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Abstract

We propose procedures for testing whether stock price processes are martingales
based on limit order type betting strategies. We first show that the null hypothesis
of martingale property of a stock price process can be tested based on the capi-
tal process of a betting strategy. In particular with high frequency Markov type
strategies we find that martingale null hypotheses are rejected for many stock price
processes.

Keywords and phrases: betting strategy, efficient market hypothesis (EMH), game-theoretic
probability, sequential test.

1 Introduction

The efficient market hypothesis (EMH), that no one with finite capital can consistently
outperform the market, is the fundamental assumption in the theory of financial engi-
neering. In mathematical finance the efficient market hypothesis is formulated as the
martingale property of price processes of tradable assets such as stocks.

Often the martingale assumption is replaced by a more convenient assumption of
“random walk”. Although exact formulation of random walk depends on literature (e.g.
[2, Chapter 2], [1]), the usual assumption is that the price process observed at equi-
spaced time points has independent increments with mean zero, after adjustment of the
systematic trend. However there are many empirical studies showing that stock price
processes are not random walks (e.g. [2], [9]).
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Note that the class of martingales is larger than the class of random walks with zero
expected increment ([8]). This implies that rejecting the hypothesis of random walk does
not necessarily mean rejecting the hypothesis of martingale. Therefore it is desirable
to directly test the martingale assumption of stock price processes without assuming a
random walk.

We propose to test the martingale hypothesis of price processes based on our previous
works on “limit order” type betting strategies ([16, 17]) in the framework of game-theoretic
probability by Shafer and Vovk ([14]) and an adaptation of the result by Dubins and
Schwarz [4] to positive measure-theoretic martingales. As discussed in Section 2.1, betting
strategies in game-theoretic probability naturally yield sequential testing procedures for
the measure-theoretic martingale hypothesis. Moreover our strategies in [16, 17] are of
very simple form and provide convenient testing procedures.

Our testing procedures depend on the direction of a price process (“ups” and “downs”)
at times, when the process hits fixed horizontal grids of prices. We call these time points
hitting times. Thus our procedures are very much different from procedures based on
increments of price processes observed at equi-spaced time points.

One advantage of our testing procedure (compared to equi-spaced procedures) is that
we do not have to worry about specifications of distributions of the increments, such as the
the heaviness of the tail of the distribution of the increments, because in our procedures
the amount of the increments are fixed by the given grids of prices. Our procedure depends
only on the ups or the downs of the price process between hitting times. This is contrasted
with problems of model specifications for testing EMH in standard approaches (e.g. [18]).

Our approach is similar to the approach of testing EMH based on algorithmic com-
plexity of the ups and downs of price processes in [15] and [5]. In fact, it is well known that
betting strategies and compression algorithms of binary strings are essentially equivalent
[3, Chapter 6]. However the approaches of [15] and [5] are based on price movements
observed at equi-spaced time points and therefore they are different from ours.

The organization of this paper is as follows. In Section 2 we summarize results on
betting strategies in the framework of game-theoretic probability of Shafer and Vovk ([14])
and explain that these betting strategies naturally lead to sequential testing procedures
for the null hypothesis of measure-theoretic martingale. In Section 3 we propose our
procedure for testing martingale properties of price processes based on limit order type
betting strategies. We give numerical results of testing martingale properties of some
Japanese stock price processes in Section 4. We conclude our paper with some remarks
in Section 5.

2 Preliminary results

In this section we give an exposition on betting strategies in game-theoretic probability
based on our earlier results in [7], [16] and [17]. In Section 2.1 we also remark the
important fact that these betting strategies can be used for testing the null hypothesis of
measure-theoretic martingale.
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2.1 Prudent strategies in game-theoretic probability and a se-
quential test of measure-theoretic martingale hypothesis

For simplicity of exposition we consider the biased-coin tossing game. This game is a
discrete time game played by two players called “Investor” and “Market”. Investor enters
the game with the initial capital of K0 = 1. For each round Investor first decides how
much to bet and then Market (after seeing the Investor’s move) decides the outcome.
In the biased-coin tossing game, the outcome chosen by Market is either 1 (“up”) or 0
(“down”). The formal protocol of the game is written as follows.

Biased-Coin Game
Protocol:

K0 = 1 and 0 < ρ < 1 are given.
FOR n = 1, 2, . . . :

Investor announces νn ∈ R.
Market announces xn ∈ {0, 1}.
Kn = Kn−1 + νn(xn − ρ).

END FOR

We call ρ the risk-neutral probability. Investor can choose νn based on the past moves
x1, . . . , xn−1 of Market. Suppose that Investor adopts a strategy P , which is a function
specifying νn based on x1, . . . , xn−1 with some initial value ν1.

P : (x1, . . . , xn−1) 7→ νn.

Then Investor’s capital at the end of round n is written as

KP
n = K0 +

n∑
i=1

P(x1, . . . , xi−1)(xi − ρ). (1)

A betting strategy P of Investor is called prudent if Investor is never bankrupt when using
P , i.e. KP

n ≥ 0 for all n and for all x1, x2, · · · ∈ {0, 1}.
In the framework of game-theoretic probability of Shafer and Vovk ([14]) there is no

probabilistic assumption on the behavior of Market. Therefore Market in the above biased-
coin game may even be adversarial to Investor. However the usual measure-theoretic
assumption on the behavior of Market is that Market is oblivious to Investor’s moves and
chooses xn independently as P (xn = 1) = ρ = 1 − P (xn = 0), ignoring Investor’s bet νn.
We write this null hypothesis as

H : p1 = ρ, (2)

where p1 = P (xn = 1). Note that the mutual independence of xn, n = 1, 2, . . . , is also
implied by H for the biased-coin game, because the outcome xn is binary. If P is a prudent
strategy, then under H, KP

n is a usual measure-theoretic non-negative martingale.
By the Markov inequality for non-negative measure-theoretic martingales (cf. Chapter

II, Section 57 of [13]) we have the following sequential testing procedure for H.
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Proposition 2.1. Let 0 < α < 1 be given. Reject the null hypothesis H : p1 = ρ as soon
as KP

n ≥ 1/α, where P is a prudent strategy. This procedure has the significance level α.

The intuitive interpretation of this proposition is as follows. H corresponds to the
efficient market hypothesis (EMH). Investor can disprove EMH by beating Market, i.e.,
if he can multiply his capital many times by an appropriate betting strategy. If Investor
can make his capital 100 times larger than his initial capital K0, then H is rejected at the
significance level of 1%.

We can also use Ville’s inequality (Section 2.5 of [14], page 100 of [19]), which is now
commonly known as Doob’s supermartingale inequality ((57.10) of [13]). From game-
theoretic viewpoint the following procedure is not very much different from the procedure
in the above proposition, because it corresponds to stop betting after the hitting time
KP

n ≥ 1/α.

Proposition 2.2. Let 0 < α < 1 be and N > 0 be given. Reject the null hypothesis
H : p1 = ρ if max0≤n≤N KP

n ≥ 1/α, where P is a prudent strategy. This procedure has the
significance level α.

We have stated the above propositions for the protocol of biased-coin game. However
as in [14] we can consider more complicated protocols, such as the bounded-forecasting
game, where for each round Market chooses xn in the bounded interval [0, 1]. The measure-
theoretic interpretation of the null hypothesis H in (2) is that xn − ρ, n = 1, 2, . . . , are
(uniformly bounded) martingale differences. In this form, the null hypothesis H does not
place any distributional assumptions on xn, except for the martingale property. Therefore
we are directly testing the assumption of martingale property. As long as P is a prudent
strategy, we can test H by Proposition 2.1.

2.2 Limit order type strategy in continuous time game and em-
bedded coin-tossing game

Although the biased-coin game of the previous subsection is very simple, we can analyze
a continuous time game between Investor and Market with the biased-coin game of the
previous subsection, by embedding it into continuous time by a limit order type strategy.

Consider a continuous time game between Investor and Market. Market chooses a price
path S(t), t ≥ 0, of a financial asset. We assume that S(t) is continuous and positive.
Investor enters the market at time t = t0 = 0 with the initial capital of K(0) = 1 and he
will buy or sell any amount of the asset at discrete time points 0 = t0 < t1 < t2 < · · · .
Let Mi ∈ R denote the amount of the asset he holds for the time interval [ti, ti+1). Then
the capital of Investor K(t) at time t is written as

K(0) = 1,

K(t) = K(ti) + Mi(S(t) − S(ti)) for ti ≤ t < ti+1. (3)
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By defining θi = MiS(ti)/K(ti), we rewrite (3) as

K(t) = K(ti)

(
1 + θi

S(t) − S(ti)

S(ti)

)
for ti ≤ t < ti+1.

In limit order type strategy, Investor takes some constant δ > 0 and decides the trading
times t1, t2, . . . as follows. After ti is determined, let ti+1 be the first time after ti when
either

S(ti+1)

S(ti)
= 1 + δ or =

1

1 + δ

happens. Let wi = ti+1 − ti denote the waiting times between two successive trading
times. In terms of log S, the waiting times wi are determined by

log S(ti+1) − log S(ti) = ±η, η = log(1 + δ) (δ = eη − 1). (4)

This process leads to a discrete time coin-tossing game embedded in the continuous time
game in the following manner. Let

xn =
(1 + δ)S(tn+1) − S(tn)

δ(2 + δ)S(tn)
=

{
1, if S(tn+1) = S(tn)(1 + δ),

0, if S(tn+1) = S(tn)/(1 + δ),
(5)

and

ρ =
1

2 + δ
, K̃n = K(tn+1), νn =

δ(2 + δ)

1 + δ
θn.

Now we have the following discrete time coin-tossing game.

Embedded Discrete Time Coin-Tossing Game
Protocol:

K̃0 := 1.
FOR n = 1, 2, . . . :

Investor announces νn ∈ R.
Market announces xn ∈ {0, 1}.
K̃n = K̃n−1(1 + νn(xn − ρ)).

END FOR

Combining the embedded discrete time coin-tossing game with Proposition 2.1, we
can test whether a continuous price process chosen by Market is a measure-theoretic
martingale. Suppose that the price process S(t) of Market is a positive measure-theoretic
martingale. We write this null hypothesis as

H̄ : S(t) is a positive martingale. (6)

Under H̄, for every δ > 0, xn’s in the embedded coin-tossing game satisfies the null
hypothesis H in (2) with ρ = 1/(2+δ). Therefore any prudent strategy for the embedded
coin-tossing game can be used as a sequential testing procedure of H̄ by Proposition 2.1.
A particularly useful betting strategy can be given from Bayesian viewpoint as shown in
the next section.
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2.3 Bayesian betting strategy based on past number of ups and
downs

A simple betting strategy for the biased-coin game is given by a Bayesian consideration
([7]). By the embedded coin-tossing game, it can be applied to the continuous time game.

Let hn = nx̄n =
∑n

i=1 xi denote the number of heads and let tn = n − hn denote the
number of tails up to round n in the biased-coin game. Fix a > 0, b > 0. We call the
following strategy of Investor a beta-binomial strategy (with the hyperparameters a, b):

νn =
p̂Q

n − ρ

ρ(1 − ρ)
where p̂Q

n =
a + hn−1

a + b + n − 1
. (7)

The capital process Kn for this strategy is explicitly written as

Kn =
(a)hn(b)tn

(a + b)nρhn(1 − ρ)tn
, (8)

where

(c)l = c(c + 1) · · · (c + l − 1) =
Γ(c + l)

Γ(c)

for c > 0 and non-negative integer l. Since Kn in (8) is always non-negative, we have a
sequential test of H by Proposition 2.1.

An advantage of the beta-binomial strategy is that the asymptotic behavior of the
capital process is easy to study by Stirling’s formula. When n, hn and tn are all large, we
can evaluate the log capital as

logKn = nD

(
hn

n

∥∥∥ρ

)
− 1

2
log n + O(1),

where

D(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q

denotes the Kullback-Leibler information between 0 < p < 1 and 0 < q < 1.
Now we move onto the embedded coin-tossing game. Suppose that Investor trades in

a finite time interval [0, T ] and he uses the Bayesian strategy in (7) for the embedded
coin-tossing game. We define n∗ = n∗(T, δ, S(·)) by tn∗ < T ≤ tn∗+1. Investor’s capital
K(T ) = KPδ,a,b

(T, S(·)) at t = T for large n∗ is written as

K(T ) = K̃∗
n∗

(
1 + θ∗n∗

S(T ) − S(tn∗)

S(tn∗)

)
, θ∗n∗ =

1 + δ

δ(2 + δ)
ν∗

n∗ .

Since
∣∣∣S(T )−S(tn∗ )

S(tn∗ )

∣∣∣ < δ, we have

logK(T ) = log K̃∗
n∗ + O(1) = n∗D

(
hn∗

n∗

∥∥∥ρ

)
− 1

2
log n∗ + O(1). (9)
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2.4 Generality of high-frequency limit order strategy

This subsection is a part which is rather independent of the previous sections. Here
we show a generality of the high-frequency limit order strategy developed in [16], which
implies that when the asset price S(t) follows the geometrical Brownian motion, our
strategy automatically incorporates the well-known constant proportional betting strategy
originated with Kelly ([6]) and yields the likelihood ratio in the Girsanov’s theorem for
geometric Brownian motion. The convergence results in this subsection are of measure-
theoretic almost everywhere convergence.

Let S(t) be subject to the geometrical Brownian motion with drift µ and volatility σ.
Then

log S(T ) − log S(0) =

(
µ − 1

2
σ2

)
T + σW (T ),

where W (·) denotes the standard Brownian motion. In the following we write

L(T ) = log S(T ) − log S(0).

We let T → ∞ and let η = ηT depend on T in such a way that | log ηT | = o(
√

T ).
Similarly we denote δT = eηT − 1, ρT = 1/(2 + δT ). Define

TV (ηT , T ) =
n∗∑
i=1

| log S(ti) − log S(ti−1)|, L(ηT , T ) = log S(tn∗) − log S(0),

ζ(ηT , T ) =
L(ηT , T )

TV (ηT , T )
.

We call TV (ηT , T ) the total η-variation of log S(t) in the interval [0, T ]. Then we have

ηT TV (ηT , T ) = n∗η2
T = σ2T + O(ηT ),

and hence we can evaluate

θ∗n∗ =
µ

σ2
+

W (T )

σT
+ O(ηT ).

Note that when L(T ) is a process symmetric around the origin with µ− 1
2
σ2 = 0, we have

θ∗n∗ =
1

2
+

W (T )

σT
+ O(ηT ),

and the main term 1/2 in the right-hand side indicates the even rebalanced strategy
between the asset and the cash.

Let us consider n∗D(p(ηT , T )‖ρT ), where n∗ = TV (ηt, T )/ηT , p(ηT , T ) = hn∗/n∗ =
(1 + ζ(ηT , T ))/2. From the Taylor expansion

D

(
1 + d1

2

∥∥∥1 + d2

2

)
=

1

2
(d1 − d2)

2 + O(|d1 − d2|3),
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with d1 = ζ(ηT , T ), d2 = −δT /2, we have

n∗D (p(ηT , T )‖ρT ) =
n∗

2

(
ζ(ηT , T ) +

δT

2

)2

+ O(η3
T ) =

n∗η2
T

2
(θ∗n∗)2 + O(η3

T )

=
σ2T

2

(
µ

σ2
+

W (T )

σT

)2

=
µW (T )

σ
+

µ2T

2σ2
+

W 2(T )

2T
+ O(η3

T ).

The log capital logK(T ) = n∗D (p(ηT , T )‖ρT ) − 1
2
log n∗ + O(1) is expressed as

logK(T ) =
µW (T )

σ
+

µ2T

2σ2
− 1

2
log T + log ηT + O(1),

and hence when | log ηT | = o(
√

T ), the main terms in the right-hand side of − logK(T ),

− logK(T ) = −µW (T )

σ
− µ2T

2σ2
+ o(

√
T )

provides the likelihood ratio of the unique martingale measure known as the Girsanov’s
theorem, and we obtain

lim
T→∞

logK(T )

T
=

µ2

2σ2
.

2.5 Markov betting strategy

The Bayesian strategy in previous subsections is a simple strategy based on the past
number of ups and downs only. The strategy does not exploit possible autocorrelations
in the ups and downs of the price process. Multistep Bayesian strategy, in particular the
Markov type strategy in [17] is very efficient in exploiting possible autocorrelations. In
this paper we just use the first-order Markov strategy.

For the biased-coin game the strategy is given as

ν1 = 0, νn =

{
ν+

n , if xn−1 = 1

ν−
n , if xn−1 = 0

n = 2, 3, . . . ,

where ν+
n and ν−

n can have different values. It incorporates the information on the last
move xn−1 of Market.

We use the beta-binomial strategy separately for the case of xn−1 = 1 and xn−1 = 0
with hyperparameters a, b. Let q1

n = hn and q0
n = n − hn. Denote the numbers of pairs

(xi−1xi) = (11), (10), (01), (00), i = 2, . . . , n, by q11
n , q10

n , q01
n , q00

n , respectively. The

capital Kn = KPQ
n for this strategy is given by

Kn =
Γ(a + b)2Γ(q11

n + a)Γ(q10
n + b)Γ(q01

n + a)Γ(q00
n + b)

Γ(a)2Γ(b)2Γ(q11
n + q10

n + a + b)Γ(q01
n + q00

n + a + b)ρq11
n +q01

n (1 − ρ)q10
n +q00

n
.

By Stirling’s formula the asymptotic behavior of Kn is easily derived.
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We can apply the above first-order Markov strategy to the embedded coin-tossing
game for continuous price paths. In [17] the performance of the strategy for small grid
size δ is analyzed as follows. Under some regularity conditions, if the price process path
has the Hölder exponent H 6= 1/2, then

logKn∗ = n∗D
( 1

21/H−1

∥∥∥1

2

)
+ o(n∗). (10)

3 Tests of martingale property

In Section 2.2 we have already shown that we can test H̄ in (6) by limit order type betting
strategy. It is an important fact that the converse is also true. If the null hypothesis H
in (2) holds for embedded discrete time coin-tossing game for every δ > 0, then H̄ holds.
This fact can be proved by adapting the result of Dubins and Schwartz [4] to positive
martingales. A more rigorous and modern treatment of the result of Dubins and Schwartz
is given in Chapter V of [11]. Recently Vovk [20] gave a complete generalization of these
results to game-theoretic framework. However for our purposes, the arguments given in
[4] are sufficient and more suitable, because they are based on similar ideas to our limit
order type strategies.

Proposition 3.1. Let S(t), t ≥ 0, be a continuous positive stochastic process with
S(0) = 1 such that almost all of whose paths are nowhere constant and lim supt S(t) = ∞,
lim inft S(t) = 0. Then the following three conditions are equivalent.

1. S is a martingale.

2. S is a path-dependent and future-independent time change of the standard geometric
Brownian motion.

3. For every η > 0, the directions xj, j = 1, 2, . . . , in (5) are independently and
identically distributed with

P (xj = 1) =
1

1 + eη

and they are independent of the waiting times {wj, j = 1, 2, . . . }.

Proof. Since our proof is a simple adaptation of the proof in [4] we only give an outline of
the proof. The implications 2 ⇒ 1 and 1 ⇒ 3 are obvious. Therefore it suffices to prove
3 ⇒ 2. By examining the proof in [4], we note that the only difference in our proof is the
finite dimensional distributions of log S(t) at the trading times t1, t2, . . . . For simplicity we
consider the distribution of log S(t2)− log S(t1) for any fixed η. Now consider a sequence
of increasingly finer horizontal grids ηm = 2−mη in the logarithmic scale for log S. Then
log S(t2) − log S(t1) ca be written

log S(t2) − log S(t1) =
2m∑
j=1

εmjηm,
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where εmj, j = 1, . . . , 2m, are i.i.d. ±1 random variables with P (εml = 1) = 1/(1 + eηm).

The mean and the variance of
∑2m

j=1 εmjηm are given by

2m(2pmj − 1), 4 × 2mpmj(1 − pmj),
(

pmj =
1

1 + eηm

)
.

As m → ∞, these converge to −η/2 and η, respectively. Also by the central limit theorem
log S(t2)−log S(t1) is distributed according to N(−η/2, η). Considering any finite number
trading times, we see that finite-dimensional distributions are the same as the geometric
Brownian motion. Now an argument similar to [4] shows that S satisfies 2.

Because of Proposition 3.1 it is natural to test the martingale hypothesis (6) by testing
that the directions xj, j = 1, 2, . . . , are i.i.d. {0, 1} valued random variables with the
probability P (xj = 1) = 1/(1 + eη). Note that we can interpret the distribution of the
waiting times as nuisance parameters of the null hypothesis.

In the next section we use two strategies and associated sequential tests. The first
strategy is a simple Bayesian strategy of Section 2.3 concerning the success probability
P (xj = 1) = 1/(1+ eη). The second strategy is the first-order Markov strategy of Section
2.5 for testing independence.

4 Numerical examples

In this section we give some numerical examples on the stock price data from the Tokyo
Stock Exchange. The data are the stock minute prices from June 1st to July 31st in 2006
for three Japanese companies SoftBank, IHI, and Sony listed on the first section of the
TSE, which were adapted from Bloomberg LP. Usually there are 270 minute price data a
day.

We employed simple strategy and Markov strategy. The simple strategies did not show
significant results. This is because the empirical probabilities of heads (p1(ft) in Table
1) are close to 0.5. However we obtained significant results by the first-order Markov
strategy for three companies with common values η = 2−k, a, b = 0.01 · 2k, k = 8. The
results are shown in Figures 1–15. Figures 1–5 are for SoftBank, Figures 6–10 are for IHI
and Figures 11–15 are for Sony. In each figure, fn denotes the first round such that the
Markov capital MK satisfies MK(fn) ≥ 103, and ft denotes the approximate time of fn in
minutes. By Proposition 2.1, 103 corresponds to the significance level of α = 0.1%.

We also exhibit processes of empirical probabilities p1|1, p0|0, p1, and processes of Hölder
exponents H1, H0, which are given in the following manner.

p1|1
n =

q11
n

q1
n

, p0|0
n =

q00
n

q0
n

, p1
n =

q1
n

n
,

1

21/H1
n − 1

= p1|1
n ,

1

21/H0
n − 1

= p0|0
n . (11)

The relation (11) between the conditional probability and the Hölder exponent is one of
the results obtained in [17]. These typical values are summarized in Table 1.
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Figure 1 : Minute prices of SoftBank
Figure 2 : Capital process of Markov

strategy
Figure 3 : Log capital process of Markov

strategy
Figure 4 : Processes of empirical

probabilities p1|1, p0|0, p1

Figure 5 : Processes of Hölder exponents
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Figure 1: SoftBank minute prices

0 500 1000 1500

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Rounds

C
a
p
i
t
a
l

fn==1456

ft==8881

MK((ft))==1084

Figure 2: Markov capital process
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Figure 3: Log Markov capital process
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Figure 4: Empirical probability processes
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Figure 6 : Minute prices of IHI
Figure 7 : Capital process of Markov

strategy
Figure 8 : Log capital process of Markov

strategy
Figure 9 : Processes of empirical

probabilities p1|1, p0|0, p1

Figure 10 : Processes of Hölder exponents
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Figure 6: IHI minute prices
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Figure 7: Markov capital process
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Figure 8: Log Markov capital process
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Figure 9: Empirical probability processes
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Figure 10: Hölder exponent processes
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Figure 11 : Minute prices of Sony
Figure 12 : Capital process of Markov

strategy
Figure 13 : Log capital process of Markov

strategy
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probabilities p1|1, p0|0, p1

Figure 15 : Processes of Hölder exponents
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Figure 11: Sony minute prices
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Figure 12: Markov capital process
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Figure 13: Log Markov capital process
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Figure 14: Empirical probability processes
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Figure 15: Hölder exponent processes
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Table 1: Typical values for three stock minute prices

fn ft MK(ft) p1|1(ft) p0|0(ft) p1(ft) H1(ft) H0(ft)
SoftBank 1456 8881 1084 0.423 0.449 0.489 0.372 0.384

IHI 377 4729 1027 0.378 0.378 0.499 0.351 0.351
Sony 122 1693 1126 0.259 0.333 0.475 0.295 0.330

5 Some discussions

The efficient market hypothesis has been continuously discussed by many researchers.
Some well known researchers (e.g. [12],[10]) argue that EMH is by and large true despite
some observed irregularities. However, from the literature we observe the following general
tendencies. 1) Random walk hypotheses, without time-scale transformation, seem to be
more often rejected than accepted. 2) There is only few literature dealing directly with
the martingale hypothesis. This is probably due to the non-parametric nature of the
hypothesis and the difficulty in statistical modeling. 3) As advocates of EMH argue, even
professional investors do not have effective investing strategies outperforming the market.
4) Some classes of martingale models, especially those with varying volatility, have been
proposed and fitted to empirical data. But their theoretical implications for effective
investing strategies are not clear.

In this paper we presented a simple general method for directly testing the hypothesis
of martingale, by using limit order type investing strategies in asset trading games. The
reciprocal of the capital process of an investing strategy can be used as a p-value of test
statistic for testing the hypothesis of martingale property. By our Markov type strategy
we have shown that the martingale property of some Japanese stocks are rejected with
very small p-values.

It should be noted that our numerical experiments are not realistic for two reasons.
First, there is the problem of transaction cost. To test the martingale hypothesis, we have
used a high frequency limit-order type strategy. In actual markets high frequency trading
incurs a high trading cost and the profit from our strategy may be severely reduced.
Second point is the reaction of the price to the amount of trading. In the usual measure-
theoretic assumption, the amount of trading does not affect the price process. However in
actual markets, large demand from the traders will immediately affect the price, thwarting
the possibility of indefinitely large gain. These points may affect the practical applicability
of the proposed strategies, but they do not affect the conclusion that the martingale
hypothesis is rejected.

For the numerical experiments of Section 4 we have tried several grid sizes (common
to all processes) and showed a grid size which exhibits a significant result (nominal level
of 0.1%). Therefore there is a problem of multiple testing and to adjust for multiple
testing we can use the Bonferroni correction. Since we have used Bayesian type simple
strategy and its Markov type variant with only several choices of grid sizes, the conclusion

14



of Section 4 is clearly valid with 1% significance level.
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