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Abstract

Efficient algorithms are necessary for solving problems effectively. However, efficient algorithms
are hard to develop, implement, and maintain. Therefore, it has been very difficult for those with
little algorithmic knowledge to solve their problems based on efficient algorithms. In this paper, we
introduce a way to develop efficient algorithms for finding optimal sequences, especially sequences of
the maximum weighted sum. we formalize derivation of efficient algorithms by shortcut fusion, which
is a program transformation known to be suitable for mechanization, and propose a set of laws that is
helpful to derive well-structured consumers that are necessary for utilizing our shortcut fusion laws.
Moreover, we introduce a library for obtaining optimal lists. The library consists of several functions
useful for describing lists satisfying our requirements; moreover, the library consists of program
transformation rules so that programs written by our library will be improved automatically into
ones based on efficient algorithms.

1 Introduction

Every day, we would like to find better ways, such as ways to reduce costs, increase benefits, and so on.
For example, consider the following problem1, which might be a typical situation that we would face of.

We are working on processing costumers’ data by our high-performance system. However,
because of a bug of the system, consecutive run of the system will decrease its performance,
and thus, we should periodically reboot the system, which takes a day. Now, given an amount
of data for each of next n days, where we can process the data only on the day, we would like
to find out the best scheduling for running the system.

Can we find the best scheduling? It is theoretically not difficult at all. Since there is only finite number of
schedules, we can enumerate all of them and find the best one. However, such a trivial way is completely
impractical, because the number of schedules is exponential to the number of days. Therefore, we need
to develop an efficient algorithm. Here note that “timely” rebooting will be necessary for the best profit.
For example, rebooting may be effective if a lot of data is available on the next day. Thereof, naive
greedy scheduling would not be the best.

In fact, it would not be very difficult to find the best scheduling for those having algorithmic knowl-
edge. Such problems are called combinatorial optimization problems, which are problems to find the best
(optimal) solution among those satisfying requirements. Combinatorial optimization problems have been
studied very deeply, and many efficient algorithms have been proposed for several classes of problems.

Despite existing rich studies about efficient algorithms, it is not easy to solve such problems by im-
plementing efficient programs. First, implementer may not have enough algorithmic knowledge, because
existing algorithmic results are too vast for nonspecialists to follow. Next, efficient algorithms will require
tricky implementation that is error-prone. Moreover, efficient algorithms are hard to modify or maintain.
Even an additional requirement or small change of objective value will ruin efficiency and/or correctness
of algorithms. As a consequence, most people have solved their problems in an ad-hoc manner and much
of algorithmic results have been left unutilized.

Our goal is to construct an environment in which we can utilize algorithmic results in ease. In this
paper, we focus on problems to find the best sequences. Especially, we mainly consider maximum weighted

1This problem is taken from a textbook by Kleinberg and Tardos [KT05].
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sum problems [SHTO00, Bir01], in which we would like to find sequences of the maximum weighed sum
among those satisfying requirements. First, we will formalize derivation of efficient algorithms for such
problems by program transformation rules. Then, we will introduce a library for solving such problems in
ease. Based on the program transformation rules proposed, naive programs written by using the library
will be improved into ones based of efficient algorithms.

Now let us overview our study.
In Section 3, we first formalize derivation of efficient algorithms by using shortcut fusion [GLJ93,

Gil96] (also called shortcut deforestation), which is a program transformation rule for removing interme-
diate data structures. In shortcut fusion laws, we consider two kinds of functions, namely producers that
generate intermediate results and consumers that consume intermediate results generated by producers.
Shortcut fusion laws enable us to fuse compositions of well-structured consumer and well-structured pro-
ducer and yield a program without intermediate results. We regard “a set of candidates” as intermediate
results in combinatorial optimization problems and “an efficient algorithm” as a program that yields the
optimal result without generating the intermediate results. Then, we formalize derivation of efficient
algorithms as shortcut fusion laws. It is worth noting that our formalization is suitable for automatic
implementation as well as shortcut fusion.

Since the key to shortcut fusion is a pair of functions, namely a well-structured consumer and a
well-structured producer, a way to develop them is necessary. In our case, we can utilize existing
methods [LS95, Chi99, YHT05] for developing well-structured producers; however, our well-structured
consumers should satisfy an additional property, called monotonicity, and thus, we should develop a
method for them. In Section 4, we prepare program transformation rules to derive well-structured
consumers. We identify idioms for specifying the best solution and provide laws to deal with them.

As a result of developed laws, we introduce a library for enumerating the best sequences in Section 5.
Our library consists of useful functions for enumerating the best sequences. In addition, our library
consists of a set of program transformation rules that derive efficient algorithms from compositions of
the library functions. The program transformation rules are implemented by RULES pragma [PTH01],
which is an extensional functionality of Glasgow Haskell Compiler. One of the strengths of our library
is that our library does not require algorithmic insight for users at all. It is sufficient to describe the
problems in a naive generate-and-find manner for obtaining efficient programs. By virtue of declarative
descriptions of problems, programs written by using our library are easy to modify or maintain. Moreover,
our library naturally cooperates with usual Haskell programs. We can write a core part of a large system
by using our library; besides, we can use Haskell functions as parameters of the library functions. We
also report our experiments for confirming effectiveness of our library in Section 6. We solved several
problems by our library, and compared some of them with handwritten programs.

Finally we give a conclusion of the paper in Section 7 with discussing relationship to existing works
and possible further extensions.

2 Preliminary

2.1 Basic Notions

We basically borrow notations of functional programming language Haskell [Pey03]. We may omit
parentheses for function applications; thus, f x is equivalent to f(x). Note that function applications
precede those for operators, and thus, a+f x is equivalent to a+(f x). Operators might be sectioned, that
is for example, we may write (+) 1 4 instead of 1+4. An operator ◦ is the function composition operator,
and its definition is (f ◦ g) x

def= f(g x). We will make use of pattern matches and lambda notations.
The underscore − denotes “don’t care” pattern, which matches any value without any bindings. We will
only consider terminating functions, and no “undefined” value is taken into account.

A binary relation ¹ is said to be preorder (also called quasi-order) if it satisfies reflectivity ∀a. a ¹ a
and transitivity ∀a b c. (a ¹ b ∧ b ¹ c) ⇒ a ¹ c. A preorder ∼ is said to be equivalence relation if it
satisfies symmetry ∀a b. a ∼ b ⇒ b ∼ a. An intersection of two orders ¹ and ¿, denoted by ¹ ∩¿, is
defined by a (¹ ∩¿) b

def⇐⇒ a ¹ b ∧ a ¿ b. A lexicographic composition of two orders ¹ and ¿, denoted
by ¹ ;¿, is defined by a (¹ ;¿) b

def⇐⇒ a ¿ b ∧ (¬(b ¿ a) ∨ a ¹ b). Intuitively, ¹ ;¿ compares two
elements by ¿ first, and by ¹ afterwards if they are equivalent on ¿. Given a total preorder ¹, ↑¹
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mapSet f x
def= {f a | a ∈ x}

mapList f x
def= [f a | a ∈ x]

filterSet p x
def= {a | a ∈ x ∧ p a}

allSet p x
def= ∀a ∈ x. p a

sum [a0, a1, . . . , an−1]
def= a0 + a1 + · · · + an−1

size {a0, a1, . . . , an−1} def= n

length [a0, a1, . . . , an−1]
def= n

[a0, a1, . . . , an−1] !! k
def= ak

tails [a0, a1, . . . , an−1]
def= {[ ], [an−1], . . . , [a0, a1, . . . , an−1]}

foldr f e [a0, a1, . . . , an−1]
def= f a0 (f a1 (· · · (f an−1 e) · · · ))

mapAccumR f e [ ] = (e, [ ])
mapAccumR f e (a : x) = let (s, y) = mapAccumR f e x

(s′, b) = f s a
in (s′, b : y)

Figure 1: definitions of basic lists/sets-manipulating functions

denotes an operator taking maximum of two operands, i.e., a ↑¹ b
def= if a ¹ b then b else a. We will

omit the subscript if it is apparent from its context. Given an order ¹ and a function f , ¹f denotes

another order defied as a ¹f b
def⇐⇒ f(a) ¹ f(b). Especially, =f denotes the equivalence relation raised

by the function f .
When a function f takes a value of type A and results in a value of type B, we will write f :: A → B.

A function might be polymorphic. For example, the identity function id , defined by id x
def= x, has the

type id :: ∀a. a → a. Besides, type classes [HHJW96] provide a way to specify types having a specific
set of operations. For example, equality checking function (=) should takes two elements of the same
type in which equality is available; such requirement is expressed by (=) ::∀a.Eq a ⇒ a → a, where Eq a
denotes that a should be a subtype of a class Eq . In this paper, we will use classes Ord (comparison by
a total preorder is available) and Num (numbers with addition/multiplication/sign), in addition to Eq .

A parentheses split by a comma denotes a pair. The first and second element of a pair can be extracted
by functions fst and snd , respectively, i.e., fst (a,−) def= a and snd (−, b) def= b. We will consider uniform
lists constructed from two constructors: the empty list [ ] :: ∀a. [a] and adding an element to the head of
a list (:) :: ∀a. a → [a] → [a]. We also consider uniform sets as a datatype constructed from the singleton
operation {·} :: ∀a.Eq a ⇒ a → {a} and the union operation (∪) :: ∀a.Eq a ⇒ {a} → {a} → {a}. We
will make use of several standard lists/sets-manipulating functions. We summarize definition of these
functions in Figure 1.

2.2 Shortcut Fusion

Consider that a function, called producer, generates a structure, and another function, called consumer,
takes the generated structure and yields the final result. Such a programming pattern is easy to write,
understand, and maintain, but it is not very efficient because producing and discarding intermediate
structures would be costly. Shortcut fusion (also called shortcut deforestation), which was first proposed
by Gill et al. [GLJ93], is a transformation to eliminating intermediate data structures.

Theorem 1 (Shortcut fusion [GLJ93]). For a function g :: ∀β. (a → β → β) → β → β, an equation

foldr f e (build g) = g f e

holds, where the function build is defined as build g = g (:) [ ].
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The key to shortcut fusion is a composition of a well-structured producer and a well-structured
consumer. The consumer should be specified by foldr ; moreover, producer should be specified by so called
build form, namely build with a function having a specific polymorphic type. Then, the intermediate
structure generated from the producer is removed for free. Recall that foldr is a function to replace list
constructors, namely (:) and [], by its arguments. In a build form, all list constructors appearing in the
intermediate structure is given from build , as guaranteed from the type requirement. Therefore, removal
of intermediate structure is actually accomplished by supplying the function g with the arguments of foldr
instead of the constructors from build . The strength of shortcut fusion is its suitability for mechanization.
Since fusion is accomplished by just canceling out foldr and build , once programs are specified by well-
structured producers and consumers, it is easy to implement shortcut fusion.

For example, consider eliminating intermediate structure in a program sum (mapList (×2) x). First,
notice that sum is equivalent to foldr (+) 0; thus, sum is a well-structured consumer. Next, let us derive
a build-form for mapList (×2) x. An apparent way is to abstract out all constructors appearing in the
result of the producer. From the following program of mapList (×2) x,

mapList (×2) [ ] def= []
mapList (×2) (a : x) def= (a× 2) : mapList (×2) x

we replace all occurrences of constructors (:) and [] in the right hand side expression by parameters c
and n.

map′List (×2) [ ] c n
def= n

map′List (×2) (a : x) c n
def= c (a× 2) (mapList (×2) x c n)

Then, as required, mapList (×2) x = build (map′List (×2) x) holds and map′List (×2) x has the type
∀β. (Int → β → β) → β → β. Therefore, from Theorem 1,

sum (mapList (×2) x) = map′List (×2) x (+) 0

holds, and after inlining, we obtain the following equation.

sum (mapList (×2) [ ]) = 0
sum (mapList (×2) (a : x)) = (a× 2) + sum (mapList (×2) x)

We can see that no intermediate lists appear in the resulted program.

3 Deriving Efficient Algorithms by Shortcut Fusion

In this section, we would like to consider problems to find the best list, and formalize derivation of
efficient algorithms by shortcut fusion laws. As an example, we will consider “maximum segment sum
problem” [Ben86, Bir89]: Given a list, compute the maximum sum of segments (consecutive sublist) of
the list. The goal of this section is to introduce a shortcut to efficient algorithms for such problems.

Our idea is to recognize derivation of efficient algorithms as elimination of intermediate structures.
Consider a naive algorithm in which we enumerate all candidates and find the optimal one. From such
naive one, we would like to derive an efficient algorithm, such as an algorithm in which we retain only the
optimal substructure. What is the difference? We can see that the difference is presence of candidates in
the procedure. This view implicates that we can derive efficient algorithms from naive ones by deforesting
intermediate structures, namely enumerated candidates. Since we will consider problems for finding the
optimal list, here candidates form a set of lists, and then, what we would like to formalize is a shortcut
fusion law to deforest a set of lists.

In the next two subsection, we will introduce our idea through considering the simplest case, that
is, computing the maximum summation of a set of lists. After that, we will introduce a more generic
program transformation rule that enables us to compute the best list in a shortcut manner.

For formalizing computation for a set of lists, we consider “structural recursions” on sets of lists.
A structural recursion is computation that collapses an structure by replacing each constructor by a
computation, such as foldr for lists.
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Definition 2 (structural recursion on sets of lists). Given an operator (⊕) :: A → A → A with its unit
ι⊕, a function s ::B → A, an operator (⊗) ::C → B → B, and a value n ::C, ([(⊕), s, (⊗), n]) ::{[C]} → B
is the function satisfying the following equations.

([(⊕), s, (⊗), n]) (x ∪ y) = ([(⊕), s, (⊗), n]) x⊕ ([(⊕), s, (⊗), n]) y
([(⊕), s, (⊗), n]) {l} = s (foldr (⊗) n l)
([(⊕), s, (⊗), n]) ∅ = ι⊕

Note that ([(⊕), s, (⊗), n]) is defined only if ⊕ is associative, commutative, and idempotent. For
instance, the function maxSum that extracts the maximum sum is a structural recursion.

maxSum = ([↑, id ,+, 0])

3.1 Shortcut Fusion Law for Maximum-Summations

For shortcut fusion, we need to derive “build form” of a function. However, it is not trivial even to
provide an appropriate definition of build forms for our purpose. For instance, consider inits function.

inits [ ] = {[ ]}
inits (a : x) = {[ ]} ∪mapSet (a:) (inits x)

As usual, we might attempt to abstract out all constructors, namely (∪), {·}, (:), and []; however, we
would fail to derive a build form because of mapSet : mapSet does an iteration over a set made by inits,
and abstracting out the result of inits will obstruct the iteration. To resolve this problem, we will make
use of freezing technique [KGK01, Voi02]. We would like to regard some functions as a constructor and
abstract out. In this case, since mapSet obstructs to derive a build form, let us freeze it — then, and
again, our attempt leads to a failure. Notice that mapSet can does arbitrary operation on elements in
the set by its parameter function; thus, the parameter function of mapSet will obstruct to abstract out
the constructors for lists.

Based on the observation above, our idea is to freeze a specific kind of mapSet whose parameter
function would not iterate over lists. Consider the following function extend .

extend a x
def= mapSet (a:) x

We freeze extend because of the following two reasons. First of all, the function extend is a primal
operation to generate a set of lists; besides, it never does any iteration over lists. To understand what
extend is, recall the isomorphism between a set-generating function and a nondeterministic computation.
From the viewpoint of nondeterministic computation, extend is nothing but construction of lists; thus,
it is natural to recognize extend as a constructor.

Now let a function gen be the function that supply “constructors” to a function of “build form”.

gen :: ∀a.Eq a ⇒ (∀β γ. (γ → γ → γ) → (β → γ) → (a → γ → γ) → (a → β → β) → β → γ) → {[a]}
gen g

def= g (∪) {·} extend (:) [ ]

Then, the following shortcut fusion law holds, which is our key theorem.

Theorem 3 (shortcut fucion law for generator functions). For a function g of the appropriate type,

([(⊕), s, (⊗), n]) (gen g) = g (⊕) s η (⊗) n

holds, where η is a function satisfying the following equations.

η a ι⊕ = ι⊕
η a (v ⊕ s w) = η a v ⊕ s (a⊗ w)
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Proof. By Wadler’s free theorem [Wad89], we reason as follows.

True
⇔ { parametricity }

(g, g) ∈ [[∀β γ. (γ → γ → γ) → (β → γ) → (A → γ → γ) → (A → β → β) → β → γ]]
⇔ { definition of ∀ }

∀(f :: γ1 ↔ γ2), (h :: β1 ↔ β2).
(gβ1,γ1 , gβ2,γ2) ∈ [[(f → f → f) → (h → f) → (A → f → f) → (A → h → h) → h → f ]]

⇔ { definition of → }
∀(f :: γ1 ↔ γ2), (h :: β1 ↔ β2).
∀((⊕1), (⊕2)) ∈ [[f → f → f ]], (s1, s2) ∈ [[h → f ]], (η1, η2) ∈ [[A → f → f ]],

((⊗1), (⊗2)) ∈ [[A → h → h]], (n1, n2) ∈ [[h]].
(gβ1,γ1 (⊕1) s1 η1 (⊗1) n1, gβ2,γ2 (⊕2) s2 η2 (⊗2) n2) ∈ [[f ]]

⇒ { definition of →, and assume f and h to be functions }
∀(f :: γ1 → γ2), (h :: β1 → β2).
((∀a, b. f (a⊕1 b) = (f a⊕2 f b)) ∧ (∀c. f (s1 c) = s2 (h c)) ∧ (∀d, x. f (η1 d x) = η2 d (f x)) ∧

(∀e, y. h (e⊗1 y) = e⊗2 h y) ∧ h n1 = n2)
⇒ f (gγ1,β1 (⊕1) s1 η1 (⊗1) n1) = gγ2,β2 (⊕2) s2 η2 (⊗2) n2

⇒ { let (⊕1) = (∪), s1 = {·}, η1 = extend , (⊗1) = (:), and n1 = [] }
∀(f :: γ1 → γ2), (h :: β1 → β2).
((∀a, b. f (a ∪ b) = (f a⊕2 f b)) ∧ (∀c. f {c} = s2 (h c)) ∧ (∀d, x. f (extend d x) = η2 d (f x)) ∧

(∀e, y. h (e : y) = e⊗2 h y) ∧ h [ ] = n2)
⇒ f (gγ1,β1 (∪) extend {·} (:) [ ]) = gγ2,β2 (⊕2) s2 η2 (⊗2) n2

⇒ { let f = ([(⊕2), s2, (⊗2), n2]) and h = foldr (⊗2) n2 }
∀d, x. ([(⊕2), s2, (⊗2), n2]) (extend d x) = η2 d (([(⊕2), s2, (⊗2), n2]) x)
⇒ ([(⊕2), s2, (⊗2), n2]) (gγ1,β1 (∪) extend {·} (:) [ ]) = gγ2,β2 (⊕2) s2 η2 (⊗2) n2

Therefore, it is sufficient to prove that the following equation holds for all d and x.

([(⊕), s, (⊗), n]) (extend d x) = η d (([(⊕), s, (⊗), n]) x)

We prove it by induction over the size of the set x.
If x is empty, we reason as follows.

([(⊕), s, (⊗), n]) (extend d ∅) = { definition of extend }
([(⊕), s, (⊗), n]) ∅

= { definition of ([(⊕), s, (⊗), n]) }
ι⊕

= { requirement of η }
η d ι⊕

= { definition of ([(⊕), s, (⊗), n]) }
η d (([(⊕), s, (⊗), n])) ∅)

For the step case, we reason as follows.

([(⊕), s, (⊗), n]) (extend d (x ∪ {a})) = { definition of extend }
([(⊕), s, (⊗), n]) (extend d x ∪ {d : a})

= { definition of ([(⊕), s, (⊗), n]) }
([(⊕), s, (⊗), n]) (extend d x)⊕ s (d⊗ foldr (⊗) n a)

= { hypothesis }
η d (([(⊕), s, (⊗), n]) x)⊕ s (d⊗ foldr (⊗) n a)

= { premise }
η d (([(⊕), s, (⊗), n]) x⊕ s (foldr (⊗) n a))

= { definition of ([(⊕), s, (⊗), n]) }
η d (([(⊕), s, (⊗), n]) (x ∪ {a}))

Then, the claim certainly holds, and we accomplish this proof.

From Theorem 3, we can immediately obtain the following corollary.
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Corollary 4 (Shortcut fusion law for maximum sum problems). For a function g of the appropriate
type,

maxSum (gen g) = g (↑) id (+) (+) 0

holds.

Proof. Recall maxSum = ([↑, id , +, 0]) with ι↑ = −∞. Thus, from Theorem 3, it is sufficient to confirm
a + (−∞) = (−∞) and a + (r ↑ id s) = (a + r) ↑ (a + id s), which are trivial.

Corollary 4 enables us to derive efficient algorithms in a shortcut manner. Notice that the fusion of
maxSum and gen g will remove all set-concerning operations such as ∪ and mapSet . More specifically,
maximum operations (namely ↑) take the place of joining operations (namely ∪), and thus, only the
maximum value, instead of all candidates, is considered throughout the computation. In other words,
Corollary 4 derives efficient programs that compute the maximum value in a greedy manner.

It is worth noticing that Corollary 4 is founded on the monotonicity of + operation, that is, x ≥ y
implies a + x ≥ a + y. It is well-known that monotonicity is the key to efficient algorithms.

3.2 Example: Maximum Segment Sum Problem

To see how our shortcut fusion law works, let us solve the maximum segment sum [Ben86, Bir89] problem,
which is a problem to compute the maximum sum of consecutive sublists. A natural specification of the
problem would be the following.

mss x = maxSum (segs x)
where segs [ ] = {[ ]}

segs (a : x) = inits (a : x) ∪ segs x
inits [ ] = {[ ]}
inits (a : x) = {[ ]} ∪ extend a (inits x)

What we should do is to derive the build form of segs. It is easy, and just replacing occurrences of
constructors by parameters suffices.

segs x = gen (segs ′ x u s m c n)
where segs ′ [ ] u s m c n = s n

segs ′ (a : x) u s m c n = u (inits ′ (a : x) u s m c n) (segs ′ x u s m c n)
inits ′ [ ] u s m c n = s n
inits ′ (a : x) u s m c n = u (s n) (m a (inits ′ x u s m c n))

Then, segs ′ x exactly has the required type.
Now that the build form is obtained, Corollary 4 immediately derives the following program for mss

after inlining parameters.

mss x = segs ′′ x
where segs ′′ [ ] = 0

segs ′′ (a : x) = inits ′′ (a : x) ↑ segs ′′ x
inits ′′ [ ] = 0
inits ′′ (a : x) = 0 ↑ (a + inits ′′ x)

Recall that the original definition is an O(n3)-time algorithm, where n is the length of the input list.
The derived algorithm is O(n2), and certainly efficiency is improved.

In fact, the derived program is not efficient enough, and there is a linear-time algorithm. Notice that
inits ′′ with the same parameter is called many times, and this is the source of inefficiency. Here is the
place that memoization technique plays its role. We apply tupling transformation [HITT97, CKJ06],
which is a way to achieve memoization, and obtain the following linear-time program.

mss x = let (m, i) = aux x in m
where aux [ ] = (0, 0)

aux (a : x) = let (m, i) = aux x
i′ = 0 ↑ (a + i)

in (i′ ↑ m, i′)
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The auxiliary function aux is defined as aux x = (segs ′′ x, inits ′′ x), and computes the result of segs ′′

and inits ′′ in the same time. Then, since memoization is completed, the derived program runs in time
proportional to the length of the list, and actually the program is equivalent to the efficient program
firstly introduced by Bentley [Ben86].

Why Corollary 4 cannot derive the efficient one? The reason is the original definition of segs is
not sufficiently efficient: segs will call inits of the same parameter many times, and memoization is
necessary for efficiency! Corollary 4 cannot do everything. It will yields relatively inefficient programs
from relatively inefficient ones. However, this issue would not be very serious, because of the following
two reasons.

• A set of candidates commonly follows some typical patterns, such as subsets of a set. Thus, by
providing efficient implementations of the typical patterns, together with their build forms, we can
solve many optimization problems without worrying such issues.

• Practically, calling the same function with the same parameter is the source of inefficiency. There-
fore, combining our technique with existing memoization techniques would resolve the inefficiency.

3.3 Shortcut Fusion Law for Enumerating Maximals

Corollary 4 enables us to derive efficient algorithms for free, once the build form of the candidate
generator is specified. However, Corollary 4 is not satisfactory because the resulted programs yield just
a summation rather than a list. What we want is not the maximum sum but the list of the maximum
sum.

Here is an issue — if there are plural lists having the maximum sum, which should be resulted in?
This issue seems insignificant at first sight but actually important. From practical viewpoint, we can
hardly formalize our criterion of optimality by a single maximization operation. We may want to obtain
the best in a criterion among those being the best in another criterion; besides, we may want to find
out the best one by hand from those being wroth considering. For such purpose, enumerating all of
the best solutions are useful. From theoretical viewpoint, it is a common idiom that we first enumerate
candidates that are worth considering and find the best one afterward. In summary, it is important to
consider enumeration of all candidates that is worth considering.

Now let us introduce a notion of maximals. A maximal of a set is an element that is not strictly
smaller than others. In other words, a maximal corresponds to a candidate that is worth considering,
because it is not worse than others. Formally, the maximal-extracting function on a preorder ¹, denoted
by maximals¹ is defined as follows.

maximals¹ X
def= {a | a ∈ X ∧ ∀b ∈ X. b ¹ a ⇒ a ¹ b}

For convenience, we also define the binary-operator version ↑¹, as X ↑¹ Y
def= maximals¹ (X ∪ Y ). By

definition, the operator ↑¹ is associative, commutative, and idempotent.
Well, let us introduce a shortcut fusion law that is similar to Corollary 4 but dealing with computations

to obtaining a set of list, rather than those to obtaining a list. The following corollary proves that
enumerating maximals can be done in a shortcut manner.

Corollary 5. For a function g of the appropriate type,

maximals¹ (gen g) = g (↑¹) {·} (λa. maximals¹ ◦ extend a) (:) [ ]

holds, provided that (x ¹ y ∧ ¬(y ¹ x)) ⇒ ((a : x) ¹ (a : y) ∧ ¬((a : y) ¹ (a : x))) holds.

Proof. Notice maximals¹ = ([↑¹, {·}, (:) [ ]]) with ι↑¹ = ∅. Thus, it is sufficient to confirm the premise of
Theorem 3, and the only nontrivial one is the following equation.

maximals¹ (extend a (X ↑¹ {y})) = maximals¹ (extend a X) ↑¹ {a : y}
Now we reason as follows.

maximals¹ (extend a X) ↑¹ {a : y} = { definition of ↑¹ }
maximals¹ (maximals¹ (extend a X) ∪ {a : y})

= { Lemma 3.26 of [Mor09] }
maximals¹ (extend a X ∪ {a : y})
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Then, because of Lemma 3.28 of [Mor09] and the fact that (extend a X ∪{a : y}) ⊇ extend a (X ↑¹ {y})
holds, it is sufficient to prove maximals¹(extend a X ∪ {a : y}) ⊆ extend a (X ↑¹ {y}), which is proved
as follows.

maximals¹ (extend a X ∪ {a : y})
= { unfolding definitions }

{a : w | w ∈ (X ∪ {y}) ∧ ∀v ∈ (X ∪ {y}). (a : v) ¹ (a : w) ⇒ (a : w) ¹ (a : v)}
⊆ { contraposition of the premise: (¬((a : v) ¹ (a : w)) ∨ (a : w) ¹ (a : v)) ⇒ (¬(v ¹ w) ∨ w ¹ v) }

{a : w | w ∈ (X ∪ {y}) ∧ ∀v ∈ (X ∪ {y}).¬(v ¹ w) ∨ w ¹ v}
= { folding definitions }

extend a (X ↑¹ {y})
Therefore, the issue left is how to derive an order satisfying the premise. Here we would like to name

the premise for convenience.

Definition 6 (monotonicity). Extending lists is said to be monotonic on a order ¹ if x ¹ y ⇒ (a :
x) ¹ (a : y) holds for all x, y, and a. Extending lists is said to be strictly monotonic on a order ¹ if
(x ¹ y ∧ ¬(y ¹ x)) ⇒ ((a : x) ¹ (a : y) ∧ ¬((a : y) ¹ (a : x))) holds. Extending lists is said to be
completely monotonic on a order ¹ if it is both monotonic and strictly monotonic.

4 Deriving Monotonic Orders

We have formalized derivation of efficient algorithms by shortcut fusion laws. For utilizing the laws, it is
necessary to prepare two kinds of functions. One is a well-structured producer, that is, a function of “build
form”. For derivation of build forms, existing results [LS95, Chi99, YHT05] will be helpful; in addition,
we can prepare build forms of typical list-enumeration patterns. The other is a well-structured consumer,
that is maximization operation specified by an order on which extending lists is monotonic. Derivation of
well-structured consumers is a problem, because it is not easy to confirm or obtain monotonicity condition
for involved problems, such as problem having additional requirements. For example, consider finding
the maximum sum segment whose length is in a given lower/upper bounds. For utilizing Corollary 5,
we need to prepare an order that corresponds to our object and monotonicity condition holds on it.
However, it is not trivial to deal with the requirements about length.

In this section, we consider such involved cases and introduce program transformation rules that
enable us to derive monotonicity condition systematically. We refer to many supplemental lemmas from
the author’s thesis [Mor09], which provide a formal background of this paper.

4.1 Program Transformations for Obtaining Monotonicity Conditions

Our strategy is to construct monotonicity conditions constructively: Starting from a trivial order on
which extending lists is monotonic, we construct involved orders without breaking monotonicity.

First, let us consider two trivial orders that satisfy monotonicity condition: summation and the
lexicographic ordering.

Lemma 7. Extending lists is completely monotonic on the order ≤sum .

Proof. It is sufficient to prove sum x ≤ sum y ⇔ sum (a : x) ≤ sum (a : y), and it is evident from the
definition of sum.

Lemma 8. Extending lists is completely monotonic on the order ≤ that denotes the lexicographic
ordering of sequences.

Proof. It is sufficient to prove x ≤ y ⇔ (a : x) ≤ (a : y), and it is evident from the definition of ≤.

Though trivial, they are useful in practice. Moreover, we can extend them to more involved ones.

Lemma 9. Extending lists is completely monotonic on an order ¹mapList f if so is on ¹.

Proof. Let x′ = mapList f x and y′ = mapList f y. Then, it is sufficient to prove both of x′ ¹ y′ ⇒
(f a : x′) ¹ (f a : y′) and (x′ ¹ y′ ∧ ¬(y′ ¹ x′)) ⇒ ((f a : x′) ¹ (f a : y′) ∧ ¬((f a : y′) ¹ (f a : x′))),
and they are evident from complete monotonicity of ¹.

9



Lemma 10. Given an order ¹ on which extending lists is completely monotonic, let ¿ be the order
such that ¿ def= ¹snd◦mapAccumR f e and f ′ be a function such that f ′ a s

def= fst (f s a). Then,
maximals¿ = maximals¿ ◦ maximals¿∩=foldr f′ e

holds, and extending lists is completely monotonic on
¿ ∩ =foldr f ′ e.

Proof. The equation, maximals¿ = maximals¿ ◦ maximals¿∩=foldr f′ e
, is evident from Lemma 3.29 of

[Mor09]. Then, we prove complete monotonicity. In the following, φx, φy, αx, and αy respectively
denote fodlr f ′ e x, foldr f ′ e y, snd (mapAccumR f e x), and snd (mapAccumR f e y). First, we prove
monotonicity.

x (¿ ∩ =foldr f ′ e) y ⇔ { definition of ∩ and ¿ }
αx ¹ αy ∧ φx = φy

⇒ { f ′ is a function }
αx ¹ αy ∧ f ′ b φx = f ′ b φy

⇒ { monotonicity of ¹ }
(f ′ b φx : αx) ¹ (f ′ b φy : αy) ∧ f ′ b φx = f ′ b φy

⇔ { foldr f ′ e z = fst (mapAccumR f e z) holds for all z }
(b : x)¹snd◦mapAccumR f e (b : y) ∧ f ′ b φx = f ′ b φy

⇔ { definition of ∩ and ¿ }
(b : x) (¿ ∩ =foldr f ′ e) (b : y)

Next, we prove strict monotonicity.

x (¿ ∩ =foldr f ′ e) y ∧ ¬(y (¿ ∩ =foldr f ′ e) x)
⇔ { definition of ∩ and ¿ }

αx ¹ αy ∧ φx = φy ∧ ¬(αy ¹ αx)
⇒ { f ′ is a function }

αx ¹ αy ∧ f ′ b φx = f ′ b φy ∧ ¬(αy ¹ αx)
⇒ { strict monotonicity of ¹ }

(f ′ b φx : αx) ¹ (f ′ b φy : αy) ∧ f ′ b φx = f ′ b φy ∧ ¬(f ′ b φy : αy ¹ f ′ b φx : αx)
⇔ { foldr f ′ e z = fst (mapAccumR f e z) holds for all z }

(b : x)¹snd◦mapAccumR f e (b : y) ∧ f ′ b φx = f ′ b φy ∧ ¬((b : y)¹snd◦mapAccumR f e (b : x))
⇔ { definition of ∩ and ¿ }

(b : x) (¿ ∩ =foldr f ′ e) (b : y) ∧ ¬((b : y) (¿ ∩ =foldr f ′ e) (b : x))

Lemmas 9 and 10 provide a way to solve “weighed” problems, such as maximum weighed-sum prob-
lems. If the weight is specified by map or mapAccumR, the lemmas immediately provide an order that
leads to shortcut fusion.

There is another way to construct involved orders, that is lexicographic composition of two orders.
Lexicographic composition is useful to solve multi-objective optimization problems, in which we would
like to find the best one among those the best in another criterion. We can solve such problems by the
following lemma.

Lemma 11. The following equation holds.

maximals¿ ◦maximals¹ = maximals¿ ◦maximals¿ ;¹

In addition, extending lists is completely monotonic on the order ¿ ;¹ if so is on both of ¿ and ¹.

Proof. The equation above holds from Lemma 3.38 of [Mor09], where note that both of maximals¹ X ⊇
maximals¿ ;¹ X and maximals¿ (maximals¹ X) ⊆ maximals¿ ;¹ X hold. The complete monotonicity is
proved in Lemma 4.14 of [Mor09].

Well, let us consider problems in which solutions should satisfy some requirements. Though there is
generally little hope to solve problems efficiently when some requirements are imposed, we can derive
efficient algorithms for specific forms of restriction, as the following lemma shows.

Lemma 12. The following equation holds.

maximals¹ ◦ filter (p ◦ foldr f e) = maximals¹ ◦ filter (p ◦ foldr f e) ◦maximals¹∩=foldr f e

Moreover, extending lists is completely monotonic on ¹ ∩ =foldr f e if so is on ¹.
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Proof. The equation can be easily proved from Lemmas 3.29 and 4.28 of [Mor09]. For proving the
complete monotonicity, it is sufficient to confirm that extending lists is completely monotonic on =foldr f e

because of Lemma 4.11 of [Mor09]. Since =foldr f e is an equivalence relation, proving foldr f e x =
foldr f e y ⇒ foldr f e (a : x) = foldr f e (a : y) suffices, which is apparent from the definition of
foldr .

Lemma 12 shows an sufficient condition to propagate maximization operations over filtering opera-
tions; then, we can to discard worse candidates while generating them.

We can obtain more efficient programs when a candidate cannot recover violated requirements by
extending itself. For example, if solutions should shorter than a given limit, then candidates longer than
the limit are useless. Such requirements frequently occur in practice, and we would like to prepare a
special rule for them.

Lemma 13. Given a predicate p = q ◦ foldr f e such that ¬(p x) implies ¬(p (a : x)), consider the
following order l.

xl y
def= (p x ∧ p y ∧ x =foldr f e y) ∨

(¬(p x) ∧ p y) ∨
(¬(p x) ∧ ¬(p y) ∧ size {a | a ∈ tails x ∧ ¬(p a)} ≥ size {b | b ∈ tails y ∧ ¬(p b)})

Then, filterSet p = filterSet p ◦maximalsl holds; besides, extending lists is completely monotonic on l.

Proof. The equation is evident because maximalsl never discards elements satisfying p.
For confirming complete monotonicity condition, we consider the following three cases, where let

|x|p = size {a | a ∈ tails x ∧ ¬(p a)}.
First, assume that p x ∧ p y ∧ x =foldr f e y holds, which implies xl y ∧ y l x. Here note that |x|p =

|y|p = 0 holds because (p (a : z)) implies p z from the premise. Then, (a : x)l (a : y) ∧ (a : y)l (a : x)
holds, because that since p = q ◦ foldr f e and foldr f e x = foldr f e y, either (i) p (a : x) ∧ p (a :
y) ∧ foldr f e (a : x) = foldr f e (a : y) or (ii) ¬(p (a : x)) ∧ ¬(p (a : y)) ∧ |a : x|p = |a : y|p = 1 holds.

Second, assume that ¬(p x)∧p y holds, which implies xly∧¬(ylx). Then, (a : x)l (a : y)∧¬((a :
y)l (a : x)) holds, because both of ¬(p (a : x)) and |a : x|p > |a : y|p hold from ¬(p x) ⇒ ¬(p (a : x)).

Third, assume that ¬(p x) ∧ ¬(p y). Then, x l y ⇔ (a : x) l (a : y) holds, because both of
¬(p (a : x)) ∧ ¬(p (a : y)) and |x|p ≥ |y|p ⇔ |a : x|p ≥ |a : y|p holds from ¬(p x) ⇒ ¬(p (a : x)).

In all, extending lists is completely monotonic on l.

Although the definition of l is a bit complicated, the maximalsl in the lemma above does essentially
the same computation as filter p: it discards all elements that does not satisfy the requirement p,
whenever there are at least one element that satisfies p. Moreover, it can cooperate with our shortcut
fusion laws thanks to the complete monotonicity of l.

4.2 Example: Length-Constrained Maximum Sum Segment Problem

Now let us consider the length-constrained maximum sum segment [Mu08] problem. The problem is
to find the segment of maximum sum among those whose length is in the given range. Unconstrained
maximum sum segment will be very long or a short one containing very large number, though such
results might be undesirable. Therefore, it is natural to consider segments of length in a specific range.
The problem can be formalized as follows, in which l and u respectively stand for the upper and lower
bound.

lcmss l u x = maximals≤sum (filterSet (λx. l ≤ length x ≤ u) (segs x))

Since we have known the build form of segs x, what we need is an order on which extending lists
is completely monotonic. Though extending lists is completely monotonic on ≤sum by Lemmas 7, the
filtering operation blocks to connect maximals≤sum to segs, and we cannot apply the shortcut fusion
law. Here, notice that (λx. l ≤ length x ≤ u) is equivalent to (λv. l ≤ v ≤ u) ◦ length and length =
foldr (λa r. 1 + r) 0 holds. Then, from Lemma 12, the following equation holds.

maximals≤sum ◦ filterSet (λx. l ≤ length x ≤ u) =
maximals≤sum ◦ filterSet (λx. l ≤ length x ≤ u) ◦maximals≤sum∩=length
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Moreover, Lemma 12 proves that extending lists is completely monotonic on ≤sum ∩=length . Therefore,
Corollary 5 derives efficient program.

Let us summarize the calculation.

lcmss l u x
= { definition }

maximals≤sum (filterSet (λx. l ≤ length x ≤ u) (segs x))
= { (λx. l ≤ length x ≤ u) = (λv. l ≤ v ≤ u) ◦ length }

maximals≤sum (filterSet ((λv. l ≤ v ≤ u) ◦ length) (segs x))
= { length = foldr (λa r. 1 + r) 0, and Lemma 12 }

maximals≤sum
(filterSet ((λv. l ≤ v ≤ u) ◦ length) (maximals≤sum∩=length

(segs x)))
= { segs x = gen (segs ′ x), and Corollary 5 }

maximals≤sum
(filterSet ((λv. l ≤ v ≤ u) ◦ length)

(segs ′ x ↑≤sum∩=length
{·} (λa. maximals≤sum∩=length

◦ extend a) (:) [ ]))

In the derived program, only restricted number of candidates are considered: a candidate is to be retained
only if it has the maximum sum among those candidate of the same length. Thus, derived program runs
in O(n2) time for a list of length n if we does memoization.

By using Lemma 13, we can derive a bit more efficient one. Observe that filterSet (λx. l ≤ length x ≤
u) is equivalent to filterSet (λx. l ≤ length x) ◦ filterSet (λx. length x ≤ u), and ¬(length x ≤ u) implies
¬(length (a : x) ≤ u). Therefore, we can use Lemma 13 for the latter filtering operation, and then,
the derived program discards candidates being longer than u. This program runs in O(u · n) time with
memoization.

For efficient implementation, memoization is necessary. For example, a naive implementation of lcmss
above will iteratively compute length and summation of lists for every comparison by maximals≤sum∩=length

.
To avoid such inefficiency, we would like to introduce another shortcut fusion law that is very similar to
Corollary 5 but accomplishes memoization in the same time.

Theorem 14. Assume that extending list is completely monotonic on an order l defined by al b
def⇐⇒

(foldr f e a) ¿ (foldr f e b). Then, for a function g having the appropriate type, the following equation
holds.

maximalsl (gen g) = mapSet fst (g ↑¹ {·} η f ′ ([ ], e))
where (−, a) ¹ (−, b) = a ¿ b

f ′ a (x, r) = (a : x, f a r)
η a = maximals¹ ◦mapSet (f ′ a)

Proof. It is easily confirmed by induction that maximalsl = mapSet fst ◦ ([↑¹, {·}, f ′, ([ ], e)]) holds. More-
over, ([↑¹, {·}, f ′, ([ ], e)]) = ([↑lfst

, {·}, f ′, ([ ], e)]) holds, because foldr f e x = a holds for each element
(x, a) throughout the computation. Then, since extending lists is completely monotonic on l, the proof
follows from Corollary 5.

5 A Library for Enumerating Optimal Lists

Based on the theory we have developed, we implemented a Haskell library for obtaining optimal lists. The
library consists of functions that would be useful for describing criterion of desirable lists; moreover, the
library consists of a set of rewriting rules, called RULES pragma [PTH01], that derive efficient algorithms
automatically.

Here let us give a brief introduction of RULES pragma. RULES pragma is an extensional functionality
of Glasgow Haskell Compiler2. By using RULES pragma, we can provide rewriting rules that will be
applied to programs on their compilation. For example, consider the following rewriting rule, where ;

denotes left-to-right rewriting.

∀f g.mapList f ◦mapList g ; mapList (f ◦ g)

If the rewrite rule is specified and the compiler find a composition of two mapList , e.g., mapList (+1) ◦
mapList (∗3), the composition will be compiled as mapList ((+1) ◦ (∗3)).

2The Glasgow Haskell Compiler: available from http://www.haskell.org/ghc/.

12



5.1 Functions for Enumerating Lists

Now let us introduce the functions in our library.
First of all, our library contains the function gen that is the key to shortcut fusion and stands for

enumeration of candidates.

gen :: ∀a.Eq a ⇒ (∀β γ. (γ → γ → γ) → (β → γ) → (a → γ → γ) → (a → β → β) → β → γ) → {[a]}
gen g

def= g (∪) {·} extend (:) [ ]

The function gen is the same as that we have introduced. Based on the definition of gen above, we imple-
mented build forms of several typical lists-enumeration patterns, such as inits, tails, segs, subsequences,
permutations, and so on. Therefore, we can solve many problems without caring derivation of build
forms.

Next, let us introduce functions for filtering out undesirable candidates. Several maximal-enumerating
functions are prepared in our library.

maxBySum :: ∀a. (Num a,Ord a) ⇒ {[a]} → {[a]}
maxBySum

def= maximals≤sum

maxByMapSum :: ∀a b. (Num b,Ord b) ⇒ (a → b) → {[a]} → {[a]}
maxByMapSum f

def= maximals≤sum◦mapList f

maxByAccumSum :: ∀a b c. (Ord b,Num c,Ord c) ⇒ (b → a → (b, c)) → b → {[a]} → {[a]}
maxByAccumSum f e

def= maximals≤sum◦snd◦mapAccumR f e

maxByLexico :: ∀a.Ord a ⇒ {[a]} → {[a]}
maxByLexico

def= maximals≤

maxByMapLexico :: ∀a b.Ord b ⇒ (a → b) → {[a]} → {[a]}
maxByMapLexico f

def= maximals≤mapList f

maxByAccumLexico :: ∀a b c. (Ord b,Ord c) ⇒ (b → a → (b, c)) → b → {[a]} → {[a]}
maxByAccumLexico f e

def= maximals≤snd◦mapAccumR f e

The function maxBySum enumerates lists of the maximum summation. The functions maxByMapSum
and maxByAccumSum take additional functions to compute the weight of each element, and enumer-
ate lists of the maximum weighted summation. The functions maxByLexico, maxByMapLexico, and
maxByAccumLexico are similar but use the lexicographic ordering instead of weighted summations. They
are designed so that we can obtain orders on which extending lists is completely monotonic by Lemmas 7–
103. Their duals, namely minBySum, minByMapSum, minByAccumSum, minByLexico, minByMapLexico,
and minByAccumLexico, are also implemented.

For enumerating lists satisfying a specific properties, we prepare the following two functions.

constraint :: ∀a b.Ord a ⇒ (a → Bool) → (b → a → a) → a → {[b]} → {[b]}
constraint p f e

def= filterSet (p ◦ foldr f e)

always :: ∀a b.Ord a ⇒ (a → Bool) → (b → a → a) → a → {[b]} → {[b]}
always p f e

def= filterSet (allSet (p ◦ foldr f e) ◦ tails)

The function constraint discards lists that do not satisfy a requirement, and is designed so that we
can utilize Lemma 12. The function always is similar to constraint, but requires all its tail segments
to satisfy the requirement. An important property is that ¬(allSet (p ◦ foldr f e) (tails x)) implies
¬(allSet (p ◦ foldr f e) (tails (a : x))); thus, we can utilize Lemma 13, and derive a more efficient
program than the case of constraint.

3In fact, the type requirements such as (Num a,Ord a) are insufficient to utilize the lemmas, because the type require-
ments does not guarantee that + is completely monotonic on ≤. While it, complete monotonicity holds for all types that
are available in the standard library and instances of both of Num and Ord — such as Int , Rational and so on (yet, we
neglect peculiar cases such as overflowing).
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5.2 Rewriting Rules

For deriving efficient programs, we would like to encode Corollary 5 together with Lemmas 7–13 as a
rewriting rules. For this purpose, here we introduce another function maxIR that provides an intermediate
representation of derivation.

maxIR :: ∀a b. (a → b → b) → b → CMP b → ({[a]} → {[a]}) → {[a]} → {[a]}
maxIR f e (¹) k

def= k ◦maximals¹foldr f e

The function maxIR f e (¹) k computes maximals by using the given comparison operator ¹ on values
of foldr f e; in addition, it takes a finalizer k that will be applied after the maximization. The CMP b
is the type of comparison operator for a set b, and we will explain in detail in the next subsection. For
guaranteeing the correctness of rewrite rules we will introduce, we require following two properties for
maxIR. For maxIR f e (¹) k, (i) extending lists must be completely monotonic on ¹foldr f e, and (ii) for
all order ¿, maximals¿ ◦ k ◦maximals¹foldr f e

= maximals¿ ◦ k ◦maximals¿ ;¹foldr f e
must hold.

Since function maxIR is a slight extension of maximals, it is easy to translate our library functions
to it. Here we only introduce rules for maximization functions for weighed sums. Rules for the other
maximization/minimization functions are also implemented, and they are very similar and thus omitted.

First, maxBySum can be rewritten into maxIR by the following rewriting rule.

maxBySum ; maxIR (+) 0 (≤) id (1)

The translation is straightforward, and lists are compared by its summation ≤foldr (+) 0. Since no final-
izing computation is necessary, the fourth parameter is the identity function id . It is worth noting that
the derived maxIR certainly satisfies the requirements. The first requirement is complete monotonicity,
which can be confirmed by Lemma 7. The second requirement can be easily confirmed from Lemma 11.

Similarly, we can rewrite maxByMapSum into maxIR

maxByMapSum f ; maxIR (λa r. f a + r) 0 (≤) id (2)

As the same as the previous case, we can easily confirm the requirements of maxIR by Lemmas 7, 9, and
11.

For maxByAccumSum, we will introduce a bit indirect rewriting rule for guaranteeing monotonicity
condition, as follows. Note that maxByAccumSum′ is an alias of maxByAccumSum and introduced to
avoid infinite rewriting.

maxByAccumSum f e ;

maxIR (λa (s, r). let (s′, a′) = f s a in (s′, a′ + r)) (e, 0) (≤snd ∩ =fst) (maxByAccumSum′ f e) (3)

Though it is a bit complicated, this rule exactly corresponds to Lemma 10. Notice that the first com-
ponent of the pairs retains the value of foldr f ′ e, where f ′ a s

def= fst (f s a); besides, the second
component retains the value of sum ◦ snd ◦ mapAccumR f e. Thus, the maxIR in the right hand side
first does a maximization by an order ≤snd◦mapAccumR f e ∩ =foldr f e, and does maxByAccumSum as its
finalization. As proved Lemma 10, complete monotonicity certainly holds, which is the first requirement
of maxIR. The second requirement also holds, as confirmed by the following calculation, in which ¹ and
∼ respectively denote ≤snd◦mapAccumR f e and =foldr f e.

maximals¿ ◦maximals¹ = { maximals∼ = id }
maximals¿ ◦maximals¹ ◦maximals∼

= { Lemma 11 (note that ;is associative) }
maximals¿ ◦maximals¿ ;¹ ◦maximals¿ ;¹ ;∼

= { ¹ ;∼ = ¹ ∩∼ because ∼ is an equivalence relation }
maximals¿ ◦maximals¿ ;¹ ◦maximals¿ ;(¹∩∼)

= { Lemma 11 }
maximals¿ ◦maximals¹ ◦maximals¿ ;(¹∩∼)

For always, we can provide the following rule that exactly corresponds to Lemma 13, where note that
True is larger than False.

always p f e ; constraint p f e ◦maxIR f e (≤p) id (4)
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That is, always is rewritten into a composition of maxIR and constraint. Again, the requirements of maxIR
certainly hold.

Next, let us consider composition of the library functions. Since the rewrite rules we have introduced
translate all of the library functions into compositions of maxIR and constraint, considering combinations
of them is sufficient.

It is easy to provide a rule for combination of two constraint functions.

constraint p1 f1 e1 ◦ constraint p2 f2 e2 ;

constraint (λ(r1, r2). p1 r1 ∧ p2 r2) (λa (r1, r2). (f1 a r1, f2 a r2)) (e1, e2)
(5)

Nontrivial cases are combinations concerning maxIR. The following provides a rule for combination
of maxIR and constraint.

maxIR f e (¹) k ◦ constraint p g z ;

maxIR (λa (r, s). (f a r, g a s)) (e, z) (¹fst ∩ =snd) (k ◦maximals¹foldr f e
◦ constraint p g z) (6)

This rule provides an implementation of Lemma 12. The left hand side is a composition of maximals¹foldr f e

and constraint, and for pushing maximization before constraint, we introduce an order ¹foldr f e∩=foldr g z,
which is used in the maxIR of the right hand side. It is worth noting that application of this rule does
not break the requirements of maxIR. Complete monotonicity follows from Lemma 12. The second
requirement can be confirmed as follows.

maximals¿ ◦ k ◦maximals¹foldr f e
◦ constraint p g z

= { requirement of maxIR }
maximals¿ ◦ k ◦maximals¿ ;¹foldr f e

◦maximals¹foldr f e
◦ constraint p g z

= { Lemma 11 (note that ¿ ;¹foldr f e ;¹foldr f e = ¿ ;¹foldr f e) }
maximals¿ ◦ k ◦maximals¿ ;¹foldr f e

◦ constraint p g z
= { Lemma 12 and the requirement of maxIR }

maximals¿ ◦ k ◦maximals¹foldr f e
◦ constraint p g z ◦maximals¿ ;¹foldr f e∩=foldr g z

Composition of two maxIRs can be fused into one by the following rule.

maxIR f1 e1 (¹) k1 ◦maxIR f2 e2 (¿) k2 ;

maxIR (λa (r1, r2). (f1 a r1, f2 a r2)) (e1, e2) (¹fst ;¿snd) () (k1 ◦maximals¹foldr f e
◦ k2)

(7)

Let us see the intuition of this rule from the following calculation.

maxIR f1 e1 (¹) k1 ◦maxIR f2 e2 (¿) k2

= { definition of maxIR }
k1 ◦maximals¹foldr f1 e1

◦ k2 ◦maximals¿foldr f2 e2

= { requirement of maxIR }
k1 ◦maximals¹foldr f1 e1

◦ k2 ◦maximals¹foldr f1 e1 ;¿foldr f2 e2
◦maximals¿foldr f2 e2

= { Lemma 11 (note that ¹foldr f1 e1 ;¿foldr f2 e2 ;¿foldr f2 e2 = ¹foldr f1 e1 ;¿foldr f2 e2) }
k1 ◦maximals¹foldr f1 e1

◦ k2 ◦maximals¹foldr f1 e1 ;¿foldr f2 e2

The rule (7) corresponds to the calculation above. In fact, the maxIR in the right hand side of the rule
certainly performs maximization operation on the order ¹foldr f1 e1 ;¿foldr f2 e2 . Again, this rewriting
rule does not break the requirements of maxIR: complete monotonicity follows from Lemma 11 and the
second one can be confirmed as similar to the previous case.

So far, we have introduced rules to put the library functions together and assemble a single maxIR.
Then, our shortcut fusion law will derive an efficient program. The following rule does the fusion.

maxIR f e (¹) k (gen g) ; k (mapSet fst (g ↑¹snd
{·} η f ′ ([ ], e)))

where f ′ a (x, r) = (a : x, f a r)
η a = maximals¹snd

◦mapSet (λ(x, r). (a : x, f a r))
(8)

The correctness of this rule follows from Theorem 14, because the premise, complete monotonicity, holds
from the requirement of maxIR.
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5.3 Implementation Issues and Further Improvements

Our rewrite rules will derive algorithms that consider only maximals in each steps. Therefore, derived
programs will invoke maximals a lot of times, and efficient implementation of maximals is crucial. However,
only providing a comparison operator to maximals is not sufficient for efficiency, especially when a non-
total order is given. For example, assume that we would like to obtain all maximals in a set of size n in
which no two elements are comparable; then, to confirm that all elements in the set are maximals, it is
necessary to do comparison operations n2 times. This is not satisfactory.

In our library, because only a small numbers of functions are considered, we can supply more infor-
mation than a comparison operation, and the additional information enables us to improve efficiency.
To be concrete, we use the following data structure to represent orders.

data CMP a = ∀b.Ord b ⇒ Equiv (a → b)
| ∀b.Ord b ⇒ TOrd (a → b)
| Seq (CMP a) (CMP a)

The data structure CMP a consists of three cases. Equiv f represents an equivalence relation =f , namely
elements having the same f value is recognized to be equivalent. Note that the type requirement ∀b.Ord b
means that we would not know the exact range of f (namely b) beforehand, but we know that the range
is a totally ordered set; in other words, the universal quantifier is interpreted as an existential quantifier
from users. Similarly, TOrd f represents a total order, on which two elements will be compared by their
f values. Seq (¹) (¿) represents lexicographic composition of two orders.

Based on the structure CMP , we can provide an efficient implementation of maximals. The idea is
similar to the one introduced by Henglein [Hen08] for multiset discrimination. We iteratively do sorting
and partitioning according the structure of the ordering. Then, we can compute maximals for n valued
set in O(n log n) times of comparisons.

We implemented two additional improvements. One is compaction of equivalent elements. Recall that
after the shortcut fusion law, namely the rewrite rule (8), each candidate consists of two values: one is
the candidate itself, and the other is memoized value used for comparisons. We compress elements having
the same memoized value into one. In our setting, no decompression is necessary because of complete
monotonicity condition. Complete monotonicity indicates that extension of two equivalent elements
results in being equivalent, i.e., x ¹ y ∧ y ¹ x implies (a : x) ¹ (a : y) ∧ (a : y) ¹ (a : x). Therefore,
the compaction works very effectively. The other improvement is removal of surfeit of maximization
operations. Since maximization operations will be the most costly part of generated programs, too many
invocation of maximization will decrease efficiency. Therefore, we reduce the number of maximization.
For example, maximals¹ (maximals¹ X ∪maximals¹ Y ) is rewritten to maximals¹ (X ∪ Y )4.

6 Examples and Experiments

To confirm effectiveness of our library, we did several experiments. The environment of the experiments
is this: Intel Quad-Core Xeon 3.0GHz CPUs, 8 GB memory, Mac OS X, and Glasgow Haskell Compiler
6.10.1. Note that all of our programs use only one core. All computational times given in the following
are averages of 100 executions, and exclude times for preparing inputs and outputting results.

6.1 Optimal Scheduling Problems

As the first example, let us solve the optimal scheduling problem that we have introduced in the intro-
duction, and discuss strong points of our library. The problem is to find the best scheduling for rebooting
of system whose performance will decrease by consecutive run.

First, how can we express a schedule as a list? Here we refer to the notion of maximum marking
problems [SHTO00, Bir01]. Given a list representing the amount of data of each day, we generate a
scheduling by adding a mark, either Left or Right , for each value. A value labeled Left stands for that
the system runs in the day, and one labeled Right means that we reboot the system in the day. Actually
our library consists of such generator marking .

marking [a1, a2, . . . , an] def= {[a′1, a′2, . . . , a′n] | 1 ≤ ∀i ≤ n. (a′i = Left ai) ∨ (a′i = Right ai)}
4Correctness of such rules can be proved by Lemma 3.26 of [Mor09]
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Of course, we have prepared the build form of marking , and thus, programs written by using marking
will be improved by our rules.

6.1.1 Case 1: Performance Decreases in Rate

Next, we would like to specify the best schedule. Here let us consider the case that the performance of
the system decreases 10 percent per day. Then, the performance of the next day can be specified by the
following function performance, where initSpeed denotes the performance of the day just after rebooting.

performance [ ] = initSpeed
performance (Left − : x) = performance x× 9÷ 10
performance (Right − : x) = initSpeed

Performance returns to initSpeed if we did rebooting; otherwise, performance decreases 10 percent in
comparison with the previous day. Then, it is easy to compute the amount of data processed by the
schedule.

amount [ ] = 0
amount (Left a : x) = (a ↓ performance x) + amount x
amount (Right − : x) = amount x

Observe that amount can be specified by sum and mapAccumR; thus, the problem can be specified
by our library as follows.

optScheduling1 x
def= maxByAccumSum step1 0 (marking x)

where step1 s (Left a) = (s× 9÷ 10, a ↓ s)
step1 − (Right −) = (initSpeed , 0)

6.1.2 Case 2: Performance Decreases according to Amounts of Data

We have developed a program for a scheduling problem. Then, it is very easy to solve variants of the
problem, because our library enables us to write programs similar to specifications of problems.

As the next example, let us consider the case where performance decreasing depends on the amount
of data processed. To be concrete, we assume that the performance decreases by one-tenth of the amount
of processed data of the day. Then, we can solve the problem by a program that is very similar to the
previous one.

optScheduling2 x
def= maxByAccumSum step2 0 (marking x)

where step2 s (Left a) = (s− (a ↓ s)÷ 10, a ↓ s)
step2 − (Right −) = (initSpeed , 0)

The only difference is the difference between step1 and step2 , both of which take charge of computing
the performance of each day.

6.1.3 Case 3: Weekly Rebooting is Required

As the third case, let us consider an additional requirement. Assume that for a safety reason, we should
reboot the system once a week. Even for such a case, we can easily solve the problem by virtue of the
specification-like program.

optScheduling3 x
def= maxByAccumSum step1 0 (always ( < 7) count 0 (marking x))

where step1 s (Left a) = (s× 9÷ 10, a ↓ s)
step1 − (Right −) = (initSpeed , 0)
count (Left −) c = 1 + c
count (Right −) − = 0

Here we consider the case where performance decreases per day. We insert a function always that counts
the number of consecutive runs and ensures the number should less than 7.
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list length 1000 2000 3000 5000 10000 20000
optScheduling1 0.09 0.17 0.26 0.45 0.98 2.33
optScheduling2 0.10 0.21 0.32 0.55 1.17 2.80
optScheduling3 0.02 0.03 0.05 0.09 0.24 0.67

Table 1: Running times of programs for scheduling problems (unit: second).

list length 10000 20000 30000 50000 100000 200000
handwritten 0.02 0.04 0.07 0.14 0.37 1.12
our library 0.02 0.05 0.08 0.17 0.46 1.46

Table 2: Comparison of our library with a handwritten program for the maximum
sum segment problem (unit: second).

6.1.4 Experiment

So far, we have developed three programs without caring efficiency, and we did experiments to check
their efficiency. We generated various lengths of lists, whose each element is an integer uniformly chosen
from 100 to 10000. We let initSpeed be 10000.

Table 1 shows the result of our experiments. First of all, all of three programs runs in time proportional
to the length of lists, while number of schedules is exponential to the length. This is because our rewriting
rules certainly derive efficient programs from the descriptions.

As seen, programs developed on our library are robust against changes of problem descriptions. We
can easily modify programs according to the changes, and such modifications do not harm their efficiency
in most of the cases. This is one of the strong points of our library.

6.2 Comparison with Handwritten Programs

In the next three examples, the maximum sum segment problem [Ben86, Bir89], the 0-1 knapsack prob-
lem [CSRL01], and the longest common subsequence problem [CSRL01], we compare programs based
on our library with handwritten Haskell programs. Note that the handwritten ones are rather textbook
programs than very finely tuned ones.

6.2.1 Maximum Sum Segment Problem

Let us consider the maximum sum segment problem, that is a problem to enumerate all segments of the
maximum sum. It is trivial to specify this problem in our library.

mss ′ x = maxBySum (segs x)

While it, it is not trivial to program its efficient solution by hand — in fact, we prepared over ten lines
of Haskell codes for it.

Table 2 shows a comparison of two implementations. We generated several length of lists whose
elements are uniformly chosen from −5000 to 10000. We can see that the program generated from our
library runs with a little overhead in comparison with the handwritten one for this simple case.

6.2.2 0-1 Knapsack Problem

Next, let us consider the 0-1 knapsack problem. The problem is that given a set of items each of which
is specified by its weight and value, we would like to find all its subsets of the maximum value among
those whose weights are less than the given limit. Here we assume that weight of each item is a positive
integer.

It is easy to specify the problem by using our library.

knapsack x limit value weight =
maxBySumMap value (always (< limit) (λa r.weight a + r) 0 (subsequences x))
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list length 100 200 300 500 1000 2000
handwritten 0.11 0.24 0.37 0.63 1.29 2.61
our library 0.17 0.37 0.58 0.99 2.03 4.16

Table 3: Comparison of our library with a handwritten program for the 0-1
knapsack problem (unit: second).

list length 100 200 300 500 1000 2000
handwritten 0.01 0.06 0.14 0.46 2.05 8.72

our library (without memoization of step) 0.01 0.08 0.24 0.89 4.70 24.23
our library (with memoization of step) 0.01 0.05 0.14 0.50 2.78 15.62

Table 4: Comparison of our library with a handwritten program for the longest common
subsequence problem (unit: second).

The functions value and weight respectively specify the value and weight of an item, and limit is the
limit of weight. In the program above, we first enumerate all subsequences (subsets) of items, and find
ones having the maximum value among those whose weights are less than the limit.

Table 3 shows a comparison of two implementations. The generated lists that consisted of elements
each of which had a value from −1000 to 10000 and a weight from 10 to 50. The limit was 1000. For
this problem, programs based on our library is at most two times slower than the handwritten one, and
the overhead would be acceptable.

6.2.3 Longest Common Subsequence Problem

As the final example, let us consider the longest common subsequence problem, which is the problem
to compute the longest common subsequence of given two sequences. The longest common subsequence
problem is an important problem because it appears practical situation such as finding modifications in
sentences.

It is a bit difficult to specify the problem by using our library.

lcs x y = maxByLexico (maxByMapSum (λ−. 1) (always (≥ 0) stepy (length y) (subsequences x)))
where stepy a k = if k ≤ 0 then −1

else if a = y!!(k − 1) then k − 1 else stepy a (k − 1)

In the program above, we first generate all subsequences of x, and filter out ones that are not subsequences
of y by always. In the always, the function stepy sweeps x and y from their tails to heads with confirming
their correspondence. Then, we find the longest one. Since exponentially many of the longest common
subsequences may exist, enumerating all of them is impractical; instead, we pick up one of them, and the
function maxByLexico is useful for this purpose, because no two candidates are equivalent on lexicographic
ordering. Note that we assume that the (!!) operation can be done in a constant time, and actually in
our implementation, we covert y to an array beforehand.

In fact, the program above is not very efficient — it takes O(n3) time for two lists of length n.
The reason is the cost of step. step will be computed many times with the same argument. Therefore,
memoization is effective. In this case, we can prepare the results step a k in advance, which will be
finished in O(n2) time. Then, we can obtain a program that finishes in O(n2) time.

Table 4 shows a comparison of three implementations. In addition to a handwritten one, we pre-
pared two programs based on our library: one is the program above, and the other is a program with
memoization of step. We generated pairs of lists of the same length, and each elements of the lists are
uniformly chosen from a set of alphabets of size 100.

We can see that programs based on our library is not very slow. The program without memoization
would be still acceptable, though its asymptotic complexity is worse than others. Moreover, the program
with memoization runs fast even for large inputs, and it is at most two times slower than the handwritten
one.
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7 Discussion

In this paper, we have proposed a theory and an implementation for developing efficient algorithms for
finding optimal lists. We formalized derivation of efficient algorithms by shortcut fusion laws, pointed
out that it is generally difficult to derive well-structured consumers, namely maximization computations
by orders satisfying monotonicity condition, and introduced several laws that are useful for deriving well-
structured consumers. Based on the theory developed, we introduced a Haskell library for enumerating
optimal lists. The library functions are designed so that they will be not only useful for specifying
requirements of optimal lists but also effective for deriving efficient algorithms. We implemented our
program transformation rules by RULES pragma, and then, programs written by using our library
are automatically improved. We confirmed effectiveness of our library with several examples. Our
experiments showed that we can easily specify solutions of problems based on our library; besides, we
can easily modify or refine programs on our library. Moreover, programs based on our library are efficient
by virtue of embedded rewriting rules, and they are only about two times slower than handwritten codes
in our experiments.

We formalized derivation of efficient algorithms by shortcut fusion [GLJ93, Gil96]. On one hand,
fusion-based program developments have been studied, and among others, Bird and de Moor did an
intensive study for deriving efficient algorithms of combinatorial optimization problems based on fusion
transformations [dM92, BdM96], though it is not suitable for mechanization. On the other hand, shortcut
fusion is one of the best-known fusion techniques, and known to be suitable for mechanization; however,
there are few studies for algorithm development based on shortcut fusion. Our aim was to combine these
two studies and provide an algorithm-development method that is suitable for mechanization. An extra
profit from the use of shortcut fusion is that we can utilize existing methods for deriving build-forms or
deriving programs written in some specific higher-order functions [LS95, Chi99, YHT05].

We have introduced laws for obtaining well-structured consumers, namely maximization computations
by orders on which extending lists is completely monotonic. A key idea is to consider an intersection of
a given order and an equivalent relation. Then, since the order specifies the maximum element for each
equivalent class, derived algorithms will be dynamic programming algorithms. In dynamic programming
methodology, we develop an efficient algorithm by considering the optimal solutions of subproblems and
caching the optimal solutions so as to avoid recomputation. There has been a great deal of studies for
systematically developing dynamic programming algorithms, such as an incrementalization-based method
by Liu et al. [LS03, LSLR05], a selective-memoization-based method by Acar et al. [ABH03], a domain-
specific-language-based method by Gergerich et al. [GMS04], and much more references are shown in these
papers. On one hand, most of the existing studies assume that the structures of subproblems are explicitly
specified by users. Actually, the structure of subproblems used in dynamic programming algorithms
depends on details of problem descriptions, and therefore, explicit use of structures of subproblems would
obstruct to modify or maintain programs. Our method derives the structure from programs, and this
concealing improves robustness for modifications of problem descriptions. On the other hand, programs
based on our method still requires effective memoization for efficient implementations. In summary,
our method is complementary to them: ours gives a higher-level programming interface together with
derivations of structures of subproblems, and others derive an efficient implementation from the structures
of subproblems.

Our study is highly motivated by works for maximum marking problems [ALS91, BPT92, SHTO00,
Bir01, SOH05]. Those studies report that for a class of combinatorial optimization problems called
maximum marking problems, we can derive efficient algorithms from specifications of problems, once
problems are described in specific forms. Our objective is to provide a clear and generic formalization for
them and generalize them. Ours is certainly a generalization of them for problems to find optimal lists.
They discussed problems concerning more generic structures, such as trees, rather than lists. Actually,
it is not difficult to extend our results so as to deal with problems to find optimal (possibly non-lists)
structures, because there is a generalization of shortcut fusion, called acid rain theorem [TM95], that
can eliminate even non-list intermediate structures.

Programs based on our library are not very efficient yet, and there would be a room for further
improvements. Recently, Puchinger and Stuckey [PS08] introduced a method that automatically derives
efficient branch-and-bound procedure from dynamic programming algorithms. We feel that combination
of our method and theirs is effective. Our method automatically derives dynamic programming algo-
rithms by gathering some information from programs, and we can supply such information to further
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improvements.
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