition is equivalent to our current definition.

Lemma 2. For each event E ⊆ Ω and each situation s,

P(E | s) = 1 − P(Ec | s).

Proof. By (3), we have E(ξ + c | s) = E(ξ | s) + c for all ξ : Ω → R and c ∈ R.
Therefore,

P(E | s) = E(IE | s) = −E(− IE | s)
= 1 − E(1 − IE | s) = 1 − E(IEc | s) = 1 − P(Ec | s).
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The following lemma establishes the fundamental property of subadditivity
of game-theoretic probability.

Lemma 3. For any sequence of events E1, E2, . . . and any situation s, it is true
that

P

( ∞∪
k=1

Ek | s

)
≤

∞∑
k=1

P (Ek | s) .

In particular, the union of a sequence of null events is null.

Proof. Assume, without loss of generality, that s = 2. Let ε > 0 be arbitrarily
small. For each k choose a supermartingale Sk (automatically positive, by
coherence) such that lim infn Sk

n ≥ IEk
and Sk

0 ≤ P(Ek) + ε/2k. It is easy to
check that the sum

∑∞
k=1 Sk will be a supermartingale (cf. (1)) that satisfies

S0 ≤
∑∞

k=1 P(Ek) + ε and lim infn Sn ≥ IEk
for all k.

Equivalent definitions of game-theoretic expectation and
probability

The following proposition is our main statement of equivalence.

Lemma 4. The definition of upper expectation will not change if we replace the
lim inf in (6) by lim sup. This definition is also equivalent to

E(ξ | s) := inf
{
S0 | ∀ω ∈ Γ(s) : lim

n→∞
Sn(ω) ≥ ξ(ω)

}
where S ranges over the class L of all bounded below supermartingales for which
limn→∞ Sn(ω) exists (with limn→∞ Sn(ω) = ∞ allowed) for all ω ∈ Ω.

Proof. We will only consider the case where s is a post-situation; the case of a
pre-situation is completely analogous. Without loss of generality assume s = 2.
Let a bounded below supermartingale S satisfy the inequality

∀ω ∈ Ω : lim sup
n→∞

Sn(ω) ≥ ξ(ω)

(cf. (6)) and let ε ∈ (0, 1). It suffices to show that there exists S∗ ∈ L such that
S∗

0 ≤ S0 + ε and
∀ω ∈ Ω : lim

n→∞
S∗

n(ω) ≥ ξ(ω).

Setting S ′ := (S − C)/(S0 − C), where C is any constant satisfying C < inf S,
we obtain a positive supermartingale satisfying S ′

0 = 1.
The idea is now to use the standard proof of Doob’s convergence theorem

(see, e.g., [6], Lemma 4.5). Let [ai, bi], i = 1, 2, . . ., be an enumeration of all
intervals with 0 < ai < bi and both end-points rational. For each i one can define
a positive supermartingale Si with Si

0 = 1 diverging to ∞ when lim infn S ′
n < ai

and lim supn S ′
n > bi. The construction of Si is standard: set τ i

0 := 0 and, for
k = 1, 2, . . .,

σi
k := min{n > τ i

k−1 | S ′
n > bi}, τ i

k := min{n > σi
k | S ′

n < ai}; (8)

6



define Si by the requirement that

Si
n :=

{
Si

n−1 + S ′
n − S ′

n−1 if Si
n−1 < ∞ and ∃k : τ i

k−1 < n ≤ σi
k

Si
n−1 otherwise

(9)

for all n ∈ N. Now we can set

Tn :=
∞∑

i=1

2−iSi
n (10)

and S∗ := S + εT .
Let us check that S∗ ∈ L. Since S∗ is bounded below, we are only required

to check that S∗
n(ω) converges (perhaps to ∞) as n → ∞ for all ω ∈ Ω. Fix

ω ∈ Ω.
If Sn(ω) = ∞ for some n, there exists i such that Si

n(ω) = ∞ from some n
on (take any i such that Sn(ω) < ai strictly before Sn(ω) becomes infinite for
the first time), and so we have Tn(ω) = ∞ and S∗

n(ω) = ∞ from some n on.
Therefore, we will assume that Sn(ω) < ∞ for all n.

If Sn(ω) converges to ∞, S∗
n(ω) also converges to ∞. If Sn(ω) does

not converge, there exists i such that Si
n(ω) → ∞ (take any i satisfying

lim infn Sn(ω) < ai < bi < lim supn Sn(ω)), and so we have Tn(ω) → ∞ and
S∗

n(ω) → ∞. It remains to consider the case Sn(ω) → p for some p ∈ R.
Suppose Sn(ω) → p, p ∈ R, but S∗

n(ω) does not converge (not even to
∞). Choose a non-empty interval (a, b) such that lim infn S∗

n(ω) < a < b <
lim supn S∗

n(ω) and set c := b − a. Take any N ∈ N such that S∗
N (ω) > b and

|Sn(ω) − p| < c/4 for all n ≥ N . It is clear that Sn(ω) − SN (ω) > −c/2 and
Si

n(ω)−Si
N (ω) > −c/2 for all i and all n ≥ N . This implies S∗

n(ω)−S∗
N (ω) > −c

for all n ≥ N , and so contradicts the fact that S∗
n(ω) − S∗

N (ω) < −c for some
n ≥ N (namely, for any n ≥ N satisfying S∗

n(ω) < a).

Notice that in the proof of Lemma 4 we do not really need Axiom 5: count-
able combinations of gambles are irrelevant. Despite the appearance of an infi-
nite sum in (10), for each n the increment of Tn can be represented (assuming
Tn−1 < ∞) as

Tn − Tn−1 =
∞∑

i=1

2−i(Si
n − Si

n−1) =

( ∞∑
i=1

wi

)
(S ′

n − S ′
n−1),

where wi ∈ {0, 2−i} (which makes the series
∑∞

i=1 wi convergent). Since S ′ is
a supermartingale, Tn − Tn−1, as function of the nth outcome xn, has negative
Epn -superexpectation. This argument for T being a supermartingale does not
depend on Axiom 5.

Replacing the lim inf in (6) by inf or sup does change the definition. If we
replace the lim inf by inf, we will have E(ξ | s) = supω∈Γ(s) ξ(ω).
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Example 1. Set

E1(ξ) := inf
{
S0 | ∀ω ∈ Ω : sup

n
Sn(ω) ≥ ξ(ω)

}
.

It is always true that E1(ξ) ≤ E(ξ). Consider the coin-tossing protocol ([6],
Section 8.2), which is the special case of Protocol 1 with X = {0, 1}, P a one-
element set, and Ep(f) = (f(0) + f(1))/2. The sample space Ω can now be
identified with {0, 1}∞: as the predictions are not informative, we can omit
them. For each ε ∈ (0, 1) there exists a bounded positive variable ξ such that
E(ξ) = 1 and E1(ξ) = ε.

Proof. Let us demonstrate the following equivalent statement: for any C > 1
there exists a bounded positive variable ξ such that E1(ξ) = 1 and E(ξ) = C.
Fix such a C. Define ψ : Ω → [0,∞] by the requirement ψ(ω) := 2n where n is
the number of 1s at the beginning of ω: n := max{i | ω1 = · · · = ωi = 1}. It is
obvious that E1(ψ) = 1 and E(ψ) = ∞. However, ψ is unbounded. We can al-
ways find A > 1 such that E(min(ψ,A)) = C (as the function a 7→ E(min(ψ, a))
is continuous). Since E1(min(ψ,A)) = 1, we can set ξ := min(ψ,A).

Game-theoretic probability is a special case of game-theoretic expectation,
and in this special case it is possible to replace lim inf not only by lim sup but
also by sup, provided we restrict our attention to positive supermartingales
(simple examples show that this qualification is necessary). By coherence, the
definition of conditional upper probability P can be rewritten as

P(E | s) := inf
{
S0 | lim inf

n→∞
Sn(ω) ≥ 1 for all ω ∈ E ∩ Γ(s)

}
, (11)

S ranging over the positive supermartingales.

Lemma 5. The definition of upper probability will not change if we replace the
lim infn→∞ in (11) by lim supn→∞ or by supn.

It is obvious that the definition will change if we replace the lim infn→∞ by infn:
in this case we will have

P(E | s) =

{
0 if E ∩ Γ(s) = ∅
1 otherwise.

Proof. It suffices to prove that the definition will not change if we replace the
lim infn→∞ in (11) by supn. This is obvious: if a prudent (i.e., resulting in a
positive capital) strategy for Skeptic ensures ∀ω ∈ E ∩ Γ(s) : supn Kn(ω) > 1
(it is obvious that it does not matter whether we have ≥ or > in (11)), Skeptic
can also ensure ∀ω ∈ E ∩ Γ(s) : lim infn→∞ Kn(ω) > 1 by stopping whenever
his capital Kn exceeds 1.
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3 Lévy’s zero-one law

The following simple theorem is our main result.

Theorem 1. Let ξ : Ω → (−∞,∞] be bounded from below. For almost all
ω ∈ Ω,

lim inf
n→∞

E(ξ | ωn) ≥ ξ(ω). (12)

This theorem is a game-theoretic version of Lévy’s zero-one law. The name of
this result might look puzzling now; connections with zero-one phenomena will
be explored in the next section.

Proof of Theorem 1. It suffices to construct a positive supermartingale starting
from 1 that tends to ∞ on the paths ω ∈ Ω for which (12) is not true. Without
loss of generality we will assume ξ to be positive (we can always redefine ξ :=
ξ − inf ξ). According to Lemma 3 (second statement), we can, without loss of
generality, replace “for which (12) is not true” by

lim inf
n→∞

E(ξ | ωn) < a < b < ξ(ω) (13)

where a and b are given positive rational numbers such that a < b. The su-
permartingale is defined as the capital process of the following strategy. Let
ω ∈ Ω be the sequence of moves chosen by Forecaster and Reality. Start with
1 monetary unit. Wait until E(ξ | ωn) < a (if this never happens, do nothing,
i.e., always choose constant fn = Kn−1). As soon as this happens, choose a
positive supermartingale S1 starting from a, S1(ωn) = a, whose upper limit
exceeds ξ on Γ(ωn). Maintain capital S1/a until S1 reaches a value m1 > b
(at which point Skeptic’s capital is m1/a > b/a). After that do nothing until
E(ξ | ωn) < a. As soon as this happens, choose a positive supermartingale S2

starting from a, S2(ωn) = a, whose upper limit exceeds ξ on Γ(ωn). Maintain
capital (m1/a2)S2 until S2 reaches a value m2 > b (at which point Skeptic’s cap-
ital is m1m2/a2 > (b/a)2). After that do nothing until E(ξ | ωn) < a. As soon
as this happens, choose a positive supermartingale S3 starting from a whose up-
per limit exceeds ξ on Γ(ωn). Maintain capital (m1m2/a3)S3 until S3 reaches a
value m3 > b (at which point Skeptic’s capital is m1m2m3/a3 > (b/a)3). And
so on. On the event (13) Skeptic’s capital will tend to infinity.

Specializing Theorem 1 to the indicators of events, we obtain:

Corollary 1. Let E be any event. For almost all ω ∈ E,

P(E | ωn) → 1 (14)

as n → ∞.

It is easy to check that we cannot replace the ≥ in (12) by =, even when
ξ is the indicator of an event. For example, suppose that X = {0, 1}, P is a
one-element set, and Ep is the sup functional: Ep(f) := supx∈X f(x) for all f .

9



Since the predictions are not informative, Ω can be identified with {0, 1}∞. If
E consists of binary sequences containing only finitely many 1s, P(E | ωn) = 1
for all ω and n; therefore,

lim inf
n→∞

P(E | ωn) = IE(ω)

is violated for all ω ∈ Ec, and P(Ec) = 1.

The case of a determinate expectation or probability

In Section 41 of [5] (pp. 128–130), Lévy states his zero-one law in terms of a
property E that a sequence X1, X2, . . . of variables might or might not have.
He writes Pr.{E} for the initial probability of E, and Prn{E} for its probability
after X1, . . . , Xn is known. He remarks that if Pr.{E} is well defined (i.e., if E
is measurable), then the conditional probabilities Prn{E} are also well defined.
Then he states the law as follows (our translation from the French):

Except in cases that have probability zero, if Pr.{E} is deter-
mined, then Prn{E} tends, as n tends to infinity, to one if the se-
quence X1, X2, . . . verifies the property E, and to zero in the con-
trary case.

In this subsection we will derive a game-theoretic result that resembles Lévy’s
statement of his result. We will be concerned with variables ξ satisfying E(ξ) =
E(ξ) and events E satisfying P(E) = P(E).

Lemma 6. Suppose a variable ξ satisfies E(ξ) = E(ξ). Then it is almost certain
that it also satisfies E(ξ | ωn) = E(ξ | ωn) for all n.

Proof. For any positive ε, there exist supermartingales S1 and S2 that start at
E(ξ) + ε/2 and E(−ξ) + ε/2, respectively, and tend to ξ or more and to −ξ or
more, respectively. Set S := S1 + S2. The assumption E(ξ) = E(ξ) can also be
written E(ξ) + E(−ξ) = 0. So the positive (by coherence) supermartingale S
begins at ε and tends to 0 or more on all ω ∈ Ω.

Fix n and δ > 0, and let A be the event that

E(ξ | ωn) + E(−ξ | ωn) > δ.

By the definition of conditional upper expectation,

S1(ωn) ≥ E(ξ | ωn)

and
S2(ωn) ≥ E(−ξ | ωn).

So S exceeds δ on A. So the upper probability of A is at most ε/δ. Since ε may
be as small as we like for fixed δ, this shows that A has upper probability zero.
Letting δ range over the positive rational numbers and n over {0, 1, 2, . . .} and
applying the second part of Lemma 3, we obtain the statement of the lemma.
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Corollary 2. Let ξ be a bounded variable for which E(ξ) = E(ξ). Then, almost
surely, E(ξ | ωn) = E(ξ | ωn) → ξ(ω) as n → ∞.

Proof. By Theorem 1,
lim inf
n→∞

E(ξ | ωn) ≥ ξ(ω)

for almost all ω ∈ Ω and (applying the theorem to −ξ)

lim sup
n→∞

E(ξ | ωn) ≤ ξ(ω)

for almost all ω ∈ Ω.

Our definitions (7) make it easy to obtain the following corollaries for events.

Corollary 3. Suppose an event E satisfies P(E) = P(E). Then, almost surely,
it also satisfies P(E | ωn) = P(E | ωn) for each n.

Corollary 4. Let E be an event for which P(E) = P(E). Then, almost surely,
P(E | ωn) = P(E | ωn) → IE as n → ∞.

4 More explicit zero-one laws

In this section we will prove Bártfai and Révész’s [1] zero-one law for our general
prediction protocol (Protocol 1), and then deduce two corollaries for the case
of independent trials (to be defined later): Kolmogorov’s zero-one law and the
ergodicity of Bernoulli shifts. The first corollary is deduced from Bártfai and
Révész’s zero-one law, and the second one from Lévy’s zero-one law. Both
corollaries were proved in [7] directly. All these results are more general than
the corresponding measure-theoretic results; see [6], Section 8.1, for relations
between measure-theoretic results and their game-theoretic counterparts.

For ω = p1x1p2x2 . . . ∈ Ω and n ∈ N, we let ωn ∈ Pn ×X stand for the pair
(pn, xn).

Bártfai and Révész’s zero-one law

For each N ∈ N, let FN be the set of all events E that are properties of
(ωN , ωN+1, . . .) only (i.e., E such that, for all ω, ω′ ∈ Ω, ω′ ∈ E whenever
ω ∈ E and ω′

n = ωn for all n ≥ N). Let us say that a general prediction
protocol (determined by the sequence P1,P2, . . . and the function E) is δ-mixing,
for δ ∈ [0, 1), if there exists a function a : N → N such that

P(E | ωn) − P(E) ≤ δ a.s. (15)

for each n ∈ N and each E ∈ Fn+a(n).
First we state an approximate zero-one law (a game-theoretic analogue of

the main result of [1]). By a tail event we mean an element of ∩NFN .
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Theorem 2. Let δ ∈ [0, 1) and let a sequence P1,P2, . . . and a function E be
such that the general prediction protocol is δ-mixing. If E is a tail event, then
P(E) = 0 or P(E) ≥ 1 − δ.

Proof. Since E is a tail event, (15) holds for all n. By Corollary 1, 1−P(E) ≤ δ
holds on E almost surely. In other words, 1 − P(E) ≤ δ unless E is null.

Let us say that an event E is unprobabilized if P(E) < P(E). An important
special case of Theorem 2 is the following zero-one law for “weakly dependent”
trials (cf. Corollary 1 in [1]).

Corollary 5. Let δ ∈ [0, 1/2) and let a sequence P1,P2, . . . and a function E
be such that Protocol 1 is δ-mixing. Every tail event is almost certain, almost
impossible, or unprobabilized.

Proof. It suffices to apply Theorem 2 to the tail events E and Ec.

It is easy to strengthen Theorem 2 by modifying the notion of a δ-mixing
protocol. Let us say that the protocol is asymptotically δ-mixing, for δ ∈ [0, 1),
if (15) holds for each n ∈ N and each tail event E. Bártfai and Révész [1] do not
introduce this notion (more precisely, its measure-theoretic version) explicitly,
but they do introduce two notions intermediate between δ-mixing and asymp-
totic δ-mixing, which they call stochastic δ-mixing and δ-mixing in mean. The
following proposition is similar to (but much simpler than) Theorems 2 and 3
in [1].

Proposition 1. Let δ ∈ [0, 1). The following two conditions on the general
prediction protocol are equivalent:

1. The protocol is asymptotically δ-mixing.

2. Every tail event E satisfies P(E) = 0 or P(E) ≥ 1 − δ.

Proof. The argument of Theorem 2 shows that the first condition implies the
second. Let us now assume the second condition and demonstrate the first. Let
n ∈ N and E be a tail event. If P(E) = 0, then P(E | ωn) = 0 a.s. can be proved
similarly to the proof of Lemma 6, and so (15) holds. If P(E) ≥ 1 − δ, (15) is
vacuous.

Kolmogorov’s zero-one law

In this section we will apply Theorem 2 to deduce a game-theoretic version
of Kolmogorov’s zero-one law. In our next protocol, Forecaster’s moves pn,
n = 1, 2, . . ., are fixed at the beginning of the game; in other words, Pn are one-
element sets. Since the predictions are no longer informative, we can remove
Forecaster from the protocol, and include his superexpectation functionals as
parameters of the protocol.

Protocol 2. Independent trials
Parameters: superexpectation functionals E1, E2, . . .

12



Protocol:
Skeptic announces K0 ∈ R.
FOR n = 1, 2, . . .:

Skeptic announces fn ∈ (−∞,∞]X such that En(fn) ≤ Kn−1.
Reality announces xn ∈ X .
Kn := fn(xn).

END FOR

Now we can redefine Ω := X∞. As before, an event E ⊆ Ω is called a tail
event if any sequence in Ω that agrees from some point onwards with a sequence
in E is also in E.

Corollary 6 ([7]). For all tail events E in the protocol of independent trials,
P(E) ∈ {0, 1}.

Proof. For each n ∈ N and each E ∈ Fn+1, P(E | ωn) does not depend on ω.
This implies P(E | ωn) = P(E). Therefore, the protocol is 0-mixing, and it
remains to apply Theorem 2.

We say that an event E is fully unprobabilized if P(E) = 0 and P(E) = 1.
Since complements of tail events are also tail events, we obtain the following
corollary to Corollary 6.

Corollary 7 ([7]). If E is a tail event in Protocol 2 (independent trials), then
E is almost certain, almost impossible, or fully unprobabilized.

Ergodicity of Bernoulli shifts

The protocol of this subsection is even more specialized than Protocol 2: Fore-
caster always chooses the same prediction.

Protocol 3. Identically priced trials
Parameter: superexpectation functional E
Protocol:
Skeptic announces K0 ∈ R.
FOR n = 1, 2, . . .:

Skeptic announces fn ∈ (−∞,∞]X satisfying E(fn) ≤ Kn−1.
Reality announces xn ∈ X .
Kn := fn(xn).

END FOR

We write θ for the shift operator, which deletes the first element from a
sequence in X∞:

θ : x1x2x3 . . . 7→ x2x3 . . . .

We call an event E in Protocol 3 weakly invariant if θE ⊆ E. In accordance
with standard terminology, we call an event E invariant if E = θ−1E.

Lemma 7. E is invariant if and only if both E and Ec are weakly invariant.
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Proof. We will give the simple argument from [7]. If E is invariant, then Ec is
also invariant, because the inverse map commutes with complementation. Hence
in this case both E and Ec are weakly invariant.

Conversely suppose that θE ⊆ E and θEc ⊆ Ec. The first inclusion is
equivalent to E ⊆ θ−1E and the second is equivalent to Ec ⊆ θ−1Ec. Since the
right-hand sides of the last two inclusions are disjoint, these inclusions are in
fact equalities.

The following corollary asserts the ergodicity of Bernoulli shifts.

Corollary 8 ([7]). For all weakly invariant events E in the protocol of identi-
cally priced trials, P(E) ∈ {0, 1}.

Proof. For weakly invariant events, P(E | ωn) ≤ P(E). Let E be weakly invari-
ant. By (14), for almost all ω ∈ E it is true that P(E) = 1. Therefore, P(E) is
either 0 or 1.

In view of Lemma 7 we obtain the following corollary to Corollary 8.

Corollary 9 ([7]). If E is an invariant event in Protocol 3 (identically priced
trials), then E is almost certain, almost impossible, or fully unprobabilized.

5 An implication for the foundations of game-
theoretic probability theory

In this section we return to Protocol 1. Let ξ be a bounded variable, and
let s := 2. We will obtain an equivalent definition of the upper expectation
E(ξ | s) = E(ξ) if we replace the phrase “for all ω ∈ Γ(s)” in (6) by “for almost
all ω ∈ Ω”. It turns out that if we do so, the infimum in (6) becomes attained;
namely, it is attained by the supermartingale Sn(ω) := E(ξ | ωn). (This fact is
the key technical tool used in [8].) In view of Theorem 1, to prove this statement
it suffices to check that Sn(ω) := E(ξ | ωn) is indeed a supermartingale.

Theorem 3. Let ξ : Ω → (−∞,∞] be bounded from below. Then Sn(ω) :=
E(ξ | ωn) is a supermartingale.

Proof. As a first step, let us check that, for any ε > 0, Sε
n(ω) := E(ξ | ωn)+ε2−n

is a supermartingale, i.e., that

Ep E(ξ | ωn−1px) ≤ E(ξ | ωn−1) + ε2−n

for all p ∈ Pn, ω ∈ Ω, and n ∈ N. The last inequality follows from the existence
of a supermartingale T that starts from E(ξ | ωn−1) + ε2−n in the situation
ωn−1 and ensures lim infn Tn ≥ ξ on Γ(ωn−1): it is clear that such T will satisfy
T (ωn−1px) ≥ E(ξ | ωn−1px).

It remains to notice that the infimum of any set of supermartingales is again
a supermartingale and that S = infε>0 Sε.
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Example 2. Consider the coin-tossing protocol, as in Example 1. Let E be the
set of all ω ∈ Ω containing only finitely many 1s and let ξ := IE . The infimum
in (6) is not attained: there exist no supermartingale S satisfying S0 = E(ξ) = 0
and lim infn→∞ Sn(ω) ≥ ξ(ω) for all ω ∈ Ω.

Proof. By coherence, such an S would be positive. Since its initial value is 0, S
would be constant.
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