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Abstract

In the field of optimal transport theory, an optimal map is known to be a
gradient map of a potential function satisfying cost-convexity. In this paper,
the Jacobian determinant of a gradient map is shown to be log-concave with
respect to a convex combination of the potential functions when the underly-
ing manifold is the sphere and the cost function is the distance squared. The
proof uses the non-negative cross-curvature property of the sphere recently
established by Kim and McCann. As an application to statistics, a new fam-
ily of probability densities on the sphere is defined in terms of cost-convex
functions. The log-concave property of the likelihood function follows from
the inequality.

1 Introduction

In recent years, the theory of optimal transport has been actively studied. In par-

ticular, properties of the optimal transport map on Riemannian manifolds are well

established. The existence and uniqueness theorem for the optimal transport map

on Riemannian manifolds was proved by McCann (2001); this result extended the

pioneering work of Brenier (1991) for the Euclidean case. He showed that optimal

transport is given by the gradient map of a so-called cost-convex function. On the

other hand, for statistical data analysis on Euclidean space, it is useful to consider

convex combinations of convex functions in order to construct various probability

density functions (Sei (2006)). In this paper, we show that when the underlying

space is the sphere, the convex combination of cost-convex functions is actually

cost-convex (Lemma 1) and the Jacobian determinant of the resultant gradient map

is log-concave with respect to the convex combination (Theorem 1). This result is an

extension of the Jacobian interpolation inequality shown by Cordero-Erausquin et al.

(2001). We refer to our Jacobian inequality as the Jacobian inequality throughout

this paper, for simplicity.
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Our result is related to the regularity theory of optimal transport maps. Here we

consider some recent studies in this field. Ma et al. (2005) showed that regularity

of the transport map for general cost functions on Euclidean space is assured if

a geometrical quantity called the cost-sectional curvature is positive. Conversely,

Loeper (2005) showed that non-negativity of the cost-sectional curvature is necessary

for regularity. He also showed that non-negativity of the cost-sectional curvature

implies non-negativity of the usual sectional curvature if the cost function is the

squared distance on a Riemannian manifold. However, the converse does not hold

(Kim (2007)). Comprehensive assessment on the theory of optimal transport has

been published (Villani (2009)). Kim and McCann (2007) and Kim and McCann

(2008) defined the cross-curvature and showed that the sphere Sn has almost positive

cross-curvature. In general, the cost-sectional curvature is non-negative if the cross-

curvature is non-negative. In the present paper, we use the non-negative cross-

curvature property of the sphere to prove our main results.

We show that our Jacobian inequality opens several doors for applications to

directional statistics. In this field, a family of probability densities is used to analyze

given directional data, such as locations on the earth. For example, a test on the

directional character of given data is constructed via families of probability density

functions on the sphere. Directional statistics has a long history since Fisher (1953)

and a comprehensive text on this subject has been published (Mardia and Jupp

(2000)).

We define a probability density function on the sphere by the gradient maps of

cost-convex functions. Although, in the context of optimal transport, one usually

considers push-forward of probability densities, we construct a family of densities

by means of pull-back of probability densities. This follows from the fact that

a pull-back density has an explicit expression for the likelihood function needed

for statistical analysis. The density function does not need any special functions

such as the modified Bessel function, which usually appear in directional statistics.

Furthermore, the Jacobian inequality implies that the likelihood function is log-

concave with respect to the statistical parameters. This property is reasonable for

computation of the maximum likelihood estimator. We propose more specific models

and show graphical images of each probability density. In terms of analysis of real

data, we present the result of density estimation for some astronomical data.

This paper is organized as follows. In Section 2, we present basic notation and

state our main theorem. In Section 3, we construct a family of probability density

functions on the sphere and apply them to directional statistics. All mathematical

proofs of the main theorem and lemmas are given in Section 4. Finally we present
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a discussion in Section 5.

2 Main theorem

Let Sn be the n-dimensional unit sphere. The tangent space at x ∈ Sn is denoted by

TxS
n. The geodesic distance (arc length) between x and y in Sn is denoted by d(x, y).

The cost function is c(x, y) = (1/2)d(x, y)2. If one uses Euclidean coordinates in

Rn+1 to express Sn, then d(x, y) = cos−1(x⊤y), where the range of cos−1 is [0, π].

The c-transform ϕc of a function ϕ : Sn → R is defined by

ϕc(y) = sup
x∈Sn

{−c(x, y) − ϕ(x)} . (1)

The function ϕ is said to be cost-convex, or c-convex, if (ϕc)c = ϕ. Examples of

c-convex functions will be given in Section 3. By compactness of Sn, a function ϕ

is c-convex if and only if for any x ∈ Sn there exists some (not necessarily unique)

y ∈ Sn such that c(x, y) + ϕ(x) = infz∈Sn{c(z, y) + ϕ(z)}.
The image of the exponential map of v ∈ TxS

n at x ∈ Sn, denoted by expx(v), is

the end point of the geodesic starting at x with the initial vector v. More explicitly, if

one uses Euclidean coordinates in Rn+1 to express Sn and TxS
n, the exponential map

is written as expx(v) = (cos |v|)x + (sin |v|)(v/|v|), where |v| denotes the Euclidean

norm of the vector v. The exponential map expx is a diffeomorphism from {v ∈
TxS

n | |v| < π} to Sn \ {x′}, where x′ is the antipodal point of x.

The following lemma is a consequence of the non-negative cross-curvature property

of the sphere established by Kim and McCann (2008). See Section 4 for a proof.

Lemma 1 (Convex combination of c-convex functions). If ϕ0 and ϕ1 are c-convex,

then for each t ∈ [0, 1] the function (1 − t)ϕ0(x) + tϕ1(x) of x is also c-convex.

We define Gϕ(x) = expx(∇ϕ(x)) as long as ϕ is differentiable at x, where ∇ is the

gradient operator. Following Delanoë and Loeper (2006), we call Gϕ : Sn → Sn the

gradient map associated with the potential function ϕ. The map Gϕ is differentiable

at x if |∇ϕ(x)| < π and ϕ has its Hessian at x. It is known that any c-convex ϕ on

any compact Riemannian manifold is Lipschitz and therefore differentiable almost

everywhere. Furthermore, ϕ has a Hessian almost everywhere in the Alexandrov

sense, and therefore Gϕ(x) is differentiable almost everywhere (see McCann (2001)

and Cordero-Erausquin et al. (2001)). These technical facts on differentiability are

important for the theory of optimal transport. However, we will not need them

because, for statistical applications, we can assume from the beginning that Gϕ(x)

is differentiable except at a finite set of points (see Section 3).
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For any c-convex functions ϕ0 and ϕ1, by Lemma 1, the convex combination

ϕt(x) = (1 − t)ϕ0(x) + tϕ1(x) is c-convex. We define an interpolation of gradient

maps by

Ft(x) = Gϕt(x) = expx(∇ϕt(x)), t ∈ [0, 1].

Assume that for each i ∈ {0, 1}, |∇ϕi(x)| < π and ϕi(x) has its Hessian at x. Then

it is easy to see that |∇ϕt(x)| < π and ϕt(x) has its Hessian defined at x. We define

the Jacobian determinant Jt(x) = Jac(Ft(x)) = det(dFt/dx) with respect to any

orthonormal basis on TxS
n and TFt(x)S

n with suitable orientations.

The following theorem is our main result.

Theorem 1 (Jacobian inequality). Let ϕ0 and ϕ1 be two c-convex functions. Let

x be a point in Sn such that, for each i = 0, 1, |∇ϕi(x)| < π and ϕi has its Hessian

defined at x. Then the Jacobian determinant Jt(x) defined above is log-concave

with respect to t. It is equivalent to the inequality

log Jt(x) ≥ (1 − t) log J0(x) + t log J1(x).

We refer to the above inequality as the Jacobian inequality in this paper.

Remark 1. This theorem is an extension of the result obtained by Cordero-Erausquin

et al. (2001). They showed a similar inequality under the additional assumption that

ϕ0 ≡ 0, as a corollary of a stronger inequality related to the geometric-arithmetic

inequality. It is not known whether the stronger one holds for our case ϕ0 ̸≡ 0 (see

also Remark 3).

3 Application to directional statistics

3.1 Probability densities induced by gradient maps

In Sei (2006), the author proposed a family of probability density functions in terms

of gradient maps on Euclidean space, where a probability density is constructed as

a pull-back of some fixed measure (typically Gaussian) pulled by a gradient map.

The notion can be directly extended to probability density functions on the sphere.

For statistical application, we will consider only c-convex functions ϕ such that the

gradient map Gϕ is an isomorphism on Sn and ϕ has its Hessian defined everywhere

except at a finite set of points. We define some related terminology.

Definition 1 (Wrapping potential function). We say that a function ϕ is a wrapping

potential function if ϕ is c-convex, ϕ has its Hessian defined everywhere except for

a finite set of points and Gϕ is an isomorphism on Sn. Let W (Sn) be the set of all

wrapping potential functions.
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We have the following lemma.

Lemma 2. If ϕ0 and ϕ1 are in W (Sn), then the interpolation ϕt = (1 − t)ϕ0 + tϕ1

is also in W (Sn).

We construct a probability density function for each ϕ ∈ W (Sn). Let U be a

random variable on Sn distributed uniformly. Then, since x 7→ Gϕ(x) is surjective,

we can define a random variable on Sn by X = G−1
ϕ (U). The probability density

function of X with respect to the uniform measure is pϕ(x) = Jac(Gϕ(x)), where

the symbol Jac refers to the Jacobian determinant. In other words, we define pϕ(x)

by the pull-back measure of the uniform measure pulled by the gradient map Gϕ.

It is distinct from the push-forward measure typically used in other applications of

optimal transport.

At this point, we describe the exact sampling method of the probability density

function pϕ(x). A sampling procedure is important if one needs to calculate expec-

tations by the Monte Carlo method. From the definition, it is clear that the random

variable X = G−1
ϕ (U) with a uniformly random variable U on Sn has density pϕ(x).

Hence if we can generate U and solve the equation Gϕ(X) = U effectively, we obtain

a random sample X. Indeed, U is quite easily generated, for example, by normal-

ization of a standard Gaussian sample in Rn+1. To solve Gϕ(X) = U , it is sufficient

to find the unique minimizer of the function c(x, U) + ϕ(x) with respect to x since

the following lemma holds.

Lemma 3. [Lemma 7 of McCann (2001)] If ϕ is c-convex and u = Gϕ(x0) is defined

at x0 ∈ Sn, then the unique minimizer of c(x, u) + ϕ(x) with respect to x is x0.

Thus our task is to solve the (deterministic) minimization problem. Although the

minimization problem of c(x, U)+ϕ(x) is not convex in the usual sense, the objective

function has no local minimum, by c-convexity. Hence the problem is efficiently

solved by generic optimization packages. An example of sampling is illustrated in

Figure 1.

3.2 Spherical gradient model

We consider a finite-dimensional set of probability densities on the sphere. In statis-

tics, a finite-dimensional set of probability densities is called a statistical model. An

unknown parameter θ that parameterizes the density functions is estimated from

observed data points x(1), . . . , x(N) ∈ Sn. One of the most important estima-

tors is the maximum likelihood estimator that maximizes the likelihood function∏N
t=1 p(x(t)|θ) with respect to θ.
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(a) A density function on the sphere. (b) Samples.

Figure 1: Exact sampling. (a) a density function (a white region indicates high
density) and (b) 2000 sampled data points. The c-convex function used is ϕ(x) =
0.5 cos(2d(x, e1))+ 0.5 cos(3d(x, e2)) for x ∈ S2, where e1 and e2 denote unit vectors
along the horizontal and vertical axes, respectively. See Subsection 3.3 for details.
Only the northern hemisphere is drawn. The number of points on the northern
hemisphere was 967 in this experiment. The program code was written in R and
the computational time for sampling was about ten seconds.

We construct a new statistical model using c-convex functions. Recall that the

set W (Sn) of wrapping potential functions is a convex space (Lemma 2). We can

consider a finite-dimensional subspace as follows. Let ϕ(i) ∈ W (Sn) for i = 1, . . . , p.

Define

ϕθ(x) =

p∑
i=1

θiϕ(i)(x),

where θ = (θi)
p
i=1 ranges over a convex subset Θ of Rp such that ϕθ ∈ W (Sn) for

any θ ∈ Θ. By Lemma 2 and the elementary fact that 0 ∈ W (Sn), we can use

the simplex {θ | θi ≥ 0,
∑p

i=1 θi ≤ 1} as Θ. Let p(x|θ) be the probability density

function induced by ϕθ(x) ∈ W (Sn), that is,

p(x|θ) = Jac(Gϕθ
(x)). (2)

We call the family (2) the spherical gradient model.

The maximum likelihood estimator for the spherical gradient model (2) is reason-

ably computed by the following corollary of Theorem 1.

Corollary 1. Define p(x|θ) by (2). Then, for any data points x(1), . . . , x(N) ∈ Sn,

the likelihood function
∏N

k=1 p(x(k)|θ) is log-concave with respect to θ.
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3.3 Examples

We give some examples of the spherical gradient model (2). Recall d(x, y) denotes

the length between x and y on Sn. All the examples are combinations of rotation-

ally symmetric functions f(d(x, z)), where z ∈ Sn and f ∈ C2([0, π]). The k-th

derivative of f is denoted by f (k). The following lemma is fundamental.

Lemma 4. Assume that f (1)(0) = f (1)(π) = 0 and f (2)(r) > −1 for almost all

r ∈ [0, π]. Then for each z ∈ Sn the function f(d(x, z)) of x is in W (Sn).

Let F be the set of functions on [0, π] that satisfy the assumption in Lemma 4.

Choose p pairs {(fi, zi)}p
i=1 from F ×Sn. Then we can define the spherical gradient

model (2) with

ϕθ(x) =

p∑
i=1

θifi(d(x, zi)) θ = (θi)
p
i=1 ∈ Θ, (3)

where Θ is a convex subset of Rp such that ϕθ ∈ W (Sn) for all θ ∈ Θ.

Remark 2. If p = 1, the resultant density p(x|θ) is a function of d(x, z) for some z ∈
Sn. In directional statistics, such a probability density function is called rotationally

symmetric.

We briefly touch on known distributions on the sphere in statistics. A very well-

known distribution on the sphere is the von Mises-Fisher distribution defined by

p(x|µ) =

(
|µ|
2

)(n+1)/2
1

Γ((n + 1)/2)I(n+1)/2−1(|µ|)
exp(µ⊤x) (4)

in Euclidean coordinates of Rn+1, where µ ∈ Rn+1 and Iν denotes the modified

Bessel function of the first kind and order ν. A more general distribution is the

Fisher-Bingham distribution defined by

p(x|µ,A) =
1

a(µ,A)
exp

(
µ⊤x + x⊤Ax

)
, (5)

where a(µ,A) is a normalizing factor to ensure that
∫

p(x|µ,A)dx = 1. We remark

that (5) can also be written as a function of d(x, zi) = cos−1(x⊤zi) for a finite number

of zi. See Mardia and Jupp (2000) for details.

We return to our spherical gradient model (2) with (3). The following explicit
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formula due to a general expression (11) is useful for practical implementation:

p(x|θ) = (sin |vθ|/|vθ|)n−1 det

(
xx⊤ + Hθ +

p∑
i=1

θiKi

)
,

vθ = −
p∑

i=1

θif
′
i(αi)ei, αi = cos−1(x⊤zi), ei =

zi − x cos αi

sin αi

,

Hθ = eθe
⊤
θ +

αθ cos αθ

sin αθ

(
I − xx⊤ − eθe

⊤
θ

)
, eθ = vθ/|vθ|, αθ = |vθ|,

Ki = f ′′
i (αi)eie

⊤
i +

f ′
i(αi) cos αi

sin αi

(
I − xx⊤ − eie

⊤
i

)
,

where Euclidean coordinates in Rn+1 are used. We remark that the above formula

needs no special function, unlike the von Mises-Fisher distribution (4) or the Fisher-

Bingham distribution (5).

We give examples of pairs (fi, zi). Recall that W (Sn) is the set of all wrapping

potential functions.

Example 1 (Linear potential). Let fi(ξ) = cos(ξ) for all i. We use Euclidean

coordinates in Rn+1 to express Sn. Then ϕθ(x) =
∑p

i=1 θi cos(d(x, zi)) =
∑p

i=1 θix
⊤zi

is in W (Sn) as long as
∑p

i=1 |θi| ≤ 1. We deduce that a potential function ϕµ(x) :=

µ⊤x is in W (Sn) if |µ| ≤ 1. The parameter µ determines the direction and magnitude

of concentration. That is, the resultant density function takes larger values at x

when −µ/|µ| is closer to x and |µ| is larger, where the negative sign of −µ/|µ| is

needed because our model is defined by the pull-back measure. We call ϕµ the linear

potential and the resultant statistical model the linear-potential model. This model

is rotationally-symmetric (see Remark 2). An example is given in Figure 2 (a).

Example 2 (Quadratic potential). Consider fi(ξ) = cos(ξ) for i = 1, . . . , p1 and

fi(ξ) = cos(2ξ)/4 for i = p1 + 1, . . . , p. Then the potential can be written as

ϕθ(x) =

p1∑
i=1

θix
⊤zi +

p∑
i=p1+1

θi

4

{
2(x⊤zi)

2 − 1
}

.

Let µ ∈ Rn+1 and A ∈ Sym(Rn+1). Let |A|1 denote the trace norm of A defined

by the sum of absolute eigenvalues of A. This is actually a norm because |A|1 =

max−I≼B≼I tr[AB]. Then we deduce that a potential function

ϕµ,A(x) = x⊤µ +
1

2
x⊤Ax (6)

is in W (Sn) if (µ,A) satisfies |µ|+|A|1 ≤ 1. We call the model the quadratic-potential

model. Various numerical examples of the quadratic potential model are given in

8



Figure 2. Note that the representation of A includes redundancy because x⊤x = 1.

It will be tractable if one sets trA = 0. However, in general this restriction strictly

reduces the size of the set. For example, the matrix A = diag(0.2, 0,−0.8) has norm

|A|1 = 1 but the trace-adjusted one B = diag(0.4, 0.2,−0.6) has |B|1 = 1.2 > 1.

Example 3 (High-frequency potential). As a generalization of the above examples,

we consider fi(ξ) = k−2
i cos(kiξ) for a positive integer ki. If Z = (z1, . . . , zp) ∈ (Sn)p

and K = (k1, . . . , kp) ∈ Zp
>0 are given, we obtain a potential

ϕθ(x) =

p∑
i=1

θik
−2
i cos(kid(x, zi)). (7)

We call this model the high-frequency model. Various numerical examples of the

high-frequency model are given in Figure 3. The density function used in Figure 1

belongs to this class.

3.4 An actual data set

Here we give a brief analysis of some astronomical data. The data consist of the

locations of 188 stars of magnitude brighter than or equal to 3.0. The data is

available from the Bright Star Catalog (5th Revised Ed.) distributed from the

Astronomical Data Center. We simply compare the quadratic model and the null

model (uniform distribution) by using Akaike’s Information Criterion (AIC). In

general, AIC for a statistical model is defined by the sum of (−2) times the maximum

log-likelihood and 2 times the parameter dimension. It is recommended to select

the statistical model minimizing AIC from a set of candidates. See Akaike (1974)

for details of AIC.

The estimated parameter for the quadratic model is

µ̂ = (0.010, 0.017, 0.091)⊤ and Â = 0.173ẑ1ẑ
⊤
1 − 0.250ẑ2ẑ

⊤
2 ,

where ẑ1 = (0.731, 0.048,−0.681)⊤ and ẑ2 = (0.544, 0.562, 0.623)⊤. The maximum

log-likelihood is 12.5. Since the number of unknown parameters is 8, AIC is −9.0.

On the other hand, the likelihood of the null model (uniform distribution) is zero and

AIC is also zero. Therefore, we select the quadratic model from the two candidates.

Figure 4 shows the observed data and the estimated density.
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(a) µ = e1. (b) A = e1e
⊤
1 .

(c) A = −e1e
⊤
1 . (d) A = −0.5e1e

⊤
1 + 0.5e2e

⊤
2 .

(e) µ = 0.5e1, A = −0.5e1e
⊤
1 . (f) µ = e1/3, A = (−e2e

⊤
2 + e3e

⊤
3 )/3.

Figure 2: The quadratic-potential model. The white regions indicate high density.
The figures represent (a) Concentration, (b) Negative dipole, (c) Positive dipole, (d)
Complementary dipoles, (e) Unbalanced dipole and (f) General.
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(a) Z = (e1), k = (3), θ = (1). (b) Z = (e1, e2), K = (3, 3), θ = (0.5, 0.5).

(c) Z = (e1, e2), K = (9, 9), θ = (0.5, 0.5). (d) Z = (e1, (e1 + e2)/
√

2),
K = (30, 4), θ = (0.5, 0.5).

Figure 3: High-frequency spherical gradient models. White regions indicate high
density.

(a) Northern hemisphere. (b) Southern hemisphere.

Figure 4: The observed data points and the estimated density for the astronomic
data. Both hemispheres are viewed from the northern side. White regions indicate
high density. The points are the observed data.
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4 Proofs

4.1 Proofs of Lemma 1

We use the following lemma due to Proposition 6 of McCann (2001). The lemma

can also proved by direct calculation for the sphere. Recall c(x, y) = d(x, y)2/2.

Lemma 5 (Inverse of the exponential map). Let x, y ∈ Sn and assume d(x, y) < π.

Then ∇xc(x, y) = − exp−1
x (y), where ∇x denotes the gradient operator with respect

to x.

We first recall the cross-curvature non-negativity and the time-convex-sliding-

mountain property of the sphere established by Kim and McCann (2008). For

simplicity, the definitions below are specialized for the sphere. For a given triplet

(x, y, z) ∈ (Sn)3 with d(x, z) < π and d(y, z) < π, the curve

{expz((1 − t) exp−1
z (x) + t exp−1

z (y)) | t ∈ [0, 1]}

is called a c-segment connecting x and y with respect to z. We denote the c-

segment by [x, y]t(z) in this paper. For given x, y ∈ Sn with d(x, y) < π, let σs

and τt be smooth curves such that σ0 = x and τ0 = y. We assume that either

σs = [σ0, σ1]s(y) or τt = [τ0, τ1]t(x). Note that only one of the two curves is assumed

to be a c-segment. Then the cross-curvature S is well defined by

S(x, y)(ξ, η) = − d2

ds2

d2

dt2
c (σs, τt)

∣∣∣∣
s=0,t=0

,

where ξ = dσs/ds|s=0 and η = dτt/dt|t=0. For a given quadruplet (x, z, y0, y1) ∈
(Sn)4, the sliding mountain is defined by a function

t 7→ c(z, [y0, y1]t(z)) − c(x, [y0, y1]t(z)). (8)

We use the following fact proved by Kim and McCann (2008).

Lemma 6 (Cross-curvature non-negativity). For the sphere, the cross-curvature

S(x, y)(ξ, η) is non-negative for any (x, y, ξ, η) with d(x, y) < π.

Although the following lemma is essentially due to Kim and McCann (2008), we

derive it from Lemma 6 for completeness.

Lemma 7 (Time-convex-sliding-mountain). Let z be a point in Sn and let y0 and

y1 be two points in Sn different from the antipodal point of z. Then for any x ∈ Sn

the sliding-mountain (8) is convex with respect to t ∈ [0, 1].

12



Proof. Denote the sliding-mountain (8) by f(t). Fix t ∈ (0, 1) and denote y =

[y0, y1]t(z) for simplicity. We first assume y is not the antipodal point of x and

prove d2f(t)/dt2 ≥ 0. Let σs = [z, x]s(y) and τu = [y, y1]u(z). Note that σs is a

c-segment with respect to τ0 = y. Then from Lemma 6, we have

− d2

ds2

d2

du2
c (σs, τu)

∣∣∣∣
u=0

≥ 0 (9)

for each s ∈ [0, 1]. On the other hand, by Lemma 5,

d

ds
c(σs, τu)

∣∣∣∣
s=0

= −⟨ξ, exp−1
z (τu)⟩

= −⟨ξ, (1 − u) exp−1
z (y) + u exp−1

z (y1)⟩,

where ξ = (dσs/ds)|s=0 and ⟨·, ·⟩ denotes the inner product on TzS
n. We obtain

d

ds

d2

du2
c(σs, τu)

∣∣∣∣
s=0,u=0

= 0. (10)

Integrating both sides of (9) with respect to s twice and using (10), we have{
d2

du2
c(z, τu) −

d2

du2
c(x, τu)

}∣∣∣∣
u=0

≥ 0.

Since τu = [y, y1]u(z) = [y0, y1]t+u(1−t)(z), we have d2f(t)/dt2 ≥ 0. Next we assume

that y is the antipodal point of x. By assumption, y is not the antipodal point of

z. By direct calculation, we have

lim
s→t+0

df(s)

ds
− lim

s→t−0

df(s)

ds
= 2π

∣∣∣∣d[y0, y1]t(z)

dt

∣∣∣∣ ≥ 0.

Therefore f(t) is convex over t ∈ [0, 1].

We apply Lemma 7 to prove Lemma 1 as follows:

Proof of Lemma 1. For any point x ∈ Sn, we denote the antipodal point of x by

x′. Since ϕ0 and ϕ1 are c-convex, there exist functions ϕc
0 and ϕc

1 such that ϕi(x) =

supy {−c(x, y) − ϕc
i(y)} (i = 0, 1). Then we have

ϕt(x) = (1 − t)ϕ0(x) + tϕ1(x)

= sup
y0

{−(1 − t)c(x, y0) − (1 − t)ϕc
0(y0)} + sup

y1

{−tc(x, y1) − tϕc
1(y1)}

= sup
y0 ̸=x′

sup
y1 ̸=x′

{−(1 − t)c(x, y0) − tc(x, y1) − (1 − t)ϕc
0(y0) − tϕc

1(y1)} ,
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where the last equality follows from continuity of c and ϕc
i (i = 0, 1). Now we consider

a c-segment [y0, y1]t(z) and denote it by yt(z) for simplicity. From Lemma 7, we have

− (1 − t)c(x, y0) − tc(x, y1)

= sup
z ̸=y′

0,y′
1

{−c(x, yt(z)) + c(z, yt(z)) − (1 − t)c(z, y0) − tc(z, y1)} ,

where the supremum of the right hand side is attained at z = x. Hence

ϕt(x) = sup
y0,y1 ̸=x′

sup
z ̸=y′

0,y′
1

{−c(x, yt(z)) + c(z, yt(z)) − (1 − t)c(z, y0) − tc(z, y1)

−(1 − t)ϕc
0(y0) − tϕc

1(y1)}

= sup
w

{−c(x,w) − ξ(w)} ,

where ξ is defined by an infimum convolution

ξ(w) := inf
(y0,y1,z)|y0,y1 ̸=x′,yt(z)=w

{−c(z, w) + (1 − t)c(z, y0) + tc(z, y1)

+(1 − t)ϕc
0(y0) + tϕc

1(y1)} .

Since ϕt is written in the form of a c-transform, it is c-convex.

4.2 Proof of Theorem 1

For each c-convex function ϕ, let Ω(ϕ) be the set of points x such that |∇ϕ(x)| < π

and ϕ has its Hessian defined at x. If ϕ is a wrapping potential function (Defini-

tion 1), then Sn \ Ω(ϕ) consists only of a finite set of points.

Lemma 8. If ϕ is c-convex, then |∇ϕ(x)| < π except for at most one x ∈ Ω(ϕ).

Furthermore, if |∇ϕ(x)| ≥ π for some x, then Gϕ(y) = Gϕ(x) for any y ∈ Ω(ϕ).

Proof. Let ϕ be c-convex. Assume that there exists x ∈ Ω(ϕ) such that |∇ϕ(x)| ≥ π.

In general, any c-convex function on a compact Riemannian manifold is Lipschitz

continuous with Lipschitz constant less than or equal to the diameter of the manifold

(Lemma 2 of McCann (2001)). Since the diameter of the sphere Sn is π, we have

|∇ϕ(x)| = π. Hence Gϕ(x) is the antipodal point x′ of x. We now prove that

Gϕ(y) = x′ for all y ∈ Ω(ϕ). We use 2-monotonicity of the gradient map:

d2(x,Gϕ(x)) + d2(y, Gϕ(y)) ≤ d2(x,Gϕ(y)) + d2(y, Gϕ(x)),

where d(x, y) is the distance between x and y. The above inequality follows from

Lemma 3. Let a = d(x,Gϕ(y)), b = d(y, x′) and c = d(y, Gϕ(y)). Then we have
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π2+c2 ≤ a2+b2. By the triangle inequality with respect to the triangle (x, y,Gϕ(y)),

we have c ≥ |a + b − π|. Therefore

0 ≥ π2 + c2 − a2 − b2

≥ π2 + (a + b − π)2 − a2 − b2

= 2(π − a)(π − b).

This implies a = π or b = π; equivalently, Gϕ(y) = x′ or y = x. Hence we have

Gϕ(y) = x′ for any y ∈ Ω(ϕ). Then |∇ϕ(y)| < π for any y ̸= x from the definition

of Gϕ.

We proceed to the proof of Theorem 1. Fix two c-convex functions ϕ0 and ϕ1 and

let ϕt = (1 − t)ϕ0 + tϕ1 for t ∈ [0, 1]. Let x ∈ Ω(ϕ0) ∩ Ω(ϕ1). Then it is easy to

see that x ∈ Ω(ϕt) for any t ∈ [0, 1]. Recall that the gradient map of ϕt is denoted

by Ft(x) = expx(∇ϕt(x)). Note that Ft(x) is a c-segment [F0(x), F1(x)]t(x). We

prepare some notation to represent an explicit formula of the Jacobian determinant

of Ft(x). Let σt(x) be the Jacobian determinant of the exponential map at ∇ϕt(x),

i.e. σt(x) = det{d(expx(v))/dv}|v=∇ϕt(x), where the determinant is calculated with

respect to any orthonormal bases. Denote the Hessian operator at x by Hessx and

let Ht(x) = (Hessxc(x, y))y=Ft(x). Then, by Cordero-Erausquin et al. (2001), the

Jacobian determinant of Ft(x) is

Jt(x) = σt(x) det (Ht(x) + Hessxϕt) . (11)

Lemma 9. Let x ∈ Ω(ϕ0) ∩ Ω(ϕ1). The matrix-valued function Ht(x) is concave

with respect to t:

Ht(x) ≽ (1 − t)H0(x) + tH1(x) for any t ∈ [0, 1],

where A ≽ B means that A − B is non-negative definite.

Proof. Since Ft(x) is a c-segment [F0(x), F1(x)]t(x), Lemma 7 implies that

c(w, Ft(x)) − c(x, Ft(x))

≥ (1 − t){c(w, F0(x)) − c(x, F0(x))} + t{c(w, F1(x)) − c(x, F1(x))}

for all w ∈ Sn. By taking the Hessian with respect to w at w = x, we obtain

Hesswc(w,Ft(x))|w=x ≽ (1 − t)Hesswc(w, F0(x))|w=x + tHesswc(w,F1(x))|w=x.

This means Ht(x) ≽ (1 − t)H0(x) + tH1(x).
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Lemma 10 (Jacobian-ratio inequality). Let x ∈ Ω(ϕ0)∩Ω(ϕ1). Then the following

inequality holds:(
Jt(x)

σt(x)

)1/n

≥ (1 − t)

(
J0(x)

σ0(x)

)1/n

+ t

(
J1(x)

σ1(x)

)1/n

. (12)

Proof. By the formula (11), it is sufficient to prove that det1/n(Ht +Hessxϕt) is con-

cave with respect to t. Indeed, by Lemma 9 and the geometric-arithmetic inequality

on det1/n, we obtain

det1/n(Ht + Hessxϕt)

≥ det1/n {(1 − t)H0 + tH1 + Hessxϕt}

= det1/n {(1 − t)(H0 + Hessxϕ0) + t(H1 + Hessxϕ1)}

≥ (1 − t)det1/n(H0 + Hessxϕ0) + tdet1/n(H1 + Hessxϕ1).

Hence det1/n(Ht + Hessxϕt) is concave.

Remark 3. If ϕ0 ≡ 0, the inequality (12) is similar to the Jacobian inequality, due

to Cordero-Erausquin et al. (2001). They showed that if ϕ0 ≡ 0,

Jt(x)1/n ≥ (1 − t)v1−t(F1(x), x)1/n + t[vt(x, F1(x))]1/nJ1(x)1/n, (13)

where vt(x, y) denotes the volume distortion coefficient (see Cordero-Erausquin et

al. 2001 for details). The inequality (13) is crucial to prove a Brunn-Minkowskii-type

inequality on manifolds. However, since the inequality (13) is only established for the

special case ϕ0 ≡ 0, it is not sufficient for our statistical application. Unfortunately,

(13) is not implied from (12). In fact, if ϕ0(x) ≡ 0, then J0(x) = 1 and σ0(x) = 1,

and the inequality (12) reduces to

Jt(x)1/n ≥ (1 − t)σt(x)1/n + t

(
σt(x)

σ1(x)

)1/n

J1(x)1/n.

This inequality is weaker than (13) because v1−t(F1(x), x) > 1 > σt(x) and vt(x, F1(x)) =

σt(x)/σ1(x).

Lemma 11. For any x ∈ Ω(ϕ0) ∩ Ω(ϕ1), log σt(x) is concave with respect to t.

Proof. For the unit sphere Sn, the Jacobian determinant of the exponential map

is given by (sin |v|/|v|)n−1. Therefore σt(x) = (sin |∇ϕt(x)|/|∇ϕt(x)|)n−1. Since

the function [0, π] ∋ ρ 7→ log(sin ρ/ρ) is decreasing and concave, and since the

map t 7→ |∇ϕt(x)| is convex with respect to t, we deduce that the composite map

log σt(x) = log(sin |∇ϕt(x)|/|∇ϕt(x)|) is concave.

Proof of Theorem 1. By Lemma 10 and Lemma 11, the functions log(Jt(x)/σt(x))

and log σt(x) are concave with respect to t. Hence log Jt(x) is also concave.

16



4.3 Proof of Lemma 2

Recall that W (Sn) is the set of c-convex functions ϕ such that the gradient map Gϕ

is an isomorphism on Sn and ϕ has its Hessian defined everywhere except at a finite

set of points.

Lemma 12. Let ϕ be a c-convex function and differentiable. Then Gϕ is injective

if and only if c(x,Gϕ(x)) + c(z, Gϕ(z)) < c(x,Gϕ(z)) + c(z, Gϕ(x)) for any x ̸= z.

Proof. In general, by Lemma 3, 2-monotonicity

c(x,Gϕ(x)) + c(z,Gϕ(z)) ≤ c(z, Gϕ(x)) + c(x,Gϕ(z))

holds for any x and z, where equality holds if and only if Gϕ(x) = Gϕ(z). The result

follows immediately.

Lemma 13. Let ϕ0 and ϕ1 be members of W (Sn). Then, for any t ∈ [0, 1], the

gradient map Ft(x) = expx(∇ϕt(x)) is injective.

Proof. Put ht(x, z) = c(x, Ft(x))+c(z, Ft(z))−c(x, Ft(z))−c(z, Ft(x)). By Lemma 12,

it is sufficient to show that ht(x, z) < 0 for any t ∈ [0, 1] and x ̸= z. By the assump-

tion and Lemma 12, we have h0(x, z) < 0 and h1(x, z) < 0. On the other hand, by

Lemma 7, ht(x, z) ≤ (1 − t)h0(x, z) + th1(x, z). Hence we obtain ht(x, z) < 0.

Proof of Lemma 2. Assume that ϕ0 and ϕ1 are members of W (Sn). From Lemma 13,

Ft is injective. On the other hand, Lemma 8 implies that |∇ϕ0(x)| < π and

|∇ϕ1(x)| < π for all x ∈ Sn. Then ∇ϕ0(x) = exp−1
x (F0(x)) and ∇ϕ1(x) =

exp−1
x (F1(x)) are continuous. This implies Ft is continuous. Hence, by compactness

and connectedness of Sn, Ft must be an isomorphism on Sn. Twice differentiability

of ϕt follows immediately from that of ϕ0 and ϕ1.

4.4 Proof of Lemma 4

Fix z and let ϕ(x) = f(d(x, z)), for simplicity. We first prove c-convexity of ϕ.

It is sufficient to show that for each x0 ∈ Sn there exists some y ∈ Sn such that

c(x0, y)+ϕ(x0) = infx∈Sn{c(x, y)+ϕ(x)}. Thus we investigate the point minimizing

c(x, y) + ϕ(x) for each fixed y. Denote the antipodal points of y and z by y′ and z′,

respectively. If x is different from y′, then the gradient vector of c(x, y) + ϕ(x) with

respect to x is

∇x{c(x, y) + ϕ(x)} = ∇xc(x, y) + ∇xc(x, z)
f (1)(

√
2c(x, z))√

2c(x, z)
,

17



where ∇x denotes the gradient operator with respect to x. Note that the above

expression makes sense for x = z and x = z′ because f (1)(0) = f (1)(π) = 0 and

f ∈ C2([0, π]). By Lemma 5, we know that ∇xc(x, y) = − exp−1
x (y) and ∇xc(x, z) =

− exp−1
x (z). Hence the gradient vector ∇x{c(x, y) + ϕ(x)} vanishes only if x lies on

a great circle C that passes through y and z. Since the exceptional point y′ is also

included in C, we deduce that the point minimizing c(x, y) + ϕ(x) must belong to

C. We fix a circular coordinate ξ ∈ (−π, π] representing a point on C such that

y corresponds to ξ = 0. Let ξ and ζ be the coordinates of x and z. We assume

ζ ∈ [0, π] without loss of generality. Then the function c(x, y) +ϕ(x) can be written

as

h(ξ) := c(x, y) + ϕ(x) =
ξ2

2
+ f(min{|ξ − ζ|, |ξ − ζ + 2π|}).

By the assumption for f , one can easily check that the second derivative of h is

h(2)(ξ) ≥ 0 (> 0 a.e.) as long as ξ ̸= π. Furthermore, we obtain h(1)(π − 0) >

h(1)(−π + 0). Thus ξ = π is not a point minimizing h. Furthermore, the point

minimizing h is unique because h is strictly convex over (−π, π). We denote the

minimizer by ξ0 ∈ (−π, π] and the corresponding point in Sn by x0. If y revolves

along a great circle C passing through z, then x0 must continuously revolve along

C. Since y can belong any great circle passing through z, we deduce that for each

point x0 there exists some y ∈ C such that the function c(x, y) + ϕ(x) of x ∈ Sn is

minimized at x0. This proves c-convexity of ϕ.

Next we prove the gradient map Gϕ(x) is well defined and an isomorphism. Since

ϕ is differentiable everywhere, Gϕ is well defined. Let x = expz(te), where t ∈ [0, π]

and e ∈ TzS
n with |e| = 1. Then the gradient map is explicitly given by Gϕ(x) =

expz

(
(t + f (1)(t))e

)
. If t moves from 0 to π, then t + f (1)(t) moves from 0 to π

monotonically because 1 + f (2)(t) > 0 for almost all t ∈ [0, π]. Hence Gϕ : Sn → Sn

is an isomorphism.

Lastly, ϕ is clearly twice differentiable whenever x ̸= z and x ̸= z′. This completes

the proof.

5 Discussion

We briefly discuss the Jacobian inequality for general manifolds.

In the proof of Theorem 1, we have used the closed property of cost-convex func-

tions (Lemma 1), the Jacobian-ratio inequality (Lemma 10) and log-concavity of the

Jacobian of the exponential map (Lemma 11). For any non-negatively cross-curved

(or time-convex-sliding-mountain) manifold defined in Kim and McCann (2008), the
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former two lemmas are obtained in the same manner. However, Lemma 11 does not

automatically follow from the non-negative cross-curvature condition.

The author does not know if any Riemannian manifold with non-negative cross-

curvature satisfies the Jacobian inequality. At least, any product space of Sn and Rn

satisfies the Jacobian inequality because the non-negative cross-curvature condition

is preserved for products of manifolds (Kim and McCann (2008)) and the Jacobian

determinant of the exponential map is also factorized into the Jacobian determi-

nant on each space. This fact may enable us to describe dependency structures of

multivariate directional data in statistics. We leave such an extension for future

research.
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