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Abstract

Tanaka and Komaki showed that when there exists a superharmonic
prior on a stationary ARMA model, the Bayesian spectral density es-
timator based on the superharmonic prior asymptotically dominates
that based on the Jeffreys prior. This result is an extension of Ko-
maki’s result for Bayesian predictive densities in the i.i.d. cases. In
the second order autoregressive process, a superharmonic prior was
obtained by Tanaka and Komaki. Numerical simulation indicates the
effectiveness of the superharmonic prior even in small sample. Since
the Laplacian is in a complicated form, no superharmonic prior for the
higher order autoregressive model has been discovered. In the present
paper, we give a superharmonic prior for the autoregressive process in
an explicit form. Some systematic methods of dealing with complex
polynomial are also developed.

1 Introduction

Let us consider a parametric model of stationary Gaussian process with
mean zero. It is known that a stationary Gaussian process corresponds to
its spectral density one-to-one (for proof, see, e.g., Brockwell and Davis [4]).
In the present paper, we focus on the estimation of the true spectral density
S(ω|θ0) in a parametric family of spectral densities

M := {S(ω|θ) : θ ∈ Θ ⊆ Rk}.

The performance of a spectral density estimator Ŝ(ω|x), where x denotes an
observation, is evaluated by the Kullback-Leibler divergence.

D(S(ω|θ0)||Ŝ(ω|x)) :=
∫ π

−π

dω

4π

{
S(ω|θ0)
Ŝ(ω|x)

− 1 − log

(
S(ω|θ0)
Ŝ(ω|x)

)}
.
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The above setting is proposed by Komaki [6].
First, let us consider minimizing the average risk assuming that a proper

prior density π(θ) is known in advance. The spectral density estimator
minimizing the average risk,

EπEpn [D(S(ω|θ)||Ŝ(ω|x))]

:=
∫

dθπ(θ)
∫

dx1 . . . dxn pn(x1, . . . , xn|θ)D(S(ω|θ)||Ŝ(ω|x)),

is given by the Bayesian spectral density (with respect to π(θ)), which is
defined by

Sπ(ω|x) :=
∫

S(ω|θ)π(θ|x)dθ. (1)

We call Sπ(ω|x) in (1) a Bayesian spectral density even when an improper
prior distribution is considered.

Generally, speaking, if one has no information on the unknown parameter
θ, it is natural to adopt a noninformative prior in the Bayesian framework.
The Jeffreys prior is a well-known candidate for a noninformative prior from
several reasons, but often improper and then there is much room to argue
the choice of a noninformative prior.

Komaki showed that the Bayesian predictive density based on a super-
harmonic prior asymptotically dominates that based on the Jeffreys prior
if there exists a superharmonic prior in the parametric model [7]. While
his result is in the i.i.d. setting, Tanaka and Komaki [10] extended to the
estimation of spectral densities in the ARMA model. When there exists a
superharmonic prior on a stationary ARMA model, the Bayesian spectral
density estimator based on a superharmonic prior asymptotically dominates
that based on the Jeffreys prior, where the Jeffreys prior is calculated by
the Fisher metric (Fisher information matrix) as usual. The Fisher metric
of a parametric model of spectral densities M is defined by

gij := g

(
∂

∂θi
,

∂

∂θj

)
=

∫ π

−π

dω

4π

∂iS(ω|θ)
S(ω|θ)

∂jS(ω|θ)
S(ω|θ)

(2)

(Amari [1]). Indeed, Tanaka and Komaki [9] find a superharmonic prior in
the AR(2) process and validated their result by numerical simulation.

Here we emphasize that a parameteric model of spectral densities does
not always admit a superharmonic prior. Definition of a superharmonic
prior is given later, but the existence of a superharmonic prior is reduced to
the existence of a nonconstant positive solution of a second order differential
inequality on a model manifold. Until now, it is an open problem to deter-
mine if there exists a superharmonic prior for the AR(p) process (p ≥ 3). In
the present paper, we present a superharmonic prior for the AR(p) process
(p ≥ 3) in an explicit form, which is a positive result.
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In the next section, we briefly review our notation in AR model mani-
folds. For statistical model manifolds and differential geometrical concepts
in statistics, see, e.g., Amari and Nagaoka [2]. In Section 3, we mention our
main result, the explicit form of a superharmonic prior in the AR model.
Concluding remarks follow in Section 4. Proof is given in Appendix. It
is straightforward but still needs a systematic way of dealing with lots of
irreducible fractional polynomial.

2 Basic Definition and Notation

2.1 Fisher metric on the AR model manifold

Autoregressive (AR) models are widely-known in the field of time series
analysis and defined as follows. A p-th order AR model with AR parameter
a1, . . . , ap is defined by

Xt = −
p∑

i=1

aiXt−i + Wt,

where {Wt} is a Gaussian white noise with mean 0 and variance σ2. Now,
we define the shift operator Z by ZXt = Xt+1. Then, Z−iXt = Xt−i and

Xt = Ha(Z)−1Wt, Ha(Z) :=
p∑

i=0

aiZ
−i with a0 = 1 .

In the present paper only stationary AR models are considered.
According to Komaki [6], we calculate the Fisher metric on the AR model

manifolds. The explicit form of the spectral density of the AR model is given
by

S(ω|a1, . . . , ap, σ
2) =

σ2

2π

1
|Ha(z)|2

, z = eiω.

Here, we adopt another coordinate system, which brings us a more conve-
nient form to consider. Equation zpHa(z) = zp + a1z

p−1 + · · · + ap−1z + ap

is a polynomial of degree p and has p complex roots, z1, z2, . . . , zp (Note
that |zi| < 1 from the stationarity condition). Since a1, a2, . . . , ap are all
real, it consequently has the conjugate roots. Thus, we can put them
in the order like, z1, . . . , zq, zq+1, . . . , z2q ∈ C, z2q+1, . . . , z2q+r ∈ R and
zq+j = z̄j(1 ≤ j ≤ q) (for simplicity, we assume that there are no mul-
tiple roots). The roots z1, z2, . . . , zp correspond to the original parameter
a1, a2, . . . , ap in a one-to-one manner. Now we introduce a coordinate system
(θ1, θ2, . . . , θp) using these roots

θ0 := σ2, θ1 := z1, θ2 := z2, . . . , θp := zp.
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In the remainder of the paper indices I, J,K, . . . run 0, 1, . . . , p (from zero)
and indices i, j, k, . . . run 1, 2, . . . , p (from one). The formal complex deriva-
tives are defined by

∂

∂z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
∂

∂z̄
:=

1
2

(
∂

∂x
− i

∂

∂y

)
,

where x and y are both real part and imaginary part of z. See, for example,
Gunning and Rossi [5]. Since the conjugate complex coordinates zi and z̄i

correspond to xi and yi in a one-to-one manner, each quantity is evaluated
in the original real coordinate if necessary. Index i and the imaginary unit
i :=

√
−1 often appear simultaneously but they are clearly distinguished

from context.
In the coordinate system given above, the Fisher metric gIJ is

gIJ =


g00 · · · g0i · · ·
... · · · · · · · · ·

gi0
... gij

...
...

... · · ·
...

 and


g00 = 1

2(θ0)2
= 1

2σ4

g0i = gi0 = 0
gij = 1

1−zizj

, (3)

see [6].

2.2 Superharmonic prior

We describe the general definition of a superharmonic prior. Let M denote
a Riemannian manifold with a coordinate θ. A scalar function φ(θ) on M
is called a superharmonic function if it satisfies,

∆φ(θ) ≤ 0 ∀θ,

where ∆ is the Laplace-Beltrami operator. Let gIJ be a Riemannian metric
(Fisher metric), gIJ , the inverse of gIJ , and g := det(gIJ). The Laplace-
Beltrami operator is defined by

∆φ :=
1
√

g

∂

∂θI

(
√

ggIJ ∂

∂θJ
φ

)
.

If a superharmonic function is positive, i.e., φ(θ) > 0, ∀θ, then it is called
a positive superharmonic function. When a model manifold endowed with
the Fisher metric has a non-constant positive superharmonic function φ(θ),
we call πH(θ) := πJ(θ)φ(θ) a superharmonic prior. Note that not all model
manifolds with the Fisher metric admit a superharmonic prior while all of
them admit the Jeffreys prior because the Jeffreys prior is given as a volume
element on the model manifold (i.e., πJ(θ) ∝

√
g(θ)).

In the AR(p) model manifold, ∆ can be decomposed into two parts. One
part is relevant with θ0 = σ2 and the others with θ1, · · · , θp. Thus, without
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loss of generality, we can set σ2 = 1. (See Tanaka and Komaki [9], for
details) Since we assume the stationarity condition, the parameter region
on the AR(p) model is given by

Ω := {θ = (θ1, . . . , θp) = (z1, . . . , zp) : |z1| < 1, |z2| < 1, . . . , |zp| < 1}.

3 Superharmonic Prior for the AR(p) Process

In this section, we obtain a superharmonic prior for the AR(p) process. We
begin with a positive superharmonic function on the AR model manifold.
General formula is given by

φ(θ) =
∏
i<j

(1 − zizj). (4)

For example, when p = 3,

φ = (1 − z1z2)(1 − z1z3)(1 − z2z3).

We see that the above superharmonic function (4) is not only a positive
superharmonic function, but also the eigenfunction of the Laplace-Beltrami
operator ∆.

Theorem 3.1.
When p ≥ 2, for the above φ (4),

∆φ = −p(p − 1)
2

φ (5)

holds. Thus, φ is a positive nonconstant superharmonic function for the
AR(p) model manifold.

Proof.
First we check positivity of φ because we introduce formal complex variables.
Recall that we assume the stationarity condition, which says

|zi| < 1.

For all real roots (zi ∈ R), clearly φ is positive. If there are complex
conjugate pair of roots zi, zi+r = z̄i, then such terms are rewritten as∏

k

(1 − zizk)(1 − zi+rzk) =
∏

k: zk∈R

(1 − zizk)(1 − zi+rzk)

×
∏

k: zk∈C

(1 − zizk)(1 − zi+rzk)
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If zk ∈ R, we obtain

(1 − zizk)(1 − zi+rzk) = (1 − zizk)(1 − zizk) = |1 − zizk|2 ≥ 0.

If zk ∈ C, gathering the terms including complex conjugate pair zk+r = z̄k,
we obtain

(1 − zizk)(1 − zi+rzk)(1 − zizk+r)(1 − zi+rzk+r)
= (1 − zizk)(1 − zizk) × (1 − z̄izk)(1 − z̄izk)
= |1 − zizk|2|1 − z̄izk|2 ≥ 0.

Thus, ∏
k

(1 − zizk)(1 − zi+rzk) ≥ 0.

and φ ≥ 0.

Next, we show Eq.(5). We set g := det gij (Here, recall that indices
i, j, . . . , run 1, 2, . . . , p). Then, ∆φ

φ is rewritten in the following form.

∆φ

φ
=

1
√

g

∂i

(√
g∂iφ

)
φ

=
1
2
(∂i log g)∂i log φ +

∂i(φ∂i log φ)
φ

=
1
2
(∂i log g)∂i log φ + (∂i log φ)(∂i log φ) + ∂i∂

i log φ

= fi∂
i log φ + ∂i∂

i log φ,

where we set fi := 1
2∂i log g + ∂i log φ. Now we calculate terms fi, ∂i log φ,

and ∂i log φ.

First we calculate log(
√

gφ).

log (
√

gφ) = log

∣∣∣∣∣
∏

i<j(zi − zj)2∏p
i=1

∏p
j=1(1 − zizj)2

∣∣∣∣∣
1
2

×
∏
j>i

(1 − zizj)


=

1
2

log
∏
i<j

|zi − zj |2 −
1
2

log

{
p∏

i=1

(1 − z2
i )

}

= log |∆| − 1
2

log

{
p∏

i=1

(1 − z2
i )

}
,

where ∆ is Vandermond determinant.(See Appendix.). Thus,

fi =
1
2
(∂i log g) + ∂i log φ

= ∂i log(
√

gφ)

= ∂i log |∆| + zi

1 − z2
i

.
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From now on, since summation rule is irregular, we indicate summation
of terms by

∑
. We evaluate ∂i log φ,

∂i log φ =
∂

∂zi

∑
j>k

log(1 − zkzj)


=

∑
k 6=i

−zk

1 − zkzi

=
p∑

k=1

−zk

1 − zkzi
+

zi

1 − zi
2
.

Finally, we rewrite ∂j log φ.

gji∂i log φ =
p∑

i=1

p∑
k=1

gji

(
−zk

1 − zkzi

)
+

p∑
i=1

gji

(
zi

1 − zi
2

)

= −zj +
p∑

i=1

gji

(
zi

1 − zi
2

)
.

Thus, putting these terms together, we obtain

∆φ

φ
=

p∑
i=1

(
∂i log |∆| + zi

1 − z2
i

)
×

−zi +
p∑

j=1

gij

(
zj

1 − z2
j

)


+
p∑

i=1

∂i

−zi +
p∑

j=1

gij

(
zj

1 − z2
j

)
= −

p∑
i=1

zi

(
∂i∆
∆

)
−

p∑
i=1

∂izi

+

 p∑
i=1

p∑
j=1

(
∂i∆
∆

)
gij

(
zj

1 − z2
j

)
+

p∑
i=1

p∑
j=1

∂i

{
gij

(
zj

1 − z2
j

)}
+

−
p∑

i=1

zi

(
zi

1 − z2
i

)
+

p∑
i=1

p∑
j=1

gij

(
zi

1 − z2
i

) (
zj

1 − z2
j

)
The first term is shown to be equal to −p(p−1)

2 . The second term is
clearly equal to −p. The other terms are calculated in Appendix. Final
result is as follows.

Lemma 3.1.
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(A) := −
p∑

i=1

zi

(
zi

1 − zi
2

)
+

p∑
i=1

p∑
j=1

gij

(
zi

1 − zi
2

)(
zj

1 − zj
2

)

=

{
1
2p even p
1
2(p − 1) odd p

Lemma 3.2.

(B) :=
p∑

i=1

p∑
j=1

[(
∂i∆
∆

)
gij

(
zj

1 − z2
j

)
+

∂

∂zi

{
gij

(
zj

1 − z2
j

)}]

=

{
1
2p even p
1
2(p + 1) odd p

Thus, when p is even, ∆φ
φ = −p(p−1)

2 + (−p) + 1
2p + 1

2p = −p(p−1)
2 . When p

is odd, we also obtain the same result. Q.E.D.

Now we obtain the final result.

Theorem 3.2.
When p ≥ 2, a superharmonic prior for the AR(p) process is given by

πH = φ(z1, . . . , zp)πJ ∝

∣∣∣∣∣
∏

i<j(zi − zj)2∏p
i=1(1 − z2

i )

∣∣∣∣∣
1
2

,

where the parameter θi = zi, i = 1, . . . , p are roots of characteristic equation
defined by

∑p
l=0 alz

p−l = 0. (See Section 2).

Proof.
Recall that by definition,

πJ ∝ √
g =

∣∣∣∣∣
∏

i<j(zi − zj)2∏p
i=1

∏p
j=1(1 − zizj)

∣∣∣∣∣
1
2

.
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Note that the absolute value | · | is required if z is complex. Since

πH = φ(z1, . . . , zp)πJ

∝
∏
i<j

(1 − zizj) ×

∣∣∣∣∣
∏

i<j(zi − zj)2∏p
i=1

∏p
j=1(1 − zizj)

∣∣∣∣∣
1
2

=

∣∣∣∣∣
∏

i<j(zi − zj)2∏p
i=1(1 − z2

i )

∣∣∣∣∣
1
2

,

Due to Theorem 3.1, πH/πJ is a positive nonconstant superharmonic func-
tion.
Q.E.D.

4 Concluding Remarks

In Tanaka and Komaki [9], numerical simulation of the spectral density
estimation for the AR(2) process is also presented. For higher order au-
toregressive process, numerical simulation itself is not so trivial because the
expression of a superharmonic prior includes complex conjugate pair of roots
and the stationarity region is divided into some regions corresponding to r
real roots and q complex conjugate pairs. The expression of both priors in
the AR parameter also seems complex for the AR(p) model when p ≥ 3.
Numerical simulation in another parametrization is left to the future work.

From differential geometrical viewpoint, our result is deeply related to
the theorem connecting a global property of a Riemannian manifold and lo-
cal one by Aomoto [3], which claims, a sufficient condition for the existence
of a positive nonconstant superharmonic function, is that the sectional cur-
vature is negative for any plane and at any point. Indeed, in Theorem 3.1,
we see that the higer order (i.e., p ≥ 3) AR model manifolds admit a positive
nonconstant superharmonic function although the sectional curvature of the
AR model manifold (p ≥ 3) is strictly positive for some plane and at some
point. (See, Tanaka and Komaki [8]). As far as the author knows, this is
the first nontrivial counterexample. Thus, it is expected that Aomoto’s suf-
ficient condition is modified to some extent in a more appropriate (weaker)
form.
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A Vandermonde Determinant and Related Sum-
mation Formulas

Let n be fixed and Z be the field of rational functions of z1, z2, . . . , zn,
i.e., Z := R(z1, z2, . . . , zn) and f(X) be polynomials whose coefficients are
rational expression of n-variables z1, z2, . . . , zn. Then, we introduce a Z-
linear map V of f(X)

V : f(X) 7−→ V (f(X)) :=
n∑

m=1

(−1)m+1f(zm)∆m, (6)

where ∆m is obtained from the Vandermonde determinant by subtracting
zm term, i.e.,

∆ :=
∏
i<j

(zj − zi) and ∆m :=
∆∏

l 6=m(zm − zl)
(−1)n−m.

As a useful notation, we define ∆̃ := V (Xn).

Example
For n = 3, we obtain

∆ = (z3 − z2)(z3 − z1)(z2 − z1),
∆1 = z3 − z2, ∆2 = z3 − z1, ∆3 = z2 − z1.

When f(X) := X2 ∈ Z(X),

V (f) = V (X2) =
3∑

m=1

(−1)m+1f(zm)∆m

= f(z1)(z3 − z2) − f(z2)(z3 − z1) + f(z3)(z2 − z1)
= 0.

It is due to the asymmetry of the summation form (6). This property is
easily generalized when f is at most n−1-th degree polynomial. We briefly
review some useful formula shown in Tanaka and Komaki [8].

Lemma A.1.

V (Xp) = 0 (p = 0, 1, . . . , n − 2) and V (Xn−1) = (−1)n−1∆.

F (a) := V

(
1

1 − aX

)
= (−a)n−1∆

n∏
l=1

1
1 − azl

, a ∈ R.
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A bit tedious form is also evaluated if we differentiate F (a) with respect
to a.

Lemma A.2.

V

(
Xp

1 − aX

)
=


1
ap F (a) (0 ≤ p ≤ n − 1)
1

an F (a) − 1
a(−1)n−1∆ (p = n)

1
an+1 F (a) − 1

a∆̃ − 1
a2 (−1)n−1∆ (p = n + 1)

,

V

(
Xp

(1 − aX)2

)
=

{
−p−1

ap F (a) + 1
ap−1

∂F (a)
∂a (0 ≤ p ≤ n)

− n
an+1 F (a) + 1

an
∂F (a)

∂a + 1
a2 (−1)n−1∆ (p = n + 1)

,

V

(
Xp

(1 − aX)3

)
=

1
2(p − 1)(p − 2)

ap
F (a) − p − 2

ap−1

∂F (a)
∂a

+
1
2

1
ap−2

∂2F (a)
∂a2

(0 ≤ p ≤ n + 1).

The following formula reminds us of Cauchy’s formula in complex analysis.
Using Lemma A.1 and Lemma A.2, we easily obtain all of them.

Lemma A.3.
Let G(X) be a polynomial of X, of at most n-th degree, i.e., G(X) :=∑n

p=0 ApX
p, Ap ∈ Z. Then, the following holds.

V

(
G(X)

1 − aX

)
= G

(
1
a

)
F (a) − (−1)n−1 1

a
An∆, (7)

V

(
G(X)

(1 − aX)(1 − bX)

)
=

1
a − b

{
aG

(
1
a

)
F (a) − bG

(
1
b

)
F (b)

}
, if a 6= b,

(8)

V

(
G(X)

(1 − aX)2

)
=

∂

∂a

{
aG

(
1
a

)
F (a)

}
. (9)

Proposition A.1.(Special case in Cauchy’s double alternants.) [8]
Let n ≥ 1, and a matrix gmh be defined by

gmh =
1

1 − zmzh
, |zj | < 1, 1 ≤ m,h ≤ n.

11



Then, the inverse of gmh is given by

gmh =
(1 − zmzh)

∏
l 6=h(1 − zlzm)

∏
l 6=m(1 − zlzh)∏

l 6=h(zh − zl)
∏

l 6=m(zm − zl)
. (10)

For later convenience, we rewrite gmh using the Vandermonde determinant

gmh = (−1)m+h G(zm)G(zh)
1 − zmzh

∆m∆h

∆2
,

where G(X) :=
∏n

l=1(1 − zlX) =
∑n

p=0 ApX
p.

B Preparation for Proof of Lemmas 3.1 and 3.2

First, we derive some formulas using the above Lemmas. Here, we set n = p
in the above notation and fix G(X) :=

∏p
l=1(1 − zlX). It is convenient to

define

L(a) :=
p∏

l=1

(
a − zl

1 − azl

)
.

Clearly, L(1) = 1, L(−1) = (−1)p, L(zi) = 0, i = 1, . . . , p. We also obtain

aG

(
1
a

)
F (a) = a

p∏
l=1

(
1 − zl

a

) (−a)p−1∆∏p
l=1(1 − azl)

= (−1)p−1∆
p∏

l=1

(
a − zl

1 − azl

)
= (−1)p−1∆L(a).

Since

∂

∂a
log L(a) =

∂

∂a

{
p∑

l=1

log(a − zl) −
p∑

l=1

log(1 − azl)

}

=
p∑

l=1

1
a − zl

+
p∑

l=1

zl

1 − azl
,

we obtain

L′(1) =
p∑

l=1

1 + zl

1 − zl
,

L′(−1) = (−1)p
p∑

l=1

−1 + zl

1 + zl
.

12



By Lemma A.3, we obtain useful formulas below. First,

V

(
G(X)

(1 − aX)(1 − bX)

)
=

1
a − b

{
aG

(
1
a

)
F (a) − bG

(
1
b

)
F (b)

}
=

1
a − b

{
(−1)p−1∆L(a) − (−1)p−1∆L(b)

}
= (−1)p−1∆

L(a) − L(b)
a − b

holds when a 6= b. In particular,

V

(
G(X)

(1 − X)(1 − ziX)

)
=

(−1)p−1

1 − zi
∆ (11)

V

(
G(X)

(1 + X)(1 − ziX)

)
=

1
1 + zi

∆ (12)

V

(
G(X)

(1 − X2)

)
=

(−1)p−1 + 1
2

∆ (13)

hold. If a = b, we use the following formula,

V

(
G(X)

(1 − aX)2

)
=

∂

∂a

{
aG

(
1
a

)
F (a)

}
= (−1)p−1∆

∂

∂a
L(a).

Substituting a to ±1, we obtain

V

(
G(X)

(1 − X)2

)
= (−1)p−1∆

p∑
l=1

1 + zl

1 − zl
, (14)

V

(
G(X)

(1 + X)2

)
= ∆

p∑
l=1

1 − zl

1 + zl
. (15)

In what follows, we use the above formulas, (11)-(15) in order to show
Lemma 3.1, Lemma 3.2.

C Proof of Lemma 3.1

We again present the statement to be proved in this section.

Lemma 3.1.

(A) := −
p∑

i=1

zi

(
zi

1 − zi
2

)
+

p∑
i=1

p∑
j=1

gij

(
zi

1 − zi
2

)(
zj

1 − zj
2

)

=

{
1
2p even p
1
2(p − 1) odd p

.

13



Proof.
From Proposition A.1,

gij = (−1)i+j G(zi)G(zj)
1 − zizj

∆i

∆
∆j

∆
.

Then,

p∑
j=1

gij zj

1 − zj
2

=
p∑

j=1

(−1)i+j G(zi)G(zj)
1 − zizj

∆i

∆
∆j

∆
× zj

1 − zj
2

= (−1)i+1G(zi)
∆i

∆2


p∑

j=1

zj

1 − zj
2

G(zj)
1 − zizj

(−1)j+1∆j


= (−1)i+1G(zi)

∆i

∆2
V

(
XG(X)

(1 − X2)(1 − ziX)

)
.

Using Eq.(11),(12), this term is rewritten as

V

(
XG(X)

(1 − X2)(1 − ziX)

)
= V

[{
1
2

1
1 − X

− 1
2

1
1 + X

}
G(X)

1 − ziX

]
=

1
2

{
V

(
G(X)

(1 − X)(1 − ziX)

)
− V

(
G(X)

(1 + X)(1 − ziX)

)}
=

1
2

{
1

1 − zi
(−1)p−1∆ − 1

1 + zi
∆

}
= −1

2

(
(−1)p

1 − zi
+

1
1 + zi

)
∆

= −hp(zi)∆,

where hp(x) is defined by

hp(x) :=

{
1

1−x2 p even
−x

1−x2 p odd
.

Thus, we obtain

p∑
j=1

gij zj

1 − zj
2

= (−1)iG(zi)hp(zi)
∆i

∆
. (16)
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Next, we calculate (A).

(A) =
p∑

i=1

−z2
i

1 − z2
i

+
p∑

i=1

p∑
j=1

gij zi

1 − zi
2

zj

1 − zj
2

=
p∑

i=1

−z2
i

1 − z2
i

+
p∑

i=1

(−1)iG(zi)hp(zi)
zi

1 − zi
2

∆i

∆

=
p∑

i=1

−z2
i

1 − z2
i

− 1
∆

V

(
G(X)hp(X)

X

1 − X2

)
.

Now we deal with the last term separately for even p and odd p.

(i) When p is even

When p is even, observing that

X

(1 − X2)2
=

1
4

{
1

(1 − X)2
− 1

(1 + X)2

}
and using Eq.(14),(15), we obtain

V

(
G(X)hp(X)

X

1 − X2

)
= V

(
XG(X)

(1 − X2)2

)
=

1
4

{
V

(
G(X)

(1 − X)2

)
− V

(
G(X)

(1 + X)2

)}
=

1
4

{
(−1)p−1∆

p∑
l=1

1 + zl

1 − zl
− ∆

p∑
l=1

1 − zl

1 + zl

}

= −∆
2

p∑
l=1

(
1 + z2

l

1 − z2
l

)
. (17)

Thus,

(A)even =
p∑

i=1

−z2
i

1 − z2
i

+
(
− 1

∆

) {
−∆

2

p∑
l=1

(
1 + z2

l

1 − z2
l

)}
=

p

2
.

(ii) When p is odd

When p is odd, observing that

X2

(1 − X2)2
=

1
4

{
1

(1 − X)2
+

1
(1 + X)2

}
− 1

2
1

1 − X2

15



and using Eq.(13),(14) and (15),

V

(
G(X)hp(X)

X

1 − X2

)
(18)

= −V

(
X2G(X)
(1 − X2)2

)
= −1

4

{
V

(
G(X)

(1 − X)2

)
+ V

(
G(X)

(1 + X)2

)}
+

1
2
V

(
G(X)
1 − X2

)
= −1

4

{
(−1)p−1∆

p∑
l=1

1 + zl

1 − zl
+ ∆

p∑
l=1

1 − zl

1 + zl

}
+

1
2

{
(−1)p−1 + 1

2
∆

}

=
1
2
∆ − ∆

2

p∑
l=1

(
1 + z2

l

1 − z2
l

)
. (19)

Thus,

(A)odd =
p∑

i=1

−z2
i

1 − z2
i

+
(
− 1

∆

){
1
2
∆ − ∆

2

p∑
l=1

(
1 + z2

l

1 − z2
l

)}

=
p − 1

2
.

Q.E.D.

D Proof of Lemma 3.2

Finally, we show the following lemma in Section 3.

Lemma 3.2.

(B) :=
p∑

i=1

p∑
j=1

[(
∂i∆
∆

)
gij

(
zj

1 − z2
j

)
+

∂

∂zi

{
gij

(
zj

1 − z2
j

)}]

=

{
1
2p even p
1
2(p + 1) odd p

.

Proof.
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Using Eq.(16),

(B)

=
p∑

i=1

(
∂i∆
∆

) p∑
j=1

gij

(
zj

1 − zj
2

)
+

p∑
i=1

∂

∂zi


p∑

j=1

gij

(
zj

1 − zj
2

)
=

p∑
i=1

(
∂i∆
∆

)
(−1)iG(zi)hp(zi)

∆i

∆
+

p∑
i=1

∂

∂zi

{
(−1)iG(zi)hp(zi)

∆i

∆

}

=
p∑

i=1

(−1)iG(zi)hp(zi)
(

∆i

∆2

∂∆
∂zi

)
+

p∑
i=1

(−1)i

[
∂

∂zi
{G(zi)hp(zi)}

]
∆i

∆

+
p∑

i=1

(−1)i {G(zi)hp(zi)}
∂

∂zi

(
∆i

∆

)

=
p∑

i=1

(−1)i

[
∂

∂zi
{G(zi)hp(zi)}

]
∆i

∆
.

In the last equality, we use

∂

∂zi

(
∆i

∆

)
= −∆i

∆2

∂∆
∂zi

because ∆i does not include zi. It is useful to rewrite the derivative of G(zi)
with respect to zi.

∂

∂zi
G(zi) =

(
p∑

l=1

−zl

1 − zlzi

)
G(zi) +

(
−zi

1 − z2
i

)
G(zi).

Again, we calculate (B) for even p and odd p separately.

(i) When p is even

When p is even, the derivative of hp is given by

∂

∂zi
hp(zi) =

2zi

(1 − z2
i )2

.
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Thus, (B) is rewritten as

(B)even∆ =
p∑

i=1

{
−∂hp(zi)

∂zi
G(zi) + (−hp(zi))

∂G(zi)
∂zi

}
(−1)i+1∆i

=
p∑

i=1

[
−2zi

(1 − z2
i )2

+
−1

1 − z2
i

{(
p∑

l=1

−zl

1 − zlzi

)
+

(
−zi

1 − z2
i

)}]
× G(zi)(−1)i+1∆i

=
p∑

i=1

{
− zi

(1 − z2
i )2

+
p∑

l=1

zl

(1 − z2
i )(1 − zlzi)

}
G(zi)(−1)i+1∆i

= −V

(
XG(X)

(1 − X2)2

)
+

p∑
l=1

{
zl V

(
G(X)

(1 − X2)(1 − zlX)

)}
.

Here, using Eq.(11), (12), the summand in the second term is calculated
as

V

(
G(X)

(1 − X2)(1 − zlX)

)
=

1
2

{
V

(
G(X)

(1 − X)(1 − zlX)

)
+ V

(
G(X)

(1 + X)(1 − zlX)

)}
=

1
2

{
− ∆

1 − zl
+

∆
1 + zl

}
= ∆

(
−zi

1 − z2
i

)
.

Thus, using Eq.(17), we obtain the final result,

(B)even∆ = −V

(
XG(X)

(1 − X2)2

)
+

p∑
l=1

zl V

(
G(X)

(1 − X2)(1 − zlX)

)

=
∆
2

p∑
l=1

(
1 + z2

l

1 − z2
l

)
+

p∑
l=1

zl∆
(

−zl

1 − z2
l

)
=

p

2
∆.

(ii) When p is odd

When p is odd, the derivative of hp is given by

∂

∂zi
hp(zi) =

−1
1 − z2

i

+
−2z2

i

(1 − z2
i )2

.
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Thus, (B) is rewritten as

(B)odd∆

=
p∑

i=1

{
−∂hp(zi)

∂zi
G(zi) + (−hp(zi))

∂G(zi)
∂zi

}
(−1)i+1∆i

=
p∑

i=1

[{
1

1 − z2
i

+
2z2

i

(1 − z2
i )2

}

+
zi

1 − z2
i

{(
p∑

l=1

−zl

1 − zlzi

)
+

(
−zi

1 − z2
i

)}]
G(zi)(−1)i+1∆i

=
p∑

i=1

{
1

(1 − z2
i )2

+
p∑

l=1

−zlzi

(1 − z2
i )(1 − zlzi)

}
G(zi)(−1)i+1∆i

= V

(
G(X)

(1 − X2)2

)
+

p∑
l=1

{
−zl V

(
XG(X)

(1 − X2)(1 − zlX)

)}
.

The summand in the second term is rewritten as

V

(
XG(X)

(1 − X2)(1 − zlX)

)
= −hp(zl)∆

=
zl

1 − z2
l

∆.

In order to evaluate the first term, we use Eq.(19) and Eq.(13). Observing
that

1
(1 − X2)2

=
1

1 − X2
+

X2

(1 − X2)2
,

we obtain

V

(
G(X)

(1 − X2)2

)
= V

(
G(X)
1 − X2

)
+ V

(
X2G(X)
(1 − X2)2

)
= ∆ +

{
−1

2
∆ +

∆
2

p∑
l=1

1 + z2
l

1 − z2
l

}

=
1
2
∆ +

∆
2

p∑
l=1

1 + z2
l

1 − z2
l

.

Collecting them yields the final result,

(B)odd∆ =

(
1
2
∆ +

∆
2

p∑
l=1

1 + z2
l

1 − z2
l

)
+

p∑
l=1

{
−zl

(
zl

1 − z2
l

∆
)}

=
p + 1

2
∆.

Q.E.D.
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bure riemannienne négative I. Journal of the Faculty of Science, Uni-
versity of Tokyo, 13 (1966), 85–105.

[4] P. Brockwell and R. Davis: Time Series: Theory and Methods.
Springer-Verlag, New York, 1991.

[5] C. Gunning and H. Rossi: Analytic Functions of Several Complex Vari-
ables. Prentice-Hall, Englewood Cliffs, NJ, 1965.

[6] F. Komaki: Estimating method for parametric spectral densities. J.
Time Ser. Anal., 20 (1999), 31–50.

[7] F. Komaki: Shrinkage priors for Bayesian prediction. Ann. Statist., 34
(2006), 808–819.

[8] F. Tanaka and F. Komaki: The sectional curvature of AR model man-
ifolds. Tensor, 64 (2003), 131–143.

[9] F. Tanaka and F. Komaki: A superharmonic prior for the autoregressive
process of the second order. J. Time Ser. Anal, 29 (2008), 444–452 .

[10] F. Tanaka and F. Komaki: Asymptotic expansion of the risk difference
of the Bayesian spectral density in the ARMA model. METR, 2005-31
(2005).

20


