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1 Introduction

The variance-covariance matrix of a multivariate normal distribution is usually estimated
by the sample variance-covariance matrix, which is distributed as Wishart distribution.
Let S be distributed according to Wishart distribution W, (v, X), where p (> 2) is the
dimension, v (> p) is the degree of freedom, and ¥ is the variance-covariance matrix of
the original multivariate normal distribution.

In many situations of multivariate analysis, such as principle component analysis,
canonical correlation analysis, we need to estimate the eigenvalues of 3 rather than X
itself. Also, many test statistics in multivariate analysis have distributions determined
solely by the eigenvalues of 3 because of their invariance property under some natural
transformations.

For the estimation of the eigenvalues of X, the corresponding sample eigenvalues of
S are usually used, but their distribution is quite complicated and makes it difficult
to obtain mathematically clear results. Especially in a decision theoretic approach we
encounter difficulty since we essentially need the calculation of the risk (the expectation
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of a loss) with respect to the distribution of the eigenvalues for finite degrees of freedom
v. Mainly because of this difficulty, there exist only a few literature which directly deal
with the estimation of the eigenvalues from the standpoint of the decision theory. Dey
(1988) and Jin (1993) derive estimators which dominate the traditional estimators under
the (non-scale-invariant) quadratic loss function. In view of the decision theory, one of
the important tasks is to derive an admissible estimator, but it has been an unsolved
problem so far. The aim of this paper is the derivation of an admissible estimator. For
the proof of admissibility, we adopted the method of Gosh and Singh (1968), in which
they proved the admissibility of an estimator for the reciprocal of the scale parameter of
Gamma distributions using “Karlin’s method” (Karlin (1958)).

Here we formally state the framework. Let A; > ... > A\, > 0 denote the eigenvalues
of ¥, while l; > ... > [, > 0 are the eigenvalues of S. As is well known, the distribution
ofl = (h,...,l,) depends only on A = (\,...,\,). For an estimator

Y() = (i), ..., b)),

we measure the loss by the scale-invariant squared error loss function

p p

Do Will) =X /NF =) (WD) h - 1) (1)

i=1 =1

2 Main Result

Before stating the main result as a theorem, we introduce some notation. For a vector
x = (x1,...,1,) and a set of powers & = (a1, ..., @,) the monomial z{" ... zp" is denoted
by ¢ If « = a4 = -+ = «, is common, we denote the monomial by . Let H =
(hi;) denote a p-dimensional orthogonal matrix. The group of p dimensional orthogonal
matrices is denoted by O(p) and p is the invariant probability measure on O(p). Since
we mainly work with the reciprocal of the population eigenvalue, ¢; = )\;1 (j=1,...,p),
more often than \; itself, we define the following notation for convenience.

L={t=(t,....t) | (0<)a<t; < <t,<b (<o)},

G) =1 R [ - 1),

i<j
| 2.2
F(t|l) = / exp (—— Z Ztﬂﬂz%) du(H),
O(p) 25 j=1
OF (t|l ,
O;F(t|l) = 8(t~|)’ i=1,...,p.

The density function f(I|t) of l is given by
ft) = K ¢ G() F(t), (2)

where K is a constant (not depending on I and ¢). Our main result is given as follows.
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Theorem 1 For 1l <11 <p, let

Pi(l) = (V + 1>_1 fzgo O F(t|l) tv/2-1 t?dt
| : 2 f‘}igo F(t|l) tv/2-1 t?dt :

The estimator ¥*(1) = (Yi(l),...,¥5(1)) is admissible with respect to the loss function

(1). ’

Proof of this theorem is given in Section 4.
Notice that ¢} (1)(1 <i < p) can be rewritten as

ORI )

where

(v + 2 (1) = S Jou Mo exp (=5 32010 20 tlkhiy,) €271 47 du(H)dt
’ ffzgo fO(p) exp (—3 >0 Soh_y tslph?,) /271 2 du(H )dt

It is easily seen that 7;;(1) (1 <i,j < p) is scale-invariant, that is, 7;;(cl) = 7;;(1) for any
positive constant c¢. Furthermore 7;;’s are nonnegative and

zp: :
Tij(l) = )
= v+ 2

since >0 hZ; = 1. This means that *(1) = (47(1),...,¢5(1)) is an estimator which
shrinks 1/(v + 2).
¥i(l) (1 <4 < p) has another useful expression;

vr(l) = (Z ) )i 5)

where l
Tii(l) = Tij(l)l_] (1<4,5<p).

7

7,(1) is again bounded and scale-invariant. (Lemma 8 in Section 4.)

3 Some simulation studies

In this section, we report a small-scale simulation result which illustrates the behavior
of the admissible estimator 1*(l) = (¢¥7(l), ..., (l)) compared to the simple estimator

() =1/(v +2).



Table 1: p=2

v=2>5 v =20

A risk of ¥* risk of ¢* | risk of ¥b* risk of ¢*
(1.0,1.0) 0.623 0.785 0.186 0.266
(1.0,0.9) 0.605 0.756 0.170 0.230
(1.0,0.8) 0.557 0.678 0.150 0.193
(1.0,0.7) 0.550 0.636 0.161 0.188
(1.0,0.6) 0.565 0.653 0.169 0.183
(1.0,0.5) 0.571 0.634 0.186 0.182
(1.0,0.4) 0.559 0.606 0.189 0.175
(1.0,0.3) 0.605 0.643 0.202 0.183
(1.0,0.2) 0.591 0.614 0.189 0.180
(1.0,0.1) 0.608 0.627 0.192 0.189

Using the variable transformation,
b1 =nru,to =1rou, ..., t, 1 =1rp1u,t, =u

we can easily notice that (4) equals

Joug Jo P35 220y oy rlih) =2 P TR du(H ) dr (6)
6
ff"% f(’)(p)(% =1 Dbt Tslkhzk)_(py/ﬂg)ﬁ/z_l SR 7“;?1_17“1‘2 dp(H)dr
where » = (r1,...,7-1) and R = {r |0 < r < --- <1,y < 1}. For given p,v,1, we

calculated 7;;(1) (1 <4,j < p) using 100 random points uniformly distributed respectively
on O(p) and R

We carried out a simulation for p = 2 and p = 3. In each case, v equals 5 or 20 and
several patterns of population eigenvalues A are given. We used 1000 Wishart random
matrices for the risk calculation for each p,v, A. Table 1 and 2 show the simulation
results. We notice that if the population eigenvalues are close to one another, then the
estimator @* performs better than ¢*, while as population eigenvalues get dispersed,
the risk of ¥* rapidly increases. This indicates the admissibility of ¥* is acquired by
the good performance when population eigenvalues are equal at the expense of the poor
performance when they are scattered.

4 Proofs

In this section we give a proof of Theorem 1. Since the proof is long and complicated,
first we give an outline of the proof for readability. Then we give a full proof in a series
of lemmas. Long proofs of some lemmas are given in Appendix.
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Table 2: p=3

V=25 v =20

A risk of ¥* risk of ¢* | risk of ¥b* risk of ¢*
(1.0,1.0,1.0) 0.860 1.472 0.254 0.525
(1,1/2,1/4) 0.730 1.071 0.326 0.286
(1,1/3,1/9) 0.859 1.018 0.726 0.291
(1.0,1.0,0.5) 0.766 1.286 0.243 0.363
(1.0,0.5,0.5) 0.761 1.076 0.263 0.337
(1.0,1.0,0.2) 0.933 1.244 0.527 0.377
(1.0,0.2,0.2) 0.979 1.101 0.348 0.355
(1.0,1.0,0.1) 2.073 1.213 1.480 0.362
(1.0,0.1,0.1) 1.838 1.148 0.756 0.354

An outline of the proof. Assume that some estimator ¥ (1) = (¢1(1), ..., ¢,(l)) dom-
inates ¥*(1) = (¢1(1),...,9,(1)). Then for all t € TF°,

S [ - errna < Yo [wia - rrana, M)

where £ = {l|l; > --- > 1, > 0}. The right side of (7), the risk of ¥*(1), is always finite
((18) of Lemma 1). Together with this finiteness, (7) leads to the inequality

ST <2308 [ @i —n )i -, )
where
T(t) = Tits,.. . 1,) = 2 / (Wl) — v ()2 F )L, (9)
We also denote
Tim(a;b) = Ti(a,...,a,b,....b). (10)

We will show that (8) implies Y ¢, T;(t) = 0 and hence (1) is almost surely equal to
¥*(1) on L. We integrate the both sides of (8) w.r.t. the measure t~'dt = ([]_, tj_l)dtl ..dt,
over ¢ (0 < a < b < 00). Then we have

> / T2 / (Wi (1) — (D)) / ()~ A dea (1)

The interchange of the integrals is guaranteed by (19) in Lemma 1.



Let

f@o O F (L) /21 t2dt
H(l;a,b) = : / F(t) 727 2t — | o,F(#)l)t"/* 112dt
fToo t‘l ty/2 1 t dt r;(g TZ
_ (g + 1) ¢;‘(l)/ P ¢/%7 2dt — [ 9, F(#)1)¢7/> 1 2dt. (12)
T T

Then each integral of the right-hand side of (11) is decomposed as follows;

/ (62 (1) — (D) / () — 67 2F )t db dl = Ru(a,b) + Ii(a,b),
c <

where
Riot) ==K (5 1) [ @)= w60 Ea b
Hab) ==K (5+1) [ @0 -vwwow
X { O F(t[1) ¢/27! t?dt+/
5y %

I;(a,b) is bounded by the integral I;(a,b) defined as

Hab) =& (5+1) [0 -vwolco

(5 + 1) F(t|l) /21 dt] dl.
, 2

/ O, F ($]1)8"/> 12 dt + / (5 + 1) F(E)E/> 1, dt’ d. (13
T T \2
Lemma 4 says that there exist constants ¢;,, (i = 1,...,p, m = p — 1,p) which are
independent of a, b and satisfy
B p
Ii(a,b) < " cim Thh(a3).
m=p—1
Consequently with ¢ = 2max; ;, ¢;n,, We have
p p
S [ mwetased Y Ty ) R (14
i=1 7 % i=1 m=p—1 i=1
If we substitute r=! and r (r > 1) respectively into a and b in (14), we have
p
Y[ mwrtasey 3 R <23 R 15)
i=1 m=p—1 i=1
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Figure 1: Relations among lemmas and Theorem 1

where T(r) = T7_,. By Lemma 10 there exists a constant M such that
Tom(r 5r) <M,  1<Vi<p, 0<VYm<p, Vr>1.

Since

lim R;(r~',r) =0 (16)

r—00

by Lemma 11, the continuity of R;(r~',r) implies that R;(r~!,r) is also bounded on the
region r > 1 for each i. Therefore the left-hand side of (15) is bounded and hence the
increasing sequence lim,_, f,s(r) T;(t) t~' dt converges for each i. This means

/ Ti(t)t dt < co. (17)
T

By Lemma 12, the inequalities (15), (16) and (17) imply
Ti(t) =0, a.e. in T5°, 1<i<p.
Hence ¢;(1) = ¢} (l) a.e.on £, 1 <i < p. (End of outline.)

The following lemmas (see Figure 1 for their relation to Theorem 1) constitute a full
proof of Theorem 1.

In the following Ey[-] denotes the expected value w.r.t. the distribution of the eigen-
values of Wishart matrix S with v degrees of freedom and the population eigenvalues
(ty', ..., t,1). We often use the inequality (x —y)? < 22° + 2%, 2,y € R, to bound an
integral from above. diag(ay,...,a,) denotes a diagonal matrix with diagonal elements
ai,...,a,. If Ay, ... Ay are square matrices of appropriate sizes diag(A;, ..., Ax) denotes
a block-diagonal matrix.



Lemma 1

Zt2 [y a< o (18)
Z [ [ =i - e a e o < oo (19

Proof. The integral in (18) can be written as E[> 7 (47 (1) — ¢;1)?t2]. It suffices to
prove E¢[(4;(1))?] < oo for each i. From (3) we have (v +2)yf(l) < Y%  I; = tr § and
Ey[(tr §)?] < o0

Now we will prove (19). The integral can be written as

/ Zt2Et 7 (1) = iy (@) — 71 £ dt.

azl

Since the closure of T? is a compact region and the integrand is continuous in ¢ on the
closure of Tb, it suffices to prove Y_7_ Ey[|vf (1) — ()|} (1) — t;']] < co. By Cauchy-
Schwartz inequality, the following relationship holds.

Zf;auwm Gl @) — 7] < zEt — 2 ) — 17 e () - 7]
< ZXP;EM () —t;")?
+ Z LBl @) — 472 LB (i) — 172}
< ézaw (1) —t;1)?)
The last inequality holds since (1) dc:minates P*(1). .

Lemma 2 Leta >0, 3>0 andb>a > 0. Then

o¢+1]

/bexp( Jrdr < Z il ao‘ I exp(—af3),

where [z] is the largest integer that is not larger than x and (a); = a(a—1)--- (@ —j+1)
1s the falling factorial.



Proof. Note that (a); > 0 for 0 < j < [a+ 1] and (a)ja42] < 0. By integration by parts

/b exp(—zf)x*dr = l(aLa exp(—af) — b% exp(—b0)) + a /b exp(—x3)z* 'dx
. A ! 8. 7

[a+1]

— Z @H. aa 7 exp(—af) — jexp(—bﬂ))

b
+ (Oé)[a+2]/ exp( 6) a— a+2]d!L‘

ﬁ[a+2}
[a+1]
a .
<> B ep-an)
=0

Lemma 3 Let © = (z1,...,7,), X ={z|(0 <)a <z < --- <z, <b(< 0)}, a; >0,

B; >0,i=1,...,p. Then
/ o exp ( Zﬁzxz> dz
X

1s bounded by a linear combination of finite terms each of which has the form
p
/@’Y aZle(OéH-%-H) exp <_a26z) ,
i=1

with some integer vector v = (71,...,7). The coefficients of the linear combination are
positive and independent of a, b, ﬁl( =1,...,p).

Proof. By enlarging the region of integral to the direct product [a, b]?, we have

b
[ = exp< Zm) o< [ o exp(-guanyin o x [ g -ty i,
X a

Applying Lemma 1 to each term on the right-hand side, we obtain the lemma. g
Lemma 4 Let I;(a,b) be defined as in (13). Then for 1 <i < p,

Z Cim T, %2 (a;b)

m=p—1

with some constants ¢, (m = p — 1,p) which are independent of a,b.



Proof.

i) =K (¥+1) / 6:(0) — BIGR)
(th/z 1) [ (tlD)t y/2+1]t t ldti

J#i

dl, (20)

where

t% = (th c. 7ti—17ti+17 e 7tp),
T ={tifto(=a) <ti < <tig <t < <ty <t (=)}

(20) is bounded by I + L5, where

e - s [ (T Yrn] it
V/Q +1 j#i ti=ti+1
I = /I@/) / (Ht”/2 1) (t|0) 2 gl
V/2 +1 i ti=ti 1
First we prove the lemma for the case ¢ # 1,p. Let y; = ?:1 ljhgj. Then the inner

integrals of I;; and I, are rewritten respectively as

/O . / T+~ ltmexp( s < S tsys+ti+1<yi+yi+1>)>dt;du(ﬂ) (21)

JFi,1+1 sF#1,i+1
/ / H tl//2 1 v | exp ( ( Z tsys -+ ti—l(yi + y1—1)>> dt;d,u(H) (22>
JFi,i—1 sF#i,i—1

If we use Lemma 3, the inner integrals of (21) and (22) are seen to be bounded by linear
combinations (whose coefficients are nonnegative and independent of a, b, ys(s = 1,...,p))
of such terms as

Si<asicy(@styst1) TT 7 _a ~
Q~—~1<s#i<p Hys exp( 9 Z ys>7
S#1L 1<s#i<p
where for (21),
G, =v/2—1, fs=ys, if1<s#ii+1<p, (23)
6[8:]/’ gs:yi+yi+1) lfS:Z+1
and for (22),
ds=v/2=1, Jo=ys, if1<s#ii—1<p, (24)
dszyy gs:yi+yi—1v if s=14—1.
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Consequently I;; and I;5 are bounded by linear combinations of finite terms each of which
has the form

K a21<s#i<p(@s+ys+1) // @/}Z |G Hy eXp( 2 Z QS) d,u(H)dl,
O(p) si 1<s#£i<p

where G, s, 1 < 5 # i < p are given by (23) (for ;1) or (24) (for I;5), respectively. Besides
the coefficients in the linear combination are nonnegative and independent of a, b.
By Cauchy-Schwartz inequality, (25) is bounded by

a{zlgs;ﬂgpds-‘r%-i-l}—up/?—lAl/QBl/Z’ (25>

where

A= ke [ @i - s orem e (—% > y) Au(H)L,

1<s#i<p

B = Ka”p/Q// 727 G(1) exp (-g Z ?L) du(H)dl.
O(p) SF#1 i

1<s#i<p
First consider the case for I;;. From (23), (9) and (2), we notice that
A =T(a;b). (26)

For the calculation of B, let X = (x;;) ~ W,(v, X). We easily notice that

B=F {H P2y = a‘llp} ,
SF#1
where [, is the p X p identity matrix and
N Tss ifl<s#i,i+1<p,
Tss = . .
Tss + To—15-1 fs=1+1.

Therefore, with some constant K (independent of a, b),
B = Ka 2X1sszize s, (27)
From (23), (26), and (27), it follows that (25) is equal to
KYV2q 0<erico dﬁl}*"p/z’ngjﬂ(a; b) = [~(1/2Tiij/2(a; b).
Now we consider the case for I;5. Similarly to the case I;1,
A = Tp(a;b) (28)

11



and B = E[[],, 2’

¥ =a"'1,], where X = (z;;) ~ W,(v,%) and

. Tss ifl<s#i,1—1<p,
Tss = . .
Tos + Tor1501 fs=i—1,

hence N
B = Ka 22sszizp s, (29)

with some constant K (independent of a,b). From (24), (28), and (29),
(25) = Rl/Qa{Zlés#sP&s“}*”p/%lﬂ;m(a; b) = f(lﬂTiL/Q(a; b).

Finally we consider the case where i = 1 or p. Since the both cases are quite similar
in the process of the proof, we only state a proof for the case « = p. If i = p the

above argument for jig(: I2) still holds as it is and we only have to modify the part for

I;1(= I1). The inner integral of I, equals

_ 1 b
Z.//Q 1 N v/2+1 v ) H
/0(p) /:c Il 5 eXp( 2 2 ts‘%)b eXP( zyp)dtp du(H).  (30)

1<j<p-1 1<s<p-1
By Lemma 3, the inner integral of (30) is bounded by a linear combination (whose co-
efficients are nonnegative and independent of a,b,ys(s = 1,...,p)) of such terms (the
number of terms are finite) as

p—1 p—1
P (as+vs+1) pap+yp+1 s _1
Qs pertp Hys exp| — a;ys—i—byp ,

s=1
and

2—-1 f1<s<p—1
Oész{y/ HE=s=Pp ’ (31)

v/2 if s = p.

Consequently fpl is bounded by a linear combination of finite terms such as

p
Kazi’;ll(a5+’ys+1)b(ap+7p+1) / / |77ZJ; (l) - 7/’p(l)|G(l) (H yss>
£ JO(p) s=1

< exp<—% (a 2 Yo + byp>>du(H)dl. (32)

By Cauchy-Schwartz inequality, (32) is bounded by

(i syt —v(p=1) 2 pantrn—v/2 A1/2 gL/2. (33)

12



where

a= oy [ g - v e exp - (Zyswyp)) W(H)L,
B = Ka"®D/2p/? / / Hy% exp(—%(a;ys—l—by,,))d,u(H)dl.

Similarly as before it turns out that
A=T,,1(a;b), B = Kaq 22X V=2,
where K is a constant independent of a,b. Consequently (33) equals
% L —v(p— op—V 1/2 . 1/2 .
K250 st} —v(p-1)/2p0p /2Tpé_1(a, b) = K'?T2 (a;b).

pp—1

Lemma 5 For1l <1 < p,
/\w |G )Lb FDE* 't dt dl < ¢, T (a,. .., a)

with some constant ¢, which is independent of a, b.

Proof. Puttingy, =) "_,; hgj, we see that the integral of the lemma equals

(1 =
/EWZ( —i(1)|G(1 /p) th tie p< Z%%) dtdu(H )dL.

By Lemma 3, the most inner integral is bounded by a linear combination (its coefficients
are independent of a, b) of the terms whose forms are

p
v, P (Bi+iHv/2) _a .
y'a G=1\FP3 03 eXp( 2Zyj>’

j=1
where

= (it
By Cauchy-Schwartz inequality,

EjeaBittr/2) // ()] G() y” exp <—%Zy]> dp(H)dl

13



is bounded by AY2B/? where
1
A = q"?/*H? /(w;‘(l) —i(1)*G(1) / exp (—5 tr HLH'aIp) du(H)dl,
L O(p)

with L = diag(ly,...,[,), while

P 1

B = "/ / / G(1) y*¥ exp (—— tr HLH’aIp) du(H)dl.
cJow) 2

We notice from (9) and (2) that A = (1/K)Ti(a,...,a). Let X = (z;5) ~ W,(r,X), then

P

| _ -1 295

i Y=ua Ip}—K E“lxjj
j=1

p
B =K 1g?XianEg {H g2

E:Ip},

j=1
which is independent of a, b. 1

At this point we need preliminaries about a partition before stating the next two
lemmas. We partition (1,...,p) into k& blocks;

1st block (mo+1,---,my),
2nd block  (mq +1,...,my), (34)
kth block — (my_q +1,--- ,my),

where
mog=0<mg <mo<---<myp=p.

Let [i], i =1,...,p, denote the number of the block containing i, i.e.,
[i] = s, if and only if ms_1 +1 <i < my.

(s), t =1,..., k means the group of all the elements which belong to the sth block, i.e.,
i € (s), if and only if ms_ 1 +1 <i < my.

We also use the notation my; = mg — ms_1, s =1,...,k, for the block sizes.

Lemma 6 and Lemma 7 are just needed to prove Lemma 8. However these lemmas are
useful in themselves since they give the asymptotic distribution of multivariate exponential
type distributions under the block-wise dispersion of population eigenvalues.

Lemma 6 Let each p x p orthogonal matriz H = (h;;) be partitioned as (55). There exist
positive numbers §; and 0o(< 1) which are independent of H such that every orthogonal

14



matriz H has a series of pair (is,7s), s = 1,...,w which satisfy the following three
conditions.

1. 1<is,7s <p and [ig] > [j4]-
2. h%. > 4.

745]5 —_—

3. Ifi (1 <1 <p)is not contained in U (mpj -1+ 1, i), then ZhQ > 1— 0y,

ISSSW je z]
where [s, t] means the interval of integers from s to t.

Note that the lemma includes the case that w = 0, where the third condition Z
1 — 0y for alli (1 <i < p) is the only condition to be satisfied.

Z]—

We give a proof of this lemma and Lemmas 7,8 below in Appendix.
We still assume the partition (34) for the next lemma. In addition, we introduce

another condition and notation for the lemma. Let AM™ = diag()\gn) ye .,)\1(,”)), n =

1,2, ... be the moving parameter matrix and we suppose that each /\En)(i =1,...,p, n=
1,2,...) is decomposed as

AP Z a7 50, ol >0,

and
lim &Y =&(>0), i=1,....p, (35)
lim of} /o) =0, 1<[j] <] <k (36)

s is the invariant probability measure on O(ms). Djs, Eg,ds (s = 1,...k) are the
submatrix or subvector of

D = diag(dy,...,d,) E=diag(&....&), d=(di,....dp)

respectively defined by the above-mentioned partition rule. Dy means the region given by

{ds = (di)ie(s)|dm3_1+l <. < dms}

Lemma 7 Suppose v(> 0), a;, i = 1,...,p are given so that a; > (mp—1 —v)/2 (1 <
i < p). We also suppose b;;(>0), 1 <[j] <[i] <k andc;;(>0), 1 <j<i<p,[i] =

are given. Let
: )/ (n) i
—v/2 n n
(H ag’) ><H o/ %‘1) : (37)

=1 [i]>[4]

]

Asn — oo, the integral

P a; bij Cij
ko [ TI(a”) IO () 1 (1)
0 JO(p) =1 i1~>1[4 N1 i~ 7

[i]>5] [i]=[5],i>37

1
x t/* Lexp <—§ tr H’THA(”)>du(H)dt (T = diag(t,...,t,)) (38)
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converges to

KoK H / / Hdel 11 (Hss)ﬁms-n(jfms—n

=[j]=s,i>j

1 1
X exXp (_Etr H;sDSHssEs) d,us ss dd X H / bij exp (—EZL" )d

[i]>[4]
Ky is a constant which is independent of a;, by;, c;j, while

p
K = ngr(pfmm)/{ ei=a;—mp-1/2+v/2—1(G=1,...,p).

=1

Lemma 8 7;;(I) (1 <1i,j <p) is a bounded and scale-invariant function on £ = {l|l; >
->1,> 0}.

Lemma 9 Eq[(I;t;)?] is bounded in t € T.
Proof. In the proof of Lemma 1 of Takemura and Sheena (2005), it is shown that
P(tili >z | t) < P(XJp i1y = 1), Vo >0,Vte I,

where X?,( is a chi-square random variable with v(p —i+ 1) degrees of freedom. Then

p—i+1)

Bty =2 [ aP(tl 2 0)do <2 [ aPOCy i = 2)ds = Bl )
0 0

Lemma 10 T;(t),i=1,...,p, are bounded in t € TF.
Proof. First notice that

Zil}(t) = Zt?Et[(l/)i(l) — i) = Zt?Et[((dJi(l) — 17 = () — 7))
<2 ZtQEt () 2 +2 Z EE[(wr (1) —t71)’]
< 4Zt?Et[(¢f(l) = 4ZEt Dt —1)7).

The last inequality holds since 1) dominates 1*. Therefore it suffices to show that
Ee[(1;(1)t;)?] is bounded in ¢. From (5), we have

0)*12t2.

—
.
—_
Sk
.
—~

From Lemma 8 and Lemma 9, the expectation of the right-hand side is bounded. 1

16



Lemma 11

lim Ri(a,b) =0
(a,b)—(0,00)

Proof. Let H;(l;a,b) be defined in (12). Using the monotone convergence theorem, we
easily notice that H;(l;a,b) converges to zero as (a,b) — (0, 00). Clearly

W10 = OGO Ha) <2160 - 0|6 [ joPwy|e7 et
If the integral
[ =vaicw [ jorwnierin (39)

is finite, then by the dominated convergence theorem

lim  Ri(a,b) = —K (g—H)l( lim /L(w;‘(l)—wi(l))G(l)Hi(l;a,b)dl

(a,b)—(0,00) a,b)—(0,00)
K(Y+1) " [ MG Lm  H(la b)dl
——k(5+1) [@o-vwe in )
— 0.

We will prove that (39) is finite. It suffices to show that the following integral is bounded
inr > 1:

/ v (1 G(1) / |0.F (t;1)| ¢/~ 7 dtdl,
()

where (r) = {t|r~' < t; < ... <t, <r}. Since

/ O, (£ 1)] /7142 gt
Z(r)

tir1
/ (HW 1)/ (O F (1) > at; dt,

JFi
t% = (th...,ti717ti+17"'7tp)
Tr)={tlte(=r ") <ti <+ <tig <t < <ty <ty (=7)}

=tit1
/ th//2 1 [ (1) V/2+1] - dt; + <Z + 1) / ty/zflti F(t|l) dt
ti=t;—1 2 2(r)

J#i
the following equation holds.

/|w2‘<l)—wi(l)\G(l)/ |8, F(t; 1) £/~ 142 dt dl
L 2(r)

= —/ |07 (1) — ¥i(1)] G(l)/ ¢/ [1 (t|l)t;‘//2+1]ti:ti+l dt; dl
r i(r) ti=ti—1
L (1) — o, v/2-1,
1) /E Wi (L) — (1) GQ) [M /2714, F(¢|l) dt dL. (40)

17



The first integral on the right-hand side of (40) is bounded by

/W) /ﬂ( (HtV/Q 1) [ (1)1 u/2+1L ?H dt.| di
) \j#i et
_ K (g + 1) Ll r)  (see (20)) (41)

and the right-hand side is bounded in » > 1 by Lemma 4 and Lemma 10. Similarly by
Lemma 5 and Lemma 10, the second term on the right-hand side of (40) is bounded in
r>1. 1

Lemma 12 The inequalities (15), (16) and (17) imply
Ti(t) =0, a.e.in T5°, 1<i<p.

Proof. We consider the terms on the right-hand side of (15). Fix i (1 < i < p) and
m = p—1 or p. Consider the following change of variables ¢ — (x, ) in each integration

n (17), where r and & = (x4, ...,2,_1) are defined as
T’:tp, xlztptp,h Ts = ttp_s ’ 8:2,...,]?—1, 1fm:p—1,
{7‘ =t = 5= 1p_SJrl -1 if m= (42)
- Yp > s_tp—s+17 =L4..,D ) m =p.
Conversely
th=a1xp r Nl =x1 - mp oty =2, = ifm=p-—1,
t1=x1 - -xp_lr_l,tg =2 -xp_Qr_l, ety = xlr_l, t, = 7“_1, if m=p.
(43)

We denote t expressed in terms of & and r in (43) by t(x, r; p—1) and t(x, r; p) respectively
for the cases m = p — 1, p. The domain of integral €5° is shifted to

0<z, <1, s=2,...,p—1, O0<z <7r? ifm=p-—1, (44)
O0<zs <1, s=1,...,p—1, 0<r if m=p.
We can easily notice that Jacobian, J(t — (x,r)) is given by
rPH T lxpls, ifm=p—1, (45)
P P 2P s, if m = p,
and that
g1 = 2 2P, ifm=p—1,
ool s (40
t =[P 2P, i m=p.

From (44), (45) and (46), we have for m =p—1,p
/ t)tdt —/ Hx_l/ (z,7)T;(t(x, r;m))r *drde, (47)
00 RP 1

18



where the indicator function I,,(x,r) is given by

Iz, <1,1<s<p-—1) itm=p-—1

Im(m’r):{](l‘sgl2<S<p_1)]($1§7’2)’ 1fm:p_1’

For a while, we consider an inequality with respect to T;(t). We decompose T;(t) as

where
T(l) (t) tu/2t2

K/ 1/}1 )2l(V p-1)/2 H (l81 - l82>

51<82
1 PP
x / exp |~ 30Dt | du(E) (48)
O(p) s1=1 sa=1
For the two points
th) = t(xW, r;m) = t(xgl), - I()l),r m), t@ =tz rm)= t(a:f), . ,a:f),r m)

defined by (43) with ™), 2 such that asg-l) < :1:§2) (j=1,...,p—1), we have the following
inequality

1 . 1 . TV ()
L) = IO TR < TOE) THED) = gy FITE®). (49)
T (t

2

Notice that T (1t )/T(l)( t()) is independent of 7, since it has the form [1- H(z gz)/x§1))aj
with some constant o;’s

Let N = {z|c < z; g 1, j=1,...,p— 1} with some constant 0 < ¢ < 1. If we apply
the inequality (49) to the two points

t =t(x,r;m), zeN, t@=t1,rm), 1=(1,...,1),

we have
Ti(t(1,7;m)) < Ry (2)Ti(t(x,7;m)), Ve €N, (50)

where




Now we evaluate integral (47) using the inequality (50). Since T;(¢(1,7;m)) = Ty (r~;7),

for any © € N,
/ Ty (r~ Y r)rtdr < / Rim ()T (t(z, 7;m))rtdr. (51)
1 1
Notice that if £ € N, then
(L) = I(r 2 1) < I(r 2 2" = L(a,7)
and the compactness of A/ implies that there exists some ¢*(> 0) such that
Rim(x) < .

Combined with (51), this means that for V& € N,
/ ﬂ-m(r’l;r)r’ldr < c*/ Im(a:,r)ﬂ(t(:v,r;m))r’ldr. (52)
1 0

Suppose that there exist §(> 1) and e(> 0) such that
Tim(r~Yr) > € for Vr > 6,

then
/ Ty (r~ Y 7)r~tdr > e/ r~tdr = oo,
b 5

which implies that the integral on the right-hand side of (52) also diverges. This fact to-

gether with (47) implies [.. T;(t)t~'dt = oo, which is a contradictions to (17). Therefore
0

we can conclude that for any §(> 1) and (> 0), there exists r such that r > ¢ and

Tim(r~ 1) <e.
This enables us to construct a series 7;(j = 1,2,...) such that r; — oo and
Ty (ryt515) = 0 (53)

as j — oo. This folds for any i (1 <i < p) and m (m =p — 1,p). From (16), we have

lim R;(r;',r;) =0, 1<Vi<p. (54)

Jj—00

It follows from (15), (53) and (54) that

p
Z/ T, (t)t ' dt = 0.
i=1 736"

Therefore T;(t) =0, a.e. in TP, 1 <i < p. 1
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5 Appendix

Here we give proofs of Lemmas 6, 7 and 8. Correspondingly to the partition stated before
Lemmas 6, we make the following partition of a p x p matrix A = (a;;);

Apn o Ay
A= oo . Ay img X my matrix, 1 <s,t <k. (55)
Apr - A
For a vector @ = (ay, ..., a,), the corresponding partition is given by (a,. .., ax).

Proof of Lemma 6. We use the notation H(s,...,t) (s < t) as the principle submatrix
that consists of the blocks H,j, s < i,j < t. Namely H(s,...,t) consists of all the
elements h;; such that s < [¢],[j] < t. From now on if we refer to a “submatrix”, it only
means a principle submatrix that consists of the blocks.

Choose a small enough positive number §,. We define the term “separable” with dy.

Consider a submatrix H(sy,...,s,). If for some ¢ (1 < i < p), the squared sum of
blockwise-off-diagonal elements ) <[j]<sisi<[]<s, h?j are smaller than dy, we call this
matrix “separable” (into H(si,...,s;) and H(s;+1,...,5,)). If we make a repetitive

separation, starting with H itself, finally we have a series of submatrices (not necessarily
unique)
H(,...,s1), H(sy+1,...,89),- -+ ,H(se—1+1,...,84),

(1 <s; <--- < s, =k), each of which is unseparable. Though these matrices are not
necessarily orthogonal, if the lemma holds for each of them, obviously it also holds for H
itself. We easily notice that there exists a positive constant ¢ (independent of H') such
that

Zlg[j]gsl hi; >1—cdy for any i such that 1 < [i] < sy,
Zlg[i]gsl h?j >1—cdy for any j such that 1 < [j] < sy,

D e i t1<ljj<s, 5y > 1 —cdo  for any i such that s,y + 1 < [i] <s,,
D s 1 t1<[il<sn hi; >1—cdy for any j such that s, +1 < [j] < s

Therefore we only have to prove the lemma for H under the condition that H is not
necessarily orthogonal but unseparable and satisfies the conditions

> hi>1-cdy, 1<Vi<p, (56)
1<j<p

> hy>1—ch, 1<Vji<p.

1<i<p
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First consider the case k = 1, namely H is a single block matrix. If we put d2 = (c+ 1)dy,

then (56) implies
D= h=1-6, 1<Vi<p.
j€ld] 1<j<p
The lemma holds as the case w = 0.
Now we suppose k > 2, where H consists of multiple blocks. First since H is unsep-

arable, we have
>, hi=d
[i]=k,1<[j]<k—1
which means there exists some i’s (€ (k)) such that
2 ——1
1<[j]<k—1
Put the largest ¢ as iy among i’s that satisfy (5). Furthermore (5) guarantees the existence

of j (1 <[j] <k —1) such that

hi ;> omy tmyly
Put this j as j;. The way 4, is chosen implies
Z hlzj < 507%,?1, if 1, <1< p,

1<[j]<k—1

which means if iy < i < p,

Zh?j: Zh?j_ Z h?j

1=k 1<]j]<k 1<]j]<k—1
> > by = dmpt = > bl — demy !
1<[j]<k 1<j<p
> 1—cdy — dgm; " (because of (56)). (57)

We proceed to the second step. From unseparability of H,
> iy = do-
[]<[i]<k,1<[5]<[i]-1
This means for some (i, j) such as [j1] < [i] <k, 1 <[j] <[j1] — 1,
hiy 2 Sompy o (p = myy 1)~ (58)

Choose the smallest j (and, if necessary, the largest i) among (i, j)’s that satisfy (58) and
put these 7, j to be 15, jo respectively.

Repeat the “second step” until [js] reaches 1. (Note that [j4] is strictly decreasing as
the step is repeated). Finally we have a series of (is,7js), s = 1,...,w, where [j,] = 1,
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and [js] < [isy1] (s = 1,...,w —1). Obviously (i, js) satisfies the first condition of the
lemma and the condition

h2

s -1 -1
11J1 2 ay, a4y = 6Omk My_1s

hi . > s, Os = 60m§:—1]*1(p - m[js—l]*1>_17 §=2,...,w.

ls]s —

Note a, > dop~2, 1 < Vs < w. If we define 6; as §; = dop~2, then the second condition is
satisfied.

Finally we consider the third condition of the lemma. Notice that [js] < [is11] implies
myj -1 + 1 < 2441, hence

1ol U gy +1, i) = [(max 4,) +1, p] € [i2 +1, 7).

1<s<w

Therefore if i ¢ J, ., [m(j -1 + 1, is], then iy +1 <4 < p. From (57), for such i,

D M= Myz1-6

JEld] li]=k
since 8y = (¢ + 1)d > (c + m; " )dp. "
Proof of Lemma 7. In a small neighborhood, an orthogonal matrix H has its

strictly (left-)lower part (h;j);~; as its coordinate function; H has one-to-one correspon-
dence to (hij)i>j, and (hsj)i<; is a C* function of (h;j);>;. Since O(p) is compact,
we have a finite coordinate neighborhoods, (O ¢,),7 = 1,...T for O(p) such that
o-(H) = u = (wij)i>;, ui; = hy;(i > j) for H € O or conversely
hij:{% LTioEn (59)

hiy(u), if1<i<j<p,

where h7;(u) is C* function on U, = ¢,(O).

Let J-(u) denote the Radon-Nikodym derivative of p with respect to the RPP—1/2
dimensional Lebesgue measure, i.e. J.(u)du = du(H). Actually

du(H) = ¢, /\(hi)’dhj,

where h; (i = 1,...,p) is the ¢th column of H and ¢, is a constant. If we build in (59)
and the fact

dug; ifl1<j<i<p,
dhij = Oh, . S
Dot gurdug 1 <i<j<p,
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into the above wedge product, J,(u)du is obtained. If we use the partition of unity ¢, (H)
subordinate to O (7 =1,...,T), the integral (38) is rewritten as

P a; bi;
n) Z/OO /Rp(p 1)/2 LT H(T H( > H (ugjtﬂ\gn))

i=1 [51>[4]
. 1
o | B Ht/? 1exp<—§tr(H(T)(u))’TH(T)(u)A("))dudt, (60)
i>j,[i]=j] i=1

where H(™(u) = (h;;) is given by (59).
Consider further change of variables (t,u) — (d,q), where d = (di,...,d,) and
q = (¢ij)i>j» given by

N
dl—tla[i]
1] 1/2 n 12 n n n . . .
T Lty P2 = i d P €)Y (of) Jal Y2 [i] > [j].

The Jacobian is given by

J((t,u) — (d.q))
= J(t = d)J(u— q)

V4
_ 172 () -1/2( ) /(172
—H agh™ II @ (g /o)

i=1 [l]>[J]
2 —m-1/2 T ¢ () — oy )/2 ), m\?
_ H M Hd Hg )~ =i H (am /am> : (61)
i=1 Jj=1 [i]>1]
Notice that
p a; p a; L P
H@W)zn@&):H@HwWi (62)
i=1 i=1 ; i=1
Htu/Q 1 de/2 1H i ) v/2+1 (63)
=1
2b;;
H (u t)\ = H Q- (64)
[4]>[5] [d]>[4]
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From (61), (62), (63) and (64), the integral (60) equals

1_[(51(71))0Z Z /(R+)P /Rp(pl)/2 Ip(n) (d) LT(H(T) (u))JT(u)

i=1 =1
Al T 11
i=1 [i]>[4] i>3,[1]=[j]
1< n . n
xexp[—i{Z( Z q%digj(,)—i— Z (hgj)(u)ydiﬁj(» ))
s=1 “jje(s),i>j 1,J€(8),i<j

+ 3 a+ Y (h () dig” (af;i’/af?)}}dqdd, (65)
[i]>[4]

[i)<l[7]

where R, is the positive part of R, ¢; = a;, — (p—mp))/2, e; = a;—mp—1/2+v/2—-1, (i =
1,...,p) and Ipwm (d) is the indicator function of the region

DM ={d|di(af)" < ... <dyp(afy)}.

The notation w in the integrand is an abbreviation of u(q,d,&™, a™) (£™ and a™
respectively means €™ = (£ &) and a™ = (a{™, ..., ™)) which is specifically

given by

e {q,-j it i > g, [i] = [j]. (66)

gid; (€2l fal YRt i) > ).

In order to evaluate (65), we use Lemma 6. By the lemma, every orthogonal matrix
H has a set of pairs (ig, js)(s = 1,...,w) that satisfy the conditions of Lemma 6. Define
T,;(H),1 < j <i<pas an indicator function as follows;

T, (H) = {(1) i (5, ) = (is, o), 135 <
otherwise.

Then every H has an index of (T};(H))1<j<i<p. Since the existence of (is, js)(s = 1,...,w)

may not be unique, H can have more than one index number. However if we put a prefer-

ence order among all possible (2°(°~1/2) index numbers, the index is uniquely determined.

By this index, we can naturally partition O(p) into the subsets O (7 = 1,...,2p(P=1/2),

Let the corresponding partition of unity be denoted by iz(H). Now (65) is expressed as

P T p(p—1)/2
(é-z(n))g Z Z IT‘F7
=1 r=1 #=1
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where I,z is given by

/ / T (d) 17 (T () 75 (T (w)). ], (1)
R+ Rr(p—1)/2
X H del H .2b” H q?jc”

i=1 [i]> 7] i>7,li]=[j]
k
1 n T 2 n
o[ HE( T aadts ¥ opwrag)
s=1 Nje(s),i>j 1,J€(s),i<j
-5 e T ) e o) Y saaa
[d]> 7] li]<[4]

Now we focus on I.;. Take large enough n. Suppose (d, q) satisfies

Ipw (d) o (H (u(q,d. £, a™))) i:(H (u(q. d,€™, o)) > 0. (67)
Then 7; > 0 implies H™ () has a sequence (i, js), s = 1,...,w that satisfy the conditions

of Lemma 6. First suppose i € ;< <, [my.)-1+ 1,is] (say (7)), then for some s,

m[js]_l +1 S 1 S is, (68)
h?sjs = u?sjs (q7 d’ €(n)7 a(n)> - qi]s d;l (5(?)) B ( Zs / [js]) (69>

(68) implies
[i] = [js]. (70)

(69) is equivalent to
di <0705, (67) (afi/afh): ()

Moreover the fact I'pm > 0 implies
From (70), (71) and (72), if i € I(7), then

(n) o™
O{
d < 61 ql sJs (£§ )) ﬁ S 5;1Q7;25j5 (5(9)) [(]S] < 51 qzs]sf < 5 57 Z q]1.727

ljs) %51 [ja]>[j2]

where in the third inequality we used the fact there exists a positive number § such that

§< fi(") for all i (1 <14 < p) and all large enough n. Consequently
under the condition (67), where I:(d, ) is the indicator function of the region

{(d,q) digéflg‘l Z q?m, ViEI(%)}.

[51]>[52]
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On the other hand, if i ¢ I(7), the condition 3 of Lemma 6 guarantees
Z h2 Z 1— 62)
Jeli]

which means

M;r

( Gdi+ . (h) (U))Zdz‘)

s=1 M je(s),i>j i,J€(s),i<j
S ¥ e ¥ <h<>u>2)
i=1 jeEli],i>j jE[i] i<j
di () hi(w) > (1-6) Y d;. (74)
ﬁﬂ( ) g€l i 1(7)

We also notice that ¢, > 0 implies that if ¢ > j, [i] = [j], then

2
{(H(T)(u))ij} =u; =q; < 1.
Therefore under the condition (67)

lo(ga) = 1, (75)

where Ig(qq) is the indicator function of g4 = (gij)i>jji=[;) With respect to the region
{aalg;; <1, 1 <j <i<p,[i] =[j]}. From (73) and (75), the following relations hold.

Lr Z; ID(n) = lr Z;— ]D(n) I,; IQ S ]7: IQ. (76)

Since J;(u) is bounded on a compact set, the integrand of I,7 is bounded by

¢ Ipw (d) 1, (H T (w)) i (H Hdez I II «F

[i]> 5] >, [i] =[]
k
<ow|-g{eX( T s T 0f)a)r Taf] o
=1 e(s),i>j i,7€(s),i<j [i]>[4]

with some constant c. _
From (74), (76) and (77), we notice that the following function f(d, q) dominate the
integrand of I, ;;

p
— e; Qbi]' QCij
f(d,q) =cl:(d,q) Io(qu) Hdi H 4;; H 4;;
i=1 [d]> 4] i>3j,[i]=J]
1 2
xexp{—§ E(1—4y) Z d}exp{—— Z qij}.
i 1(7) [i]>[4]
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We have

/ / d q)dqdd

Ry? JRr(p— 1)/2

_c/ ( I q> U (H dfi) exp{_%gl_ag) 3 dz}dd(l)
Rp(p—l)/2 RP1 \. ~ . )

>3, [i]=[4] igI(7

/Rm I1 & I:(d. q)dd® } I exp{—§ > qw}dq, (78)

i€l (F) [i]>[4] [i]>[J]

where dV = (d))ig1(), d® = (di)icrz), p1 = #{1 < i <pli ¢ I(F)}, po = #{1 < i <
pli € I(7)}. Since e¢; > —1,

[, 10

i¢I(7)

s exp{—% E1-02) ) d}dd

i¢I(T

is finite (say M) and independent of q, while

/R ) I1 & :(d. q)dd® = ] / d% dd, (c(q)zalg—l > qu)

% iel(7) i€l(7 [i]>[4]
= H ¢“it(q / r%dw (di — = di/c(q))
i€l(F
1
= H Cei+1<q)Mi (Mz :/ xdr < OO)
icI(7) 0

It turns out that (78) equals

¢ M, H M, (51§>—Z¢EI(%)(51'+1)

i€l ()
e (eitl) 1 )
I (S a) " (g X 6
RP2 s
[i1> 4] [i1> 4] [i1> 4]
X/~ H qz’jc” Io(ga)dqa,
B2 i [0=1)

where g, = (¢i)i>) and pr = S (g — 1)/2, Py = >_(ij>(j) M. This integral is
obviously finite since b;; > 0 ([i] > [j]), e, +1>0 (1 <i<p), ¢;; >0 (i > 7, [i] = [j])
The finiteness of (78) guarantees the use of dominated convergence theorem. Therefore
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as n — 00, I,z converges to

/R P /Rp(pl)/z LT(H(T)(U'*)) L7 (H(T) (U*))J‘;—(’U;*)

k p
X H[ps<ds) del H qub” H quc”
s=1 i=1 [s]>[4] i>5,[i]=[j]
1o o
con[ {{X( X gt ¥ 09wnag)+ ¥ faada
s=1 “,j€(s),i>] 4,j€(8),i<] [i]>[4]

where

u* = lim u(q, d, €™, a™)

= nle (g, o) (u = (Ug, Uo), Ug = (uij>i>j,[i]:[j]v U, = (Uij)[z’b[ﬂ)
= (lim uyg, hm u,) = (qq,0) (see (66))

and Ip,(d;) is the indicator function of the region

DS = {ds = (di)i€<s)|dms_1+1 S cee S dms}

If we change the notation as q; — ug, (79) equals

/Rp / / ((104,0))) 7= (H"((14,0))); (g, 0))

i e T 11

i=1 [i]>[4] i>7,[1]=[j]
- 2
< exp {——{Z( (O (s, 0))} 06

4 (H (ug, )))fjdigj) + > ququo du dd. (80)

B,J€(s),1<] [i]> 7]

@(;3) = {H|H,, (1 < s < k) are all orthogonal matrices} is the subgroup of O(p).
H € O(p) if and only if all the off-diagonal blocks (Hy;, s # t) are zero. Therefore we
can identify O(p) with the product group O(m;) x -+ - x O(my). Notice that

H = H'"((u4,0)) (81)
is in O(p). )
Consider the following transformations of H € O(p);
H — HH", (82)
H — H"H, (83)
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where H* = diag(H,, ..., H};,) € O(p). If we consider these transformations on O (i) x
-+ x O(my), they are equivalent respectively to

H, — H,H, s=1,... .k (84)
H, - H-H, s=1,...k (85)
The unique invariant probability measure on O(my) x --- x O(my) with respect to the

both transformations (84) and (85) is

f X - X,

where ji, is the uniform probability measure on O(m;) (s =1,...,k).
Now we examine the measure on O N O(p) given by J,((ug, 0))duy through (81).
Jr((ug,0))du, is derived from J.(uw)du by imposing the condition u, = 0. We easily

notice that under the condition u, = 0, ¢y A\,_;(h:)'dh;(= J-(u)du) equals

oo\ (AY)dRY,
s=11<i<j<ms

where hl(-s) (i =1,...my) is the ith column of H,,. This differential form gives the invariant
measure on O(p) with respect to the both transformations (82) and (83). Therefore
J:((uq,0))du, gives the invariant measure (w.r.t (84) and (85)) on

{(HH,. .. ,Hkk) € O(ml) X e X O(mk>‘dlag(H11, .. 7Hkk> S O(T)},

which is equal to Kopy X -+ X ug with some constant Ky. (Note that K is independent
of a;, b;j, ¢;j, 7.) Consequently (80) is equal to

Ko/ / / / . (diag(Hyy, ..., Hyy)) iz(diag(Hyy, - . ., Hig))
RY JO(my) O(mq) J RP2

k p k
X H I’DS (ds) H dle'b H qu” H H (Hss)?icijm571)(j_m371)
s=1 =1 [i]>l] s=1 [i]=[j]=s.i>]
i 1 i
X exp <—§ ;tr H;SDSHSSES) X exp (—5 > qu) dq, gdus(Hss) dd.  (86)

[i>[j]

Adding up (86) over all 7’s and 7’s, we have

k
L3 1 A | K | R .
s=1 E] O(ms) z€<s>

[i]=[j]=s,i>J

N | —

 op. 1
X exp {— (tr HQSDSHSSES)] dus(Hgs)ddsb x H / q?f” exp (—ﬁqu>dqij.
0

[i]>[4]
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Proof of Lemma 8. The property of scale-invariance is obvious from its definition.
We will prove the boundedness. For the case ¢ < j, it is obvious;
) =y <7y < —
Tii = Tii — ST & .
J L T 42

Now we suppose that ¢ > j. We notice

Li(1)

(v +2)7;(1) = L)

where

1
(1) = / (hZtl) (£t exp (—— tr H’THL) du(H)dt,
T Jow) 2

1
L(l) = / (tl;)* "> L exp (—— tr H’THL) du(H)dt,
% Jow) 2

with T' = diag(ty, . ..,t,), L = diag(ly,...,l,). Furthermore we notice that I;(1)/I5(l) is
equal to (1) /I,(1), where

1 3
/ / h2tl (til)t"/*~ 1exp( 2trH'THL)alu(H)dt7

1 -
= / / ( )(tili)2t”/21exp<—§trH’THL>du(H)dt,
o YO

with [ = I,/li(t=1,....p), Il = (I1(= 1), s, .. g I,) and L = diag(l,(= 1), oy 1)
We will prove that 11/12 is bounded on £ = {l|1 >y > ... > l, > O} First let
(lg, e ,l ) be parameterized as follows;

Tt:Zt+1/Zt, tzl,...,p—l,

equivalently
t—1
L=]]re t=2....p. (88)
s=1

Lis equivalent to R = {r = (r1,...,7,-1)|1 > 7. >0 (t =1,...,p—1)}. It suffices to show
that Il( (7 ))/12( [(r)) is bounded on R, where I(r) is given by (88). It is easily proved
that II( [(r))/I(I(7)) is continuous on R. If we can expand L(1(r))/I(1(r)) continuously

over R = {r = (ri,...,mp-1)[1 > 7. >0 (t=1,...,p — 1)}, then the expanded function
is continuous on a compact region R, hence is bounded. Therefore we only have to show
that for an arbitrary sequence r = (r§”>, e ,7"1()" ) and r € R such that

lim r™ =r, 1<t<p. (89)
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L(I(r™))/I,(I(r™)) converges to a certain value which depends only on 7.

Now choose an arbitrary sequence (™ = (r§”), ot ) that satisfies (89). Let k — 1

7p1

denote the number of r,’s in (89) that are equal to zero. If r, > 0, 1 <Vt < p— 1, then

the continuity of I;(I(r))/I(I(r)) on R guarantees
Tim L(2(r ™)/ LA(F™)) = L(A(r) /L((r).
From now on we suppose that k& > 2. We define m4(s =0, ..., k) so that
o =0, i=1,.. . k-1,

K3

mo(=0) <my < ...<my(=Dp).

(90)

Based on the partition (90), we apply Lemma 7 to I, (1 ( M)/ L(I(r™)). Let Z = {s|r, =
)

0,1<s<p—1}={s|ls=my, 1 <3t <k—1}. Let [,(r™) be decomposed as

t—1
L) = [Tr = €Pal?),
s=1
where i -
YN = I & e”= 11 -
1<s<t—1,s€Z 1<s<t—1,s¢Z
Notice that if [t] = u,
u—1
oz(}) _ r
s=1

¢ and ozftr]b) satisfy the conditions (35) and (36) respectively;

hméf’”z( I1 rs)(zét)>0, 1<t<p,

1<s<t—1 ngZ

lim of)/af) = = lim H r =0, 1<ty <[] <k

n—oo o=[ts]

L(U(r™))/I,(I(r™)) equals I} /I, where
L= (EM)TLAC™), L= (E")TLAE)),

and K™ is given by (37). Now we can apply Lemma 7. First if [i] > [j], then as n — oo,

I} converges to

k
KO RH/ / H det exp (——tr H/ D Hss‘—‘s) d:us(HSS)ddS

O(ms) te(s

X H / 2bf1t2exp<——x>dm

[t1]>[t2]
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where

(Hft p—mpy) ) Z —(p— m[z])/27

t#i
L—mp1/2+v/2—1 ift=i,
—m[t},l/Q—l—l//Q—l if t # 1,

1 ift, =i, ty = j,
bt1t2 = hh Z ? J (91)
0 otherwise.

€¢

- P 1 -
X /oo /o( )hfj (tili('r‘(”)))2 (H tz/z_l) exp (—EtrH’THL) du(H)dt.
0 p

s=1

The fact . )
i —lj(r(”)) = lim gj— = 5—]

and Lemma 7 implies that I converges to

Ko K (§/) H// Hdet 11 (HSS)?ffl—tfnsfl)<tz—mH)
t

1}:[t2}28,t1>t2
1 00 1 D>t MsTh
X exp <—§ tr H;SDSHSSES) dus(H,)dd, x (/ exp (_ﬁﬁ) dx) ,
0

where

(H ft (p— m[t ) —(p— m[z])/2’ (92)

t#i
{2 mp1/2+v/2—1 ift =i,
€ =

93
mpg— /2+u/2—1 if t #1, (93)

with by, asin (91). On the other hand, using Lemma 7 again, we notice that I} converges
to

KoK H / / H dst exp(——trH’ D Hssus)dus(Hss)dds

00 1 Zs>t Msmt
X (/ exp (——xQ) dx) ,
0 2
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where K and e, are respectively given by (92) and (93). Consequently we notice that in
either case, I7/1; converges to a certain value which is dependent only on 7. 1
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