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Abstract

In this paper, we propose a hierarchical modeling of the systems
described by conservation laws. A conservation law on a hierarchically
parted domain can be considered as a subsystem which interacts with
neighbor elements through fluxes. Therefore, we regard the system
as a networked system of each subsystem. The important idea is to
weaken the interconnection in the sense of a rank. For detailed analysis
of our method, we apply the proposed method to a diffusion equation.
The hierarchical model is described by a non-circulant block Toeplitz
matrix. Because the resulting system is symmetrically-networked sys-
tem, we can show that the eigenvalues of the system consist of those
of related uniform models. We also show that our method relaxes the
stability condition of the fully discretized model. Finally we examine
the performance of the hierarchical model by numerical simulations.

1 Introduction

Control system design for distributed parameter systems is one of the im-
portant issue for the system control theory. A lot of researches have been
presented in this area [1], however resulting compensator usually becomes
an infinite dimensional system in proposed method. This causes a problem
in implementation. A standard approach to treat such systems is space dis-
cretization. Although a concept of the approach is very simple, it causes
numerical complexity. Therefore, we need another efficient discretization
method.
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A discretized model usually becomes the special system, a state variable
of which interacts with neighbor state variables only. This structure appears
as the sparse and banded system matrix. Similar structure is seen in control
of multi-agent system or consensus of distributed sensor network [2]. In this
area, a novel framework is proposed by Smith et al [3]. They introduce
hierarchical cyclic pursuit scheme which focuses on a fractal structure. Re-
cently, from another point of view, the result has been extended to a more
general case by Shimizu et al [4]. In their approaches, dynamics of system
are induced by internal and external interactions. The latter study focuses
on cyclic structures and defined an essential role of the external interaction
with an interconnection matrix and regarded strength of interconnection as
rank of the interconnection matrix.

Generally, physical distributed parameter systems can be represented by
conservation law and this formulation have a fractal structure. Hence, we
can expect that such a system may be represented by a hierarchical system
based on the fractal structure.

The purpose of this paper is to propose a hierarchical modeling for sys-
tems described by conservation laws. The key idea is to regard the system as
the networked system with low rank interconnection based on the previous
study [4]. We propose the general framework of the method, however our
theoretical analysis limits the class because of theoretical difficulty. That
is, we apply the method to a diffusion equation for detailed analysis and
represent it as a symmetric network of subsystems with rank 1 interconnec-
tion. Because the previous result can not treat non-circulant subsystems
and non-circulant interconnection, we extend to treat such classes.

Notation. Bold letters represent finite dimensional vectors. ed
i is unit

coordinate vector of i-direction and Id is the identity matrix in R
d. We

introduce special matrices Îd, Pd and Qd defined by

Îd :=







1

. .
.

1






, Pd :=

(

Id−1

0

)

, Qd :=

(

0
Id−1

)

.

Note that Îd ∈ R
d×d, Î−1

d = Îd and Pd, Qd ∈ R
d×(d−1). σp(A) is the set of

all eigenvalues of A. Finally, “⊗” is Kronecker product.

2 Hierarchical modeling

We propose a fundamental framework of our hierarchical modeling of dis-
tributed parameter systems in this section. Although, only 1-dimensional
systems are considered in this paper, we can easily extend the idea to the
higher dimensional systems.
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Figure 1: Hierarchical partition of the physical domain Ω.

2.1 Conservation law and its fractal structure

Consider a distributed parameter system governed by conservation law.

∂q

∂t
+

∂f(q)

∂x
= 0 in Ω = (0, 1). (1)

Here, q : Ω × [0,∞) → R is a conserved quantity and f is a flux. We
assume that q(·, t) ∈ L2(Ω) and the range of f is also included in L2(Ω).
Equation (1) contains a lot of practical systems. For example, if we take
f(q) = −a∂q/∂x, Eq. (1) becomes diffusion (heat) equation.

We employ a formulation of the finite volume methods [5] to show a frac-
tal structure. We first divide physical domain Ω into N (≥ 2) subdomains:

Ω = Ω1 ∪ Ω̄2 ∪ · · · ∪ Ω̄N−1 ∪ ΩN ,

where Ωi := (Xi−1,Xi) and Ω̄i denotes the closure of Ωi. Furthermore, we
also divide Ωi into n (≥ 2) part:

Ωi = Ω
(i)
1 ∪ Ω̄

(i)
2 ∪ · · · ∪ Ω̄

(i)
n−1 ∪ Ω(i)

n ,

where Ω
(i)
j := (x

(i)
j−1, x

(i)
j ). Note that X0 = 0, XN = 1, x

(i−1)
n = x

(i)
1 = Xi−1

and x
(i)
n = x

(i+1)
1 = Xi. Figure 1 illustrates the situation.

Integrating Eq. (1) on the interval Ω
(i)
j yields

d

dt

∫ x
(i)
j

x
(i)
j−1

q(x, t) dx = −

∫ x
(i)
j

x
(i)
j−1

∂f(q)

∂x
dx

= −
(

f(q)|
x
(i)
j

− f(q)|
x
(i)
j−1

)

. (2)

This equation shows that the time rate of change of the integral of q over

Ω
(i)
j depends only on the fluxes flowing into the inside through the boundary.

Subsequently, we use the following notation for the fluxes:

f
(i)
j := f(q)|

x
(i)
j

, j = 1, · · · , n − 1,

Fi := f(q)|
x
(i)
n

= f(q)|
x
(i+1)
0

, i = 1, . . . ,N − 1.
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The fluxes at the boundary, f(q)|
x
(1)
0

and f(q)|
x
(N)
n

, are denoted by F0 and

FN respectively1. We introduce the average value of q over Ω
(i)
j defined as

q̄
(i)
j (t) :=

1

∆x
(i)
j

∫ x
(i)
j

x
(i)
j−1

q(x, t) dx,

where ∆x
(i)
j := x

(i)
j − x

(i)
j−1. Eq. (2) becomes

∆x
(i)
j

dq̄
(i)
j (t)

dt
= −

(

f
(i)
j (t) − f

(i)
j−1(t)

)

. (3)

We rewrite the above equations with matrices as

E













˙̄q
(i)
1

˙̄q
(i)
2
...

˙̄q
(i)
n













= −(Pn − Qn)













f
(i)
1

f
(i)
2
...

f
(i)
n−1













+















Fi−1

0
...
0

−Fi















, (4)

where, E := diag
(

∆x
(i)
1 , . . . ,∆x

(i)
n

)

. Left-multiply Eq. (4) by the vector

c⊤ :=
1

n

(

1 · · · 1
)

,

then Eq. (4) becomes

(Xi − Xi−1)
dQ̄i(t)

dt
= −

(

Fi(t) − Fi−1(t)
)

, (5)

where

Q̄i(t) :=
1

Xi − Xi−1

∫ Xi

Xi−1

q(x, t)dx.

It is easily seen that Eq. (5) is in the same form as Eq. (3) up to the scale
parameter. This fact implies that the systems described by the conservation
law (1) have the fractal structure.

Before moving to next subsection, we should emphasize that there are
no approximations in this subsection. In other words, both Eq. (3) and Eq.
(5) are exact relations.

1
F0 and FN are related with boundary conditions.
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2.2 Hierarchical discretization

We swap the flux f for a numerical flux f̃(q̄), which is evaluated by average
values only, to discretize the equation. For example, let f(q) = c̄q, where c̄
is a positive constant. This corresponds to an advection equation. If we use
an upwind method, then

fj ≈ f̃j(q̄j) = c̄q̄j.

In a conventional method, the fluxes are uniformly discretized. The most
important feature of our method is that F and f are discretized in a different
way.

Let the numerical fluxes in ith element be evaluated by the average values
in the same element only, that is,

f
(i)
j ≈ f̃

(i)
j (q̄

(i)
1 , q̄

(i)
2 , . . . , q̄

(i)
n−1), j = 1, . . . , n − 1.

Then, we can regard Eq. (4) as a state space equation, where q̄(i) :=
(

q̄
(i)
1 , q̄

(i)
2 , . . . , q̄

(i)
n

)⊤

is the state and Fi−1 and Fi are the inputs. Further-

more, we employ Q̄i = c⊤q̄(i) as the output equation. We call this system
ith subsystem. Each subsystem interacts with each other through the flux
at the boundary of each subdomain. Hence, we can consider that F deter-
mines the interconnection structure. Usually, F is evaluated by the average
values in the neighbor elements. The key idea of our method is to weaken
the interconnection of each subsystems in a certain sense. Therefore, we
evaluate F by the output values of each subsystem:

Fi ≈ F̃i(Q̄1, Q̄2, . . . , Q̄N ), i = 1, . . . ,N − 1.

The output values are degenerated information determined by the vector c.
Thus, we can conclude this is rank 1 interconnection [4]. The interconnection
is weakened in the sense of the rank. Figure 2 is a block diagram of the
interconnection structure. As the figure shows, the system is modeled as the
interconnected system of N subsystems and each subsystem is n-dimensional
system.

3 Main results

In this section, we apply our method introduced in the previous section to the

diffusion equation. Subsequently, we consider uniform grid, i.e. ∆x
(i)
j = ∆x

for all i ∈ {1, . . . , N} and j ∈ {1, . . . , n}. In this case, E, which appears in
Eq. (4), becomes ∆xIn.
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Figure 2: Interconnection structure of each systems.

3.1 Application to diffusion equation

Consider a 1-dimensional diffusion equation with constant coefficient a > 0:

∂q(x, t)

∂t
=

∂

∂x

(

a
∂q(x, t)

∂x

)

with the Neumann boundary condition:

a
∂q

∂x

∣

∣

∣

∣

(0,t)

= u0(t), a
∂q

∂x

∣

∣

∣

∣

(1,t)

= u1(t).

See standard textbooks (e.g. [6]) for details of the equation. Let the value of
q at the midpoint of the jth interval in ith element approximate the average

value q̄
(i)
j .

q̄
(i)
j ≈ q

(

x
(i)
j−1/2

, t
)

, j = 1, . . . , n.

We denote it briefly by q
(i)
j . The numerical flux is evaluated by a central

difference

f
(i)
j ≈ f̃(q

(i)
j+1, q

(i)
j ) := −a

q
(i)
j+1 − q

(i)
j

∆x
, j = 1, . . . , n.

Then, Eq. (4) becomes

q̇(i) = Aq(i) +
(

b1 −b2

)

(

F̃i−1

F̃i

)

, (6)
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where α := a/(∆x)2, q(i) :=
(

q
(i)
1 , q

(i)
2 , · · · , q

(i)
n

)⊤

and

A := −α(Pn − Qn)(Pn − Qn)⊤

= α















−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1















.

For consistent formulation, we should define b1 and b2 as b1 := (1/∆x)en
1

and b2 := (1/∆x)en
n. We will show, in the later section, that the important

property is the fact
b1 = Înb2. (7)

Therefore, we assume that b1 is an arbitrary vector in R
n and that b2 satisfies

the symmetric condition Eq. (7).
Define a representative value of ith element as

Qi = c⊤q(i). (8)

Of course, Qi approximates Q̄i. As stated in the previous section, we regard
ith element as the system with the state space equation (6) and the output
equation (8). The interconnection with the other systems is determined by
the output Qi. We define the interconnection structure as

F̃i =
1

n
f̃(Qi+1, Qi) = −a

Qi+1 − Qi

n∆x
. (9)

For simplicity of notation, we write β for a/(n∆x). By comparison with
the definition f̃ , it is clear that the interconnection is determined so that
fractal structure is preserved. Note that, unlike previous study [4], we do
not employ cyclic structure. We define two matrices B1 and B2 as

B1 := βb1c
⊤, B2 := βb2c

⊤.

B1 and B2 correspond to interconnection matrix and they are rank 1, n×n
matrices. Substitute (9) into (6), an augmented system becomes

q̇ = Aq + Bu, (10)

where q :=
(

q(1)⊤,q(2)⊤, . . . ,q(N)⊤
)⊤

,

A :=IN ⊗ A − β(PN ⊗ b2 − QN ⊗ b1)(P
⊤

N ⊗ c⊤ − Q⊤

N ⊗ c⊤)

=

















A − B2 B2

B1 A − (B1 + B2)
. . .

. . .
. . .

A − (B1 + B2) B2

B1 A − B1

















, (11)
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Figure 3: Symmetric network structure around ith element.

B :=
(

−e1 ⊗ b1 eN ⊗ b2

)

and u := (u0, u1)
⊤ which is determined by boundary conditions. Equation

(10) is the hierarchically-discretized model of the diffusion equation.
There are two major differences from the previous study of hierarchical

study [4]. The first is the interconnection matrix. We have two matrices B1

and B2 as the interconnection matrices. However, they are not independent
of each other and they satisfy symmetric condition ÎnB1 = B2. Of course,
the rank of vertically-concatenated matrix of the interconnection matrices
is one, i.e.,

rank

(

B1

B2

)

= 1.

Another difference is that A is not block circulant matrix but a block tridi-
agonal matrix. Note that B1 6= B2 and that A is not symmetric matrix
despite of the fact that A is. These facts cause difficulty in the analysis of
the eigenstructure of A. However, as seen in Fig. 3, our formulation con-
structs a symmetric interconnection structure due to Eq. (7). Therefore, we
can expect that A have a certain kind of symmetry and this property helps
us to analyze A theoretically.

3.2 Eigenvalue analysis

A, B1 and B2 have characteristic properties such that

ÎnAÎn = A, ÎnB1 = B2, B1În = B1. (12)

Although the matrix (11) is not simple block (banded) Toeplitz matrix,
these properties allow us to obtain exact eigenvalues of A.
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Theorem 1. The eigenvalues of A defined by Eq. (11) is given as follows:

−2α′

(

1 − cos

(

πk

N

))

, −2α

(

1 − cos

(

πl

n

))

,

where α′ := βc⊤b1, k = 0, 1, . . . ,N − 1 and lk = 1, 2, . . . , n − 1. Further-
more, each eigenvalue in the second group has multiplicity N .

The results in Theorem 1 are independent on the choice of b1, whereas c

is fixed. By considering A⊤, the same results in Theorem 1 can be proved in
the case where each subsystem is a system with single input and 2 outputs.

Before proving Theorem 1, we show the more general result.

Theorem 2. Let M0,M1 and M2 be n1 × n1 matrices. Assume that M0 +
În1M0 6= 0 or M2 + M1 6= 0. Define a (n1n2) × (n1n2) matrix M as

M :=















M0 + M1 M2

M1 M0 M2

. . .
. . .

. . .

M1 M0 M2

M1 M0 + M2















.

If În1M0În1 = M0, În1M1 = M2 and M1În1 = M1, then

σp(M) =

n2−1
⋃

k=0

σp

(

M0 − M1 + M2 + 2

(

cos

(

πk

n2

))

M1

)

=

n2−1
⋃

k=0

σp

(

M0 − M2 + M1 + 2

(

cos

(

πk

n2

))

M2

)

.

Proof. See appendix.

From this theorem, we can notice the set of all eigenvalues of A is given
by the union:

N−1
⋃

k=0

σp

(

A + 2

(

cos

(

πk

N

)

− 1

)

B1

)

. (13)

Hence, to prove the Theorem 1 is to obtain the eigenvalues of these matrices.
Let us move to the proof of Theorem 1.

Proof. (Theorem 1) Since (12) holds, Theorem 2 indicates the set of the
eigenvalues of A is given by Eq. (13). We introduce the following notation,

γk := cos

(

πk

N

)

− 1, S :=







1 . . . 1
. . .

...
1






,

9



and Âk := A + 2γkB1, where k = 0, . . . ,N − 1 and

S−1 =











1 −1
. . .

. . .

1 −1
1











.

Then, we have

SÂkS
−1 =















2γkβ c⊤b1 0

α −2α α
. . .

. . .
. . .

α −2α α
α −2α















.

This shows that the eigenvalues of Âk consist of

2γkβ c⊤b1 = −2α′

(

1 − cos

(

kπ

N

))

and those of a symmetric tridiagonal Toeplitz matrix of order n − 1. The
exact value of the latter is well-known as

−2α

(

1 − cos

(

πl

n

))

, l = 1, · · · , n − 1.

This fact is found in many textbook of linear algebra such as [7]. This
relation holds for all k = 0, . . . ,N − 1. Thus, this proves the theorem.

The meaning of Theorem 1 is explained as follows. A has a zero eigen-
value originally, because A is graph Laplacian. All eigenvalues of A in the
second group are eigenvalues of A except for 0. Therefore, rank 1 intercon-
nection affects only zero eigenvalue of A. Finally, note that A and B satisfy
the same symmetric condition which each subsystem satisfies. Hence, these
results can be naturally extended to multi-layer case.

3.3 Comparison with uniform discretization

To understand the property of the hierarchical model, we compare the eigen-
value distribution of A with those of uniformly discretized model. Subse-
quently, we fix b1 = 1/(∆x)en

1 . Thus, α′ = a/(n∆x)2. In the case of uniform
discretization on a uniform grid with nN points, the eigenvalues are

−2α

(

1 − cos

(

πl

nN

))

, l = 0, . . . , nN − 1.

It is clear that the set contains the second group of the eigenvalues of A,
which appears when k is the multiple of N .

10



Next, we consider the case of uniform discretization on a uniform grid
with N points. In this case, the eigenvalues of a discretized system are given
by

−2α′

(

1 − cos

(

πk

N

))

, k = 0, · · · ,N − 1.

This is the same as the first group of the eigenvalues of A. These facts show
the eigenvalues of A consist of those of uniformly discretized model on the
grid with nN and N points.

3.4 Stability of fully-discretized model

In this subsection, we consider the stability of the fully discretized equation.
We discretize the time variable using the Euler explicit method, which is
the simplest method:

q[k + 1] = (InN + ∆tA)q[k] + ∆tBu[k]. (14)

Since exact values of the eigenvalues of A have been already obtained, we
can readily derive the following stability condition.

Proposition 3. The fully discretized system (14) is stable, if and only if

∆t <
(∆x)2

a

(

1

1 − cos (n−1)π
n

)

.

Proof. It is easy to verify that the eigenvalues of InN + ∆tA are given by

1 − 2∆tα

(

1 − cos

(

πl

n

))

, l = 1, . . . , n − 1,

1 −
2∆tα

n2

(

1 − cos

(

πk

N

))

, k = 0, . . . ,N − 1.

For discrete time system (14), All the eigenvalues of InN + ∆tA must be on
the open unit disk in complex plain. There is a single eigenvalue at 1 and
this determines the steady state. Let us consider other eigenvalues. We can
observe that all eigenvalues except 1 are real and less than 1. This implies
that the necessary and sufficient condition for stability is

−1 < 1 − 2∆tα min

{

1 − cos

(

(n − 1)π

n

)

, n2

(

1 − cos

(

(N − 1)π

N

))

}

.

For n, N ≥ 2, the minimum in the right hand side is achieved by the former.
Hence, we have

−1 < 1 − 2∆tα

(

1 − cos

(

(n − 1)π

n

))

Thus, the proposition holds.
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The stability condition for the uniform discretized model on the grid
with nN points is given by

∆t <
(∆x)2

a

(

1

1 − cos (nN−1)π
nN

)

.

The value of the right hand side of the above inequality is smaller than the
right hand side of the inequality in Proposition 3. Therefore, hierarchical
structure relaxes the stability condition. However, we can easily imagine
that the accurate may be sacrificed. The analytic results of the accuracy
have not been obtained yet.

4 Numerical simulation

In this section, we examine the performance of the hierarchical modeling
by numerical simulations. Parameters are given as follows: a = 1, n = 10,
N = 10 and ∆t = 1.0×10−5. The boundary condition is u1 = 0 and u2 = 0.
The width of each subelment turns to be ∆x = 1/(nN) = 1.0 × 10−2.

First, we consider the case where the initial condition is q(x, 0) = cos(10πx).
In this case, we can obtain the exact solution, which is q(x, t) = e−(10π)2t cos(10πx).
We denote the discretized exact solution q by q(e). Figure 4 shows the nu-
merical solution of the hierarchical model and Fig. 5 plots the Euclidean
norm of the errors:

eh(t) := qe(t) − q(t), eu(t) := qe(t) − qu(t),

where the solution of the uniformly-discretized model with the same grid.
The black solid line and the gray dashed line in Fig. 5, represent ‖eh(t)‖RnN

and ‖eu(t)‖RnN , respectively. These results show the hierarchical model
achieves almost the same result and their solutions provide close agreement
with the exact solution. This is the best case and similar results are obtained
when initial condition is q(x, 0) = cos(kNπx), k = 1, . . . , n − 1.

Next, we show the result where the hierarchical model does not provide
good agreement. We employ q(0, t) = cos(5πx)) as the initial condition. The
exact solution is q(x, t) = e−(10π)2t cos(10πx). Figures 6 and 7 illustrate the
numerical solutions of a hierarchical model and the errors. In these figures,
we can observe the shape of the numerical solution is distorted, and thus
the norm of the error eh becomes large.

The performance of a hierarchical model strongly depends on the initial
condition. We have to analyze the eigenvectors of A to obtain detailed
information about this issue. The last remark is on stability. In the first case,
the solution of the uniform model diverged, when we set ∆t = 5.2 × 10−5.
Whereas, the solution of the hierarchical model is still stable. This fact
numerically confirms Proposition 3.
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Figure 4: Numerical solution of the hierarchical model with initial condition
q(x, 0) = cos (10πx).
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Figure 5: Errors of the solution of the hierarchical model and the uniform
model.

5 Conclusion

In this paper, we proposed hierarchical modeling for the system described by
conservation law and applied it to the diffusion equation. Proposed method
regards the system as a weakly interconnected system of subsystems. The
sense of weakness is a rank of the interconnection matrix [4].

Although the augmented system was described by non-circulant block
Toeplitz matrix, we showed that the eigenvalues were equal to those of lower
order matrices. In the special case, we can obtain exact eigenvalues. They
consist of those of related uniformly discretized models. These results de-
pend on the symmetry of network of the subsystems. Furthermore, aug-
mented system also has the same symmetric property. This means that we
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Figure 6: Numerical solution of the hierarchical model with initial condition
q(x, 0) = cos (5πx).
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Figure 7: Errors of the solution of the hierarchical model and the uniform
model.

can easily extend those results to multi-layer case. Because we obtained the
exact eigenvalues, the stability bound for ∆t of fully discretized model was
shown. The hierarchically discretization relaxes the restriction imposed on
∆t. The performance of the hierarchical model was illustrated by numeri-
cal simulations. The accuracy of the solutions of the hierarchical model is
influenced by initial conditions.
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A Proof of Theorem 2

We first show the relation

σp (M) =

n2−1
⋃

k=0

σp

(

M0 − M1 + M2 + 2cos

(

πk

n2

)

M1

)

.

We introduce a block upper triangular matrix S with order n1n2 defined by

S :=











S11 S12 · · · S1n2

S22 · · · S2n2

. . .
...

Sn2n2











,

where Sij is a matrix in R
n1×n1 . Let Sij be as follows:

Sij = (În1)
i+j, i, j = 1, . . . , n2.
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When n2 = 3 and n2 = 4, S becomes

S=





In1 În1 In1

In1 În1

In1



, S=









In1 În1 In1 În1

In1 În1 In1

In1 În1

In1









,

respectively. S is a nonsingular matrix which has an inverse:

S−1 =











In1 −În1

. . .
. . .

In1 −În1

In1











.

Consider a similarity transformation of M by S, we obtain

SMS−1 =

(

M0 + M1 + M2 0
∗ Md

)

,

where “∗” is a non-zero matrix of suitable order and Md is a matrix of order
(n2 − 1) defined by

Md =













M0 − M1 + M2 M1

M1
. . .

. . .
. . . M0 − M1 + M2 M1

M1 M0 − M1 + M2













.

This fact shows that the set of all eigenvalues of M satisfies

σp (M) = σp (M0 + M1 + M2) ∪ σp (Md) . (15)

Note that Md is a block Toeplitz matrix which has identical off-diagonal
terms. There is a known result for such matrices [8] and we obtain

σp (Md) =

n2−1
⋃

k=1

σp

(

M0 − M1 + M2 + 2cos

(

πk

n2

)

M1

)

.

The first set in the right hand side of Eq. (15) can be rewritten as

σp (M0 + M1 + M2) = σp

(

M0 − M1 + M2 + 2cos

(

π · 0

n2

)

M1

)

.

Thus, the first relation in the theorem holds.
Next, we show the second relation

σp (M) =

n2−1
⋃

k=0

σp

(

M0 − M2 + M1 + 2cos

(

πk

n2

)

M2

)

.
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This result is easily proved from the first relation. Consider the following
similarity transformation:

În1

(

M0 − M1 + M2 + 2cos

(

πk

n2

)

M1

)

În1

= M0 − M2 + M1 + 2cos

(

πk

n2

)

M2.

The second relation hold. Therefore, these facts complete the theorem. �
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