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Enumeration of All Wedged Equilibrium Configurations

in Contact Problem with Coulomb Friction

Ryo Fujita † , Yoshihiro Kanno ‡

Department of Mathematical Informatics,
University of Tokyo, Tokyo 113-8656, Japan

Abstract

For a linear structure subjected to the unilateral contact condition with a fixed obstacle, we
refer to a nontrivial equilibrium state as a wedged configuration. Finding a wedged configuration
is called a wedged problem. This paper discusses theoretical properties of solution set of the
finite-dimensional wedged problem, as well as numerical methods for computing all the wedged
configurations. We propose algorithms for enumerating all the finitely many representative so-
lutions, with which we can completely describe the solution set of the wedged problem. There
exists a positive critical friction coefficient defined as the minimum value of friction coefficient
with which at least one wedged configuration exists. We also propose an algorithm for computing
the critical friction coefficient, which is based on the bisection method and the second-order cone
program.

Keywords

Coulomb friction; Complementarity problem; Enumeration; Double description method;
Second-order cone program.

1 Introduction

Wedged configuration is a nontrivial equilibrium state of a linear elastic structure subjected to the
unilateral contact condition against a fixed rigid obstacle with the existence of Coulomb friction [3,
7, 8]. Problem for finding a wedged configuration is referred to as a wedged problem. The existence
of a wedged configuration is regarded as a particular type of non-uniqueness of an equilibrium state
in the frictional contact problem.

Hassani et al. [7, 8] studied a continuum formulation of the wedged problem, and show the
presence of a critical value of the friction coefficient for which wedged configurations can exist.
They applied a genetic algorithm to the problem of finding the critical friction coefficient. Barber
and Hild [3] show that the critical friction coefficient can be obtained as the solution of a nonlinear
eigenvalue problem, and presented a heuristic algorithm which does not necessarily converge.

A wedged configuration can be related to a non-uniqueness of the equilibrium state of a linear
elastic structure with the Coulomb friction. The non-uniqueness of quasi-static solution and rate
†Current address: Cannon Inc. 3-30-2, Shimomaruko, Ohta, Tokyo 146-0092, Japan.
‡Corresponding author. Address: Department of Mathematical Informatics, Graduate School of Information Sci-

ence and Technology, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. E-mail: kanno@mist.i.u-tokyo.ac.jp.
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solution of the contact problem with the Coulomb friction have been investigated extensively [9, 10,
14, 15]. A uniqueness condition [10] and an enumeration algorithm [14] have been presented for the
quasi-static and/or rate problems by formulating those problems as the complementarity problems.

In this paper we propose numerical algorithms for solving the wedged problem of a finitely
discretized structure. It is mentioned that the wedged problem has infinitely many solutions in
general. We show that all the solutions can be completely expressed as a union of finitely many
convex cones. We propose numerical algorithms for enumerating all the maximal convex cones, as
well as a global optimization algorithm for finding the critical value of friction coefficient.

For the in-plane wedged problem we show that the set of all the wedged configurations can
be described as a family of finitely many polyhedral cones, each of which can be represented as
the nonnegative combination of some extremal rays. It is also shown that the enumeration of
those polyhedral cones is reduced to the enumeration of the maximal cliques of the given undirected
graph. Thus the solution set of the in-plane wedged problem is described completely by finitely many
representatives. We present a numerical algorithm for the enumeration based on the conventional
double description method [6, 13] and algorithm for enumerating all the maximal cliques [12].

In contrast to the in-plane problem, the solution set of the wedged problem in the three-
dimensional space cannot be represented by using finitely many representatives. The solution set,
however, can be represented as the union of finitely many convex cones, each of which is identified
by the sign-pattern of the variables subjected to the complementarity condition. We propose two
algorithms for enumerating all the sign-patterns: one of which is based on the branch-and-bound
method, and the other the polyhedral approximation of the friction cone.

The critical friction coefficient, µc, is defined as the minimum value of the friction coefficient
with which a wedged configuration exists [7]. It is not difficult to show that at least one wedged
configuration exists for any friction coefficient µ satisfying µ > µc. Hassani et al. [7] proposed a
genetic algorithm to find an upper bound of µc. Barber and Hild [3] formulated the problem finding
µc as a nonlinear eigenvalue problem, and proposed a heuristic numerical algorithm, which is not
guaranteed to converge to the solution. In contrast to those heuristic algorithms, we propose the
global optimization algorithm for finding µc based on the combination of the bisection method and
the enumeration method of all the sign-patterns of the wedged problem.

This paper is organized as follows. In section 2, we present a rigorous statement of the wedged
problem for a finite-dimensional structure. Properties of solution set of the wedged problem, which
are useful to construct enumeration algorithms of solutions, are investigated in section 3. We propose
algorithms for finding all the solutions for two-dimensional and three-dimensional wedged problems,
respectively, in sections 4 and 5. An algorithm for finding the critical coefficient friction is presented
in section 6. Numerical experiments are presented in section 7. Some conclusions are drawn in
section 8.

A few words regarding our notation: all vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (u>, v>)> consisting of u ∈ Rm and v ∈ Rn is often written simply as
(u, v). For vectors p = (pi) ∈ Rn and q = (qi) ∈ Rn, we write p ≥ q if pi ≥ qi (i = 1, . . . , n). Hence,
p ≥ 0 means pi ≥ 0 (i = 1, . . . , n). For a set C ∈ Rn, let int(C) and bd(C) denote the interior and
boundary of C, respectively. We denote by Sn the set of n× n real symmetric matrices.
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2 Wedged problem

The formal statement of a wedged problem for a continuum can be found in [8]. We present here a
formulation for a finitely discretized structure in order to make the paper self-contained.

Consider a finite-dimensional linear elastic structure and a fixed rigid obstacle in the d-dimensional
space, where d ∈ {2, 3}. We denote by m0 the number of nodes of the structure. The set of all nodes,
denoted by Γ, has a partition consisting of ΓD, ΓN, and ΓC. Here, ΓC is the set of contact candidate
nodes, which are assumed to be on the surface of the rigid obstacle, i.e. no gap exists between each
contact candidate node and the obstacle surface at the reference configuration. Suppose that the
nodal displacement is vanishing at the node contained in ΓD, while no external load is applied to
the node contained in ΓN.

Consider the node i which is a contact candidate, i.e. i ∈ ΓC. For defining the nodal displacement
vector, we consider the orthogonal reference frame which consists of an outer normal vector and
tangential vectors of the surface of rigid obstacle, and the origin of which coincides with the location
of the node i at the reference configuration. Then we denote by uni ∈ R and uti ∈ Rd−1 the normal
and tangential displacements, respectively. Let ui = (uni, uti) ∈ Rd denote the nodal displacement
vector. Similarly, we denote by ri = (rni, rti) ∈ R× Rd−1 the reaction vector applied to the node i.

For each contact candidate node we consider the unilateral contact condition as well as the
Coulomb friction law. Since we assume at the reference configuration that the node i is located on
the obstacle surface, the unilateral contact condition is written as

uni ≥ 0, rni ≥ 0, unirni = 0.

We denote by µ > 0 the friction coefficient. The friction cone of the Coulomb law is given by

‖rti‖ ≤ µrni.

Let u = (u1, . . . , um0) ∈ Rdm0 and r = (r1, . . . , rm0) ∈ Rdm0 denote the displacement vector and
reaction vector, respectively. We denote by K0 ∈ Sdm0 the stiffness matrix, which is assumed to be
positive definite. Under the assumptions stated above, a problem of finding nontrivial equilibrium
states is referred to as the wedged problem, which is formulated as

given K0 ∈ Sm0d, µ > 0, ΓC, ΓD, ΓN

find (u, r) ∈ Rm0d × Rm0d

s.t. K0u = r,

uni ≥ 0, rni ≥ 0, unirni = 0, ‖rti‖ ≤ µrni, ∀i ∈ ΓC,

uj = 0, ∀j ∈ ΓD,

rk = 0, ∀k ∈ ΓN.





(1)

A nontrivial solution, i.e. (u, r) 6= 0, of (1) is referred to as the wedged configuration.
Note that the constraint conditions of the wedged problem (1) consist of some linear inequalities,

friction cones, and complementarity conditions. Particularly, in the in-plane case, i.e. for d = 2,
the wedged problem is regarded as a kind of generalized linear complementarity problems [5]; see
section 3.1 for details.

Let uC = (ui | i ∈ ΓC) and rC = (ri | i ∈ ΓC). Define the vectors uN and rD similarly for the
nodes contained in ΓN and ΓD, respectively. Without loss of generality, the equilibrium equation
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considering the boundary conditions in (1) can be rewritten as


K0

CC K0
CN K0

CD

K0
NC K0

NN K0
ND

K0
DC K0

DN K0
DD






uC

uN

0


 =



rC

0
rD


 . (2)

Since K0 is assumed to be positive definite, we can reduce (2) to

[K0
CC −K0

CN(K0
NN)−1K0

NC]uC = rC, (3)

uN = −(K0
NN)−1K0

NCuC, (4)

rD = K0
DCuC +K0

DNuN. (5)

It is easy to see that if uC and rC are given, then uN and rD are obtained by using (4) and (5).
Consequently, the wedged problem (1) can be reformulated only in terms of uC and rC as below.

Define K ∈ Sdm by K = K0
CC −K0

CN(K0
NN)−1K0

NC, where m = |ΓC|. Note that K is positive

definite, because K is the Schur complement of K0
NN in

[
K0

CC K0
CN

K0
NC K0

NN

]
and K0 is assumed to be

positive definite. For simplicity, rewrite uC and rC as u ∈ Rdm and r ∈ Rdm, respectively. Let
un = (un1, . . . , unm) ∈ Rm and rn = (rn1, . . . , rnm) ∈ Rm. Then the problem (1) is reduced to

(WP) : find (u, r) ∈ Rdm × Rdm
s.t. Ku = r,

un ≥ 0, rn ≥ 0, u>n rn = 0,
‖rti‖ ≤ µrni, i = 1, . . . ,m.





(6)

Throughout the paper we deal with the problem (6), which is referred to as (WP).
The following result summarizes fundamental properties of solutions of (WP), which was first

presented in [8] for continua.

Proposition 2.1.

(i) (WP) has a trivial solution at the origin, i.e. (u, r) = (0, 0) solves (WP);

(ii) Let µ > 0 be fixed. If (u, r) solves (WP), then (λu, λr) for any λ > 0 solves (WP);

(iii) For the given µ > 0, suppose that (u, r) is a solution of (WP). Then (u, r) is also a solution
of (WP) for any µ′ satisfying µ′ > µ.

3 Solution analysis of wedged problem

This section provides an in-depth study of properties of the solution set of (WP) in (6). Particularly,
as an important observation we show that the solution set can be represented as a union of finitely
many convex cones. Such a property plays a key role to design algorithms for enumerating all the
wedged configurations presented in sections 4 and 5 as well as the one for finding the critical value
of friction coefficient discussed in section 6.
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3.1 Solution set of two-dimensional problem

In this section we consider the solution set of the in-plane wedged problem, i.e. d = 2.
A key observation is that the friction cone in the two-dimensional space can be represented as

linear inequalities. Hence the solution set of (WP) with d = 2 is characterized by polyhedral cones,
which is defined as follows [20].

Definition 3.1. A set P(A) ⊆ Rβ is a polyhedral cone if

P(A) = {y | Ay ≥ 0}

for some matrix A ∈ Rα×β.

In other words, a polyhedral cone is the intersection of finitely many linear half-spaces. We shall
investigate a polyhedral cone having an important property, which we define below.

Definition 3.2. A cone L is pointed if L ∩ (−L) = {0}.

Define C ⊆ Rdm × Rdm by

C = {x = (u, r) | Ku = r, un ≥ 0, rn ≥ 0, −µrn ≤ rt ≤ µrn} , (7)

where d = 2. Note that C is the set of (u, r) satisfying the constraint conditions of (6) except for
the complementarity conditions. We first state a property of C in the following proposition.

Proposition 3.3. The set C defined by (7) is a pointed polyhedral cone.

Proof. Define Â7m×4m by

Â =




K −I2n

µ 1
µ −1

O
. . .

µ 1
µ −1

−K I2n

1 0
. . . O

1 0




.

Note that K ∈ S2m, because we now consider the in-plane problem. It is easy to see that C satisfies
C = P(Â) := {x = (u, r) | Âx ≥ 0}, which implies that C is a polyhedral cone. Since K is positive
definite, we obtain rank Â{1,...,4m},{1,...,4m} = 4m. Hence, rank Â = 4m, i.e. Âx = 0 if and only
if x = 0. Thus we obtain P(Â) ∩ (−P(Â)) = {x | Âx = 0} = {0}, which implies that P(Â) is
pointed.

A pointed polyhedral cone can be expressed completely by using a finitely many representative
elements, which we define below.
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Definition 3.4. A vector v ∈ Rβ \ {0} is an extremal ray of P(A) if there exists a hyperplane
H = {x ∈ Rβ | h>x = 0} such that P(A) ∩H = {x | x = λv, λ ≥ 0}.

In other words, an extremal ray v of P(A) is a nonzero vector v ∈ P(A) which cannot be
represented as a nonnegative combination of elements of P(A) other than v. A convex cone is
polyhedral if and only if the number of its extremal rays is finite [17, Corollary 7.1a]. The following
proposition states a useful property of a pointed polyhedral cone.

Proposition 3.5 ([17, Chap. 8]). A pointed polyhedral cone can be represented by all possible non-
negative combinations of its extremal rays.

For simplicity, we say that a vector x ∈ R2dm, where x = (u, r) = (un, ut, rn, rt), satisfies
the complementarity condition if it satisfies u>n rn = 0. Let {v1, . . . , vp, w1, . . . , wq} be the set of
extremal rays of C, where vj (1 ≤ j ≤ p) satisfies the complementarity condition. Here we say that
vj = (uj , rj) = (ujn, u

j
t , r

j
n, r

j
t ) satisfies the complementarity condition if (ujn)>rjn = 0 is satisfied. It

should be clear that wk (1 ≤ k ≤ q) does not satisfy the complementarity condition.
Let cone({x1, . . . , x`}) denote the set of nonnegative combinations of the vectors x1, . . . , x`, i.e.

cone({x1, . . . , x`}) =




∑

1≤k≤`
λkx

k
λk ≥ 0 (1 ≤ k ≤ `)



 .

It follows from Proposition 3.3 and Proposition 3.5 that C defined by (7) is written as

C = cone({v1, . . . , vp, w1, . . . , wq}).

Let S ⊆ R2dm denote the set of solutions to (WP) in (6). It is clear that S is the set of vectors
in C satisfying the complementarity condition, i.e.

S = {(u, r) ∈ C | u>n rn = 0}.

The following proposition shows that x = (u, r) ∈ S only if x belongs to a cone generated by
Y ⊆ {v1, . . . , vp}.

Proposition 3.6. Let Y ⊆ {v1, . . . , vp, w1, . . . , wq}. If there exists a wk ∈ Y , then any interior
point of cone(Y ) does not satisfy the complementarity condition, i.e. u>n rn 6= 0 holds for any
x = (u, r) ∈ int(cone(Y )).

Proof. Observe that any (u, r) ∈ C satisfies un ≥ 0 and rn ≥ 0. Hence, (u, r) ∈ C does not satisfy
the complementarity condition if and only if there exists i (1 ≤ i ≤ n) such that uni > 0 and rni > 0.
This implies that, for wk = (uk, rk) ∈ Y , there exists i′ such that ukni′ > 0 and rkni′ > 0. Since
cone(Y ) is the set of nonnegative combinations of Y , any (ǔ, ř) ∈ int(cone(Y )) satisfies ǔni′ > 0,
řni′ > 0, ǔn ≥ 0, and řn ≥ 0. Hence, (ǔ, ř) does not satisfy the complementarity condition.

Furthermore, the solution set S is the union of finitely many polyhedral cones belonging to
cone({v1, . . . , vp}) as shown below. To see this, the notion of cross-complementarity plays an im-
portant role, which was first introduced in [4]．
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Definition 3.7. Let B ⊆ {1, . . . , p}. The set of vectors {vj = (uj , rj) | j ∈ B} is cross-
complementary if

∑
j∈B v

j satisfies the complementarity condition, i.e. if
(∑

j∈B u
j
n

)>(∑
j∈B r

j
n

)
=

0. We also say that {vj}j∈B satisfies the cross-complementarity condition if {vj}j∈B is cross-
complementary.

Note again that {v1, . . . , vp} denotes the set of all extreme rays of C satisfying the complemen-
tarity condition. The following proposition provides a necessary and sufficient condition for any
x ∈ cone(Y ) (Y ⊆ {v1, . . . , vp}) to satisfy the complementarity condition.

Proposition 3.8. Let Y ⊆ {v1, . . . , vp}. Any x = (u, r) ∈ cone(Y ) satisfies u>n rn = 0 if and only if
Y is cross-complementary.

Proof. It suffices to show the sufficiency, i.e. the ‘if’ part. Let Y := {(uj1 , rj1), . . . , (uj` , rj`)} ⊆
{v1, . . . , vp}, and suppose that Y satisfies the cross-complementarity condition. It follows from
Definition 3.7 that ∑

1≤k≤`
ujkni = 0 or

∑

1≤k≤`
rjkni = 0 (8)

holds for any i ∈ {1, . . . ,m}. Since (ujk , rjk) ∈ C, it satisfies ujkni ≥ 0 and rjkni ≥ 0, from which and
(8) it follows that

∀k : ujkni = 0 or ∀k : rjkni = 0

holds for any i ∈ {1, . . . ,m}. Then we can easily see that any x ∈ cone(Y ), where

cone(Y ) =




∑

1≤k≤`
λkv

jk | λk ≥ 0 (1 ≤ k ≤ `)


 ,

satisfies the complementarity condition.

We finally show that the solution set of the in-plane wedged problem can be completely described
by finitely many representative elements as follows.

Proposition 3.9. Let {vj | j = 1, . . . , p} be the set of extremal rays of C, which satisfy the comple-
mentarity condition. Then

S =
⋃

B⊆{1,...,p}




∑

j∈B
λjv

j
{vj}j∈B is cross-complementary, λj ≥ 0 (j ∈ B)



 . (9)

Proof. By Proposition 3.6 we see that S ⊆ cone({v1, . . . , vp}), from which and Proposition 3.8 the
assertion of Proposition 3.9 is immediately obtained.

An important consequence of Proposition 3.9 is that S can be expressed only by finitely many
vectors v1, . . . , vq and their cross-complementarity relationship. Let Bt ⊆ {1, . . . , q} be an index set
of vj ’s, where {vj , vj′} satisfies the cross-complementary condition for any j, j′ ∈ Bt. Then S can
be written as

S =
⋃
t

cone({vj | j ∈ Bt}). (10)
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Such a description of S is not unique. Among families of index sets, Bt’s, satisfying (10), we denote
by B̂1, . . . , B̂t̂ the one consisting of the minimum number of ray index sets. In other words, the
description

S =
t̂⋃

t=1

cone({vj | j ∈ B̂t}) (11)

corresponds to the most concise description among (10). We call (B̂t | t = 1, . . . , t̂) the family of
maximal ray index sets satisfying the cross-complementarity condition. It should be emphasized
that (11) implies that S can be completely represented by finitely many vectors v1, . . . , vq and index
sets B̂1, . . . , B̂t̂. The enumeration algorithm of S presented in section 4 is based on (11), i.e. the
algorithm consists of finding all vj ’s and finding all B̂t’s.

3.2 Solution set of three-dimensional problem

In contrast to the in-plane problem studied in section 3.1, the solution set of the 3-D wedged problem
no longer has the polyhedrarlity. In this section we show that the solution set of the 3-D problem
is represented as a union of convex cones.

Let d = 3 throughout this section. Define C3 ⊆ R2dm by

C3 =
{

(u, r) ∈ Rdm × Rdm | Ku = r, un ≥ 0, rn ≥ 0, ‖rti‖ ≤ µrni (1 ≤ i ≤ m)
}
,

which is the set of (u, r) satisfying the constraint conditions of (WP) except for the complementarity
conditions. Note that C3 is a convex cone, although it is not a polyhedral cone in contrast to C in
(7) for the in-plane problem. The solution set of (WP) in the three-dimensional space is given by

S3 = {(u, r) ∈ C3 | u>n rn = 0}.

For x = (u, r) ∈ Rdm × Rdm, define Zu(x), Zu(x) ⊆ {1, . . . ,m} by

Zu(x) = {i ∈ {1, . . . ,m} | uni = 0} , (12)

Zr(x) = {i ∈ {1, . . . ,m} | rni = 0} . (13)

Since uni = 0 ⇔ i ∈ Zu(x) and rni = 0 ⇔ i ∈ Zr(x), we call Z(x) := (Zu(x), Zr(x)) the sign-
pattern of x. It is easy to see that x = (u, r) satisfies the complementarity condition if and only if
Zu(x) ∪ Zr(x) = {1, . . . ,m}. We call Z(x) a sign-pattern satisfying the complementarity condition
if x satisfies the complementarity condition. We say that x satisfies the strict complementarity
condition if x satisfies Zu(x) ∩ Zr(x) = ∅ as well as the complementarity condition. We call Z(x) a
sign-pattern satisfying the strict complementarity condition if x satisfies the strict complementarity
condition. It is clear that a sign-pattern satisfying the strict complementarity condition satisfies the
complementarity condition. We write Z(x) ⊆ Z(x′) if Zu(x) ⊆ Zu(x′) and Zu(x) ⊆ Zr(x′).

The following result, which will be used in Proposition 5.7, states the relation between two
solutions of (WP) which does not satisfy the strict complementarity condition.

Proposition 3.10. Let x = (u, r) and x′ = (u′, r′) be solutions of (WP). If that there exists a
sign-pattern Y satisfying the strong complementarity condition, Z(x) ⊇ Y , and Z(x′) ⊇ Y , then any
nonnegative combination of x and x′ solves (WP).
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Proof. From x ∈ S3 and x′ ∈ S3, we see that x ∈ C3 and x′ ∈ C3. Since C3 is a convex cone, any
nonnegative combination of x and x′, denoted by x′′, satisfies x′′ ∈ C3. Note that any (u, r) ∈ S3

satisfies un ≥ 0 and rn ≥ 0. Hence, Z(x) ⊇ Y and Z(x′) ⊇ Y imply that Z(x′′) ⊇ Y . Since the
sign-pattern Y satisfies the complementarity condition, so does Z(x′′), from which and x′′ ∈ C3 it
follows that x′′ ∈ S3.

Let Y = (Y u, Y r) be a sign-pattern satisfying the strict complementarity condition. Define
D(Y ) ⊆ R2dm by

D(Y ) = {x ∈ S3 | Z(x) ⊇ Y }. (14)

We first state a fundamental property of D(Y ) below.

Proposition 3.11. A nonempty D(Y ) is a convex cone.

Proof. If x ∈ D(Y ), then it is easy to see that αx ∈ D(Y ) for any α ≥ 0. Hence, D(Y ) is a
cone. The convexity of D(Y ) is shown as follows. Let x, x′ ∈ D(Y ). Since C3 is convex, we see
that λx + (1 − λ)x′ ∈ C3 for any λ ∈ [0, 1]. From the definition of D(Y ), we have Z(x) ⊇ Y and
Z(x′) ⊇ Y . Hence, Z(λx + (1 − λ)x′) ⊇ Y , i.e. Z(λx + (1 − λ)x′) is a sign-pattern satisfying
the complementarity condition. Consequently, λx + (1 − λ)x′ ∈ C3 satisfies the complementarity
condition for any λ ∈ [0, 1].

From the definition (14) of D(Y ), we see that D(Y ) ⊆ S3 and that any x ∈ S3 satisfies x ∈ D(Y )
for some Y . Hence, we obtain

S3 =
⋃

Y

D(Y ). (15)

In (15) the union is taken for any Y satisfying the strict complementarity condition. However, in
(15) we can exclude some Y ’s, e.g. it is obvious that Y satisfying D(Y ) = {0} can be excluded.
Among these variants of description we denote by

S3 =
t̂⋃

t=1

D(Ŷt) (16)

the one consisting of the minimum number of convex cones. For simplicity, we often write D̂t =
D(Ŷt). The following result states a property of this concise description of S3.

Proposition 3.12. In (16), int(D̂t) ∩ int(D̂t′) = ∅ for any t 6= t′.

Proof. From the definition of D̂t it follows that there exists a Ŷt satisfying the strict complementarity
condition and D̂t = D(Ŷt).

Let Y1 and Y2 (Y1 6= Y2) be sign-patterns satisfying the strict complementarity condition. We
begin with seeing that D(Y1) and D(Y2) satisfies one of the following conditions:

(i) D(Y1) ∩D(Y2) = {0};

(ii) bd(D(Y1)) ∩ bd(D(Y2)) ⊃ {0} and int(D(Y1)) ∩ int(D(Y2)) = ∅;

(iii) either D(Y1) ⊆ D(Y2) or D(Y1) ⊇ D(Y2) holds.
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In other words, (i)D(Y1) andD(Y2) share only the origin, (ii) they share some portions of boundaries,
or (iii) they have an inclusion relation.

Suppose that there exists an x = (u, r) ∈ S3 (x 6= 0) satisfying Z(x) ⊇ Y1 and Z(x) ⊇ Y2.
Since Y1 and Y2 are two different sign-patterns satisfying the strict complementarity condition,
there exists an i ∈ {1, . . . ,m} satisfying uni = rni = 0. From Proposition 3.11 we see that D(Y1) is
a convex cone, which implies that x ∈ D(Y1) can be represented as a nonnegative combination of
elements of bd(D(Y1)). Note that any x′′ ∈ bd(D(Y1)) satisfies u′′ni ≥ 0 and r′′ni ≥ 0. Hence, from
uni = rni = 0 we obtain u′′ni = r′′ni ≥ 0, which implies that x 6∈ int(D(Y1)). Similarly, x 6∈ int(D(Y2)).
Consequently, D(Y1) and D(Y2) satisfy either (ii) or (iii). Conversely, suppose that there exists no
x = (u, r) ∈ S3 (x 6= 0) satisfying Z(x) ⊇ Y1 and Z(x) ⊇ Y2. Then only the origin corresponds to
the common point of D(Y1) and D(Y2), i.e. (i) is satisfied.

In (16), if D(Y1) and D(Y2) satisfy the condition (i), then one of Y1 and Y2 can be excluded. For
example, if D(Y1) ⊂ D(Y2), then we can exclude Y1 from (16). This leads the contradiction because
(16) includes the minimum number of D(Y )’s, which concludes the proof.

In section 5 we present algorithms for enumerating Ŷ1, . . . , Ŷt̂ in (16) for (WP) with d = 3.

4 Enumeration of two-dimensional wedged configurations

In this section we propose an algorithm for enumerating all the solutions of the in-plane wedged
problem.

4.1 Prototype of algorithm

As shown in section 3.1, the solution set of WP (6) with d = 2 is described completely as (11) by
using finitely many extremal rays and maximal ray index sets representing the cross-complementarity
relationship. Our algorithm for enumerating those representatives in (11) consists of two parts as
follows.

Algorithm 4.1 (prototype of enumeration algorithm).

Step 1: For the polyhedral cone C defined by (7), find all the extremal rays, v1, . . . , vp, satisfying
the complementarity condition.

Step 2: Find all the maximal ray index sets, B̂1, . . . , B̂t̂ ⊆ {1, . . . , p}, such that {vj}j∈B̂t satisfies
the cross-complementarity condition.

We present an algorithm for Step 1 in section 4.2, while the one for Step 2 in section 4.3.

4.2 Enumeration of extremal rays finding complementarity condition

There exist some numerical algorithms for enumerating all the extremal rays of a given polyhedral
cone, e.g. the double description method [6, 13], the reverse search [2], etc. In this section we
propose an algorithm which enumerate only the extremal rays of C satisfying the complementarity
conditions.
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More precisely, we consider the polyhedral cone

C = {(u, r) ∈ R2m × R2m | Ku = r, un ≥ 0, rn ≥ 0,−µrn ≤ rt ≤ µrn}
and enumerate all its extremal rays satisfying u>n rn = 0. In Algorithm 4.2 presented below, however,
we eliminate the variables u by using the equilibrium equations and consider the polyhedral cone

Cr = {r ∈ R2m | −µrn ≤ rt ≤ µrn, (K−1r)n ≥ 0}
in terms of r. The following algorithm finds all the extremal rays of Cr satisfying the complementarity
condition (K−1r)>n rn = 0.

Algorithm 4.2 (enumeration of extremal rays satisfying the complementarity condition).

Step 1: Enumerate all the extremal rays of a polyhedral cone defined by P := {r | −µrn ≤ rt ≤
µrn}. Let V = {vj}j∈J be the set of the obtained extremal rays. Set i := 1.

Step 2: Introduce a new inequality uni = (K−1r)ni ≥ 0 to P as follows. Define J+, J0, and J−

by

J+ = {j ∈ J | (K−1vj)ni > 0},
J0 = {j ∈ J | (K−1vj)ni = 0},
J− = {j ∈ J | (K−1vj)ni < 0}.

Let Vi := {vj}j∈J0
. For each (j1, j2) ∈ J+ × J−, perform the following procedure.

(a) If vj1 and vj2 are adjacent on P , then perform (b).

(b) If vj1 and vj2 satisfy [(K−1vj1)nl + (K−1vj2)nl](v
j1
nl + vj2nl) = 0 (l = 1, . . . , i− 1), then

perform (c).

(c) Compute an internally dividing point vj∗ of vj1 and vj2 such that (K−1vj∗)ni = 0 is
satisfied. Let Vi := Vi ∪ {vj∗}.

Step 3: For each vj ∈ Vi, if (K−1vj)niv
j
ni 6= 0, then let Vi := Vi \ {vj}.

Step 4: Let V := V ∪ Vi and P := P ∩ {r ∈ R2m | (K−1r)ni ≥ 0}.

Step 5: If i = m, then declare V as the output. Otherwise, set i← i+ 1, and go to Step 2.

Remark 4.3. It should be clear that vj ∈ R2m in Algorithm 4.2 corresponds to the reaction vector,
which is an extremal ray of Cr. In contrast, we have considered extremal rays of C in section 3.1,
and hence we have written there as vj = (uj , rj) ∈ R4m.

Remark 4.4. At Step 1 of Algorithm 4.2 all the extremal rays of P can be obtained analytically.
Since each linear inequality defining P contains only two variables, rni and rti, each extremal ray of
P is orthogonal to the corresponding row vector of the matrix representing the linear inequalities of
P . Hence, V at Step 1 is obtained immediately, i.e. if we define vj = ((rjni, r

j
ti) | i = 1, . . . ,m) by

r2i−1
ni = 1, r2i−1

ti = µ, r2i−1
nl = r2j−1

tl = 0 (∀l 6= i),

r2i
ni = 1, r2i

ti = −µ, r2i
nl = r2j

tl = 0 (∀l 6= i),

then V = {v1, . . . , v2m}. This is the reason why we prefer to eliminate u, rather than to eliminate
r, by using the equilibrium equations.
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Remark 4.5. Step 2(b) of Algorithm 4.2, we check whether (uj1 , rj1) and (uj2 , rj2) satisfy the cross-
complementarity condition with respect to the nodes l = 1, . . . , i − 1, where rjk := vjk and ujk :=
K−1vjk (k = 1, 2). At Step 3 we check whether (uj∗ , rj∗) satisfies the complementarity condition
with respect to the node i, where rj∗ := vj∗ and uj∗ := K−1vj∗ .

Remark 4.6. At Step 2(a) we say that vj1 and vj2 are adjacent on the polyhedral cone P if the
minimal face of P containing vj1 and vj2 contains no other extremal rays [6]. Let A denote a
representation matrix of P , i.e. P = {r | Ar ≥ 0}. We denote by A(vj1 , vj2) the submatrix
consisting of Ak satisfying Akv

j1 = Akv
j2 = 0, where Ak is the kth row vector of A. It is known

that vj1 and vj2 are adjacent on P if and only if rank(A(vj1 , vj2)) = 2m− 2. Hence, we proceed to
Step 2(b) if rank(A(vj1 , vj2)) = 2m− 2.

The validity of the conventional double description method [6, 13] is stated formally as follows.

Proposition 4.7. All the extremal rays of Cr are enumerated by the double description method.

The validity of Algorithm 4.2 can be shown as follows.

Proposition 4.8. Algorithm 4.2 finds all the extremal rays of C satisfying u>n rn = 0.

Proof. Let V denote the output of Algorithm 4.2. We denote by V̄ the set of extremal rays of
Cr obtained by applying the double description method. Note that Algorithm 4.2 contains two
additional procedures compared with the double description method; (i) we consider the cross-
complementarity condition at Step 2(b), and (ii) we eliminate some extremal rays at Step 3. By
Proposition 4.7 it suffices to show that by performing the procedures (i) and (ii) we do not lose any
extremal rays contained in V̄ satisfying the complementarity condition. This is equivalent to the
assertion that any extremal ray contained in V̄ \ V, i.e. any extremal ray eliminated from V̄ as a
result of performing (i) and (ii), does not satisfy the complementarity condition. This assertion is
shown as follows.

For seeing the validity of Step 2(b), suppose that there exists a pair of extremal rays (rj1 , rj2),
where (j1, j2) ∈ J+ × J−, rj1 and rj2 are adjacent, and (uj1nl + uj2nl)(r

j1
nl + rj2nl) 6= 0 for some l (l < i).

Let r∗ be an internally dividing point of rj1 and rj2 , and let u∗ = K−1r∗. Since rj1 and rj2 satisfy
the constraints of the current P , we see that uj1nk, u

j2
nk, r

j1
nk, and rj2nk are nonnegative for any k < i.

Hence, (uj1nl + uj2nl)(r
j1
nl + rj2nl) 6= 0 implies that u∗nl > 0 and r∗nl > 0. As a consequence, any extremal

rays computed at Step 2(c) of the ith iteration does not satisfy the complementarity condition. If
Step 2(c) is not performed, at the i′th iteration (i′ > i) we may compute an internally dividing
point of r∗ and a newly obtained vector rj

′
by introducing (Kr)ni′ ≥ 0. Note that such an internally

dividing point is contained in V̄ \ V. Since the constraint conditions rn ≥ 0 has ben considered at
Step 1, we see that rj

′
satisfies rj

′
nl ≥ 0. Moreover, rj

′
satisfies uj

′
nl ≥ 0 (∀l ≤ i′), because rj

′
is

contained in P at the i′th iteration. Hence, u∗nl > 0 and r∗nl > 0 imply that any internal dividing
point of r∗ and rj

′
does not satisfy the complementarity condition. Consequently, any extremal ray

which we lose by performing Step 2(b) does not satisfy the complementarity condition.
For seeing the validity of Step 3, similarly we can show that any internal dividing point of rj

satisfying ujnir
j
ni 6= 0 and a vector rj

′
obtained at Step 2 does not satisfy the complementarity

condition. Hence, any the extremal ray does not found by performing Step 2(b) and Step 3 does
not satisfy the complementarity condition, which concludes the proof.
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4.3 Enumeration of index sets of cross-complementary rays

We here show that Step 2 of Algorithm 4.1 can be performed by using a conventional algorithm for
enumerating all the maximal cliques of an undirected graph, which is a extensively studied problem
of the graph theory. A key observation is given in the following proposition.

Proposition 4.9. Let {v1, . . . , vp} be the set of extremal rays satisfying the complementarity con-
dition, and let B ⊆ {1, . . . , p}. Then {vj}j∈B satisfies the cross-complementarity condition if and
only if {vj1 , vj2} satisfies the cross-complementarity condition for any j1, j2 ∈ B.

Proof. It suffices to show the necessity, i.e. the ‘only if’ part. Let vj = (uj , rj) (j ∈ B). For each
i = 1, . . . ,m, we have one of the following three cases:

(a) ujni = rjni = 0 for any j ∈ B;

(b) There exists l ∈ B such that ulni > 0;

(c) There exists l ∈ B such that rlni > 0.

Nothing should be proved for the case (a). In the case (b), the complementarity condition for vl

implies rlni = 0. By putting j1 = l and j2 ∈ B \ {l}, we obtain rj2ni = 0 (∀ ∈ B \ {l}). Consequently,
we see that rjni = 0 (∀j ∈ B), and hence {vj}j∈B satisfies the cross-complementarity condition.
Similarly, in the case (c) we obtain ujni = 0 (∀j ∈ B), which concludes the proof.

Define a binary relation ∼ on {1, . . . , p} by

j1 ∼ j2 ⇔ {vj1 , vj2} satisfies the cross-complementarity condition,

where j1, j2 ∈ {1, . . . , p}. We consider a graph G = (V,E) with the vertex set V = {1, . . . , p}
and the edge set E = {{j1, j2} | j1 ∼ j2}. Proposition 4.9 implies that B ⊆ E is a clique of G
if and only if {vj}j∈B satisfies the cross-complementarity condition. Recall that in (11) we focus
on the family of the maximal ray index sets, say, B̂1, . . . , B̂t̂. The enumeration of B̂t corresponds
to the enumeration of the maximal cliques of the graph G, which can be performed by an existing
algorithm; see, e.g. [12] and the references therein. In summary, at Step 2 of Algorithm 4.1 we
enumerate the maximal cliques of the graph G by using a conventional method.

5 Enumeration of three-dimensional wedged configurations

In this section we consider the enumeration of solutions to the wedged problem (6) in the three-
dimensional space, i.e. for d = 3. As discussed in section 3.2 the solution set of (WP) (6) with d = 3
cannot be described by finitely many representative solutions. However, the solution set consists of
finitely many convex cones, each of which is characterized by a sign-pattern of the complementary
variables, un and rn. We present here two alternative algorithms for finding all the sign-patterns.
In section 5.1 we propose an algorithm based on the branch-and-bond method, while in section 5.2
the one based on a polyhedral outer approximation of the friction cone.
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5.1 Enumeration based on branch-and-bound method

We present here an algorithm for the enumeration of sign-patterns. Algorithm 5.1 below is based
on the brand-and-bound method [11], at each node of the branch-and-bound tree we solve an SOCP
problem [1].

Note that the complementarity condition implies that either uni = 0 or rni = 0 should be satisfied
for each i = 1, . . . ,m. Based on this observation we construct a binary search tree as follows. Each
node N of the search tree is characterized by U(N) and R(N), where U(N), R(N) ⊆ {1, . . . ,m} are
sets of indices satisfying U(N) ∩R(N) = ∅. We set uni = 0 for each i ∈ U(N) and rnj = 0 for each
j ∈ R(N). It is clear that the complementarity condition, u>n rn = 0, is satisfied if U(N) ∪ R(N) =
{1, . . . ,m}. The root node N0 is defined by U(N0) = R(N0) = ∅. If U(N) ∪ R(N) 6= {1, . . . ,m}
at the node N , we select an i 6∈ U(N) ∪ R(N), and define a child node of N by adding i to U(N)
or R(N). Thus, the node N has two child nodes. Consequently, all the sign-patterns satisfying the
complementarity conditions are represented by 2m leaf nodes of the search tree.

Note that we consider the constraint conditions

∀i ∈ U(N) : uni = 0, ∀j ∈ R(N) : rnj = 0 (17)

at the node N . By solving an appropriate subproblem at the node N , we determine whether there
exists a nontrivial solution (WP) in (6) satisfying (17). If there exists such a solution, then we
proceed to the branching procedure, in which we add two child nodes of N to the search tree.
Otherwise, the node N is pruned by infeasibility.

For the determination of the feasibility, we may solve the following optimization problem at the
node N :

max
u,r,t

t

s.t. Ku = r,

uni = 0, rni ≥ t, ‖rti‖ ≤ µrni, ∀i ∈ U(N),
unj ≥ t, rnj = 0, rtj = 0, ∀j ∈ R(N),
unk ≥ t, rnk ≥ t, ‖rtk‖ ≤ µrnk, ∀k /∈ U(N) ∪R(N),∑

1≤i≤m
rni = 1,





(18)

where the variables are u, r, and t. Let t∗ be the optimal value of the problem (18). If t∗ < 0, then
only the trivial solution, i.e. u = r = 0, satisfies (6) and (17), and hence the node N is pruned.
On the other hand, suppose t∗ ≥ 0, which implies that there exists a nontrivial solution to (6) and
(17). In this case, if U(N)∪R(N) = {1, . . . ,m}, then such a solution satisfies the complementarity
condition, and hence N corresponds to one of sign-patterns of (WP). If U(N)∪R(N) = {1, . . . ,m},
we apply an appropriate branching rule to add two child nodes of N to the search tree.

Consequently, the following algorithm finds all the sign-patterns of the solution of (WP):

Algorithm 5.1 (branch-and-bound method for enumeration of sign-patterns).

Step 1: Define the root node, N0, of the search tree by U(N0) = R(N0) = ∅. Set Y = ∅.

Step 2: Select a node N , which has not been chosen, in the search tree. If none exists, then go
to Step 5.
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Step 3: Solve (18) at the node N to find the optimal value t∗. If t∗ ≥ 0, then go to Step 4.
Otherwise, go to Step 2.

Step 4: If U(N)∪R(N) = {1, . . . ,m}, then set Y ← Y∪{N}, and go to Step 2. Otherwise, select
i ∈ {1, . . . ,m} \ (U(N) ∪R(N)). Add N1, N2 defined by

U(N1) := U(N) ∪ {i}, R(N1) := R(N),

U(N2) := U(N), R(N2) := R(N) ∪ {i},

to the search tree as child nodes of N , and go to Step 2.

Step 5: Declare Y as the set of sign-patterns, and stop.

Remark 5.2. At Step 2 of Algorithm 5.1 we choose the next candidate node by using a conventional
node selection method, e.g. the depth-first search, the breadth-first search, etc.

Remark 5.3. Algorithm 5.1 is well-defined in the sense that the subproblem (18) to be solved at
Step 3 always has a feasible solution. Moreover, if there exists a nontrivial solution satisfying (6)
and (17), then the optimal value, t∗, of (18) satisfies 0 ≤ t∗ < +∞. Note that the optimal value
becomes unbounded above if we remove the constraint condition

∑
1≤i≤m rni = 1 from (18). Thus

the optimal value of (18) always satisfies −∞ < t∗ < +∞, which is desired from the view point of
numerical computation.

Remark 5.4. The subproblem (18) to be solved at Step 3 is a minimization problem of a linear
function over linear constraint conditions and second-order cone inequalities. Hence, (18) is an
SOCP (second-order cone programming) problem, which can be solved effectively by using the
primal-dual interior-point method [1]. Several well-developed software packages for solving SOCPs
are available, e.g. [16, 18].

Remark 5.5. At Step 4 we apply an appropriate rule to select i ∈ {1, . . . ,m} \ (U(N) ∪R(N)). For
example, in our numerical experiments presented in section 7.3, we put i := arg max{u∗nir∗ni | i =
1, . . . ,m}, where (u∗, r∗, t∗) is the optimal solution of the problem (18) at the node N .

5.2 Enumeration based on polyhedral approximation

The difficulty of (WP) with d = 3 arises from the nonlinearity of the friction cone, while the friction
cone with d = 2 can be represented by linear inequalities. In this section we propose an algorithm
for d = 3 based on a polyhedral outer approximation of the friction cone. Since the solution set of
the approximated problem has the same property as that of (WP) with d = 2, we can enumerate the
solutions of the approximated problem by using the algorithm presented in section 4. By using these
approximate solutions we can find all the sign-patterns of the original (WP) with d = 3 efficiently.

For each i = 1, . . . ,m, let Ki ⊆ R3 be a polyhedral cone satisfying

Ki ⊃ {(rni, rti) ∈ R× R2 | ‖rti‖ ≤ µrni}, (19)

i.e. Ki contains the friction cone associated with the node i. By replacing the friction cone ‖rti‖ ≤
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µrni in (6) with Ki, we obtain an approximation problem of (WP) as follows.

(WP) : find (u, r) ∈ Rdm × Rdm
s.t. Ku = r,

un ≥ 0, rn ≥ 0, u>n rn = 0,
(rni, rti) ∈ Ki, i = 1, . . . ,m.





(20)

Since Ki is a polyhedral cone, the constraint conditions of (WP) consist of finitely many homogeneous
linear inequalities and m complementarity conditions.

We denote by S ⊆ R2dm the solution set of (WP). Since Ki satisfies (19), it is easy to see that
S3 ⊆ S.

Recall that in section 3.2 we have investigated the solution set S3 of (WP) by using D(Y ) defined
by (14). Similarly, define E(Y ) ⊆ R2dm by

E(Y ) = {x ∈ S | Z(x) ⊇ Y } (21)

for a sign-pattern Y = (Y u, Y r) satisfying the strict complementarity condition. Since S =⋃
Y E(Y ), we obtain an alternative description of S as S =

⋃
sE(Ys), where Ys is a sign-pattern

satisfying the strict complementarity condition. Note that such a description is not unique. Among
those descriptions we denote by

S =
ŝ⋃

s=1

Es(Ŷs) (22)

the one consisting of the minimum number of polyhedral cones. For simplicity we write Ês = E(Ŷs).
The following statement can be obtained in a manner similar to Proposition 3.12.

Proposition 5.6. In (22), int(Ês) ∩ int(Ês′) = ∅ for any s 6= s′.

The following result, which plays a key role in showing the veridity of Algorithm 5.8 below,
summarizes a relation between S and S.

Proposition 5.7. S3 and S can be described by using finitely many convex cones Dt and polyhedral
cones Es as S3 =

⋃
tDt and S =

⋃
sEs, where Dt and Es satisfy the following conditions:

(i) int(Dt) ∩ int(Dt′) = ∅ if t 6= t′;

(ii) int(Es) ∩ int(Es′) = ∅ if s 6= s′;

(iii) For each Dt, there exists Es satisfying Dt ⊆ Es uniquely;

(iv) For each Es, there exists at most one Dt satisfying Dt ⊆ Es.

Proof. From Proposition 3.12 and Proposition 5.6, it is immediate to see that there exist Dt and Es
satisfying the conditions (i) and (ii).

Suppose that Y ′ is a sign-pattern satisfying D(Y ′) 6= {0}. From the definition (14) of D(Y ′) it
follows that any x ∈ D(Y ′) satisfies x ∈ S3 and Z(x) ⊇ Y ′. Moreover, since S3 ⊆ S, we see that
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x ∈ S. Hence, from (21), we obtain x ∈ E(Y ′). As a consequence, for any Y satisfying the strict
complementarity condition, we obtain

D(Y ) ⊆ E(Y ).

Notice here that this inclusion holds even if D(Y ) = {0}. Thus the assertion (iii) is obtained.
To see (iv), observe that there exists Y which satisfies Z(x) ⊇ Y for any x ∈ Es as well as the

strict complementarity condition. Suppose that there exist Dt, Dt′ 6= {0} (Dt 6= Dt′) satisfying
Dt ⊆ Es and Dt′ ⊆ Es. Then, Y satisfies Z(x) ⊇ Y for any x ∈ Dt and Z(x′) ⊇ Y for any x′ ∈ Dt′ .
It follows from Proposition 3.10 that any nonnegative combination of x ∈ Dt and x′ ∈ Dt′ is a
solution to (WP). This implies that there exists a convex cone D′ which contains Dt and Dt′ , and
is contained by Es. Hence, Dt and Dt′ can be replaced with D′ so that Es contains only one convex
cone D′.

It should be emphasized that, similarly to (WP) with d = 2, the constraint conditions of (WP)
consist of homogeneous linear inequalities and complementarity conditions. Hence, we can enumerate
solutions, as well as the maximal sign-patterns of those solutions, of (WP) by using the algorithm
presented in section 4. Thus, Ês in Proposition 5.7 can be found. Moreover, Proposition 5.7 implies
that each Ês either contains one D̂t or does not contain any nontrivial solution of (WP). Hence,
for the enumeration of D̂t, it suffices to determine whether each Ês = E(Ŷs) contains a nontrivial
solution to (WP) or not. This determination can be performed by solving the following optimization
problem:

max
t,u,r,x,y

t

s.t. Ku = r,

uni ≥ xi, rni = 0, rti = 0, ∀i ∈ Y r,

unj = 0, rnj ≥ 0, ‖rtj‖+ yj ≤ µrnj , ∀j ∈ Y u,

xi ≥ t, yi ≥ t, i = 1, . . . ,m,∑

1≤i≤m
rn = 1.





(23)

We denote by t∗ the optimal value of the problem (23). If t∗ < 0, then we see that only the trivial
solution, i.e. (u, r) = (0, 0), satisfies (u, r) ∈ E(Y ) as well as the constraint conditions of (WP).
Otherwise, E(Y ) contains a nontrivial solution of (WP), and hence Y corresponds to one of the
sign-patterns of solutions of (WP).

Consequently, all the sign-patterns of the solution of (WP) can be found by using the following
algorithm.

Algorithm 5.8 (enumeration of sign-patterns by polyhedral approximation of friction cone).

Step 1: Formulate (WP) by approximating the friction cone of (WP) by a polyhedral cone. Enu-
merate the sign patterns, Y1, . . . , Yk, of the solutions of (WP) by using the algorithm
presented in section 4.

Step 2: For each Yt, we solve the SOCP problem (23) to find the optimal value t∗. If t∗ ≥ 0, then
declare Yt as the sign-pattern of (WP). Otherwise, discard Yt.
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Remark 5.9. Algorithm 5.8 is well-defined in the sense that the problem (23) to be solved at Step 2
has a feasible solution, and its optimal value is bounded. In addition, (23) is an SOCP problem,
and hence it can be solved effectively by using the primal-dual interior-point method.

6 Critical value of friction coefficient

In this section we consider the critical friction coefficient, µc, defined as the minimum value of friction
coefficient with which a nontrivial wedged configuration exists. Since the problem for computing
µc is regarded as a nonconvex optimization problem, its global optimal solution cannot be found
easily in general. Barber and Hild [3] formulated this problem as a nonlinear eigenvalue problem,
and solved it numerically. However, their algorithm is not guaranteed to converge. Hassani et al.
[7] proposed a genetic algorithm for finding an upper bound of µc. We here describe an algorithm
which is guaranteed to find µc.

It follows from Proposition 2.1 that there exists a minimum value of the friction coefficient, µc,
with which there exists at least one nontrivial solution to (WP). Moreover, we easily see that (WP)
has a nontrivial solution for any µ satisfying µ ≥ µc. Hence, if there exists an algorithm which
determines whether (WP) has a nontrivial solution for a given µ, then we can compute µc by using
the bisection method. This is a basic idea of our algorithm.

Recall that by using the algorithms in section 5, we can enumerate the sign-patterns Y satisfying
the strict complementarity condition. For an in-plane problem, Algorithm 4.2 can be also used to
enumerate sign-patterns. The first step of our algorithm, Algorithm 6.1 below, consists of the
enumeration of sign-patterns of (WP) for a sufficiently large friction coefficient. For the specified
sign-pattern, it is easy to check the existence of nontrivial solution, as shown in section 5.2. For a
given sign-pattern Y = (Y u, Y r) satisfying the strict complementarity condition and a given µ > 0,
define Q(Y ;µ) ⊆ R2dm by

Q(Y ;µ) =





Ku = r,

(u, r) 6= 0

∣∣∣∣∣ uni ≥ 0, rni = 0, rti = 0, ∀i ∈ Y r,

unj = 0, rnj ≥ 0, ‖rtj‖ ≤ µrnj , ∀j ∈ Y u




.

Out algorithm for finding the critical friction coefficient is described as follows.

Algorithm 6.1 (bisection method for computing the critical friction coefficient).

Step 1: Choose a sufficiently large µ0. For (WP) defined with µ := µ0, enumerate a family of
sign-patterns Ŷ1, . . . , Ŷt̂ of solutions which satisfy the strict complementarity condition.

Step 2: For each t, find µc
t := inf

µ
{µ | Q(Ŷt;µ) ⊃ {0}} by a bisection method as follows.

(a) Set µ := 0 and µ := µ0.

(b) If µ−µ is small enough, then declare µ as µc
t , and stop. Otherwise, choose µ ∈]µ, µ[.

(c) If Q(Ŷt;µ) = {0}, then set µ := µ. Otherwise, set µ := µ. Go to (b).

Step 3: Declare min
1≤t≤t̂

{µc
t} as µc, and stop.
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Figure 1: A square elastic block on the rigid obstacle.

At Step 2(c) of Algorithm 6.1, we solve the SOCP problem (23) to determine whether Q(Ŷt;µ) =
{0} or not. Note that (23) is reduced to a linear programming problem for d = 2.

7 Numerical experiments

Numerical results are presented by using the presented algorithms for various structures; the wedged
configurations are enumerated for an isotropic elastic body and trusses in the two-dimensional space
in sections 7.1 and 7.2, respectively, while for a 3D truss we compute the sign-patterns of wedged
configurations in section 7.3. Computation has been carried out on Core2 Duo P8400 (2.26 GHz
with 4.0 GB memory) with Matlab R2009a [19].

7.1 Elastic body in plane stress

Consider an isotropic linear elastic body in the plane stress as shown in Figure 1, where W1 = 1.8 m
and W2 = H = 2.0 m. The Poisson ratio is taken to be 0.25. The solid is discretized into 11 × 11
four-node quadrilateral (Q4) elements. All the nodes on the right boundary are supposed to be
contact candidates, and be in contact with the rigid obstacle without reactions. The coefficient of
friction is µ = 1.5. The nodes of the left boundary are fixed. Hence, d = 2 and m = 12 in (6).

We enumerate the wedged configurations by the algorithms presented in section 4. All the ex-
tremal rays obtained by using Algorithm 4.2 are shown in Figure 2, which illustrate the wedged
equilibrium configurations as well as the corresponding reactions. The CPU time required by Al-
gorithm 4.2 is 18.72 sec. The cross-complementarity relationship among those extremal rays is
represented by the undirected graph shown in Figure 3 as discussed in section 4.3. It is observed
from Figure 3 that the solution set of (WP) consists of the extremal rays (a)–(e) and all convex
combinations of (a)–(d). Note that the extremal rays (a)–(d) share the same sign-pattern.

We next compute the critical value of friction coefficient, µc, by using Algorithm 6.1. We solve
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Figure 2: Extremal rays of wedged configurations of the linear elastic body.
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(a) (b)

(e)

(c) (d)

Figure 3: Cross-complementarity relationship among extremal rays illustrated in Figure 2.

Table 1: Critical values of friction coefficient for sign-patterns of the wedged configurations illustrated
in Figure 2.

sign-pattern µc
t

(a)–(d) 1.4545
(e) 1.2689

x

y

W

(N−1)H obstacle

θ

H

Figure 4: A plane truss contacting with the rigid obstacle.

the LP (23) by using a Matlab built-in function linprog with the default settings. From Figure 3
we see that t̂ = 2 in Algorithm 6.1. The critical friction coefficient for each sign-pattern is listed in
Table 1, which implies µc = 1.2689.

7.2 Plane trusses with various sizes

We next consider a plane truss as shown in Figure 4 for various N , where H = 1.0 m, W = 5.0 m,
and θ = π/3. Note that Figure 4 depicts the case of N = 5. All the members of the truss have the
same cross-sectional area. The nodes on the right boundary are supposed to be contact candidates,
while those of the left boundary are pin-supported. Hence, d = 2 and m = N in (6).

All the wedged configurations are found by using Algorithm 4.2 for various N . The numbers of
extremal rays and sign-patterns, as well as the CPU time required by Algorithm 4.2, are listed in
Table 2 for µ = 0.65. The 25 extremal wedged configurations obtained for N = 5 and µ = 1.0 are
collected in Appendix A; see Figures 8 and 9. The cross-complementarity relationship among those
extremal rays is described by the undirected graph shown in Figure 5. Note that extremal rays in
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(v), (w) (x), (y)

Figure 5: Cross-complementarity relationship among extremal rays of the wedged configuration of
the truss example of Figure 4 with N = m = 5 and µ = 1.0. All extremal rays are shown in Figure 8
and Figure 9. Any two extremal rays in the same dashed circle are connected.

Table 2: Variations of the number of extremal rays and the number of sign-patterns of the plane-truss
example with respect to the number of contact candidates (µ = 0.65).

m (= N) # of rays # of cliques CPU (sec)

5 8 1 0.11
7 24 3 0.31
9 47 5 0.87

11 100 9 2.78
13 273 15 10.89
15 744 30 74.05
17 2048 57 572.57
19 5413 108 3245.94

the same dashed circle have the common sign-pattern. Hence, for example, any convex combination
of (a)–(i) is a solution of the wedged problem.

The critical value of friction coefficient µc is computed by using Algorithm 6.1 in the case of
N = m = 5. We choose µ0 = 1.0 at the Step 1 of Algorithm 6.1, hence t̂ = 5 as shown in Figure 5.
The critical friction coefficient for each sign-pattern is listed in Table 3, which implies µc = 0.6072.
The wedged configuration corresponding to each critical friction coefficient is shown Figure 6.

7.3 3D truss example

Consider a linear elastic truss illustrated in Figure 7, which may be regarded as the three-dimensional
version of the example investigated in section 7.2. The dimensions of the truss are W1 = 10.0 m,
W2 = W1 + (tanπ/6)H m, L = 10.0 m, and H = 4.0 m. All the members of the truss have the same
cross-sectional area. The nodes on the right boundary are supposed to be contact candidates, while
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(a) (b) (c)

(d) (e)

Figure 6: Extremal rays of wedged configurations at the critical coefficients of friction for the plane-
truss with N = m = 5.

Table 3: Critical values of friction coefficient for sign-patterns of the wedged configurations illustrated
in Figure 6.

sign-pattern µc
t

(a) 0.6072
(b) 0.6718
(c) 0.7804
(d) 0.7909
(e) 0.9422

W1

H

W
2

L

Figure 7: A truss example in the three-dimensional space contacting with the rigid obstacle.
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Table 4: Relation between the friction coefficient and the number of sign-patterns of the wedged
configurations of the truss in the three-dimensional space illustrated in Figure 7.

µ sign-patterns

0.55 0
0.6 1
0.65 26
0.7 61
1.0 236

those of the left boundary are pin-supported. Hence, d = 3 and m = 10 in (6).
All the sign-patterns of wedged configurations are found by using Algorithm 5.1. At the Step 3

we solve the SOCP problem (18) by using SeDuMi Ver. 1.1 [16, 18]. The number of sign-patterns
obtained by Algorithm 5.1 is listed in Table 4 for various friction coefficients.

8 Conclusions

We have investigated the solution set properties of the wedged problem, which is finding a nontrivial
equilibrium state of a finitely-discretized linear elastic structure subjected to the unilateral contact
conditions with the Coulomb friction. It has been shown that the solution set of the in-plane wedged
problem can be represented by finitely many representative solutions and there convex combinations.
A numerical enumeration algorithm has been proposed consisting of the enumeration of the extremal
rays of a polyhedral cone which satisfy the complementarity conditions and the enumeration of the
maximal cliques of an directed graph. For the wedged problem in the three-dimensional space we
have proposed two algorithms for enumerating the sign-patterns of the complementarity variables of
all the wedged configurations. We finally presented the bisection algorithm for finding the globally
minimal value of the friction coefficient, at which at least one wedged configuration can exist. At
each step of the bisection algorithm we solve an SOCP (second-order cone programming) problem
by using the primal-dual interior-point method.
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A Extremal solutions of plane-truss example in section 7.2

In section 7.2 we compute all the extremal rays of the wedged configurations for the plane-truss
illustrated in Figure 4. By using Algorithm 4.2, we obtain 25 extremal rays for N = 5 and µ = 1.0,
which are shown in Figures 8 and 9.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Extremal rays of wedged configurations of the truss example in section 7.2 withN = m = 5
and µ = 1.0.
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(s) (t) (u)
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Figure 9: Extremal rays of wedged configurations of the truss example in section 7.2 withN = m = 5
and µ = 1.0 (continued).
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