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University of Tokyo, Tokyo 113-8656, Japan

Abstract

This paper discusses a global optimization method of robust truss topology under the load
uncertainties and lower bound constraints of the member cross-sectional areas. We consider
a non-stochastic uncertainty model of external loads, and attempt to minimize the maximum
compliance corresponding to the most critical load. A design-dependent uncertainty model of
external loads is proposed in order to consider the variation of truss topology rigorously. It is
shown that this optimization problem can be formulated as a 0–1 mixed integer semidefinite
programming (0–1MISDP) problem. We propose a branch-and-bound method for computing the
global optimal solution of the 0–1MISDP. Numerical examples illustrate that the topology of
robust optimal truss depends on the magnitude of uncertainty.

Keywords

Topology optimization; Robust optimization; Semidefinite program; Global optimiza-
tion, Branch-and-bound method.

1 Introduction

There have been various methods for the topology optimization of trusses [1–4, 6, 14, 19]. Many
of those methods are based on the ground structure method, in which the member cross-sectional
areas are regarded as continuous nonnegative variables in the process of optimization and the optimal
topology is obtained by removing the members with vanishing cross-sectional areas. However, it is
well known that the optimal solution obtained by such an approach often has very thin members,
which are not acceptable for the practical point of view. For overcoming this defect, Achtziger and
Stolpe [2, 3, 4] considered the optimization problem with the discrete member cross-sectional areas.
Ohsaki and Katoh [19] explicitly considered positive lower bounds for member cross-sectional areas.

As another difficulty in the conventional truss topology optimization, it is known that the opti-
mum solution is often kinematically indeterminate (kinematically unstable). For example, consider
a ground structure of the 22-member plane truss illustrated in Figure 1. The three nodes on the
left side are fixed, while the bottom-right node is loaded by the vertical external force. The opti-
mum solution obtained by minimizing the compliance is shown in Figure 2, which is kinematically
†E-mail: kazuo yonekura@mist.i.u-tokyo.ac.jp.
‡Corresponding author. Address: Department of Mathematical Informatics, Graduate School of Information Sci-

ence and Technology, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. E-mail: kanno@mist.i.u-tokyo.ac.jp.
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Figure 1: A 22-member ground structure.

Figure 2: The optimal solution of the 22-
member truss without considering load uncer-
tainties.

indeterminate. Note that the kinematical indeterminacy of a truss is determined as follows. Let
D ∈ Rn×m, q ∈ Rm and f ∈ Rn denote the equilibrium matrix, the vector of member axial forces,
and the external load vector, respectively. The equilibrium condition is written as

Dq = f .

The kinematical indeterminacy is determined in terms of the rank of the matrix D as follows.

• rankD < n ⇒ kinematically unstable;

• rankD = n ⇒ kinematically stable.

In Figure 2 we see that rankD = 9 and n = 10, and hence this optimal solution is kinematically
unstable. The optimum topology is unstable because we do not consider any uncertainties of the
external load but only the nominal one.

The observation above implies that we have to take uncertain loads into consideration in order
to obtain a kinematically stable structure. Ben-Tal and Nemirovski [9] proposed a method for
truss optimization considering load uncertainties based on the semidefinite program (SDP). In this
approach, firstly, it is required to specify the set of existing nodes, at which the uncertain loads are
supposed to be applied. Secondly, the robust optimal truss is obtained by minimizing the maximum
value of the compliance among the uncertain loads. Therefore all the nodes specified at the first
step of the procedure remain at the obtained optimal solution, and hence it is often that the truss
topology does not change drastically. Moreover, the obtained solution may include some additional
nodes other than specified ones, if we suppose that uncertain loads are applied only at some of nodes
of the ground structure. The obtained solution is in general kinematically unstable in such a case,
because no uncertain load is supposed to be applied at the additional nodes. Thus it is difficult
to specify in advance the set of existing nodes at the robust optimal solution. In this paper we
overcome this difficulty by considering the design-dependent uncertainty set of external loads; see
section 3.1 for details.

In [9] a heuristic method was also proposed to specify the existing nodes at the first step of
their approach, i.e. considering only the nominal load we firstly solve the conventional minimization
problem of the compliance for a ground structure with sufficiently large number of nodes, then for
the robust optimization we define another ground structure having only the remaining nodes at the
nominal optimal solution. However, this heuristic method cannot find the global optimal solution
of the robust topology optimization in general; see sections 5.2 and 5.3 for examples of such cases.
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Methodologies as well as numerical techniques for robust structural design have received increas-
ing attention recently, because structures built in the real-world always have various uncertainties
caused by manufacture errors, limitation of knowledge of input disturbance, etc. Based on the
probabilistic uncertainty model, various methods have been well-developed for reliability-based op-
timization [10, 23]. However, it is often difficult to estimate those parameters accurately. Hence it is
also important to develop methods for robust structural optimization based on the non-probabilistic
uncertainty framework. By using the so-called convex model approach [8] to non-probabilistic un-
certainty model, numerical algorithms were proposed for robust structural optimization [5, 20]. A
min-max formulation of a robust compliance design was presented for continua [11]. Kočvara et al.
[16] considered a free-material design under multiple loadings by using a cascading technique. Mat-
suda and Kanno [18] considered a robust structural optimization with the specified worst-case plastic
limit load factor under the load uncertainties, and proposed a linear programming reformulation.
Based on the robustness function defined in the info-gap decision theory [7], Kanno and Takewaki
[15] performed a maximization of the level of robustness of a structure under the load uncertainty.

In this paper, we propose a global optimization method for the robust truss topology optimization
by minimizing the compliance corresponding to the most critical external load. For dealing with
the variation of truss topology rigorously, we propose a design-dependent uncertainty model of
external loads. We show that this optimization problem can be formulated as a 0–1 mixed integer
semidefinite programming (0–1MISDP) problem, i.e. a semidefinite programming problem in which
some variables are subjected to be binary constraint conditions. A branch-and-bound method is
proposed for computing the global optimal solution of the 0–1MISDP, at each iteration of which we
solve a linear SDP problem by using the primal-dual interior-point method. It is well known that
the computational efficiency of a branch-and-bound method highly depends on the node selection
strategy and the branching rule; see, e.g. [12]. We propose a node selection strategy and a branching
rule, as well as a heuristic method for finding an upper bound solution, for our particular 0–1MISDP
arising from the context of robust structural optimization.

This paper is organized as follows. In section 2, we present the nominal topology optimization
problem of trusses with the positive lower bound constraints of member cross-sectional areas in
order to avoid thin members. In section 3, we present a topology-dependent uncertainty model
of external loads, and formulate a robust topology optimization of trusses as a 0–1MISDP. The
proposed 0–1MISDP is solved globally by using the branch-and-bound method, the details of which
are described in section 4. Numerical results are presented in section 5, where we show that the
robust optimal topology of a truss depends on the level of uncertainty. Some conclusions are drawn
in section 6.

A few words regarding our notation: all vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (u>,v>)> consisting of u ∈ Rm and v ∈ Rn is often written simply as
(u,v). We denote by Rn+ ⊂ Rn the nonnegative orthant defined by Rn+ = {x = (xi) ∈ Rn | xi ≥
0 (i = 1, . . . , n)}. For vectors p = (pi) ∈ Rn and q = (qi) ∈ Rn, we write p ≥ 0 and p ≥ q if p ∈ Rn+
and p− q ∈ Rn+, respectively. We denote by Sn the set of n× n real symmetric matrices. We write
X � O if X ∈ Sn is positive semidefinite.
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2 Topology optimization with binary variables

In this section we formulate a conventional truss topology optimization which attempts to mini-
mize the compliance under the lower bound constraints on the cross-sectional areas of the existing
members, in which we suppose that only the nominal external load is applied.

2.1 Compliance minimization for nominal external load

Consider a truss with the fixed locations of nodes and the members that can exist. Let f ∈ Rn
denote the external load vector, where n is the number of degrees of freedom of displacements. We
denote by a ∈ Rm the vector of member cross-sectional areas, where m is the number of members.
The displacements vector u ∈ Rn is found from the system of equilibrium equations,

K(a)u = f . (1)

Here K(a) denotes a stiffness matrix which is positive semidefinite and written in the form of

K(a) =
m∑

i=1

aiKi,

where Ki (i = 1, . . . ,m) are positive semidefinite constant matrices.
Consider the minimization problem of the compliance, which is one of measures of structural

stiffness. The compliance, c, is defined as the external work, i.e.

c(a;f) = f>u

= sup
u∈Rn

{2f>u− u>K(a)u}. (2)

The stationary condition of (2) reads

f −K(a)u = 0,

which is equivalent to (1). This implies that the optimal solution of the minimization problem of
the compliance satisfies (1). Hence, it is not necessary to consider the equilibrium equations, (1), as
the explicit equality constraint conditions in the optimization problem.

Let l denote the vector of member lengths. The upper bound constraint of the structural volume
is written as

l>a ≤ V̄ , (3)

where V̄ is the specified upper bound of structural volume.
Let f̃ denote the nominal value, or the best estimate, of f . From (2) and (3), the minimization

problem of the compliance associated with the nominal external load is formulated as

(TO) : min
τ,a

τ (4a)

s.t. τ ≥ c(a; f̃), (4b)

l>a ≤ V̄ , (4c)

a ≥ 0, (4d)

where τ and a are the variables. It is not recommended to solve the problem (TO) directly because
the constraint condition (4b) is not easy to deal with. Hence, various equivalent formulation have
been proposed for (TO), e.g. [1, 6, 14].
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2.2 Constraints on member cross-sectional areas

In this section we introduce the lower bound constraints of the member cross-sectional areas in order
to avoid thin members which cannot be accepted practically.

Note that some members are removed from the ground structure in the process of optimization.
Hence, the cross-sectional area of each member should be either equal to zero or larger than the
specific lower bounds. This condition is written as

ai = 0 or amin ≤ ai ≤ amax, ∀i, (5)

where amin and amax are the specified lower and upper bounds of cross-sectional areas, respectively.
Note that if it is not necessary to consider the upper bound constraints, we may assign amax with a
large enough value so that the upper bound constraints become redundant. By using a 0–1 variable
ti, we can rewrite (5) as

ai

(
1
−1

)
≤ ti

(
amax

−amin

)
, ti ∈ {0, 1}, ∀i. (6)

Indeed, if ti = 0, then (6) is reduced to

0 ≤ ai ≤ 0 ⇔ ai = 0.

On the other hand, if ti = 1, then (6) is reduced to

amin ≤ ai ≤ amax.

Thus we can see that (6) is equivalent to (5). Note that, in (6), the binary variable ti plays a role
of an indicator of the existence of the ith member.

3 Robust topology optimization considering load uncertainties

In section 3.1 we consider the minimization problem of the maximum compliance, which is shown
to be formulated as a 0–1MISDP. The minimization problem of structural volume under the upper
bound constraint on the maximum compliance is presented in section 3.2. Section 3.3 shows that
the global optimum solution is obtained by solving the 0–1MISDP presented in section 3.1.

3.1 Minimization problem of maximum compliance

Although in the problem (TO) we suppose only a nominal external load f̃ , an actual structure can
be subjected to various unexpected loads. In order to represent the unexpected uncertain loads, we
first revisit the uncertainty model of the external loads proposed in [9].

Define Q ∈ Rn×` by
Q = (f̃ , rv1, rv2, . . . , rv`−1), (7)

where vj (j = 1, . . . , `−1) are orthonormal basis vectors of the orthogonal complement of f̃ , r ∈ R+

is a constant representing the level of uncertainty, and ` is the number of degrees of the freedom of
displacements corresponding to the nodes at which the uncertain external forces are supposed to be
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applied. Note that it is usually natural to put ` = n. The uncertainty set, F̄ ⊆ Rn, of the external
loads is defined by

F̄ = {Qe | 1 ≥ ‖e‖}, (8)

which represents an ellipsoid in the n-dimensional space. The external load, f , is assumed to be
running through F̄ , i.e.

f ∈ F̄ . (9)

It is emphasized that uncertain loads can be applied to all the nodes in the uncertainty model
defined by (8) and (9), and hence each node should remain at the optimal solution. This situation
is not natural because, in the ground structure method, the topology should drastically change and
some nodes should be removed. This motivates us to consider an alternative uncertainty model such
that if the kth node is removed, i.e. there exists no member connected to the kth node, then the
uncertain loads cannot be applied to the kth node.

Let Jk ⊂ J denote the set of indices of degrees of freedom of displacements of the kth node,
where J = {1, . . . , n}. In order to guarantee that no uncertainty loads are applied to the vanishing
nodes, we introduce a 0–1 variable pj which represents the existence of the corresponding node. If
there exists no member connected to the kth node then the kth node should be removed and we
put pj = 0 (j ∈ Jk), while if the kth node remains then we put pj = 1 (j ∈ Jk). More precisely, pj
is related to the existence of the kth node as follows.

Condition 1.

(i) At least one member is connected to the kth node ⇒ the node k should remain, and pj = 1
(j ∈ Jk);

(ii) ∃j ∈ Jk : f̃j 6= 0, i.e. the nominal external load is applied to the kth node ⇒ the node k
should remain, and pj = 1 (j ∈ Jk);

(iii) Otherwise, the kth node is removed, and pj = 0 (j ∈ Jk).

Let diag(p) denote the n × n diagonal matrix with a vector p satisfying Condition 1 on its
diagonal. If the kth node disappears in the process of topology optimization, then any uncertain
external load should not be applied to the kth node. Observe that this condition is satisfied by the
external load vector defined by f = diag(p)Qe for any e ∈ R`. Hence, we define the uncertainty
set, F(p) ⊆ Rn, of the external loads by

F(p) = {diag(p)Qe | e ∈ R`, 1 ≥ ‖e‖}, (10)

instead of F̄ in (8), and we consider all possible external loads satisfying f ∈ F(p) for the robust
optimization. Note that the uncertainty set F(p) defined in (10) depends on the truss topology,
which enables us to deal with the change of topology rigorously in the process of optimization.
Consider the maximum value of the compliance with respect to f , i.e.

cmax(a;p) = sup
f∈Rn

{c(a;f) | f ∈ F(p)}, (11)
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which corresponds to the compliance at the most critical load among f ∈ F(p). In the following
we consider the minimization problem of cmax(a;p) defined in (11) in order to obtain the optimal
topology of a robust truss.

We next show that the relation between pj and the existence of the corresponding node is
rewritten as the relationship among pj and t1, . . . , tm, where ti is the indicator of the existence of
the ith member. Let Ik ⊂ {1, . . . ,m} denote the set of indices of members which connect to the
kth node. We denote by Jf ⊆ J the set of indices of the degrees of freedom of displacements of
the node at which nonzero nominal load is applied, i.e. Jf = {j ∈ Jk | ∃j ∈ Jk : f̃j 6= 0}. Define
p̂j : Rm → R by

p̂j(t) =





1 if j ∈ Jf ,

1 if ∃i ∈ {i ∈ Ik | j ∈ Jk} : ti = 1,

0 otherwise.

(12)

Then we see that Condition 1 is rewritten as

pj = p̂j(t), j ∈ J . (13)

Now we give a rigorous definition of the robust topology optimization problem. We attempt to
minimize the compliance in the worst case, cmax(a;p) defined in (11), over the conventional volume
constraint and the positive lower bound constraints of the member cross-sectional areas. Note that
pj in cmax(a;p) is a function of t as shown in (13), and hence the loading conditions are considered
to be dependent on the truss topology. From (6), (11), and (13), this optimization problem is
formulated as

(RTO) : min
a,t,p

cmax(a;p) (14a)

s.t. pj = p̂j(t), ∀j, (14b)

ai

(
1
−1

)
≤ ti

(
amax

−amin

)
, ∀i, (14c)

l>a ≤ V̄ , (14d)

t ∈ {0, 1}m. (14e)

In the problem (14) it is difficult to deal with the objective function cmax(a;p) directly. We shall
show that the inequality τ ≥ cmax(a;p) can be reduced to a linear matrix inequality in Lemma 3
below. We first state a simpler fact established in [9].

Lemma 2. For the given a ∈ Rm+ , τ satisfies

τ ≥ sup
u∈Rn, e∈R`

{2(Qe)>u− u>K(a)u | 1 ≥ ‖e‖} (15)

if and only if (
τI Q>

Q K(a)

)
� O (16)

holds.
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A simple proof of Lemma 2 is given in appendix A for readers’ convenience. The following lemma
is a consequence of Lemma 2, and plays a key role to our tractable reformulation of (14).

Lemma 3. For the given a ∈ Rm+ and the given p ∈ {0, 1}n, τ satisfies

τ ≥ sup
f∈Rn

{c(a;f) | f ∈ F(p)} (17)

if and only if (
τI (diag(p)Q)>

diag(p)Q K(a)

)
� O (18)

holds.

Proof. From (2), (10), and (17), we obtain

τ ≥ sup
f∈Rn

{c(a;f) | f ∈ F(p)}

= sup
f∈Rn, u∈Rn

{2f>u− u>K(a)u | f ∈ F(p)}

= sup
e∈R`, u∈Rn

{2(diag(p)Qe)>u− u>K(a)u | 1 ≥ ‖e‖}. (19)

By comparing (15) and (19), we can see that the assertion of Lemma 3 is obtained by replacing Q
in Lemma 2 with diag(p)Q.

Note that the condition (18) is a linear matrix inequality in terms of τ , p, and a.
In the problem (14) we next consider the nonlinear function p̂ defined by (12). The following

lemma implies that (13) is equivalently rewritten as some linear inequalities.

Lemma 4. Suppose that

sup
f∈Rn

{c(a;f) | f ∈ F(p)} < +∞ (20)

is satisfied. Then (13) is equivalent to the following inequalities:

0 ≤ pj ≤ 1, ∀i ∈ {i ∈ Ik | j ∈ Jk}; ∀j ∈ J \ Jf , (21)

ti ≤ pj , ∀i ∈ {i ∈ Ik | j ∈ Jk}; ∀j ∈ J \ Jf , (22)

pj = 1, ∀j ∈ Jf . (23)

Proof. There exists nothing to be proved for j ∈ Jf . Moreover, it is easy to see that if pj satisfies
(13) then (21)–(23) hold. Hence, it suffices to show that pj satisfies (13) if (20)–(22) are satisfied.

For j ∈ J \ Jf , suppose that there exists an i ∈ {i ∈ Ik | j ∈ Jk} such that ti = 1. Then (22) is
reduced to 1 ≤ pj , from which and (21) we obtain pj = 1. Thus (13) is satisfied.

Alternatively, suppose ti = 0 for any i ∈ {i ∈ Ik | j ∈ Jk}. Note that this condition implies
that no member is connected to the kth node. Then (22) is reduced to 0 ≤ pj , which is redundant.
If pj 6= 0, then kth node is subjected to uncertain external loads. Since there exists no member
connecting to the kth node, (20) is not satisfied in this case. Consequently, pj must be 0, which
satisfies (13).

8



Lemma 4 implies that we can replace the constraint condition (14b) in (14) with (21)–(23)
without changing the optimal solution, because (20) is satisfied at any feasible solution of (14). It
should be emphasized that by using Lemma 4 we replace the binary constraint condition on pj with
the linear inequalities. Consequently, the problem (14) is equivalently rewritten as follows.

(RTOc) : min
τ,a,t,p

τ (24a)

s.t.

(
τI (diag(p)Q)>

diag(p)Q K(a)

)
� O, (24b)

0 ≤ pj ≤ 1, ti ≤ pj , ∀i ∈ {i ∈ Ik | j ∈ Jk}; ∀j ∈ J \ Jf , (24c)

pj = 1, ∀j ∈ Jf , (24d)

ai

(
1
−1

)
≤ ti

(
amax

−amin

)
, ∀i, (24e)

l>a ≤ V̄ , (24f)

t ∈ {0, 1}m. (24g)

We call the problem (RTOc) in (24) a 0–1MISDP (0–1 mixed integer semidefinite programming)
problem, because it has binary constraint conditions on some variables and a linear matrix inequal-
ity constraint condition. Indeed, by relaxing t ∈ {0, 1}m in (RTOc) as 0 ≤ t ≤ 1 we obtain a
conventional (linear) SDP problem.

3.2 Minimization of structural volume with robustness constraint

The minimization problem of the maximum compliance has been formulated as a 0–1MISDP in
section 3.1. In this section, we show that the volume minimization problem with the specified
worst-case compliance is also formulated as a 0–1MISDP.

We here consider the minimization problem of the structural volume with the upper bound
constraint of the compliance in the worst case. Let τ̄ denote the specified upper bound of the
compliance. The constraint condition on the maximum compliance is written as

τ̄ ≥ sup
f∈Rn

{c(a;f) | f ∈ F(p)}. (25)

It follows from Lemma 3 that (25) is equivalently rewritten as
(

τ̄ I (diag(p)Q)>

diag(p)Q K(a)

)
� O.
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Hence, the minimization problem of the structural volume is formulated as

(RTOv) : min
a,t,p

l>a (26a)

s.t.

(
τ̄ I (diag(p)Q)>

diag(p)Q K(a)

)
� O, (26b)

0 ≤ pj ≤ 1, ti ≤ pj , ∀i ∈ {i ∈ Ik | j ∈ Jk}; ∀j ∈ J \ Jf , (26c)

pj = 1, ∀j ∈ Jf , (26d)

ai

(
1
−1

)
≤ ti

(
amax

−amin

)
, ∀i, (26e)

t ∈ {0, 1}m. (26f)

Note that (RTOv) in (26) is a 0–1MISDP. In section 5.4 we solve (RTOv) for various values of
r in order to investigate a trade-off relationship between the level of robustness and the optimal
structural cost.

3.3 Proof of optimality

In this section we show that the optimal solution of (RTOc) presented in section 3.1 corresponds to
the global optimal solution of the robust truss topology optimization problem. The same assertion
for (RTOv) can be shown similarly, and hence is omitted.

For formulating (RTOc), we have introduced 0–1 variables pj (j ∈ J ) so that the kth node
is removed if pj = 0 (j ∈ Jk). The remaining question on the optimality of (RTOc) is stated as
follows. Consider a ground structure, which is referred to as the ground structure (A). Suppose that
we solve (RTOc) for the ground structure (A) to find the optimal solution (B). Define the ground
structure (C) by removing the vanishing nodes at (B) from the ground structure (A), i.e. the ground
structure (C) consists of all the members of the ground structure (A) which do not connect to the
vanishing nodes at (B). We then solve (RTOc) for the ground structure (C) to find the optimal
solution (D). The question is whether (B) is equal to (D).

A positive answer to this question can be given based on Lemma 5 below. We assume without
loss of generality that the kth node is removed at the solution (B) and that Jk = {n}, i.e.

p1 = · · · = pn−1 = 1, pn = 0. (27)

Since f̃n = 0 from (13), there exists g ∈ Rn−1 satisfying

f̃ =

(
g

0

)
.

Define Q′ ∈ R(n−1)×(`−1) by
Q′ = (g, rv′1, . . . , rv

′
`−2), (28)

where v′j (j = 1, . . . , `− 2) are orthonormal basis vectors of the orthogonal complement of g. Then
the uncertainty model of the external loads for the ground structure (C) is defined by

F̄ ′ =
{(

f ′

0

)
| f ′ = Q′e′, e′ ∈ R`−1, 1 ≥ ‖e′‖

}
.
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Note that the uncertainty model corresponding to the solution (B) is given by F(p) with (27).

Lemma 5. If (27) is satisfied, then F(p) = F̄ ′.
Proof. In (10) we see that {Qe | 1 ≥ ‖e‖} represents an ellipsoid in the n-dimensional space. Observe
that this ellipsoid does not depend on the choice of orthonormal basis vectors vj , and hence we obtain

{Qe | 1 ≥ ‖e‖} =
{(
f̃ , rv1, rv2, . . . , rv`−1

)
e | 1 ≥ ‖e‖

}

=

{(
g rv′1 · · · rv′`−2 0
0 0 · · · 0 r

)
e | 1 ≥ ‖e‖

}

=

{(
Q′ 0
0> r

)
e | 1 ≥ ‖e‖

}
, (29)

where Q′ is defined by (28). From (10) and (29), we obtain

F(p) = {f | f = diag(p)Qe, 1 ≥ ‖e‖, p1 = · · · = pn−1 = 1, pn = 0}

=

{
f | f =

(
Q′ 0
0> 0

)
e, 1 ≥ ‖e‖

}

=

{(
f ′

0

)
| f ′ =

(
Q′ 0

)
e, 1 ≥ ‖e‖

}

=

{(
f ′

0

)
| f ′ = Q′e′, 1 ≥ ‖e′‖

}

= F̄ ′,
which concludes the proof.

Lemma 5 shows that if we change the set of existing nodes in the solution process of (RTOc), then
the uncertainty model F(p) used in (RTOc) is automatically becomes equivalent to the uncertainty
model F̄ ′ defined for a new ground structure with the remaining nodes. Hence, by solving (RTOc)
we can obtain the global optimal solution in the sense that the solution (B) defined above is equal
to the solution (D).

4 Branch-and-bound algorithm

We describe a branch-and-bound algorithm for finding the global optimum solution of (RTOc) in
(24). An algorithm for (RTOv) can be designed similarly, and hence is omitted.

4.1 Relaxed problem

Since (RTOc) includes m binary variables, t1, . . . , tm, we construct a binary search tree based on
the enumeration of all possible realization of t. A node K of the binary tree is characterized by
T K0 and T K1 , where T K0 , T K1 ⊆ {1, . . . ,m} are the sets of indices of binary variables ti’s satisfying
T K0 ∩ T K1 = ∅. More precisely, T K0 and T K1 are defined by

T K0 = {i ∈ {1, . . . ,m} | ti is fixed as 0 at the node K},
T K1 = {i ∈ {1, . . . ,m} | ti is fixed as 1 at the node K}.
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The subproblem to be solved at the node K is formulated as follows.

(RTOc)
K :

vK = min
τ,a,t,p

τ (30a)

s.t.

(
τI (diag(p)Q)>

diag(p)Q K(a)

)
� O, (30b)

0 ≤ pj ≤ 1, ti ≤ pj , ∀i ∈ {i ∈ Ik | j ∈ Jk}; ∀j ∈ J \ Jf , (30c)

pj = 1, ∀j ∈ Jf , (30d)

ai

(
1
−1

)
≤ ti

(
amax

−amin

)
, ∀i, (30e)

l>a ≤ V̄ , (30f)

ti = 0, i ∈ T K0 , (30g)

ti = 1, i ∈ T K1 , (30h)

0 ≤ ti ≤ 1, i 6∈ T K0 ∪ T K1 . (30i)

Let (τK ,aK , tK ,pK) and vK denote the optimal solution and optimal value of the problem (30),
respectively. We define vK = +∞ if the problem (30) is infeasible. Since (30) is a conventional SDP
problem, we can solve (30) by using the primal-dual interior-point method efficiently [13]. Note that
at the root node of the search tree, i.e. the node characterized by T K0 = T K1 = ∅, the problem (30)
corresponds to a relaxation problem of (RTOc) in (24).

4.2 Upper bound

In the branch-and-bound method, we can prune the node K if vK > vU, where vU is an upper
bound for the optimal value of (RTOc). Since a smaller value of vU enables us to prune more nodes
of the binary search tree, we attempt to propose a heuristic method for finding a good upper bound
at the root node.

Observe that a feasible solution (RTOc) with a relatively small objective value may be obtained
by choosing an appropriate set of existing members from the mechanical point of view. Such a
candidate set may be obtained by solving a continuous relaxation of (RTOc) with amin = 0, and
removing the members with small cross-sectional areas at the obtained optimal solution. Then we
solve the shape optimization problem with the specified set of existing members to obtain an upper
bound for (RTOc). This procedure is summarized as follows.

Algorithm 6 (heuristic method for obtaining an upper bound).

Step 0: Choose a small constant ε, e.g. ε = 10−5.

Step 1: Put amin = 0 and T K0 = T K1 = ∅. Solve (30) to find the optimal solution (τ∗,a∗, t∗,p∗).

Step 2: Define T ∗0 , T ∗1 ⊆ {1, . . . ,m} by

T ∗0 = {i | a∗i < ε}, T ∗1 = {i | a∗i ≥ ε}.

12



Step 3: Put (T K0 , T K1 ) = (T ∗0 , T ∗1 ), and solve (30) to find its optimal value vU and optimal solution
(τ ,a, t,p).

4.3 Branching rule

In our branch-and-bound method, we essentially use the depth-first search [12] for selecting the next
live node. Hence, after solving the subproblem (RTOc)

K at the node K, we usually generate some
children nodes of K. Define î by

tK
î

= max
i
{tKi | i 6∈ T K0 ∪ T K1 }.

Let ε be a sufficiently small constant, e.g. ε = 10−5, so that a variable which is less than ε at the
optimal solution can be regarded as vanishing. We generate children nodes of the node K according
to the following branching rule, which depends on the value of tK

î
.

If tK
î
< ε, i.e. if tKi < ε (∀i 6∈ T K0 ∪ T K1 ), then the solution (τK ,aK , tK ,pK) of (RTOc)

K can
be regarded as being feasible for (RTOc), with small tolerance of numerical errors. In this case, we
generate only one leaf node Kleaf as a child node of K, where Kleaf is associated with T Kleaf

0 and
T Kleaf

1 defined by

T Kleaf
0 = {1, . . .m} \ T K1 , T Kleaf

1 = T K1 .

The subproblem (30) to be solved at the node Kleaf satisfies vKleaf = vK .
Alternatively, if tK

î
≥ ε at the node K, then we generate two children nodes, K+ and K−, defined

by

T K+

0 = T K0 , T K+

1 = T K1 ∪ {̂i},
T K−0 = T K0 ∪ {̂i}, T K−1 = T K1 .

As a heuristic strategy to accelerate the branch-and-bound method, we search K+ before K−.
This strategy is motivated by the observation in Remark 7 below.

Remark 7. It is observed from our preliminary numerical experiments that the optimum value of
the subproblem solved at the node K+ is often smaller than that at the node K−, i.e. vK+ < vK− .
This may be interpreted as follows. If the ith member does not contribute to reduce the maximum
compliance, then tKi may attain to 0 as the result of optimization. Since tK

î
takes the maximum

value among fractional tKi ’s, it seems that the îth member has some contribution to reduce the
maximum compliance, and hence the optimal value may be reduced with the existence of the îth
member. Since the better upper bound for the optimal value of (RTOc) may enable us to prune
more nodes, it seems to be more efficient to visit K+ before K−.

In some cases, it is not necessary to visit the node K+, and hence we immediately generate
children nodes of K+. Such a case is identified by Lemma 8 below.

Lemma 8. If the optimal solution (τK ,aK , tK ,pK) of (RTOc)
K satisfies

aK
î
≥ amin, pKj = 1 (∀j ∈ Jk : î ∈ Ik), (31)

then vK+ = vK .
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Proof. Suppose that the assumption of Lemma 8 is satisfied. We construct the subproblem (RTOc)
K+

to be solved at the node K+ by adding the following constraint conditions to (RTOc)
K :

t̂i = 1, (32)

pj ≥ t̂i, ∀j ∈ Jk : î ∈ Ik, (33)

amin ≤ aî ≤ amax. (34)

It is easy to see that aK , tK , and pK satisfy (33) and (34). Define t̃K by

t̃Ki =




tKi for i 6= î.

1 for i = î,

so that t̃K satisfies (32). Then we see that (τK ,aK , t̃K ,pK) is feasible for (RTOc)
K+ . Since the

objective function of (RTOc)
K+ is independent of t, the inequality vK+ ≤ vK is obtained. On the

other hand, since K+ is a child node of K, we have vK+ ≥ vK , which concludes the proof.

As a consequence of Lemma 8, if the condition (31) is satisfied at the node K+, then we do not
visit K+ but generate two children nodes of K+ by putting K := K+ in the branching rule presented
above.

4.4 Description of algorithm

With the details presented in sections 4.1–4.3, our branch-and-bound method for the 0–1MISDP (14)
is described as follows.

Algorithm 9 (branch-and-bound algorithm for (RTOc)).

Step 1: Define the root node, K0, of the search tree by T K0
0 = T K0

1 = ∅.

Step 2: Compute vU and a by using Algorithm 6.

Step 3: Select a node K which has not been visited in the search tree. If none exists, then go to
Step 7.

Step 4: Solve (RTOc)
K at the node K. Let vK and (τK ,aK , tK ,pK) denote its optimal value

and optimal solution, respectively. If vK ≥ vU, then go to Step 3.

Step 5: If the node K is a leaf node, then update vU ← vK and a← aK . Go to Step 3.

Step 6: Generate some children nodes of the node K by applying the branching rule presented in
section 4.3. Go to Step 3.

Step 7: Declare a as the optimal solution of (RTOc), and stop.
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(a) The ground structure.
(b) The optimal solution of (RTOc).

(c) The optimal solution of (TO).
(d) The optimal solution of (RTOc) with

amin = 0.

Figure 3: A 22-member truss example.

5 Numerical experiments

In this section we show numerical examples of the robust topology optimization of various trusses.
Computation has been carried out on Core2 Duo (2.00 GHz with 1.99 GB memory) with MATLAB
Ver. R2007b [22]. We solve linear SDP problems by using SeDuMi Ver. 1.05 [21], which implements
the primal-dual interior-point method.

In sections 5.1–5.3 we solve (RTOc), while (RTOv) is solved in section 5.4 in order to study a
relationship between the level of robustness and the optimal structural volume. In the following
examples, the lengths of horizontal and vertical members of trusses are 100 cm and 50 cm, respec-
tively, amin = 10 cm2, amax = 103 cm2, and the elastic modulus is 200 GPa. Note that the upper
bound constraints of the member cross-sectional areas are inactive at the optimal solutions of all
the following examples. The level of uncertainty is r = ‖f̃‖/10 in the examples of sections 5.1–5.3.

5.1 22-member truss

Consider a 22-member plane truss illustrated in Figure 3 (a). The three nodes on the left side are
fixed. As the nominal external load f̃ , the bottom-right node is loaded by the vertical force of 1 kN.
The upper bound of structural volume is V̄ = 8.3818× 104 cm3.

The optimal solution obtained by solving (RTOc) is illustrated in Figure 3 (b), where the width
of each member is proportional to its cross-sectional area. The computational results are listed in
Table 1. Here, cmax denotes the maximal compliance defined by (11) at the optimal design, ‘Nodes’
is the number of nodes of the binary search tree visited by Algorithm 9, and ‘cU

max’ is the maximal
compliance of a solution obtained by Algorithm 6. For comparison the optimal solution of (TO) is
illustrated in Figure 3 (c). Notice here that (TO) can be regarded as a particular case of (RTOc)
with r = 0. Figure 3 (d) shows the optimal solution of (RTOc) with amin = 0.

It is observed in Table 1 that rankD < n for the optimal solution of (TO), i.e. the nominal
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(a) The ground structure.
(b) The optimal solution of (RTOc).

(c) The optimal solution of (TO).

(d) The ground structure obtained from
Figure 4 (c).

(e) The solution obtained from the ground
structure in Figure 4 (e)

Figure 4: A 51-member truss example.

optimal solution is kinematically unstable. In contrast, we see that rankD = n for the optimal
solution of (RTOc), and hence the solution of the robust optimization problem is kinematically
stable.

It is observed in Figure 3 (d) that the optimal solution of the robust optimization with amin = 0
has a very thin member. The cross-sectional area of this member is 0.15 cm2, which is not acceptable
from the practical point of view. In addition, the topology of Figure 3 (d) is different from that
of Figure 3 (b), i.e. a diagonal member in Figure 3 (b) does not appear in Figure 3 (d). Such a
difference of optimal topologies may be explained as follows. If we solve the problem without positive
lower bound for member cross-sectional areas, there may exist two types of thin members at the
optimal solution. One is a member which is necessary for minimizing the maximum compliance, and
the other is a member which is unnecessary but has a positive small cross-sectional area because of
numerical error. We usually remove members in the second type by using a small positive threshold.
However, if the cross-sectional areas of members in both types are very close, some members in the
first type are also removed. Thus, a diagonal member has been removed in Figure 3 (d), although
cmax becomes very large without that member. In contrast, in Figure 3 (b), the necessary members
are thick enough to be distinguished from unnecessary members.

It is emphasized that Algorithm 9 can find the optimal solution of (TO) after visiting only
one node in the binary search tree. This is because the optimal solution of (TO) is found by
Algorithm 6, which is carried out for finding a good upper bound for (TO). Accordingly, we may
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(a) The ground structure.

(b) The optimal solution of (RTOc). (c) The optimal solution of (TO).

Figure 5: A 67-member truss example.

conclude that the upper-bound solution obtained by Algorithm 6 accelerates the branch-and-bound
method (Algorithm 9) drastically.

5.2 51-member truss

Consider a ground structure illustrated in Figure 4 (a). All the four nodes on the left side are fixed,
while the bottom-right node is loaded by the nominal vertical force of 1 kN. The upper bound of
structural volume is V̄ = 1.2273×105 cm3. The optimal solutions of (RTOc) and (TO) are illustrated
in Figures 4 (b) and (c), respectively, and the computational results are listed in Table 2.

The structure shown in Figure 4 (b) is kinematically stable, because it satisfies rankD = n. In
contrast, the structure in Figure 4 (c) is kinematically unstable.

Observe that the optimal solution of (RTOc) in Figure 4 (b) has one additional free node com-
pared with the optimal solution of (TO) in Figure 4 (c). Figure 4 (d) depicts a ground structure
suggested by Figure 4 (c). After solving (TO), we may consider the ground structure shown in Fig-
ure 4 (d) and solve the robust optimization problem without considering the possible vanishment of
nodes, which is a procedure suggested in [9]. Figure 4 (e) illustrates the optimal solution of (RTOc)
for the ground structure in Figure 4 (d) under the condition such that all the nodes should exist.
The maximal compliance of the structure in Figure 4 (e) is 6.3177 kN · cm, which is larger than that
of the optimal solution of (RTOc) in Figure 4 (b). Thus, a heuristic method suggested in [9] cannot
find the global optimal solution of the robust topology optimization problem in general, and hence
it is necessary to solve (RTOc) which we have proposed.
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Table 1: Computational results of the 22-member truss example.

cmax (kN · cm) rankD n Nodes CPU (sec) cU
max (kN · cm)

(TO) 6.3516 9 10 1 0.6 6.3516

(RTOc) 6.5457 10 10 24 6.3 6.5648

Table 2: Computational results of the 51-member truss example.

cmax (kN · cm) rankD n Nodes CPU (sec) cU
max (kN · cm)

(TO) 5.8667 12 16 20 15.8 5.9712

(RTOc) 6.0644 18 18 366 369.1 6.1876

5.3 67-member truss

Consider a moderately large example of the ground structure illustrated in Figure 5 (a). All the five
nodes on the left side are fixed, while the bottom-right node is loaded by the nominal vertical force
of 1 kN. The upper bound of structural volume is V̄ = 1.6164 × 105 cm3. The optimal solutions of
(RTOc) and (TO) are illustrated in Figures 5 (b) and (c), respectively. The computational results
are listed in Table 3. It is emphasized that the topology, as well as the set of remaining nodes, of
Figure 5 (b) is entirely different from that of Figure 5 (c).

5.4 Level of uncertainty and optimal structural volume

In sections 5.1–5.3 we have supposed that the level of uncertainty, r, in (7) is fixed. In this section
we solve (RTOv) for various values of r in order to see the relationship among the structural volume,
the level of uncertainty, and the topology of robust optimal solution.

Consider the ground structure investigated in section 5.1. Figure 6 (a) plots a relation between
the level of robustness, r, and the structural volume of the robust optimal solutions, where τ̄ =
10.0 kN · cm in (RTOv). As r changes, the optimal topology changes in the four types illustrated in
Figures 6 (b)–(e).

When r is small enough, the optimal topology is similar to the topology of the optimal solution
without considering uncertainties, i.e. r = 0. As r becomes larger, the optimal topology changes so
as to decrease its number of remaining members and increase the cross-sectional areas of existing
members. When r becomes much larger, the optimal topology has fewer nodes so that the number of
nodes subjected to uncertain loads decreases. Note that the curve in Figure 6 (a) is not continuous
at r = 0. This is because we consider positive lower bounds for the member cross-sectional areas.
From Figure 6 we can see the relationship among the structural volume, the level of uncertainty, and
the topology of robust optimal solution. Such a figure may help us to make decisions incorporating
the trade-off relation between the level of robustness and the structural cost.
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Table 3: Computational results of the 67-member truss example.

cmax (kN · cm) rankD n Nodes CPU (sec) cU
max (kN · cm)

(TO) 3.4105 16 20 1 3.8 3.4105

(RTOc) 3.5585 17 16 8396 14300.0 3.7587
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(a) Variation of the optimal structural volume with respect to the level of uncertainty.

(b) Topology 1. (c) Topology 2. (d) Topology 3. (e) Topology 4.

Figure 6: Relationship among the level of uncertainty, optimal structural volume, and optimal
topology of the 22-member truss example.

6 Conclusions

We have presented a new formulation of the robust truss topology optimization problem considering
the load uncertainties. The non-stochastic uncertainty model of external loads has been considered,
and the robust optimization problem has been formulated as the minimization of the maximal com-
pliance corresponding to the most critical load. We have proposed a design-dependent uncertainty
model of external forces in order to deal with the variation of truss topology rigorously in the process
of optimization. By introducing binary variables representing the existence of members, it has been
shown that the robust topology optimization can be formulated as a 0–1MISDP (0–1mixed inte-
ger semidefinite programming) problem. We solve the 0–1MISDP by using the branch-and-bound
method, at each iteration of which we solve a linear SDP problem by using the primal-dual interior-
point method. For acceleration of the branch-and-bound method, we have proposed a heuristic
method for finding an upper bound solution, as well as a particular branching rule designed for
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the robust truss optimization. Robust optimal solutions have been computed for various trusses by
using the proposed algorithm.

A Proof of Lemma 2

Proof. Observe that (15) is equivalent to

τ − 2(Qe)>u+ u>K(a)u ≥ 0, ∀u ∈ Rn, ∀e ∈ R` : ‖e‖ ≤ 1. (35)

Let λ > 0. By multiplying both hand-sides of (35) by λ2 we obtain

τλ2 − 2(Qλe)>(λu) + (λu)>K(a)(λu) ≥ 0, ∀u ∈ Rn, ∀e ∈ R` : ‖e‖ ≤ 1. (36)

Define ẽ and y by

ẽ = λe, (37)

y = λu. (38)

Then, for any λ > 0, we see that (36) is equivalently reduced to

τλ2 − 2(Qẽ)>y + y>K(a)y ≥ 0, ∀u ∈ Rn, ∀e ∈ R` : ‖e‖ ≤ λ (39)

with (37) and (38).
In (39) put λ = ‖ẽ‖ as a specific value. Then (39) is reduced to

τ(ẽ>ẽ)− 2(Qẽ)>y + y>K(a)y ≥ 0, ∀y ∈ Rn, ∀ẽ ∈ R`, (40)

which is equivalently rewritten as

(
ẽ

y

)>(
τI Q>

Q K(a)

)(
ẽ

y

)
≥ 0, ∀y ∈ Rn, ∀ẽ ∈ R`.

Consequently, if (15) is satisfied, then (16) holds.
We next show that (16) implies (15). Observe that if (16) is satisfied, then (40) holds. Choose

λ satisfying λ2 ≥ ẽ>ẽ in (40). Then, for any y ∈ Rn and ẽ ∈ R` we have

0 ≤ τ(ẽ>ẽ)− 2(Qẽ)>y + y>K(a)y

≤ τλ2 − 2(Qẽ)>y + y>K(a)y. (41)

Note that the last inequality in (41) follows the facts that τ ≥ 0 in (16) and λ2 ≥ ẽ>ẽ. Thus (39)
holds and, equivalently, (15) is satisfied, which concludes the proof of Lemma 2.
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