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Abstract

A function f is said to be cone superadditive if there exists a
partition of Rn into a family of polyhedral convex cones such that
f(z + x) + f(z + y) ≤ f(z) + f(z + x + y) holds whenever x and y be-
long to the same cone in the family. This concept is useful in nonlinear
integer programming in that, if the objective function is cone superad-
ditive, the global minimality can be characterized by local optimality
criterion involving Hilbert bases. This paper shows cone superadditiv-
ity of L-convex and M-convex functions with respect to conic partitions
that are independent of particular functions. L-convex and M-convex
functions in discrete variables (integer vectors) as well as in continuous
variables (real vectors) are considered.

Keywords: discrete convex function, superadditivity, integer pro-
gramming, optimality criterion, Hilbert bases

1 Introduction

Discrete convex functions have been attracting research interest in oper-
ations research and related disciplines. Discrete convex analysis [3, 12,
13, 14], in particular, provides a theoretical framework for solvable dis-
crete optimization problems through a combination of convex analysis and
matroid/submodular function theory. Two convexity concepts, called L-
convexity and M-convexity, play major roles in discrete convex analysis.
L-convex functions generalize submodular set functions, and M-convex func-
tions base polyhedra (see Sections 3.1 and 4.1 for details). This extends the
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direction set forth by J. Edmonds, A. Frank, S. Fujishige, and L. Lovász in
the 1980’s.

In this paper we are interested in an inequality of the form

f(z + x) + f(z + y) ≤ f(z) + f(z + x + y) (1.1)

for a function f : Rn → R in a real vector or f : Zn → R in an integer
vector1, where R = R ∪ {+∞}. The above inequality says in effect that
if f(z) and f(z + x + y) are finite, then both f(z + x) and f(z + y) are
finite and the inequality (1.1) holds. In terms of the increment function
gz(x) = f(z + x)− f(z), defined for z with f(z) finite, the above inequality
(1.1) can be reformulated as superadditivity:

gz(x) + gz(y) ≤ gz(x + y). (1.2)

When f is a convex function, inequality (1.1) certainly holds if y = αx
for some nonnegative α ∈ R, and fails if y = −αx (unless f is linear in this
direction). The same is true when f is a function on Zn that is extensible
to a convex function on Rn. Hence it is natural to consider (1.1) for x and
y belonging to a certain pointed convex cone C.

Let {Ck}k be a family of polyhedral convex cones Ck ⊆ Rn such that∪
k Ck = Rn, which we refer to as a conic partition of Rn. We say that

f is cone superadditive with respect to {Ck}k if the inequality (1.1) holds
for every z with f(z) finite and for all directions x and y belonging to the
same cone Ck among the given cones. We are naturally interested in finite
conic partitions, consisting of a finite number of cones, although we allow
for an infinite family in technical arguments. Not every convex function
is cone superadditive; for example, f(x1, x2) = exp(x1

2 + x2
2) is not cone

superadditive with respect to any finite conic partition of R2 (see Example
6.1 in Section 6 for the details). We are particularly interested in a class
of functions that are cone superadditive with respect to a fixed finite conic
partition independent of individual functions.

Cone superadditivity has a significant implication in nonlinear integer
optimization, as is discussed by Murota–Saito–Weismantel [15] without us-
ing this terminology and by Lee–Onn–Weismantel [10] under the name of
oriented superadditivity. Consider, to be specific, the problem of minimiz-
ing f(x) subject to Ax = b, x ∈ Zn, x ≥ 0, and assume that the objective
function f is cone superadditive with respect to some finite cone partition.
Then the global optimality of an integer vector x can be characterized by a
local optimality condition involving Hilbert bases; Section 2 explains more
about this. It is observed in [15] that a function f of the form

f(x) =
s∑

i=1

ϕi(ci
⊤x) (1.3)

1We denote the set of all real numbers by R and that of all integers by Z. The set of
nonnegative reals and that of integers are denoted respectively as R+ and Z+.
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with some vectors ci ∈ Rn (i = 1, . . . , s) and univariate convex functions
ϕi : R → R (i = 1, . . . , s) for some integer s is cone superadditive with
respect to a finite conic partition chosen suitably for f . This implies, in
particular, that a convex quadratic function is cone superadditive.

The objective of this paper is to reveal cone superadditivity of L-convex
and M-convex functions with respect to certain finite conic partitions that
are independent of individual functions. This demonstrates another instance
of general properties of discrete convex functions, sometimes referred to as
“discreteness in direction” in contrast to “discreteness in value.” The main
results of this paper are Theorems 3.2 and 3.3 for L-convex functions, and
Theorems 4.2 and 4.3 for M-convex functions, where functions in integer vec-
tors are dealt with in Theorems 3.2 and 4.2, and polyhedral functions in real
vectors in Theorems 3.3 and 4.3. The proofs consist of two ingredients. The
first is a general result for locally polyhedral convex functions, showing that
every locally polyhedral convex function is cone superadditive with respect
to some conic partition suitably chosen for the function (Theorem 5.1). The
second is a reformulation of fundamental facts in discrete convex analysis,
showing that there exists a finite conic partition that is valid universally for
all polyhedral L-convex functions, and another finite conic partition valid
for all polyhedral M-convex functions.

In addition, cone superadditivity of more general (nonpolyhedral or
smooth) convex functions is investigated. For twice-differentiable functions
cone superadditivity is characterized by a kind of positivity of the Hessian
matrix (Theorem 6.1), which is a natural generalization of the well-known
characterization of convexity by positive-semidefiniteness. This general re-
sult is applied to twice-differentiable L-convex functions, to establish their
cone superadditivity (Theorems 6.4). Cone superadditivity of general closed
proper L-convex functions is also established (Theorem 7.1). Corresponding
results for M-convex functions are easy to conceive but rigorous proofs are
still awaited.

This paper is organized as follows. Significance of the cone superaddi-
tivity in nonlinear integer optimization is explained in Section 2. L-convex
functions are treated in Section 3, and M-convex functions in Section 4. Sec-
tion 5 shows the general result for polyhedral convex functions, and affords
the proofs for the main theorems. Section 6 deals with twice-differentiable
convex functions and Section 7 discusses some extensions and problems left
unsettled.

2 Application to Nonlinear Integer Programming

As a motivation of our interest in cone superadditivity we discuss here its
role in the design of algorithms for nonlinear integer programming.

Given A ∈ Zm×n and b ∈ Zm, we consider an integer program of the
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form:
minimize f(x) subject to x ∈ S, (2.1)

where the feasible region S is described as

S = {x ∈ Zn | Ax = b, x ≥ 0}

and the objective function f is generally a nonlinear function defined on Zn.
For a pointed rational polyhedral cone C, let H(C) denote the unique

Hilbert basis of C, i.e., the inclusionwise minimal subset of the integer points
in C such that every integer point in C is representable as a nonnegative
integer combination of the elements in the set. The existence of a Hilbert
basis follows from the classical lemma of Gordan [5], and the Hilbert basis of
a pointed cone C is uniquely determined, as pointed out by van der Corput
[21].

With the notion of a Hilbert basis we can give optimality conditions for
a linear integer program:

minimize c⊤x subject to x ∈ S. (2.2)

Let O1, . . . , O2n denote the partition of Rn into all its orthants. Then

Cl = {x ∈ Rn | Ax = 0} ∩ Ol (2.3)

is a pointed polyhedral cone in Rn for each l ∈ {1, . . . , 2n}. Let Hl be the
unique minimal Hilbert basis of Cl. Then the following optimality criterion,
due to Graver [6], holds:

Theorem 2.1 ([6]). A feasible point x ∈ S for the linear integer program
(2.2) is optimal if and only if c⊤h ≥ 0 for every h ∈

∪2n

l=1 Hl such that
x + h ∈ S.

This optimality criterion forms the basis of the integral basis method
proposed by Haus, Köppe, and Weismantel [7]. This method solves a linear
integer program by iteratively computing Hilbert bases of discrete relax-
ations of the underlying integer program and reformulating the problem in
a higher dimensional space. The algorithm uses many advanced techniques
that are not related to the above optimality criterion, but in abstract math-
ematical terms, it is an integer simplex algorithm based on Hilbert bases
and inspired by Graver’s optimality criterion.

A generalization of the optimality criterion above is considered by Murota,
Saito and Weismantel [15] for a certain class of nonlinear objective functions,
which are cone superadditive in our present terminology.

Suppose that f is cone superadditive with respect to a finite conic par-
tition, say {Ck(f)}k, of {x ∈ Rn | Ax = 0}, where each cone Ck(f) is a
rational polyhedral cone contained in some Cl in (2.3). More precisely, as-
sume that the inequality (1.1) holds for every z ∈ S and every x, y ∈ Zn with
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{x, y} ⊆ Ck(f) for some k and z +x+y ∈ S. We denote by F = F(A, b) the
family of such functions f . A typical member of F is f(x) =

∑s
i=1 ϕi(ci

⊤x)
in (1.3) defined with rational vectors c1, . . . , cs.

If the objective function f belongs to F , the global optimality in (2.1)
is guaranteed by a local optimality, as follows. Suppose that a feasible
point x ∈ S is locally optimal in the sense that f(x + h) ≥ f(x) for all
h ∈

∪
k H(Ck(f)) such that x + h ∈ S, where H(Ck(f)) denotes the unique

minimal Hilbert basis of Ck(f). For all y ∈ S, there exists k such that
y − x ∈ Ck(f), and hence y = x +

∑t
j=1 αjhj for some hj ∈ H(Ck(f)) and

positive integers αj (j = 1, . . . , t). Then

f(y) − f(x) = f(x +
t∑

j=1

αjhj) − f(x) ≥
t∑

j=1

αj [f(x + hj) − f(x)] ≥ 0,

where the first inequality is by the cone superadditivity and the second is
by the assumed local optimality. It is noted that x+

∑t
j=1 αjhj ∈ S implies

x + hj ∈ S for each j, since {h1, . . . , ht} ⊆ Ck(f) ⊆ Cl for some Cl. Thus
we obtain the following theorem.

Theorem 2.2 ([15]). Suppose that the objective function f of (2.1) belongs
to the class F and is cone superadditive with respect to a finite conic partition
{Ck(f)}k of Rn with rational cones. Then a feasible point x ∈ S is optimal
if and only if f(x + h) ≥ f(x) for all h ∈

∪
k H(Ck(f)) such that x + h ∈ S.

The local optimality criterion above naturally suggests a minimization
algorithm, which will be described in the following.

We assume that f : Zn → Z is an integer-valued convex-extensible
function that is cone superadditive with respect to a finite conic partition
{Ck(f)}k. Moreover, we assume that an optimal solution of Problem (2.1)
exists. The optimal value is denoted by f∗ and an optimal solution by
x∗. Starting off from a feasible point x0 ∈ S we iteratively apply a greedy
augmentation scheme below to solve Problem (2.1).

Greedy minimization algorithm

Input: f , A, b,
∪

k H(Ck(f)) and x0 ∈ S.
Output: an optimal solution to (2.1).

1. (Initialization) Set i := 0 and f0 := f(x0);

2. (Greedy augmentation) Determine a vector h ∈
∪

k H(Ck(f)) and a
step length α ∈ Z+ such that xi + αh attains

min

{
f(xi + βz) | xi + βz ∈ S, z ∈

∪
k

H(Ck(f)), β ∈ Z+

}
.

If this value is equal to f(xi), then STOP.
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3. (Update) Set xi+1 := xi + αh, f i+1 := f(xi+1) and i := i + 1. Return
to Step 2.

It is clear from Theorem 2.2 that the above algorithm gives an opti-
mal solution of (2.1). In addition there is a theoretical guarantee for the
convergence speed that the number of iterations of Step 2 is bounded by
O((2n − 2) log(f0 − f∗)), from which a complexity bound can be obtained,
as stated in Theorem 2.3 below, where ⟨·⟩ means the length of the binary
encoding of a vector, a matrix etc. This analysis is a straightforward adap-
tation of the argument presented in [8].

Theorem 2.3. The greedy minimization algorithm solves Problem (2.1) in
time that is polynomial in log(f0−f∗), in

∑
k⟨H(Ck(f))⟩ and in ⟨x0⟩, ⟨A⟩, ⟨b⟩.

Proof. If f(xi + h) ≥ f(xi) for all h ∈
∪

k H(Ck(f)), we stop with xi. If
f(xi + h) < f(xi) for some h, then consider a function g(α) = f(xi +
αh), which is a univariate convex function in nonnegative integer α. The
minimum of g(α) over feasible α can be computed by a simple binary search.
Hence, every application of Step 2 can be implemented to run in time that
is polynomial in log(f i − f∗), in

∑
k⟨H(Ck(f))⟩ and in ⟨A⟩, ⟨b⟩, ⟨xi⟩.

For an analysis of the number of augmentation steps one proceeds as
follows. By definition, there exists an index k such that x∗−xi ∈ Ck(f)∩Zn.
An integer version of the Caratheodory theorem (cf., [20]) shows that there
exists {h1, . . . , h2n−2} ⊆ H(Ck(f)) and nonnegative integers α1, . . . , α2n−2 ∈
Z+ such that

x∗ = xi +
2n−2∑
j=1

αjhj .

Then the superadditivity with respect to the cone Ck(f) yields

f i − f∗ = f(xi) − f(xi +
2n−2∑
j=1

αjhj)

≤
2n−2∑
j=1

(
f(xi) − f(xi + αjhj)

)
≤ (2n − 2)

(
f(xi) − f(xi + αh)

)
,

where αh denotes the greedy augmentation determined in Step 2 of the
algorithm. This shows

f(xi) − f(xi + αh) ≥ 1
2n − 2

(
f i − f∗) .

It then follows (cf., Theorem 3.1 in [1]) that the number of iterations is
bounded by O((2n − 2) log(f0 − f∗)).
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3 L-convex Functions

3.1 Preliminaries

Let V = {1, 2, . . . , n} be a finite set. For a subset X of V , we denote by
χX the characteristic vector of X; the ith component of χX equals one or
zero according to whether i belongs to X or not. For i ∈ V , we write χi for
χ{i}, which is the ith unit vector. For vectors x, y ∈ Rn we denote by x ∨ y
and x ∧ y the vectors of componentwise maximum and minimum of x and
y, respectively, i.e.,

(x ∨ y)i = max(xi, yi), (x ∧ y)i = min(xi, yi) (i ∈ V ).

We also define

supp+(x) = {i ∈ V | xi > 0}, supp−(x) = {i ∈ V | xi < 0},

arg max(x) = {i ∈ V | xi = max
j∈V

xj}, x(X) =
∑
i∈X

xi (X ⊆ V ).

We consider functions f : Zn → R or f : Rn → R, where R = R∪{+∞}.
The effective domain of f is denoted by dom f = {x | f(x) < +∞}. In this
paper we always assume dom f ̸= ∅. For a vector p ∈ Rn the set of the
minimizers of (f − p)(x) = f(x) −

∑n
i=1 pixi is denoted as arg min(f − p),

which is defined to be an empty set if inf
x

(f − p)(x) = −∞ or inf
x

(f − p)(x)
is not attained.

A function f : Zn → R is said to be submodular if f(x) + f(y) ≥
f(x ∨ y) + f(x ∧ y) for all x, y ∈ Zn. A function f : Zn → R is said to
be L-convex if (i) it is submodular and (ii) there exists r ∈ R such that
f(x + 1) = f(x) + r for all x ∈ Zn, where 1 = (1, 1, . . . , 1) ∈ Zn. A function
f : Zn → R is called L♮-convex if the function f̃ : Zn+1 → R defined by

f̃(x, xn+1) = f(x − xn+11) (x ∈ Zn, xn+1 ∈ Z) (3.1)

is submodular in n + 1 variables (“L♮” should be read “L-natural”). L♮-
convexity can be characterized by discrete midpoint convexity :

f(x) + f(y) ≥ f

(⌈
x + y

2

⌉)
+ f

(⌊
x + y

2

⌋)
(x, y ∈ Zn), (3.2)

where, for t ∈ R in general, ⌈t⌉ denotes the smallest integer not smaller
than t (rounding-up to the nearest integer) and ⌊t⌋ the largest integer not
larger than t (rounding-down to the nearest integer), and this operation is
extended to a vector by componentwise application.

An L-convex function is an L♮-convex function, and conversely, an L♮-
convex function f is an L-convex function if it has the property (ii) above.
Thus L-convex functions in n variables form a proper subclass of L♮-convex
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functions in n variables. At the same time, L-convex functions are con-
ceptually equivalent to L♮-convex functions through the relation (3.1). For
an L♮-convex function f in n variables, f̃ in (3.1) is an L-convex function
in n + 1 variables, and conversely, for an L-convex function f in n vari-
ables, f ′(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) is an L♮-convex function in n−1
variables.

L-convexity can be defined for polyhedral convex functions as well as
for polyhedra. A set S ⊆ Rn is called an L-convex polyhedron if it can be
represented as

S = {x ∈ Rn | xj − xi ≤ γij (∀i, j ∈ V, i ̸= j)} (3.3)

for some γij ∈ R (i, j ∈ V, i ̸= j). A polyhedron S ⊆ Rn is called L♮-
convex if it can be represented as the intersection of an L-convex polyhedron
S̃ ⊆ Rn+1 with the coordinate plane xn+1 = 0.

An L-convex polyhedron is an L♮-convex polyhedron, and conversely, an
L♮-convex polyhedron S is an L-convex polyhedron if it has the additional
property that x ∈ S implies x + α1 ∈ S for all α ∈ R. Thus L-convex
polyhedra in Rn form a proper subclass of L♮-convex polyhedra in Rn. At
the same time, L-convex polyhedra are conceptually equivalent to L♮-convex
polyhedra.

A convex function f : Rn → R is said to be locally polyhedral if, for
every bounded interval [a, b] with [a, b] ∩ dom f ̸= ∅, the restriction of f to
[a, b] is a polyhedral convex function. A locally polyhedral convex function
f : Rn → R is called L-convex (resp. L♮-convex) if, for each p ∈ Rn,
arg min(f − p) is an L-convex (resp. L♮-convex) polyhedron. The effective
domain dom f of a locally polyhedral L-convex (resp. L♮-convex) function f
is an L-convex (resp. L♮-convex) polyhedron. Locally polyhedral L-convex
functions and L♮-convex functions are conceptually equivalent to each other.
See [13, Section 7.8] for the original definitions of polyhedral L-convex and
L♮-convex functions.

The following fact shows that the discrete-variable case can be embedded
in the polyhedral case. It should be clear that the convex closure of a convex-
extensible function f means the pointwise largest convex extension of f .

Theorem 3.1. An L♮-convex function f : Zn → R in integer vectors is
convex-extensible, and its convex closure is a locally polyhedral L♮-convex
function. Conversely, for a locally polyhedral L♮-convex function f : Rn →
R such that arg min(f − p) is an integral polyhedron for each p ∈ Rn, the
restriction of f to Zn is an L♮-convex function in integer vectors.

L-convex functions are introduced by Murota [12], and L♮-convex func-
tions are by Fujishige and Murota [4] as a variant thereof. L♮-convex func-
tions turn out to be the same as submodular integrally convex functions
introduced earlier by Favati and Tardella [2]. Polyhedral L-convex functions

8



are due to Murota–Shioura [17], and the extension to locally polyhedral func-
tions are to Fujishige [3]. L-convexity can be considered for more general
(nonpolyhedral or smooth) functions, as we see in Section 6. More details
about L-convex and L♮-convex functions can be found in [3, 13, 14].

3.2 Cone superadditivity

For a partition P = (P1, . . . , Pm) of {0, 1, . . . , n} into mutually disjoint
nonempty subsets, we define a cone CP by

CP = {x ∈ Rn | x̃i ≥ x̃j if i ∈ Pk, j ∈ Pl, k ≤ l}, (3.4)

where x̃ = (x0, x1, . . . , xn) = (0, x) with x0 = 0 and (x1, . . . , xn) = x. It is
noted that the subsets Pk are ordered by the index, and x̃i = x̃j if {i, j} ⊆ Pk

for some k. The family of such cones,

CL = {CP | P : partition}, (3.5)

gives a finite conic partition of Rn, i.e., Rn =
∪

P CP . We mention that
each CP is an L♮-convex polyhedral cone.

We say that two vectors x and y are L-compatible if {x, y} ⊆ CP for
some P. Cone superadditivity with respect to CL will be referred to as
L-cone superadditivity.

L♮-convex functions are L-cone superadditive, as is stated in the following
theorems.

Theorem 3.2. Let f : Zn → R be an L♮-convex function. For any z ∈
dom f and any L-compatible integer vectors x and y, we have

f(z + x) + f(z + y) ≤ f(z) + f(z + x + y). (3.6)

Theorem 3.3. Let f : Rn → R be a locally polyhedral L♮-convex function.
For any z ∈ dom f and any L-compatible real vectors x and y, the inequality
(3.6) is satisfied.

We prove Theorem 3.3 in Section 5.2. Then Theorem 3.2 follows from
this with the aid of Theorem 3.1. An alternative proof of Theorem 3.2,
purely combinatorial as opposed to geometrical, is given in Appendix.

Remark 3.1. L-compatibility of x and y is necessary for the inequality
(3.6) to hold for any L♮-convex function. If (3.6) is true for the L♮-convex
function f(z) = zi

2, we must have xiyi ≥ 0. If (3.6) is true for the L♮-convex
function f(z) = (zi − zj)2, we must have (xi − xj)(yi − yj) ≥ 0.

Remark 3.2. Convex extension of an L♮-convex function f , mentioned in
Theorem 3.1, is closely related to the conic partition (3.5). Consider parti-
tions P of {0, 1, . . . , n} into singletons, P = (P1, . . . , Pn+1), with 0 ∈ Pn+1.
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With the use of cones CP for such P the n-dimensional unit cube [0,1] can
be divided into n! polyhedral regions [0,1] ∩ CP . The piecewise linear ex-
tension of f in each region z + ([0,1] ∩ CP) with z ∈ Zn and partition P
gives the convex closure of f . See [13, Section 7.7].

4 M-convex Functions

4.1 Preliminaries

Recall that we consider f : Zn → R with dom f ̸= ∅, and χi denotes the ith
unit vector for i ∈ V , where V = {1, 2, . . . , n}.

A function f : Zn → R is said to be M-convex if it satisfies the exchange
axiom:

(M-EXC) For any x, y ∈ dom f and i ∈ supp+(x − y), there
exists j ∈ supp−(x − y) such that

f(x) + f(y) ≥ f(x − χi + χj) + f(y + χi − χj). (4.1)

Inequality (4.1) implicitly imposes the condition that x − χi + χj ∈ dom f
and y + χi − χj ∈ dom f . The effective domain of an M-convex function f
lies on a hyperplane of a constant component sum, i.e.,

dom f ⊆ {x ∈ Zn | x(V ) = r} (4.2)

for some r ∈ Z.
By the projection of f along the nth coordinate axis we mean a function

f ′ : Zn−1 → R defined by

f ′(x1, . . . , xn−1) = f(x1, . . . , xn−1, r −
n−1∑
i=1

xi). (4.3)

A function derived from an M-convex function by projection is called an
M♮-convex function (“M♮” should be read “M-natural”). Or equivalently, a
function f : Zn → R is said to be M♮-convex if the function f̃ : Zn+1 → R
defined by

f̃(x0, x) =
{

f(x) if x0 = −x(V )
+∞ otherwise

(x0 ∈ Z, x ∈ Zn) (4.4)

is M-convex. M♮-convex functions can be characterized by a variant of the
exchange axiom, labeled (M♮-EXC[Z]) in [13].

An M-convex function is an M♮-convex function, and conversely an M♮-
convex function f is an M-convex function if it has the property (4.2) for
some r ∈ Z. Thus M-convex functions in n variables form a proper subclass
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of M♮-convex functions in n variables. At the same time, M-convex functions
are conceptually equivalent to M♮-convex functions through the relations
(4.3) and (4.4). For an M♮-convex function f in n variables, f̃ in (4.4) is
an M-convex function in n + 1 variables, and conversely, for an M-convex
function f in n variables, its projection f ′ in (4.3) is an M♮-convex function
in n − 1 variables.

M-convexity can be defined for polyhedral convex functions as well as
for polyhedra. A set S ⊆ Rn is called a base polyhedron (or an M-convex
polyhedron) if it can be represented as

S = {x ∈ Rn | x(X) ≤ ρ(X) (∀X ⊂ V ), x(V ) = ρ(V )} (4.5)

for some submodular set function ρ : 2V → R with ρ(∅) = 0 and ρ(V ) finite.
A polyhedron S ⊆ Rn is called a g-polymatroid (or an M♮-convex polyhe-
dron) if it can be represented as the projection of an M-convex polyhedron
S̃ ⊆ Rn+1 onto the coordinate plane xn+1 = 0. It is convenient to use
the terminology of M-convex and M♮-convex polyhedra, rather than base
polyhedron and g-polymatroid, to see the parallelism with L-convexity.

An M-convex polyhedron is an M♮-convex polyhedron, and conversely, an
M♮-convex polyhedron S is an M-convex polyhedron if it has the additional
property that x(V ) is a constant for all x ∈ S. Thus M-convex polyhedra in
Rn form a proper subclass of M♮-convex polyhedra in Rn. At the same time,
M-convex polyhedra are conceptually equivalent to M♮-convex polyhedra.

A locally polyhedral convex function f : Rn → R is called M-convex
(resp. M♮-convex) if, for each p ∈ Rn, arg min(f − p) is an M-convex
(resp. M♮-convex) polyhedron. The effective domain dom f of a locally
polyhedral M-convex (resp. M♮-convex) function f is an M-convex (resp. M♮-
convex) polyhedron. Locally polyhedral M-convex functions and M♮-convex
functions are conceptually equivalent to each other. See [13, Section 6.11]
for the original definitions of polyhedral M-convex and M♮-convex functions.

The following fact shows that the discrete-variable case can be embedded
in the polyhedral case.

Theorem 4.1. An M♮-convex function f : Zn → R in integer vectors is
convex-extensible, and its convex closure is a locally polyhedral M♮-convex
function. Conversely, for a locally polyhedral M♮-convex function f : Rn →
R such that arg min(f − p) is an integral polyhedron for each p ∈ Rn, the
restriction of f to Zn is an M♮-convex function in integer vectors.

M-convex functions are introduced by Murota [11], and M♮-convex func-
tions are by Murota and Shioura [16] as a variant thereof. Polyhedral M-
convex functions are due to Murota–Shioura [17], and the extension to lo-
cally polyhedral functions to Fujishige [3]. M-convexity can be considered
for more general (nonpolyhedral or smooth) functions, as we see in Section
6. More details about M-convex and M♮-convex functions can be found in
[3, 13, 14].

11



4.2 Cone superadditivity

For a set family F ⊆ 2V we define a cone CF by

CF = {x ∈ Rn | x(X) ≤ 0 (X ∈ F), x(Y ) ≥ 0 (Y ∈ 2V \ F)}. (4.6)

The family of such cones,

CM = {CF | F ⊆ 2V }, (4.7)

gives a finite conic partition of Rn, i.e., Rn =
∪

F CF . It is noted that
each CF is not necessarily an M♮-convex polyhedral cone, but it can be
represented as an intersection of M♮-convex polyhedral cones.

We say that two vectors x and y are M-compatible if {x, y} ⊆ CF for
some F . Cone superadditivity with respect to CM will be referred to as
M-cone superadditivity.

M♮-convex functions are M-cone superadditive, as is stated in the follow-
ing theorems.

Theorem 4.2. Let f : Zn → R be an M♮-convex function. For any z ∈
dom f and any M-compatible integer vectors x and y, we have

f(z + x) + f(z + y) ≤ f(z) + f(z + x + y). (4.8)

Theorem 4.3. Let f : Rn → R be a locally polyhedral M♮-convex function.
For any z ∈ dom f and any M-compatible real vectors x and y, the inequality
(4.8) is satisfied.

We prove Theorem 4.3 in Section 5.3. Then Theorem 4.2 follows from
this with the aid of Theorem 4.1.

Remark 4.1. M-compatibiliy of x and y is necessary for the inequality
(4.8) to hold for any M♮-convex function. If (4.8) is true for the M♮-convex
function f(z) = (z(X))2, we have f(z)+f(z +x+y)−f(z +x)−f(z +y) =
2x(X)y(X) ≥ 0.

Remark 4.2. An M♮-convex function f , either on Zn or on Rn, is known
to be supermodular, i.e.,

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y) (∀x, y). (4.9)

Theorems 4.2 and 4.3 contain this as a special case. Given x and y, put z =
x∧y, x′ = x−(x∧y), y′ = y−(x∧y). Then x′ and y′ are nonnegative vectors,
which are M-compatible, and x ∨ y = z + x′ + y′. The cone superadditivity
(4.8) for (z, x′, y′) yields the supermodularity (4.9).
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Example 4.1. M-convex functions arise naturally from a network flow prob-
lem. Let G = (V,A) be a digraph, and fa : Z → R be a convex cost function
for each a ∈ A. Let f : Zn → R ∪ {+∞,−∞} denote the minimum-cost of
an integral flow ξ : A → Z that meets the demand requirement specified by
an integer vector x on the vertex set V = {1, . . . , n}. To be more precise,
for x ∈ Zn, define f : Zn → R ∪ {+∞,−∞} by

f(x) = inf

{∑
a∈A

fa(ξ(a)) | ξ : A → Z, ∂ξ = x

}
, (4.10)

where ∂ξ denotes the boundary of ξ, a vector on V , defined by

(∂ξ)i =
∑

{ξ(a) | a leaves i} −
∑

{ξ(a) | a enters i} (i ∈ V ).

It is known that this function f is M-convex if f > −∞. The M-cone
superadditivity of such an M-convex function can be shown by a natural
combinatorial argument, which is included here for a better understanding
of the combinatorial nature of this phenomenon, as well as for an extension
to the continuous-variable case (cf. Section 7).

First note that the infimum in (4.10) is attained when f > −∞. Let
ξ0 : A → Z be an integral flow with ∂ξ0 = z that attains the infimum for
f(z). By considering f̃a(ξ(a)) = fa(ξ(a)+ ξ0(a)) instead of fa(ξ(a)) we may
assume that z = 0 and f(0) =

∑
a∈A fa(0), and hence 0 ∈ dom fa for each

a ∈ A.
For two M-compatible integer vectors x and y in Zn, let ξ : A → Z be

an integral flow that minimizes
∑

a∈A fa(ξ(a)) subject to ∂ξ = x + y. By
changing the orientation of arcs if necessary, we may assume further that
ξ(a) ≥ 0 for every a ∈ A.

We claim that there exists ξx : A → Z such that ∂ξx = x and 0 ≤
ξx(a) ≤ ξ(a) for each a ∈ A. By a well-known feasibility criterion (see, e.g.,
[13, Theorem 9.3]), this is equivalent to the condition

x(X) ≤ κ(X) (∀X ⊂ V ),

where κ(X) =
∑

{ξ(a) | a is an arc from X to V \ X}, and x(V ) = 0.
This inequality holds indeed, since x(X) ≤ max{(x + y)(X), 0} by the M-
compatibility of x and y, and (x + y)(X) ≤ κ(X) by the feasibility of x + y
(i.e., the existence of ξ with ∂ξ = x + y).

Take a ξx as above and define ξy = ξ − ξx, where ∂ξx = x and ∂ξy = y.
For each a ∈ A we have

fa(ξx(a)) + fa(ξy(a)) ≤ fa(0) + fa(ξ(a))

by the convexity of fa, whereas

f(x) ≤
∑
a∈A

fa(ξx(a)), f(y) ≤
∑
a∈A

fa(ξy(a)),

f(0) =
∑
a∈A

fa(0), f(x + y) =
∑
a∈A

fa(ξ(a)).
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Hence it follows that f(x) + f(y) ≤ f(0) + f(x + y).

5 Polyhedral Convex Functions

5.1 General case

Let f : Rn → R be a locally polyhedral convex function, which means that,
for every bounded interval [a, b] with [a, b] ∩ dom f ̸= ∅, the restriction of f
to [a, b] is a polyhedral convex function. The effective domain dom f is the
union of a family of countably many polyhedra, say, Sf = {Sk | k = 1, 2, . . .}
such that f is linear on Sk and Sk is a maximal subset of dom f having this
property.

We define a conic partition Cf as follows. Let

Sk = {x ∈ Rn | cki
⊤x ≤ dki (∀i)} (5.1)

be a description of Sk by finitely many linear inequalities indexed by i, where
cki ∈ Rn and dki ∈ R. An assignment of sign (+ or −) to each cki

⊤x induces
a cone as follows:

CJ = {x ∈ Rn | cki
⊤x ≤ 0 (∀(k, i) ∈ J ), cki

⊤x ≥ 0 (∀(k, i) ̸∈ J )}. (5.2)

Define Cf to be the family of such cones, i.e., Cf = {CJ | J }. Note here
that Cf may possibly consist of an infinite number of cones, and that Cf is
a finite family if f is a polyhedral convex function. In any case we have
Rn =

∪
J CJ .

The main result of this section is the following theorem, showing that
any locally polyhedral convex function f is cone superadditive with respect
to Cf . We say that two vectors x and y are f-compatible if {x, y} ⊆ CJ for
some J .

Theorem 5.1. Let f : Rn → R be a locally polyhedral convex function. For
any z ∈ dom f and any f -compatible real vectors x and y, we have

f(z + x) + f(z + y) ≤ f(z) + f(z + x + y). (5.3)

In particular, a polyhedral convex function f is cone superadditive with re-
spect to a finite family Cf .

To prove Theorem 5.1 fix z, x and y in (5.3). By restricting f to a
sufficiently large bounded interval, we may assume that dom f is bounded.
This implies, in particular, that Sf is a finite family.

We first observe the following fact, which is the set version of cone su-
peradditivity. For w ∈ Rn and α, β ∈ R+ we denote by P (w,α, β) the
parallelogram with vertices at w, w + αx, w + βy, and w + αx + βy.
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Lemma 5.2. Let f , x and y be as in Theorem 5.1, and let w ∈ Rn and
α, β ∈ R+.

(1) If w ∈ Sk and w+αx+βy ∈ Sk for some Sk ∈ Sf , then w+αx ∈ Sk

and w + βy ∈ Sk, and therefore P (w,α, β) ⊆ Sk.
(2) If w ∈ dom f and w + αx + βy ∈ dom f , then w + αx ∈ dom f and

w + βy ∈ dom f , and therefore P (w,α, β) ⊆ dom f .

Proof. (1) Recall the description (5.1) of Sk. Since w ∈ Sk, we have cki
⊤w ≤

dki for all i. For each i we have either (i) cki
⊤x ≥ 0, cki

⊤y ≥ 0, or (ii) cki
⊤x ≤

0, cki
⊤y ≤ 0. In case (i), we have cki

⊤(w+αx) ≤ cki
⊤(w+αx+βy), whereas

cki
⊤(w + αx + βy) ≤ dki by w + αx + βy ∈ Sk. Hence cki

⊤(w + αx) ≤ dki.
In case (ii), we have cki

⊤(w + αx) ≤ cki
⊤w ≤ dki. Therefore we have

w + αx ∈ Sk. Symmetrically for w + βy.
(2) By (5.1) we have dom f = {z ∈ Rn | cki

⊤z ≤ dki (∀(k, i) ∈ I)} for
some I. Then the rest is the same as in (1).

Let us show that

f(w + αx) + f(w + βy) ≤ f(w) + f(w + αx + βy) (5.4)

holds for any w ∈ dom f and any α, β ∈ R+ with w + αx + βy ∈ dom f .
Then (5.3) is a special case with α = β = 1 and w = z.

We say that Sk ∈ Sf intersects with a convex set L ⊆ dom f if dim (Sk ∩
L) = dim L. For w ∈ dom f and α, β ∈ R+ with w + αx + βy ∈ dom f ,
we have P (w,α, β) ⊆ dom f by Lemma 5.2 (2). Let p(w,α, β) be the
number of subsets in Sf intersecting with P (w,α, β), and let q(w,α, β)
be the number of subsets in Sf intersecting with a segment connecting
w + αx and w + βy. We show (5.4) by induction on the lexicographic
ordering of the pair (p(w,α, β), q(w,α, β)), or, equivalently, induction on
|Sf | · p(w,α, β) + q(w,α, β).

When p(w,α, β) = 1, the function f is linear in P (w,α, β). Then, (5.4)
holds with equality.

Suppose that p(w,α, β) ≥ 2. If f is linear on the segment connecting
w + αx and w + βy, then we have

f(w + αx) + f(w + βy) = 2f

(
w +

αx + βy

2

)
≤ f(w) + f(w + αx + βy), (5.5)

which shows (5.4).
Otherwise, let γ be the maximum real number such that f is linear

on the segment connecting w + βy and w + γ(αx) + (1 − γ)(βy). Clearly,
0 < γ < 1. Define α′ = γα, α′′ = (1 − γ)α, β′ = γβ, β′′ = (1 − γ)β, and
w′ = w+α′x+β′′y. Let S1 ∈ Sf be a set containing w′ and w′−ε(αx−βy) for
some ε > 0, and let S2 ∈ Sf be another set containing w′ and w′+ε(αx−βy)
for some ε > 0.

We show that (5.4) holds when (w,α, β) is replaced by
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w

w + αx

w + βy

w + αx + βy

w′

w + α′x

w + β′′y

(I)

(II)

(III)
(IV)

Figure 1: Four cases in the proof of Theorem 5.1

(I) (w,α′, β′′),

(II) (w + α′x, α′′, β′′),

(III) (w + β′′y, α′, β′), and

(IV) (w′, α′′, β′).

These four cases are shown in Figure 1.

(I): (w,α′, β′′) We have p(w,α′, β′′) < p(w,α, β), as is shown below. Then,
by induction hypothesis, (5.4) holds for (w,α′, β′′), that is,

f(w + α′x) + f(w + β′′y) ≤ f(w) + f(w′). (5.6)

To see p(w,α′, β′′) < p(w,α, β), assume that both S1 and S2 intersect with
P (w,α′, β′′). Since w′ is contained in both S1 and S2, P (w′−ε1x−ε2y, ε1, ε2)
with sufficiently small ε1, ε2 > 0 is contained in both S1 and S2 by Lemma 5.2
(1). This implies that f is linear on (S1 ∪ S2) ∩ P (w,α, β), which contra-
dicts the definition of w′. Hence, at most one of S1 and S2 intersects with
P (w,α′, β′′), and hence p(w,α′, β′′) < p(w,α, β).

(II): (w + α′x, α′′, β′′) By the definition of γ, we have

p(w + α′x, α′′, β′′) ≤ p(w,α, β),
q(w + α′x, α′′, β′′) < q(w,α, β).

Then, by the induction hypothesis, (5.4) holds for (w + α′x, α′′, β′′), that is,

f(w + αx) + f(w′) ≤ f(w + α′x) + f(w′ + α′′x). (5.7)

(III): (w + β′′y, α′, β′) By the definition of γ, f is linear on the segment
between w + βy and w′. Then, in the same way as (5.5), the equation (5.4)
holds for (w + β′′y, α′, β′), that is,

f(w′) + f(w + βy) ≤ f(w + β′′y) + f(w′ + β′y). (5.8)
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(IV): (w′, α′′, β′) In the same way as the case (I), p(w′, α′′, β′) < p(w,α, β).
Then, by the induction hypothesis, (5.4) holds for (w′, α′′, β′), that is,

f(w′ + α′′x) + f(w′ + β′y) ≤ f(w′) + f(w + αx + βy). (5.9)

By adding (5.6), (5.7), (5.8), and (5.9), we obtain

f(w + αx) + f(w + βy) ≤ f(w) + f(w + αx + βy),

which shows (5.4). This completes the proof of Theorem 5.1.

5.2 L-convex functions

A proof of Theorem 3.3 for locally polyhedral L♮-convex functions is given
here on the basis of the general result (Theorem 5.1) for locally polyhedral
convex functions.

We recall two fundamental facts about L♮-convexity.

• A locally polyhedral L♮-convex function f is such that, for each p ∈ Rn,
S = arg min(f − p) is an L♮-convex polyhedron.

• An L♮-convex polyhedron S can be represented as

S = {x ∈ Rn | γ̌i ≤ xi ≤ γ̂i (∀i ∈ V ), xj − xi ≤ γij (∀i, j ∈ V, i ̸= j)}

for some γ̌i ∈ R ∪ {−∞}, γ̂i ∈ R, γij ∈ R (i, j ∈ V, i ̸= j); cf. (3.3).

Let f be a locally polyhedral L♮-convex function, and Cf be the conic
partition associated with f as in Section 5.1. It follows from the above facts
that Cf is a subfamily of the conic partition CL in (3.5). In particular, Cf is
a finite family. Then Theorem 5.1 implies Theorem 3.3.

5.3 M-convex functions

A proof of Theorem 4.3 for locally polyhedral M♮-convex functions is given
here on the basis of the general result (Theorem 5.1) for locally polyhedral
convex functions.

We recall two fundamental facts about M♮-convexity.

• A locally polyhedral M♮-convex function f is such that, for each p ∈
Rn, S = arg min(f − p) is an M♮-convex polyhedron.

• An M♮-convex polyhedron S can be represented as

S = {x ∈ Rn | µ(X) ≤ x(X) ≤ ρ(X) (∀X ⊆ V )}

for some submodular set function ρ : 2V → R and supermodular set
function µ : 2V → R∪ {−∞} satisfying some compatibility condition.
This expression is the M♮-version of (4.5). See [3, Section 3.5], [13,
Section 4.7] for details.
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Let f be a locally polyhedral M♮-convex function, and Cf be the conic
partition associated with f as in Section 5.1. It follows from the above facts
that Cf is a subfamily of the conic partition CM in (4.7). In particular, Cf is
a finite family. Then Theorem 5.1 implies Theorem 4.3.

6 Twice-Differentiable Convex Functions

6.1 General case

We first note that not every convex function is cone superadditive with
respect to a finite conic partition. The following example demonstrates this.

Example 6.1. Let f : R2 → R be defined by f(x1, x2) = exp(x1
2 + x2

2).
For x = (1, 0), y = (1, a) and z = (at,−2t) we have

f(z) + f(z + x + y) − f(z + x) − f(z + y)
= exp((4 + a2)t2)(1 + exp(4 + a2) − exp(2at + 1) − exp(−2at + a2 + 1)).

If this is nonnegative for all t ∈ R with a fixed, we must have a = 0. This
implies that f is not cone superadditive with respect to any finite conic
partition of R2.

Cone superadditivity with respect to a specified conic partition can be
characterized by a certain form of positivity of the Hessian matrix, just as
convexity can be characterized by positive semidefiniteness of the Hessian
matrix. We denote by H(z) the Hessian matrix of f at z ∈ Rn.

Theorem 6.1. Let f : Rn → R be a twice continuously differentiable func-
tion, and C ⊆ Rn be a convex cone. Then the following conditions are
equivalent.

(A) For any z ∈ Rn and for any x, y ∈ C,

f(z + x) + f(z + y) ≤ f(z) + f(z + x + y).

(B) For any z ∈ Rn and for any x, y ∈ C, x⊤H(z)y ≥ 0.

Proof. [(A) ⇒ (B)]: Suppose that the condition (A) holds. Fix z ∈ Rn and
x, y ∈ C in (B). For t ∈ R, we define a function gt : R → R by

gt(s) = f(z + sx + ty) − f(z + sx).

Since sx and ty are contained in C for s, t ≥ 0, it holds that gt(s)−gt(0) ≥ 0
for any s, t ≥ 0 by (A). Then, g′t(0) ≥ 0 for any t ≥ 0.

Next we define a function h : R → R by

h(t) = x⊤∇f(z + ty).
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Then, we have h(t)−h(0) = g′t(0) ≥ 0 for any t ≥ 0, which leads to h′(0) ≥ 0.
Since h′(0) = x⊤H(z)y by the definition, the condition (B) holds.

[(B) ⇒ (A)]: Suppose that the condition (B) holds. Fix z ∈ Rn and
x, y ∈ C in (A). Assume, in order to obtain a contradiction, that

f(z + x) + f(z + y) > f(z) + f(z + x + y). (6.1)

Define a function g : R → R by

g(s) = f(z + sx + y) − f(z + sx).

Since g(1) − g(0) < 0 by (6.1), there exists a real number s0 such that
0 ≤ s0 ≤ 1 and g′(s0) < 0.

Next we define a function h : R → R by

h(t) = x⊤∇f(z + s0x + ty).

Since h(1) − h(0) = g′(s0) < 0, there exists a real number t0 such that
0 ≤ t0 ≤ 1 and h′(t0) < 0. Then, we obtain x⊤H(z+s0x+t0y)y = h′(t0) < 0,
which contradicts (B).

6.2 L-convex functions

L-convexity is defined for closed proper (nonpolyhedral) convex functions in
continuous variables [18], and for a twice continuously differentiable function
on Rn it can be characterized by its Hessian matrix as follows.

Lemma 6.2 ([19]). Let f : Rn → R be a twice continuously differentiable
function defined on Rn. Then, f is L♮-convex if and only if the Hessian
matrix H(z) = (Hij(z) | i, j = 1, . . . , n) satisfies the following conditions for
all z ∈ Rn:

Hij(z) ≤ 0 (i ̸= j; 1 ≤ i, j ≤ n), (6.2)
n∑

i=1

Hij(z) ≥ 0 (1 ≤ i ≤ n). (6.3)

Then Theorem 6.1 motivates us to consider the following.

Lemma 6.3. Let A = (aij | i, j = 1, . . . , n) be a symmetric matrix satisfying

aij ≤ 0 (i ̸= j; 1 ≤ i, j ≤ n), (6.4)
n∑

j=1

aij ≥ 0 (1 ≤ i ≤ n). (6.5)

For any L-compatible vectors x and y we have x⊤Ay ≥ 0.
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Proof. Let P = (P1, . . . , Pm) be a partition of {0, 1, . . . , n} such that x, y ∈
CP . Recall that x̃ = (x0, x1, . . . , xn) = (0, x). For k = 1, . . . ,m − 1, let
x′

k = x̃i − x̃j where i ∈ Pk and j ∈ Pk+1. Define y′k in the same way as x′
k.

Note that x′
k and y′k are nonnegative by the definition of CP . Suppose that

0 ∈ Pl. Then we have

x =
l−1∑
k=1

x′
kχ(P1∪···∪Pk) −

m−1∑
k=l

x′
kχ(Pk+1∪···∪Pm),

y =
l−1∑
k=1

y′kχ(P1∪···∪Pk) −
m−1∑
k=l

y′kχ(Pk+1∪···∪Pm).

Now we observe the following facts.

• For X,Y ⊆ V with X∩Y = ∅, it holds that (χX)⊤A(χY ) ≤ 0 by (6.4).

• For X,Y ⊆ V with X ⊆ Y , it holds that (χX)⊤A(χY ) = (χY )⊤A(χX) ≥
0, because

(χX)⊤A(χY ) ≥ (χX)⊤A(χV ) ≥ 0,

where the second inequality is by (6.5).

With these observations, we have

x⊤Ay =
l−1∑

k1=1

l−1∑
k2=1

x′
k1

y′k2

(
χ(P1∪···∪Pk1

)

)⊤
A

(
χ(P1∪···∪Pk2

)

)
−

l−1∑
k1=1

m−1∑
k2=l

x′
k1

y′k2

(
χ(P1∪···∪Pk1

)

)⊤
A

(
χ(Pk2+1∪···∪Pm)

)
−

m−1∑
k1=l

l−1∑
k2=1

x′
k1

y′k2

(
χ(Pk1+1∪···∪Pm)

)⊤
A

(
χ(P1∪···∪Pk2

)

)
+

m−1∑
k1=l

m−1∑
k2=l

x′
k1

y′k2

(
χ(Pk1+1∪···∪Pm)

)⊤
A

(
χ(Pk2+1∪···∪Pm)

)
≥ 0.

Theorem 6.4. Let f : Rn → R be a twice continuously differentiable L♮-
convex function. For any z ∈ Rn and any L-compatible vectors x and y, the
inequality (3.6) is satisfied.

Proof. By Lemma 6.2 the Hessian matrix H(z) of f satisfies the conditions
in Lemma 6.3. It then follows that f satisfies the condition (B) in Theorem
6.1.
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7 Concluding Remarks

L-convexity and M-convexity are defined also for closed proper (nonpolyhe-
dral) convex functions in continuous variables [18]. In view of the present
results it is natural to expect cone superadditivity of such general nonpoly-
hedral L-convex and M-convex functions.

For L-convex functions we can indeed obtain the cone superadditivity as
a corollary to Theorem 3.3.

Theorem 7.1. Let f : Rn → R be a closed proper L♮-convex function. For
any z ∈ dom f and any L-compatible real vectors x and y, the inequality
(3.6) is satisfied.

Proof. By continuity of f it suffices to prove (3.6) for rational vectors x and
y. Let N be a positive integer that is a common multiple of the denominators
of all the components of x and y, and put x = p/N and y = q/N with integer
vectors p and q. Define g : Zn → R by g(w) = f(z + w/N). Then g is an
L♮-convex function in discrete variables, which is L-cone superadditive by
Theorem 3.2. In particular, we have g(p) + g(q) ≤ g(0) + g(p + q), i.e.,
f(z + x) + f(z + y) ≤ f(z) + f(z + x + y).

As for M-convex functions, however, the corresponding statement cannot
be made, since the proof technique of Theorem 7.1 does not work. To be
specific, for an M♮-convex function f , the function g(w) = f(z + w/N) is
not guaranteed to be M♮-convex.

On the other hand, cone superadditivity can be established for a subclass
of M♮-convex functions arising from network flows. In Example 4.1 we have
seen how M-convex functions in integer variables arise from network flows.
As a continuous version of (4.10) we define f : Rn → R ∪ {+∞,−∞} by

f(x) = inf

{∑
a∈A

fa(ξ(a)) | ξ : A → R, ∂ξ = x

}
(7.1)

with univariate convex functions fa : R → R for a ∈ A. This function
f is known to be M-convex if f > −∞. Furthermore, the proof given in
Example 4.1 can be adapted to this case, to yield M-cone superadditivity of
f in (7.1).
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Appendix: Combinatorial Proof for L-convex Func-
tions

This section gives a purely combinatorial proof of Theorem 3.2 for L♮-convex
functions in discrete variables. First recall [13, Section 7.2] that L♮-convexity
of f : Zn → R can be characterized by the property:

(L♮-APR) For any x, y ∈ Zn with supp+(x − y) ̸= ∅, it holds
that

f(x) + f(y) ≥ f(x − χA) + f(y + χA),

where A = arg max(x − y).

The following lemma deals with the special case where x and y are
{0, +1,−1}-vectors.

Lemma A.1. Inequality (3.6) holds for any z ∈ dom f and any L-compatible
{0, +1,−1}-vectors x and y.

Proof. Put x = χA − χB and y = χC − χD with A ∩ B = ∅ and C ∩ D = ∅.
By L-compatibility we have (A ∪ C) ∩ (B ∪ D) = ∅, and by symmetry we
may assume A ⊆ C. Then two cases are distinguished: Case 1: B ⊆ D and
Case 2: B ⊇ D.

Case 1: We have

x + y = 2χA + χC\A − 2χB − χD\B.

If A is nonempty, we have supp+(x + y) ̸= ∅ and A = arg max(x + y), and
hence

f(z) + f(z + x + y) ≥ f(z + χA) + f(z + x + y − χA) (A.1)

by (L♮-APR). Note that (A.1) is trivially true if A = ∅. If B ̸= ∅, we have,
again by (L♮-APR), that

f(z + χA) + f(z + x + y − χA)
≥ f(z + χA − χB) + f(z + x + y − χA + χB)
= f(z + x) + f(z + y), (A.2)

which is also true when B = ∅. Adding (A.1) and (A.2) yields (3.6).
Case 2: We have

x + y = 2χA + χC\A − 2χD − χB\D
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and hence ⌊
x + y

2

⌋
= χA − χD − χB\D = χA − χB = x,⌈

x + y

2

⌉
= χA + χC\A − χD = χC − χD = y.

Then by discrete midpoint convexity (3.2) we obtain

f(z) + f(z + x + y) ≥ f

(⌊
2z + x + y

2

⌋)
+ f

(⌈
2z + x + y

2

⌉)
= f

(
z +

⌊
x + y

2

⌋)
+ f

(
z +

⌈
x + y

2

⌉)
= f(z + x) + f(z + y).

We now prove Theorem 3.2 by using Lemma A.1 as the basis of induction.
For a vector w ∈ Zn in general we define

µ+(w) = max
1≤i≤n

{wi ∨ 0}, µ−(w) = max
1≤i≤n

{(−wi) ∨ 0},

and µ(w) = (µ+(w), µ−(w)). We prove (3.6) by induction on the vector
ordering of a 4-dimensional vector (µ(x), µ(y)) ∈ Z4. Lemma A.1 shows
that (3.6) is true if (µ(x), µ(y)) ≤ (1, 1, 1, 1).

Suppose that z, z + x + y ∈ dom f , and (µ(x), µ(y)) ̸≤ (1, 1, 1, 1). We
have (µ+(x), µ+(y)) ̸≤ (1, 1) or (µ−(x), µ−(y)) ̸≤ (1, 1). By symmetry (or
reflection) we may focus on the former case, where µ+(x) ≥ 2 or µ+(y) ≥
2. By interchanging x and y, if necessary, we may assume arg max(x) ⊆
arg max(y) and µ+(x) ≥ 1. Put A = arg max(x).

We divide into two cases: Case 1: x = χA and Case 2: x ̸= χA

Case 1: (L♮-APR) applied to (z+x+y, z) yields (3.6), since arg max(x+
y) = A and x = χA.

Case 2: If x is contained in CP of (3.4), both x′ = x − χA and x′′ = χA

are contained in the same CP . This implies that x′ and y are L-compatible
with µ(x′) < µ(x), and x′′ and y are L-compatible with µ(x′′) < µ(x).

Since A = arg max(x) = arg max(x+y), (L♮-APR) applied to (z+x+y, z)
yields z + x + y − χA = z + x′ + y ∈ dom f . Then the induction hypothesis
yields

f(z) + f(z + x′ + y) ≥ f(z + x′) + f(z + y),

i.e.,
f(z) + f(z + x′ + y) ≥ f(z′) + f(z + y) (A.3)
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with z′ = z + x′ = z + x− χA. Since z′ ∈ dom f by (A.3) and z′ + x′′ + y =
z + x + y ∈ dom f , the induction hypothesis yields

f(z′) + f(z′ + x′′ + y) ≥ f(z′ + x′′) + f(z′ + y),

i.e.,
f(z′) + f(z + x + y) ≥ f(z + x) + f(z + x′ + y). (A.4)

Addition of (A.3) and (A.4) results in (3.6), where it is noted that all the
terms in (A.3) and (A.4) are finite-valued.

The completes the proof of Theorem 3.2.
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