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Abstract—This paper proposes a new generalization
of the Voronoi diagram. Suppose that restaurants and
bookstores are located in a city, and we want to visit
both a restaurant and bookstore and return to our house.
To each pair of a restaurant and a bookstore, we can
assign a region such that a resident in this region can
visit the restaurant and bookstore in a round tour that is
shorter than that for a visit to any other pair. The city is
partitioned into these regions according to which pair of
a restaurant and bookstore permits the shortest round
tour. We call this partitioning a “round-tour Voronoi
Diagram” for the restaurants and bookstores. We study
the basic properties of this Voronoi diagram and consider
an efficient algorithm for its approximate construction.

Keywords-generalized Voronoi diagram; round-tour;
restaurants and bookstores; facility location analysis;
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I. I NTRODUCTION

The Voronoi diagram is one of the most fun-
damental concepts in computational geometry be-
cause of its useful generalizations and applications
[12]. Generalization of the Voronoi diagram can be
classified in three groups.

The first group comprises generalizations of
the distance. The Euclidean distance, which is
used for the ordinary Voronoi diagram, can be
replaced by theLp distance [5], the collision-
avoidance distance [1], the power distance [4], [8],
the weighted distance [3], or the boat-sail distance
[9], to mention a few.

The second group comprises generalizations of
the underlying space. The ordinary Voronoi dia-
gram is in Euclidean space; however, the space can
be replaced by a spherical surface [15], polygonal
surface [2], or network [7].

The third group comprises generalizations of
the generators. The ordinary Voronoi diagram is
defined for points; however, they can be replaced
by general figures such as circles, line segments,
and polygons [14], or replaced by subsets of points
in higher-order Voronoi diagrams [13].

In this paper, we propose a new generalization
of the Voronoi diagram [6]. Our generalization
might be understood easily in the context of a
round tour involving a visit to both a restaurant
and bookstore before returning home. Suppose
that there are many restaurants and bookstores
in a city. The city is partitioned into regions
according to the pair of restaurant and bookstore
one can visit in the shortest round tour. We call
this partition the “round-tour Voronoi diagram” for
the restaurants and bookstores. We study the basic
properties of this diagram and consider an efficient
algorithm for computing the approximation of this
diagram in the form of a digital picture.

This work is closely related to Ohyama’s work
[10], [11] in which consumer behavior is studied
using his new Voronoi diagrams. He considered a
consumer who visits stores one by one until he
selects a good. In that case, the “distance” from a



point (where the consumer lives) to a set of stores
is the expected length of the shortest path along
which he travels while shopping.

In section 2 we introduce our new Voronoi
diagram, the round-tour Voronoi diagram, and in
section 3 we consider its basic properties. In
sections 4 and 5, we construct an algorithm for
computing a digital approximation of the Voronoi
diagram, and in section 6 we give concluding
remarks.

II. ROUND-TOUR VORONOI DIAGRAM FOR

TWO SETS OFGENERATORS

Let A = {a1, a2, . . . , an} be a set of n points
in the planeR2. For any two pointsx, y ∈ R2,
we represent byd(x, y) the Euclidean distance
betweenx andy. We defineV (A; ai) as

V (A; ai) = {z ∈ R2 | d(z, ai) < d(z, aj), j ̸= i}.
(1)

V (A; ai) represents the set of points that are closer
to ai than to any other point inA. The plane is
partitioned intoV (A; a1), V (A; a2), . . . , V (A; an)
and their boundaries. We call this partitionthe
Voronoi diagramfor A, andV (A; ai) the Voronoi
regionof ai. The elements ofA are calledgenera-
tors (or generating points) of the Voronoi diagram.
This is the definition of the ordinary Voronoi
diagram.

We extend this diagram to two sets of different
types of generating points in the following way.

Let A andB be two finite sets of points in the
plane.A might be considered as a set of points
at which restaurants are located, andB might be
considered as a set of points at which bookstores
are located. We assume that all restaurants are
identical in the sense that people do not have any
preference except for their distances, and that all
the bookstores are identical in a similar sense.

Let z be a general point on the plane. Fora ∈ A
and b ∈ B, we define

lz(a, b) = d(z, a) + d(a, b) + d(b, z). (2)

The valuelz(a, b) is the length of the perimeter of
the triangle formed by three verticesa, b, andz;
that is, lz(a, b) is the length of the shortest round

tour starting atz, visiting a and b, and returning
to z.

Fora ∈ A andb ∈ B, let us defineV (A,B; a, b)
by

V (A,B; a, b)

= {z ∈ R2 | lz(a, b) = min
a′∈A, b′∈B

lz(a
′, b′)}. (3)

Intuitively, V (A,B; a, b) represents the region
in which any resident can visita and b in a
shorter round tour than he/she visits other pairs
of a restaurant and bookstore.

The plane is decomposed into the regions
V (A,B; a, b) (where a ∈ A and b ∈ B) without
overlap except for the boundaries. We call this
partition the round-tour Voronoi diagramfor A
andB. A andB are called thegenerating setsof
the Voronoi diagram.

Figure 1 shows an example of the round-tour
Voronoi diagram for three restaurantsA = {R0,
R1, R2} and three bookstoresB = {S0, S1, S2}.
Each region is labeled by a pair of generat-
ing points; for example,(Ri, Sj) represents the
Voronoi regionV (A,B; Ri, Sj).

Fig. 1. Example of a round-tour Voronoi diagram.

We see that any pair(Ri, Sj) for i, j = 0, 1, 2,
V (A,B; Ri, Sj) has a nonempty region in this



particular diagram. In general, however, some
pairs of restaurants and bookstores may not have
nonempty regions.

III. B ASIC PROPERTIES

In this section, we consider basic properties of
the round-tour Voronoi diagram defined in the last
section.

Property 1. Let a ∈ A and b ∈ B and s be a
positive real number satisfyings > 2d(a, b). The
trajectory of the pointz satisfying lz(a, b) = s
forms an ellipse.

Proof: The condition lz(a, b) = s can be
expressed as

d(a, p) + d(b, p) = s − d(a, b). (4)

Becauses andd(a, b) are constants, Eq. (4) means
that the sum of the distances ofp from a andb is
constant. Hence,p moves on an ellipse with foci
a and b.

Property 2. Let A = {a} and B = {b, c}.
Then the boundary betweenV (A,B; a, b) and
V (A,B; a, c) is one branch of the hyperbola with
foci b and c.

Proof: The boundary is{z ∈ R2 | lz(a, b) =
lz(a, c)}. We see

{z | lz(a, b) = lz(a, c)}
= {z | d(z, a) + d(a, b) + d(b, z)

= d(z, a) + d(a, c) + d(c, z)}
= {z | d(a, b) + d(b, z) = d(a, c) + d(c, z)}
= {z | d(b, z) − d(c, z) = d(a, c) − d(a, b)}.

Becaused(a, c) − d(a, b) is a fixed contant, the
difference of the distances fromz to b and c is
constant, which means that the boundary pointz
moves on the hyperbola with focib andc.

Property 3. A Voronoi region of the round-tour
Voronoi diagram is not necessarily connected.

This property can be shown by an example.
Consider the first generator setA = {a1, a2, a3}
where

a1 = (10,−20), a2 = (20, 0), a3 = (20, 22),

and the second generator setB = {b1, b2, b3}
where

b1 = (−10,−20), b2 = (−20, 0), b3 = (−20, 22).

The round-tour Voronoi diagram forA and B is
shown in Fig. 2. In this figure, there are two small

Fig. 2. Round-tour Voronoi diagram with a dis-
connected region.

triangle-like regions. These two regions together
constitute the Voronoi regionV (A,B; a2, b2).
Thus, the Voronoi region is not necessarily con-
nected.

For pointz ∈ R2 and positive realϵ, let U(z, ϵ)
be the set of all points that are within the distance
ϵ from z. We call U(z, ϵ) the ϵ-neighborof point
z.

Property 4. Let a ∈ A, b ∈ B, z ∈ R2, and ϵ be
a positive real number. For anyz′ ∈ U(z, ϵ), the
following inequality is satisfied.

lz′(a, b) ≤ lz(a, b) + 2ϵ (5)

Proof: Suppose that we are at pointz′. We
can visit both pointsa and b by a round tour
visiting z, a, b, z in this order and returning toz′.
The length of this round tour is

d(z′, z) + lz(a, b) + d(z, z′). (6)

The shortest round tour forz′ is not longer than
this tour, and hence we get

lz′(a, b) ≤ lz(a, b) + 2d(z′, z)

≤ lz(a, b) + 2ϵ. (7)



Property 5. For any x, x′ ∈ A and y, y′ ∈ B, if

d(x, y) > d(x′, y) + d(x, y′), (8)

then V(A, B; x, y) is empty.

Proof: First, suppose that

d(z, x′) ≥ d(z, y′). (9)

We then obtain

lz(x, y)

= d(z, x) + d(x, y) + d(y, z)

> d(z, x) + d(x′, y) + d(x, y′) + d(y, z)

(because of Ineq.(8))

= d(z, x) + d(x, y′) + d(x′, y) + d(y, z)

≥ d(z, x) + d(x, y′) + d(x′, z)

(because of the triangular inequality)

≥ d(z, x) + d(x, y′) + d(z, y′)

(because of Ineq.(9))

= lz(x, y′). (10)

Hence, we get

lz(x, y) > lz(x, y′). (11)

Secondly, suppose that

d(z, x′) ≤ d(z, y′). (12)

Then, by a symmetric argument, we obtain

lz(x, y) ≥ lz(x
′, y). (13)

From Ineqs. (11) and (13), we obtain Property 5.

Property 6. If a ∈ V (B; b) or b ∈ V (A; a), then
V (A,B; a, b) is nonempty.

Proof: Suppose thata ∈ V (B; b). Then for
any b′ ∈ B, we get

d(a, b) ≤ d(a, b′). (14)

This is equivalent to

d(a, a)+d(a, b)+d(b, a) ≤ d(a, a)+d(a, b′)+d(b′, a).
(15)

Therefore, we get

la(a, b) ≤ la(a, b′). (16)

On the other hand, we get

la(a, b′)

= d(a, a) + d(a, b′) + d(b′, a)

= d(a, b′) + d(b′, a)

≤ d(a, a′) + d(a′, b′) + d(b′, a)

(because of the triangular inequality)

= la(a
′, b′). (17)

Combining Ineqs. (16) and (17), we get

la(a, b) ≤ la(a
′, b′) (18)

for any a′ ∈ A and b′ ∈ B. This implies a ∈
V (A,B; a, b), and henceV (A,B; a, b) ̸= ∅.

Next, we supposeb ∈ V (A; a). Then, by a
symmetric argument, we getb ∈ V (A,B; a, b) and
haveV (A,B; a, b) ̸= ∅. This completes the proof.

For any finite setX, let |X| denote the number
of elements ofX.

Property 7. Let |A| = m and |B| = n. Then,
the number of nonempty Voronoi regions of the
round-tour Voronoi diagram can be as small as
max(m,n).

Proof: We prove this property by giving an
example of the Voronoi diagram. Without los-
ing generality, we assume thatm ≤ n. We
consider generator setsA = {a1, . . . , am} and
B = {b1, . . . , bn} such that

ai = bi = (i, 0) for i = 1, . . . ,m,

bi = (i, 0) for i = m + 1, . . . , n

as shown in Fig. 3. We show that this diagram has
only n regions. First we prove that for anya ∈ A
andb ∈ B, if V (A,B; a, b) is not empty, thenb is
in V (A; a) in this setting.

Let z be an arbitrary point anda be the point
in A that is nearestz. In this situation, going
straight from z to a and returning toz gives
the shortest round tour because we also visit a
point in B at point a. We havea ∈ V (A; a)
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Fig. 3. Round-tour Voronoi diagram withn re-
gions.

becausea is the nearest point inA to z. Moreover,
we havea ∈ V (A; a) and V (A; a) is convex.
Hence, any point in the shortest round tour is in
V (A; a). Consequently, we get for anya ∈ A and
b ∈ B, if V (A,B; a, b) is not empty, thenb is in
V (A; a). Checking the distances, we find that for
i = 1, 2, . . . ,m, bi is only in V (A; ai), and that
for i = m+1, . . . , n, bi is only in V (A; am). This
completes the proof.

Note that some of the Voronoi regions can be
without positive area although they are nonempty.
An example of such a region is the Voronoi
region V (A,B; am, bm+1) in Fig. 3. The region
V (A,B; am, bm+1) forms the half line starting at
bm+1 in the positive direction of thex axis. In
fact, any point on this half line has the shortest
round tour visitingam and bm+1. However, any
point near to, but not on, this half line can visit
am andbm in a round tour shorter than that visiting
am andbm+1. Thus, the regionV (A,B; am, bm+1)
has no area. Let us call the Voronoi region with
positive area aproper region.

Property 8. Let |A| = m and |B| = n. Then, the
number of proper Voronoi regions of the round-
tour Voronoi diagram can be as small as 1.

Proof: We prove the property by giving an
example. Suppose thatA = {a1, . . . , am} andB =
{b1, . . . , bn} such that

ai = (i, 0) for i = 1, . . . ,m,

bi = (−i, 0) for i = 1, . . . , n.

Let p be an arbitrary point outside thex axis.
Then, as shown in Fig. 4, the triangle with the

……

a1am b1 bna2 b2

Fig. 4. Round-tour Voronoi diagram with only one
positive-area region.

verticesp, a1, andb1, shown by broken lines has
the smallest perimeter among all triangles with the
verticesp, ai, andbj for i = 1, 2, . . . ,m and j =
1, 2, . . . , n. Hence, any point outside thex axis
belongs to the Voronoi region of the pair(a1, b1).
Consequently, the pair(a1, b1) only has a positive
area.

Property 9. Let |A| = m and |B| = n. Then the
number of nonempty Voronoi regions of the round-
tour Voronoi diagram can be as large asmn.

Proof: We prove this property by giving an
example of a Voronoi diagram. Let

A = {(si cos 60◦, si sin 60◦) | si ∈ [1, 1.5],

i = 1, 2, . . . ,m},
B = {(tj, 0) | tj ∈ [1, 1.5], j = 1, 2, . . . , n}.

Suppose thata ∈ A and b ∈ B are any pair of
generators. We will show that there exists a point
c ∈ R2 such thatc ∈ V (A,B; a, b). Let L be the
line passing througha andb. As shown in Fig. 5,
let L1 be the line that is a mirror image ofL with
respect to the liney = 2x, and letL2 be the mirror
image ofL with respect to the liney = 0. Let c be
the point of intersection ofL1 andL2. Finally, let
cA andcB be the mirror images ofc with respect
to y = 2x and y = 0 respectively. Note that both
cA and cB are on the lineL, but neithercA nor
cB is on the line segment connectinga andb. For
any a′ ∈ A and b′ ∈ B, we get

d(c, a′) + d(a′, b′) + d(b′, c)

=d(cA, a′) + d(a′, b′) + d(b′, cB)

≥d(cA, cB)

because the pointscA, a, b andcB are on the lineL
in this order. This implies thatc ∈ V (A,B; a, b).
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Fig. 5. Shortest-path proof with two mirrors.

Thus, for any paira ∈ A and b ∈ B, the Voronoi
region V (A,B; a, b) is nonempty. Consequently,
the number of Voronoi regions can be as large as
mn.

Figure 6 shows an example of a round-tour
Voronoi diagram withO(n2) Voronoi regions for
|A| = |B| = n.

Fig. 6. Round-tour Voronoi diagram withO(n2)
Voronoi regions.

Tab. I. Pruning of generator pairs without Voronoi
regions

no. of no. of pairs no. of pairs no. of pairs
all pairs without regions pruned by pruned by

Condition 1 Condition 2
2500 2406 2406 2070
2500 2401 2399 2080
2500 2406 2405 2269

IV. PRELIMINARY STUDY ON THE NUMBER OF

VORONOI REGIONS

As we have seen by Property 8, the number
of Voronoi regions can be as large asmn for
the generator setsA and B with |A| = m and
|B| = n. However, this extreme case might be
rare, and we are also interested in the average
number of regions. To find the number of regions
in ordinary cases, we experimentally investigate
the case where the generating points inA andB
are located at random.

We generated 50 points on integer grid in-
tersections in[0, 500) × [0, 500) at random and
considered them as elements ofA. Similarly, we
generated 50 more points in the same region and
considered them as elements ofB.

We generated three different pairs ofA andB,
and gathered statistical data from computational
experiments. The results are summarized in Ta-
ble I.

In the table, the three rows correspond to the
three pairs ofA andB, the leftmost column repre-
sents the number of all possible pairs(a, b), which
is 50 × 50 = 2500 because|A| = |B| = 50. The
other three columns show statistical data obtained
in the following way.

We are interested in which pair(a, b) has a
nonempty Voronoi regionV (A,B; a, b). To deter-
mine this property approximately, we checked all
integer grid points in[−100, 600) × [−100, 600),
and enumerated all pairs(a, b) whose regions
V (A,B; a, b) contain no grid points.

We expect that such a pair(a, b) does not
have nonempty regionsV (A,B; a, b) with high
probability. The results are shown in the second



column of Table I.
We see that about 96% of possible pairs do not

have nonempty regions.
From this observation we can say that the

number of pairs of generators that admit nonempty
Voronoi regions is very small. This implies that it
is important to identify and prune the pairs that
do not have nonempty regions as early as possi-
ble to construct the round-tour Voronoi diagram
efficiently.

For this purpose, we consider two conditions
that are sufficient for pair(a, b) not to admit a
nonempty region.

Let us defineD = {(i, j) | i and j are integers
such that−100 ≤ i, j < 600}.

Condition 1. For any integer grid pointz ∈ D,

lz(a, b) > lz(a
′, b) for somea′ ∈ A

or

lz(a, b) > lz(a, b′) for someb′ ∈ B.

Condition 2. There existsa ∈ A and b ∈ B such
that

d(a, b) > d(a′, b) + d(a, b′).

Note that Condition 1 requires much more time
to check than Condition 2 does because there are
about700 × 700 grid points inD while there are
only 50 × 50 pairs (a, b) of generators.

Either Condition 1 or 2 is a sufficient condition
for the pair (a, b) to have no nonempty Voronoi
region. Hence, once we find that Condition 1 or
Condition 2 is satisfied, we can conclude that
V (A,B; a, b) is empty.

The numbers of pairs(a, b) that satisfy Condi-
tion 1 are shown in the third column of Table I,
while the numbers of pairs that satisfy Condition 2
are shown in the rightmost column.

We see that Condition 1 is almost perfect for
checking the emptiness of the Voronoi region al-
though it has high computational cost. Condition 2
detects more than 83% of the empty Voronoi
regions.

Therefore, we expect Condition 2 to be a pow-
erful tool for pruning nonempty regions.

V. A LGORITHM FOR A DIGITAL -PICTURE

APPROXIMATION OF THEROUND-TOUR

VORONOI DIAGRAM

The boundary curves of the round-tour Voronoi
diagram are very complicated in general, and
hence it is not easy to construct an exact diagram
in a short time. Hence, we propose an algorithm
for constructing a digital-picture approximation of
the diagram.

We consider grid pointspij = (i, j) with in-
teger coordinates fori = 1, 2, . . . ,M and j =
1, 2, . . . , N .

For eachpij, there exists a pair(a, b), where
a ∈ A and b ∈ B, such thatpij ∈ V (A,B; a, b).

We defineD(i, j) as

D(i, j) = (a, b) if pi,j ∈ V (A,B; a, b).

If such a pair(a, b) is not unique, we assign
the lexicographically smallest pair(a, b) to D(i, j)
for prespecified orders of generators inA and
B. Thus, D(i, j) where i = 1, . . . ,M and j =
1, . . . , N are defined uniquely. We call the set of
assignments

{D(i, j) | i = 1, . . . ,M, j = 1, . . . , N}

thedigital-picture approximation of the round-tour
Voronoi diagram, or the digital Voronoi diagram
for short. The digital Voronoi diagram can be
constructed straightforwardly if we do not care
about the efficiency; that is, for each grid point
pij, we compute the lengthslpij

(a, b) of the round
tour for all pairs (a, b) and assign the one that
realizes the minimum ofD(i, j). We call this naive
algorithmAlgorithm 1.

Algorithm 1 (naive method). For each grid point
pij, we compute the lengthslpij

(a, b) of the round
tours for all a ∈ A and b ∈ B. We assign the pair
that attains the minimum of lengthD(i, j).

Suppose that we knowlpij
(a, b) for somea ∈ A

and b ∈ B. Then, the pair(a′, b′), wherea ∈ A
andb ∈ B, cannot attain the minimum round tour
at pij if

d(pij, a
′) > lpij

(a, b). (19)



This property can be used to prune the points that
cannot attain the minimum round tour. Using this
property, we consider the following algorithm.

Algorithm 2. For each grid pointpij, we first
compute the length of the round tour under the
assumption thatpij belongs to the same Voronoi
region as its neighbor does. We then prune the
generatorsa with d(pij, a) greater than the length
of the round tour, and finally compute the true
Voronoi region using only the remaining pairs of
generators.

We experimentally compared the processing
times of Algorithms 1 and 2 for various pairs of
generators. The results are summarized in Fig. 7,
where the horizontal axis represents the number
of generators of each kind on a linear scale, and
the vertical axis represents the computation time
on a logarithmic scale.
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Fig. 7. Computation time for constructing digital
round-tour Voronoi diagrams.

From this figure, we can see that the pruning
strategy adopted in Algorithm 2 is very effective
in constructing the digital Voronoi diagram.

VI. CONCLUDING REMARKS

We have proposed a new generalization of the
Voronoi diagram called the round-tour Voronoi
diagram. This Voronoi diagram is the partition
of the plane according to what pair(a, b) of two
different kinds of generators attains the minimum
round tour. We have studied basic properties of
this Voronoi diagram and constructed an algorithm

for computing a digital-picture approximation of
the diagram.

This generalization is motivated by facility loca-
tion analysis considering the interaction between
two different kinds of facilities such as restau-
rants and bookstores. Our next task is to apply
the round-tour Voronoi diagram to such facility
location analysis. In this paper, we considered two
different sets of generators. This can be further
generalized to three or more different kinds that a
customer wants to visit in the shortest round tour.

This approach to generalization is more com-
plicated because the order of the generators that
the customer visits is also important. Full analysis
of this approach will be a future work.

Another work for the future is to construct a
method for computing the exact Voronoi diagram
instead of the digital-picture approximation. For
this purpose, we first need to understand what
kinds of curves can be boundaries of the Voronoi
regions. Since the boundary curves are represented
by complicated equations, it is also important
to make the algorithm robust against numerical
errors.
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