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Abstract—This paper proposes a new generalization The second group comprises generalizations of
of the Voronoi diagram. Suppose that restaurants and the underlying space. The ordinary Voronoi dia-
bookstores are located in a city, and we want to visit gram is in Euclidean space; however, the space can

both a restaurant and bookstore and return to our house. :
To each pair of a restaurant and a bookstore, we can be replaced by a spherical surface [15], polygonal
surface [2], or network [7].

assign a region such that a resident in this region can - : S
visit the restaurant and bookstore in a round tour that is The third group comprises gener"flhz_at'ons Qf
shorter than that for a visit to any other pair. The city is the generators. The ordinary Voronoi diagram is

partitioned into these regions according to which pair of  defined for points; however, they can be replaced
a restaurant and bookstore permits the shortest round by general figures such as circles, line segments,

tour. We call this partitioning a “round-tour \Voronoi ;

: n lygons [14], or repl f poin
Diagram” for the restaurants and bookstores. We study .a ﬂ.pﬁ ygo ds [ V], 0 e.%?CEd by Sggsets of points
the basic properties of this Voronoi diagram and consider in higher-order Voronoi diagrams [13].

an efficient algorithm for its approximate construction. In this paper, we propose a new generalization

K q lized Vi i di _ d-tour of the Voronoi diagram [6]. Our generalization
eyworcsgeneraizec voronol Tiagram, round-roulr; might be understood easily in the context of a
restaurants and bookstores; facility location analysis;

shortest round tour: round tour involving a visit to both a restaurant
and bookstore before returning home. Suppose
that there are many restaurants and bookstores
in a city. The city is partitioned into regions
The Voronoi diagram is one of the most fun-according to the pair of restaurant and bookstore
damental concepts in computational geometry besne can visit in the shortest round tour. We call
cause of its useful generalizations and applicationthis partition the “round-tour Voronoi diagram” for
[12]. Generalization of the Voronoi diagram can bethe restaurants and bookstores. We study the basic
classified in three groups. properties of this diagram and consider an efficient
The first group comprises generalizations ofalgorithm for computing the approximation of this
the distance. The Euclidean distance, which igliagram in the form of a digital picture.
used for the ordinary Voronoi diagram, can be This work is closely related to Ohyama’s work
replaced by theL, distance [5], the collision- [10], [11] in which consumer behavior is studied
avoidance distance [1], the power distance [4], [8]using his new Voronoi diagrams. He considered a
the weighted distance [3], or the boat-sail distanceonsumer who visits stores one by one until he
[9], to mention a few. selects a good. In that case, the “distance” from a

|. INTRODUCTION



point (where the consumer lives) to a set of storesour starting atz, visiting ¢ and b, and returning
is the expected length of the shortest path alontp z.

which he travels while shopping.
In section 2 we introduce our new \oronoi
diagram, the round-tour Voronoi diagram, and in

section 3 we consider its basic properties. In
sections 4 and 5, we construct an algorithm for = {z € R? | l.(a,b) =

computing a digital approximation of the Voronoi
diagram, and in section 6 we give concluding
remarks.

[I. ROUND-TOUR VORONOIDIAGRAM FOR

TwO SETS OFGENERATORS

Let A = {aj,as,...,a,} be a set of n points
in the planeR2. For any two pointsr,y € R?,
we represent byi(x,y) the Euclidean distance
betweenr andy. We definel'(A;a;) as

V(A;a;) = {z € R?* | d(z,a;) < d(z,a;),j # i}
)

Fora € Aandb € B, let us definéd’ (A, B;a, b)
by

V (A, B;a,b)
I.(a',b)}. ()

Intuitively, V' (A, B;a,b) represents the region
in which any resident can visit and b in a
shorter round tour than he/she visits other pairs
of a restaurant and bookstore.

The plane is decomposed into the regions
V (A, B;a,b) (where a € A and b € B) without
overlap except for the boundaries. We call this
partition the round-tour Voronoi diagramfor A
and B. A and B are called thegenerating setef
the Voronoi diagram.

Figure 1 shows an example of the round-tour
Voronoi diagram for three restaurants = { R,

min
a'CA, bV EB

V' (A; a;) represents the set of points that are cIoseRth} and three bookstoreB = {S;, S, S}

to a; than to any other point iM. The plane is
partitioned intoV (A;a1), V(A4;a2),...,V(4;a,)
and their boundaries. We call this partitidhe
Voronoi diagramfor A, andV'(A; a;) the Voronoi
regionof a;. The elements ofl are calledgenera-
tors (or generating pointsof the Voronoi diagram.
This is the definition of the ordinary Voronoi
diagram.

We extend this diagram to two sets of different
types of generating points in the following way.

Let A and B be two finite sets of points in the

plane. A might be considered as a set of points

at which restaurants are located, aldmnight be

considered as a set of points at which bookstore

are located. We assume that all restaurants a

identical in the sense that people do not have an
preference except for their distances, and that a

the bookstores are identical in a similar sense.
Let =z be a general point on the plane. Foe A
andb € B, we define

l.(a,b) = d(z,a) + d(a,b) + d(b,z). (2)

The valuel, (a, b) is the length of the perimeter of
the triangle formed by three vertices b, and z;
that is,/.(a,b) is the length of the shortest round

Each region is labeled by a pair of generat-
ing points; for example(R;, S;) represents the
Voronoi regionV' (A, B; R;, S;).

(RO,S1)
(R0,S0)

RO SI
Y.

t:::zﬁﬁfi
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(R1,81)

(R2,S0)

(R2,52)

Fig. 1. Example of a round-tour Voronoi diagram.

We see that any paitR;, S;) for i,j = 0,1, 2,
V(A, B;R;,S;) has a nonempty region in this



particular diagram. In general, however, somend the second generator sBt = {by,bs, b3}

pairs of restaurants and bookstores may not hawshere

nonempty regions. by = (—10,—20), by = (—20,0), by = (—20,22).
[1l. BASIC PROPERTIES The round-tour Voronoi diagram fad and B is

In this section, we consider basic properties oshown in Fig. 2. In this figure, there are two small
the round-tour Voronoi diagram defined in the last

section.

Property 1. Leta € A andb € B and s be a

positive real number satisfying > 2d(a, b). The bs a,
trajectory of the pointz satisfyingl,(a,b) = s o °

forms an ellipse.

Proof: The conditionl,(a,b) = s can be

expressed as b, a,
d(a,p) +d(b,p) = s — d(a,b). 4)
Becauses andd(a, b) are constants, Eg. (4) means
that the sum of the distances pffrom « andb is b a
constant. Hencey moves on an ellipse with foci ; °
a andb. m Fig. 2. Round-tour Voronoi diagram with a dis-

Property 2. Let A = {a} and B = {b,c}. connected region.

Then the boundary betweeW (A, B;a,b) and

; . triangle-lik ions. Th t i togeth
V (A, B;a,c) is one branch of the hyperbola with rlangie-like regions ese o regions fogether

constitute the Voronoi regionV (A, B;as, bs).

foci b and c. Thus, the Voronoi region is not necessarily con-
Proof: The boundary iz € R? | [.(a,b) = nected.
l.(a,c)}. We see For pointz € R? and positive reat, let U(z, ¢)
be the set of all points that are within the distance
{2 ] 1:(a,0) = I:(a, )} e from z. We callU(z, ¢) the e-neighborof point
= {Z ‘ d(z,a)+d(a, b) +d(b> Z) Z.
= d(z,a) +d(a,c) +d(c, 2)} Property 4. Leta € A,b € B,z € R?, ande be
= {z[d(a,b) +d(b,z) = d(a,c) + d(c, 2)} a positive real number. For any € U(z, ), the
= {z]d(b,2) —d(c,z) =d(a,c) — d(a,b)}. following inequality is satisfied.
Becaused(a, c) — d(a,b) is a fixed contant, the Lr(a,b) < l-(a,b) + 2e (5)
difference of the distances fromto b and c is Proof: Suppose that we are at poigt We
constant, which means that the boundary paint can visit both pointsa and b by a round tour
moves on the hyperbola with foéiand c. W visiting z, a, b, z in this order and returning te'.

Property 3. A Voronoi region of the round-tour The length of this round tour is

Voronoi diagram is not necessarily connected. d(z',z) +1.(a,b) +d(z, 2"). (6)

This property can be shown by an example.The shortest round tour for’ is not longer than

Consider the first generator st = {ay,as, a5} 1S tour, and hence we get
where Li(a,b) <l (a,b)+2d(7, 2)

ar = (10, —20), as = (20,0), a3 = (20,22), < l:(a,b) + 2e. (7)



B Therefore, we get

Property 5. For anyz,2’ € A andy,y’ € B, if lo(a,b) <l.(a,b). (16)
d(z,y) > d(z',y) +d(z,y'), (8) On the other hand, we get
then V(A, B; X, y) is empty. lo(a,b)
Proof: First, suppose that = d(a,a) +d(a,b) +d(V', a)
A=) > d(zy). @ et

<d(a,a")+d(a,b')+d(V,a)
(because of the triangular inequality)
L(z,y) = l,(d,b"). a7)

= d(z,z) +d(z,y) +d(y, ) Combining Inegs. (16) and (17), we get
d(z,x) +d(z’,y) + d(z,y) + d(y, 2)
La(a,b) < ly(a’, ¥/ 18

(because of Ineq.(8)) o(@,0) < la(@’, V) (18)
d(z,z) + d(z, ) + d(,y) + d(y, 2) for anya’ € A andb’ € B. This impliesa ¢
J d Nt dla! V (A, B;a,b), and hencd/ (A, B;a,b) # (.

(2,) + (x’y)+_ (@', 2) _ _ Next, we supposeé < V(A;a). Then, by a
(because of the triangular inequality) symmetric argument, we gétc V' (A, B;a,b) and

We then obtain

V

Y

> d(z,z) +d(z,y) +d(z,9) haveV (A, B;a,b) # (). This completes the proof.
(because of Ineq.(9)) o u
_ , 10 For any finite setX, let | X| denote the number
= L(@.y). (10) " of elements ofx.
Hence, we get Property 7. Let [A| = m and |B| = n. Then,
L(z,y) > L.(z, ). (11) the number of nonempty Voronoi regions of the
round-tour Voronoi diagram can be as small as
Secondly, suppose that max(m, n).
d(z,2") < d(z,y"). (12) Proof: We prove this property by giving an

example of the Voronoi diagram. Without los-
ing generality, we assume that < n. We
L(z,y) > (2, y). (13) consider generator setd = {a;,...,a,} and

B =1{b;,...,b,} such that
From Inegs. (11) and (13), we obtain Property 5. {br o bk

Then, by a symmetric argument, we obtain

| al:bZ:(Z,O) forizl,...,m,
Property 6. If a € V(B;b) or b € V(A;a), then bi = (i,0) fori=m+1,...,n
V (A, B;a,b) is nonempty. as shown in Fig. 3. We show that this diagram has
Proof: Suppose that € V(B;b). Then for ©nly n regions. First we prove that for amyc A
any ' € B, we get andb € B, if V(A, B;a,b) is not empty, ther is
, in V(A;a) in this setting.
d(a,b) < d(a,bt). (14) Let ~ be an arbitrary point and be the point

in A that is nearest. In this situation, going
straight from z to a and returning toz gives
d(a,a)+d(a,b)+d(b,a) < d(a,a)+d(a,b')+d(b',a). the shortest round tour because we also visit a
(15) point in B at point a. We havea € V(A;a)

This is equivalent to
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Fig. 4. Round-tour Voronoi diagram with only one
positive-area region.

Fig. 3. Round-tour Voronoi diagram with re-

ions. . .
g verticesp, a,, andb;, shown by broken lines has

the smallest perimeter among all triangles with the

because is the nearest point irl to z. Moreover, VEricesp, a;, andp; fori=1,2,...,m and;j =
we havea € V(A:a) and V(A:a) is convex. 1,2,...,n. Hence, any point outside the axis
Hence, any point in the shortest round tour is inbelongs to the Voronoi region of the pawl’b??'
V(A4; a). Consequently, we get for anye A and Consequently, the pailu, b;) only has a positive
b e B, if V(A, B;a,b) is not empty, therb is in area. -
V(A;a). Checking the distances, we find that forProperty 9. Let |A| = m and |B| = n. Then the
i=1,2,...,m, b is only in V(A4;q;), and that number of nonempty Voronoi regions of the round-
fori=m+1,...,n,bisonlyinV(A;a,). This tour Voronoi diagram can be as large asn.
completes the proof. [ | Proof: Wi thi v by qivi

Note that some of the Voronoi regions can be foot. We prove this property by giving an
without positive area although they are nonemptyfexarnple of a Voronoi diagram. Let
An example of such a region is the Voronoi A = {(s;cos60°, s;sin60°) | s; € [1,1.5],
region V (A, B; Gy, byy1) in Fig. 3. The region i=1,2,...,m}
V(A, B; any, by,y1) forms the half line starting at .
bm<+1 in the pc+)si)tive direction of ther axis.gln B={{t;0)t; €[1,15}, j=1,2,....,n}.
fact, any point on this half line has the shortestSuppose that € A andb € B are any pair of
round tour visitinga,, andb,,.;. However, any generators. We will show that there exists a point
point near to, but not on, this half line can visitc € R? such thatc € V (A, B;a,b). Let L be the
a,, andb,, in a round tour shorter than that visiting line passing througlh andb. As shown in Fig. 5,
Ay, aNdb,, 1. Thus, the regiolV (A, B; ap, bni1)  let Ly be the line that is a mirror image d@f with
has no area. Let us call the Voronoi region withrespect to the ling = 2z, and letL, be the mirror
positive area groper region image of L with respect to the ling = 0. Letc be

Property 8. Let |A| = m and |B| = n. Then, the the point of intersection of.; and L,. Finally, let

number of proper Voronoi regions of the round-tc(‘)4 an_d;B gﬁ dthe_rr(l)lr:g; 'r:g%/zsl OfNV;'tt: tﬁ;[psgth
tour Voronoi diagram can be as small as 1. y = o ity = P Y. N
c4 and cp are on the lineL, but neitherc, nor

Proof: We prove the property by giving an cp is on the line segment connectingandb. For
example. Suppose thdt= {a,...,a,,} andB = anyd € A andl/ € B, we get
{bl, cey bn} such that d(C, CL/) + d(a/, b/) + d(b/, C)
a; = (4,0) fori=1,....m, =d(ca,d’) + d(d', V) + d(V, cB)
b; = (—1,0) fori=1,... n. >d(ca,cp)
Let p be an arbitrary point outside the axis. because the points;, a,b andcp are on the line.
Then, as shown in Fig. 4, the triangle with thein this order. This implies that € V (A, B;a,b).



Fig. 5. Shortest-path proof with two mirrors.

Thus, for any paiu € A andb € B, the Voronoi

Tab. I. Pruning of generator pairs without Voronoi

regions
no. of no. of pairs no. of pairs  no. of pairs
all pairs  without regions  pruned by pruned by
Condition 1  Condition 2
2500 2406 2406 2070
2500 2401 2399 2080
2500 2406 2405 2269

IV. PRELIMINARY STUDY ON THE NUMBER OF
VORONOI REGIONS

As we have seen by Property 8, the number
of Voronoi regions can be as large asn for
the generator setsl and B with |A| = m and
|B| = n. However, this extreme case might be
rare, and we are also interested in the average
number of regions. To find the number of regions
in ordinary cases, we experimentally investigate

region V (A, B;a,b) is nonempty. Consequently, the case where the generating pointsdirand B
the number of Voronoi regions can be as large asre |ocated at random.

mn. [ |

We generated 50 points on integer grid in-

Figure 6 shows an example of a round-tourtersections in[0,500) x [0,500) at random and

Voronoi diagram withO(n?) Voronoi regions for
Al = B = n.
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s
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Fig. 6. Round-tour Voronoi diagram wit®(n?)
\oronoi regions.

considered them as elements 4f Similarly, we
generated 50 more points in the same region and
considered them as elements i8f

We generated three different pairs 4fand B,
and gathered statistical data from computational
experiments. The results are summarized in Ta-
ble 1.

In the table, the three rows correspond to the
three pairs ofdA and B, the leftmost column repre-
sents the number of all possible paitsb), which
is 50 x 50 = 2500 becausgA| = |B| = 50. The
other three columns show statistical data obtained
in the following way.

We are interested in which pai,b) has a
nonempty Voronoi regioV (A, B;a, b). To deter-
mine this property approximately, we checked all
integer grid points in—100,600) x [—100,600),
and enumerated all pairsa,b) whose regions
V (A, B;a,b) contain no grid points.

We expect that such a paifa,b) does not
have nonempty region¥ (A, B;a,b) with high
probability. The results are shown in the second



column of Table I. V. ALGORITHM FOR A DIGITAL-PICTURE
We see that about 96% of possible pairs do not APPROXIMATION OF THEROUND-TOUR
have nonempty regions. VORONOIDIAGRAM

From this _observatlon we can say that the The boundary curves of the round-tour Voronoi
number of pairs of generators that admit nonemp%iagram are very complicated in general, and

.V°T°”°i regions_is very small. This implies- that it hence it is not easy to construct an exact diagram
is important to identify and prune the pairs thaLt-ln a short time. Hence, we propose an algorithm

do not have nonempty regions as early as possf,, constructing a digital-picture approximation of
ble to construct the round-tour Voronoi diagram

Hicientl the diagram.

eeienty. : . We consider grid point;; = (i,7) with in-
For this purpose, we consider two condltlonsteger coordinates foi — 1.9 M andj —

that are sufficient for paifa,b) not to admit a 5 N 1S

nonempty region. For eachp;,;, there exists a paifa,b), where

Let us defineD = {(i,7) | i and j are integers )
’ € A andb € B, such thaty;; € V (A, B;a,b).
such that—100 < i, j < 600}. ¢ We defineD(i, j) as P ( @)

Condition 1. For any integer grid point: € D, o _
D(i,j) = (a,b) if p;; € V(A, B;a,b).
l.(a,b) > 1.(d’,b) for somed’ € A _ _ _ _
If such a pair(a,b) is not unique, we assign

or the lexicographically smallest pdia, b) to D(i, j)

l.(a,b) > l.(a,b') for somel’ € B. for prespecified orders of generators ih and

. _ B. Thus, D(i,j) where: = 1,...,M andj =
Condition 2. There exists: € A andb € B such | are defined uniquely. We call the set of

that assignments

d(a,b) > d(a’,b) + d(a,b").
{D(@i,j) |i=1,...,M,j=1,...,N}

Note that Condition 1 requires much more time
to check than Condition 2 does because there atbedigital-picture approximation of the round-tour
about700 x 700 grid points inD while there are Voronoi diagram or the digital Voronoi diagram
only 50 x 50 pairs(a, b) of generators. for short. The digital Voronoi diagram can be

Either Condition 1 or 2 is a sufficient condition constructed straightforwardly if we do not care
for the pair(%b) to have no nonempty Voronoi about the efficiency; that is, for each grid point
region. Hence, once we find that Condition 1 orpi;, we compute the lengthls,; (a,b) of the round
Condition 2 is satisfied, we can conclude thafour for all pairs(a,b) and assign the one that
V (A, B;a,b) is empty. realizes the minimum oD (i, j). We call this naive

The numbers of pairéa, b) that satisfy Condi- algorithm Algorithm 1

tion 1 are shown in the third column of Table I, Algorithm 1 (naive method)For each grid point

while the nu_mbers _of pairs that satisfy Condition sz’jy we compute the lengthis, (a, b) of the round
are shown in the rightmost column. N

. g tours for alla € A andb € B. We assign the pair
We see that Condition 1 is almost perfect forinat attains the minimum of length (i

checking the emptiness of the Voronoi region al- i59):

though it has high computational cost. Condition 2 Suppose that we knoy, (a, b) for somea € A

detects more than 83% of the empty Voronoiandb € B. Then, the pair(a’,t), wherea € A

regions. andb € B, cannot attain the minimum round tour
Therefore, we expect Condition 2 to be a pow-at pi; if

erful tool for pruning nonempty regions. d(pij,a’) > I, (a,b). (29)



This property can be used to prune the points thdbr computing a digital-picture approximation of
cannot attain the minimum round tour. Using thisthe diagram.

property, we consider the following algorithm. This generalization is motivated by facility loca-
tion analysis considering the interaction between

Algorithm 2. For each grid pointp;;, we first . )
compute the length of the round tour under thetWO different kinds of facilities such as restau-

assumption thap, belongs o the same voronol [21° 216 RKSLeS O o 6ok 1 © 0
region as its neighbor does. We then prune th 9 y

gencrators: it d(r,.«)greate than the length 621", 1AV 1 s paper ne consdered o
of the round tour, and finally compute the true 9 '

Voronoi region using only the remaining pairs of generalized to three ormore different kinds that a
generators customer wants to visit in the shortest round tour.

This approach to generalization is more com-
We experimentally compared the processinglicated because the order of the generators that
times of Algorithms 1 and 2 for various pairs of the customer visits is also important. Full analysis
generators. The results are summarized in Fig. bf this approach will be a future work.
where the horizontal axis represents the number Another work for the future is to construct a
of generators of each kind on a linear scale, anéhethod for computing the exact Voronoi diagram
the vertical axis represents the computation timénstead of the digital-picture approximation. For
on a logarithmic scale. this purpose, we first need to understand what
kinds of curves can be boundaries of the Voronoi
regions. Since the boundary curves are represented
by complicated equations, it is also important
to make the algorithm robust against numerical
errors.

1le+06

" Algorithm 1 (naive)

Algorithm 2 (proposed) -

100000

10000
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