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Abstract

This paper presents a formulation of robust topology optimization of trusses subjected to the
stress constraints under the load uncertainty. A design-dependent uncertainty model of external
loads is proposed for considering the variation of truss topology in the course of optimization.
For a truss with the discrete member cross-sectional areas, it is shown that the robust topology
optimization problem can be reduced to a mixed integer programming problem, which is solved
globally. Numerical examples illustrate that the globally optimal topology of robust truss depends
on the magnitude of uncertainty.

Keywords

Topology optimization; Robust optimization; Mixed integer program; Global optimiza-
tion; Stress constraints.

1 Introduction

This paper develops a global optimization method for the topology optimization of trusses subjected
to the uncertain external loads. We rigorously deal with the stress constraint conditions in the worst
cases, as well as the variation of truss topology. It is shown that the optimization problem presented
can be formulated as a mixed integer programming problem under several assumptions such as the
discreteness of member cross-sectional areas.

For considering the uncertain property of structural systems, there exist two alternative ap-
proaches; probabilistic and non-probabilistic approaches for representing uncertainty. Based on
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the probabilistic uncertainty model, various methods have been well-developed for reliability-based
optimization (see, e.g., [7, 21], and the references therein). On the other hand, a non-probabilistic
uncertainty model is often less information-intensive than a probabilistic model, because no stochas-
tic distributions of uncertain parameters is required.

The convex model approach [4] is one of well-known approaches using a non-probabilistic uncer-
tainty model. The robust optimization of structures was performed by using the convex model [1, 18].
Lee and Park [16] presented a robust structural optimization based on the first-order approximation
of the extremal response. Note that the variation of topology of a structure was not considered
in the literature [1, 16, 18] cited above, and all the members in the initial solution remain at the
obtained solution.

A unified methodology of robust counterpart was presented for a broader class of convex op-
timization problems including non-probabilistic uncertainty [6]. This methodology was applied to
the compliance minimization problem of a truss subjected to the uncertain load [5]. A min-max
formulation of a robust compliance design was presented for continua [9]. In the info-gap decision
theory [3], the robustness function plays a key role which represents the greatest level of uncertainty
at which any failure of the mechanical performance cannot occur. By using the robustness function,
a robustness maximization problem of a truss was investigated under the load uncertainty [14]. In
the uncertainty models considered in [5, 14], it is supposed that uncertain external forces are possi-
bly applied to all the nodes of a truss. Therefore all the nodes of the initial ground structure remain
at the obtained optimal solution, and hence the truss topology cannot change drastically.

In this paper we consider the variation of truss topology rigorously in the process of robust
structural optimization under the load uncertainty. For dealing with the variation of topology,
we develop a design-dependent uncertainty model of the external load. In our uncertainty model,
uncertain external forces are possibly applied to all the existing nodes, while no uncertain force is
applied to the nodes which vanish as a result of optimization. We also consider the stress constraints
in the extremal cases rigorously: the stress constraint must be satisfied in the worst case if the
corresponding member exists, while such a robust constraint condition on the stress should be
removed if the corresponding member vanishes; see section 5 for more account. We next suppose
that the member cross-sectional areas are chosen from among a finite number of candidates, and
that uncertain external forces are bounded in the sense of the maximum-norm. Under this restrictive
situation we show that the presented robust truss topology optimization problem can be reformulated
as a mixed integer programming (MIP) problem, which is solved globally (see section 9 for our MIP
formulation). The basic idea for reduction of the truss topology optimization, without uncertainty,
to an MIP problem can be found in [19, 22]. We extend this idea to the robust truss topology
optimization. See, e.g., [23] for basics of MIP.

This paper is organized as follows. In section 2, we recall the conventional, or nominal, struc-
tural optimization problem for the preparation of formulating the robust optimization problem. A
topology-dependent uncertainty model of the external load is proposed in section 3. Section 4 de-
scribes the relation between the robust constraint condition and the worst-case detection problem.
In section 5, we present a rigorous formulation of the robust truss topology optimization problem.
Sections 6–8 prepare the MIP reformulation of the robust topology optimization problem; in section 6
we introduce the binary variables to represent the existence of members, as well as the candidates
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of member cross-sectional areas; the optimality conditions of the worst-case detection problem are
dealt with by introducing some auxiliary binary variables in section 7; a heuristic treatment of the
kinematical determinacy condition is presented in section 8. The MIP problems, which are our goal
formulations to be solved globally, are presented in section 9. Numerical experiments are presented
in section 10. Some conclusions are drawn in section 11.

A few words regarding our notation: all vectors are assumed to be column vectors. The (m+n)-
dimensional column vector (uT,vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as
(u,v). For vectors p = (pi) ∈ Rn and q = (qi) ∈ Rn, we write p ≥ q if pi ≥ qi (i = 1, . . . , n).
Particularly, by p ≥ 0 we mean pi ≥ 0 (i = 1, . . . , n). For any n, In denotes the n × n identity
matrix, and 1n denotes the vector (1, . . . , 1)T ∈ Rn. We denote by A⊗B the Kronecker product of
A = (Aij) ∈ Rm1×n1 and B ∈ Rm2×n2 , i.e. A⊗B is the m1m2 × n1n2 matrix defined by

A⊗B =




A11B A12B · · · A1n1B

A21B A22B · · · A2n1B
...

...
. . .

...
Am11B Am12B · · · Am1n1B



.

2 Preliminaries: Nominal structural optimization problem

Consider a linear elastic truss consisting of m members in the dim-dimensional space, where dim ∈
{2, 3}. We denote by d the the number of degrees of freedom of displacements. Small displacements
and small strains are assumed.

Let x ∈ Rm denote the vector of member cross-sectional areas, which are considered as design
variables. We denote by K(x) ∈ Rd×d the stiffness matrix. The displacements vector u ∈ Rd is
found from the system of equilibrium equations,

K(x)u = f , (1)

where f ∈ Rd is the nodal loads vector.
Consider the mechanical performance of structures written as

gq(u) ≤ 0, q = 1, . . . , `, (2)

where gq : Rd → R (q = 1, . . . , `). Let X ⊆ Rm denote the set of the admissible design variables,
e.g. X = {x ∈ Rm | xi ≥ 0 (1 ≤ i ≤ m)}. We denote by li the length of the ith member. The
conventional structural optimization problem, which attempts to minimize the structural volume
over the constraint conditions in (2), is formulated as

min
∑

1≤i≤m
lixi

s.t. x ∈ X ,
K(x)u = f ,

gq(u) ≤ 0, q = 1, . . . , `,





(3)

where x and u are the variables.
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3 Design-dependent uncertainty model

A design-dependent model for uncertainty in the external load is presented.
We first introduce a binary variable sj indicating the existence of the jth free node, in order to

develop a design-dependent uncertainty model of the external load. If the current design x includes
no members connected to the jth node, then we put sj = 0 and suppose that no uncertain force
can be applied to the jth node. On the other hand, if there exists a remaining member connected
to the jth node, then we put sj = 1 and suppose that uncertain forces are possibly applied to the
jth node. In summary, sj is related to the set of remaining members as

sj =





1 if at least one remaining member is connected to the jth node,

0 if all the members connected to the jth node are removed.
(4)

Let Ij ⊆ {1, . . . ,m} denote the set of indices of members which are connected to the jth node.
We see that xi = 0 for any i ∈ Ij if and only if all the members connected to the jth node vanish
at the current design x. Hence, the condition (4) is equivalently rewritten as

sj =





1 if ∃i ∈ Ij : xi > 0,

0 if xi = 0 (∀i ∈ Ij).
(5)

Thus, sj is a function of x.
Let f̃ ∈ Rd denote the nominal value, or the best estimate, of the external load f . We describe

the uncertainty of f by using an unknown vector ζ ∈ Rn. We call ζ the vector of uncertain
parameters, or unknown-but-bounded parameters. Assume that f depends on ζ affinely as

f = f̃ + diag(f0)ζ, (6)

where f0 = (f0j) ∈ Rd is a constant vector. Note that f0j represents the relative magnitude of the
uncertainty of fj .

For each j = 1, . . . , n, define the constant matrix Tj ∈ Rdim×d so that the vector Tju corresponds
to the nodal displacement of the jth free node. Here, each element of Tj is either 0 or 1, and each
row of Tj includes only one nonzero element (which is equal to 1). Suppose that ζ satisfies

αsj ≥ ‖Tjζ‖, j = 1, . . . , n, (7)

where α ∈ R (α > 0) is a constant, sj is defined by (5), and ‖ · ‖ denotes an appropriate vector
norm. By using (6) and (7), we define the uncertainty set of f by

F(s) = {f̃ + diag(f0)ζ | αsj ≥ ‖Tjζ‖ (1 ≤ j ≤ n)}. (8)

Note that diag(f0)ζ ∈ Rd corresponds to the external load vector in the generalized coordinate
system, while Tj diag(f0)ζ ∈ Rdim corresponds to the nodal load applied to the jth free node.
Hence, (7) implies that no uncertain force is applied to the node satisfying sj = 0. Consequently, in
(8), uncertain forces are removed from the vanishing nodes. It is emphasized that the uncertainty
set F(s) defined in (8) depends on the design variables x, because s is a function of x. Hence, we
call (8) the design-dependent uncertainty model of the external load.
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(c) x1, x2 > 0, x3 = x4 = x5 = 0.

Figure 1: Schematic representation of the definition of a design-dependent uncertainty set F(s)
in (8). Figure 1(a): The ground structure with d = 4, m = 5 and n = 2. Figure 1(b): F(s)
corresponding to s1 = s2 = 1; Figure 1(c): F(s) corresponding to s1 = 1 and s2 = 0. Uncertain
forces are running through the circles depicted with the dotted lines.

Example 3.1. Consider the plane-truss example shown in Figure 1. The ground structure illus-
trated in Figure 1(a) consists of 5 members and 2 free nodes, i.e. m = 5, n = 2, and d = 4. The sets
of member indices connected to the free nodes are I1 = {1, 2, 3} and I2 = {3, 4, 5}. The matrices
Tj (j = 1, 2) in (7) are explicitly written as

T1 =

[
1 0 0 0
0 1 0 0

]
, T2 =

[
0 0 1 0
0 0 0 1

]
.

We consider the `2-norm, i.e. the standard Euclidean norm, in (7).
Consider the two designs shown in Figure 1(b) and Figure 1(c). In Figure 1(b), the cross-

sectional areas of all the members are supposed to be positive. From (5) we obtain s1 = s2 = 1,
which represents that the two free nodes exist at the corresponding design. The uncertainty set of
f defined by (8) reads

F(s) = {f̃ + diag(f0)ζ | α ≥ ‖(ζ1, ζ2)‖2, α ≥ ‖(ζ3, ζ4)‖2},
i.e. uncertain forces may possibly exist at both nodes. In contrast, we suppose that the members
3, 4, and 5 are vanishing in Figure 1(c). Then (5) yields s1 = 1 and s2 = 0. The corresponding
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uncertainty set of f defined by (8) is reduced to

F(s) = {f̃ + diag(f0)ζ | α ≥ ‖(ζ1, ζ2)‖2, ζ3 = ζ4 = 0}.

Thus uncertain forces are supposed to be applied only at the remaining node.

4 Worst-case detection and kinematical determinacy

When the external load f takes all the values in the uncertainty set F(s) defined in (8), the
displacements vector u is running through the set {u | K(x)u = f , f ∈ F(s)}. We require that
the constraints on the mechanical performance should be satisfied by all the possible realizations of
u. Thus the robust counterpart to the constraint conditions (2) is introduced as

gq(u) ≤ 0 (∀u : K(x)u ∈ F(s)), q = 1, . . . , `. (9)

Alternatively, the condition (9) is rewritten as

max
u
{gq(u) | K(x)u ∈ F(s)} ≤ 0, q = 1, . . . , `. (10)

However, if the truss is kinematically indeterminate at x, then the condition (10) does not correspond
to the constraint in the most critical case, as shown in the example below.

Example 4.1. Consider a three-bar truss example illustrated in Figure 2. As the robust constraint
condition (10), we consider the upper bound constraint on the displacement in the y-direction, i.e.

max
u=(ux,uy)

{uy − ū | K(x)u ∈ F(s)} ≤ 0. (11)

Suppose that x3 has a small positive value in Figure 2(a). Then the optimal solution of the problem
on the left-hand side of (11) corresponds to the external force indicated as fwc. Thus, the constraint
(11) corresponds to the most critical case.

In contrast, suppose x3 = 0 in Figure 2(b). Since the truss is kinematically indeterminate,
uy corresponding to fwc (in Figure 2(a)) takes an infinite value. However, fwc is not feasible for
the optimization problem on the left-hand side of (11). In fact, the optimal value of the left-hand
side of (11) vanishes, because only horizontal loads are feasible. In this case the constraint (11)
does not correspond to the most critical case, which happens if we allow that the truss can become
kinematically indeterminate.

As discussed in Example 4.1, it is required that any f ∈ F(s) is feasible for the problem on the
left-hand side of (10), in order to guarantee that the condition (10) corresponds to the constraint in
the most critical external load. This motivates us to consider the constraint condition

ImK(x) ⊇ F(s), (12)

where ImK(x) is the image of K(x). Note that s in (12) is a function of x as shown in (5), and
hence (12) is regarded as a constraint condition on x.
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Figure 2: Worst-case detection and kinematical determinacy of a truss. The optimal solution of the
maximization problem of uy is denoted by fwc. Figure 2(a): fwc corresponds to the most critical
load. Figure 2(b): the most critical load is not feasible for the worst-case detection problem.

5 Robust truss topology optimization

We define the robust structural optimization as a robust counterpart of the problem (3) by replacing
the constraint of the mechanical performance, (2), with its robust counterpart, (10). From (5), (8),
(9), and (12), the robust optimization problem is formulated as

min
∑

1≤i≤m
lixi

s.t. x ∈ X ,

sj =





1 if ∃i ∈ Ij : xi > 0,

0 otherwise,
j = 1, . . . , n,

F(s) = {f̃ + diag(f0)ζ | αsj ≥ ‖Tjζ‖ (1 ≤ j ≤ n)},
ImK(x) ⊇ F(s),
gq(u) ≤ 0 (∀u : K(x)u ∈ F(s)), q = 1, . . . , `.





(13)

Since it is very difficult to solve the problem (13), we consider only the following restrictive
situation. Firstly, we consider only the `∞-norm in the definition (8) of F(s), i.e. we suppose that
ζ is bounded as

αsj ≥ ‖Tjζ‖∞, j = 1, . . . , n. (14)

For simplicity, we also write (14) as

αsj(r) ≥ |ζr|, r = 1, . . . , d, (15)

where j(r) is the index of node associated with ur. Secondly, we suppose that the member cross-
sectional areas can be chosen only from finitely many candidates. In other words, xi is considered
as a discrete variable. Finally, we restrict ourselves to the case in which gq is an affine function, i.e.

gq(u) = aT
q u− bq, q = 1, . . . , ` (16)

with constant aq and bq. Since we consider only truss structures, the member stress, denoted by
σi(u), is a linear function of u. However, the stress constraints require a particular treatment [8,
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12, 17, 20], because they should be imposed only to the existing members. By incorporating these
restrictions, the robust truss topology optimization problem considering the stress constraints is
formulated as

min
∑

1≤i≤m
lixi (17a)

s.t. x ∈ {0, ξ1, . . . , ξk}m, (17b)

sj =





1 if ∃i ∈ Ij : xi > 0,

0 otherwise,
j = 1, . . . , n, (17c)

F(s) = {f̃ + diag(f0)ζ | αsj ≥ ‖Tjζ‖∞ (1 ≤ j ≤ n)}, (17d)

ImK(x) ⊇ F(s), (17e)

|σi(u)| ≤ σ̄ (∀u : K(x)u ∈ F(s)), ∀i : xi > 0, (17f)

where σ̄ is the upper bound of the stress, and ξ1, . . . , ξk are the available candidates of member cross-
sectional area. Note that we consider the upper-bound constraint on the modulus of σi(u) in (17f).
Since σi(u) is a linear function in terms of u, the constraint conditions |σi(u)| ≤ σ̄ (i = 1, . . . ,m)
can be written in the form of (16) by putting

aT
q u =




σi(u) for q = i,

−σi(u) for q = m+ i,

bq = σ̄i for q = i,m+ i,

and ` = 2m. The following three sections prepare a MIP reformulation of the problem (17).

6 Discrete design variables

The conditions (17b) and (17c) are rewritten by using some binary variables.
For the reformulation of (17b), we introduce binary variables ti1, . . . , tik ∈ {0, 1} for each member,

where tip = 1 implies that xi is equal to ξp. More precisely, we see that xi ∈ {0, ξ1, . . . , ξk} if and
only if

xi =
∑

1≤p≤k
ξptip, (18)

∑

1≤p≤k
tip ≤ 1, (19)

tip ∈ {0, 1}, p = 1, . . . , k. (20)

Note that (19) implies that at most one of ti1, . . . , tik becomes one, and the others vanish. Hence, if
tip = 1 in (18)–(20), then xi = ξp. Moreover, ti1 = · · · = tik = 0 implies xi = 0.

By using (18)–(20), the condition (17c) is equivalently rewritten as

tip ≤ sj ≤ 1, ∀i ∈ Ij ; ∀p = 1, . . . , k, (21)

sj ≤
∑

i∈Ij

∑

1≤p≤k
tip (22)
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for each j = 1, . . . , n. Note that (21) and (22) are linear inequalities, which are more tractable than
(17c).

7 Reduction of robust constraint conditions

A tractable reformulation of the condition (17f) is presented.

7.1 Reduction of complementarity conditions

We start with the design-independent constraint condition (16), instead of (17f). The corresponding
worst-case determination problem is formulated as

max aT
q u

s.t. K(x)u = f̃ + F0ζ,

αsj(r) ≥ |ζr|, r = 1, . . . , d.





(23)

Note that the problem (23) is an LP (linear programming) problem. Since we assume (17e),
the problem (23) has a feasible solution. Hence, from the KKT conditions, (u∗q , ζ

∗
q) is an optimal

solution of (23) if and only if there exists a Lagrange multipliers vector (µ∗q ,λ
+∗
q ,λ−∗q ) ∈ Rd×Rd×Rd

satisfying

K(x)u∗q = f̃ + F0ζ
∗
q ,

K(x)µ∗q = −aq,
λ+∗
q − λ−∗q = −FT

0 µ
∗
q ,

αsj(r) ≥ |ζ∗rq|, r = 1, . . . , d,

λ+∗
rq ≥ 0, λ−∗rq ≥ 0, r = 1, . . . , d,

λ+∗
rq (αsj(r) − ζ∗rq) = 0, λ−∗rq (αsj(r) + ζ∗rq) = 0, r = 1, . . . , d.

Consequently, x ∈ X satisfies the robust constraint condition

aT
q u ≤ bq, ∀u : K(x)u ∈ F(s) (24)

if and only if there exist uq, ζq, µq, λ
+
q and λ−q satisfying

aT
q uq ≤ bq, (25)

K(x)uq = f̃ + F0ζq, (26)

K(x)µq = −aq, (27)

λ+
q − λ−q = −FT

0 µq, (28)

αsj(r) ≥ |ζrq|, r = 1, . . . , d, (29)

λ+
rq ≥ 0, λ−rq ≥ 0, r = 1, . . . , d, (30)

λ+
rq(αsj(r) − ζrq) = 0, λ−rq(αsj(r) + ζrq) = 0, r = 1, . . . , d. (31)

Note that (26), (27), and (31) are nonlinear constraint conditions, while (25), (28), (29), and (30) are
reduced to linear inequality constraint conditions. We shall deal with (26) and (27) in section 7.2.
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We introduce the binary variables τ+
rq and τ−rq in order to deal with the complementarity condi-

tions (31). Then the conditions (29)–(31) are equivalently rewritten as

0 ≤ αsj(r) − ζrq ≤Mτ+
rq, (32)

0 ≤ λ+
rq ≤M(1− τ+

rq), (33)

0 ≤ αsj(r) + ζrq ≤Mτ−rq, (34)

0 ≤ λ−rq ≤M(1− τ−rq), (35)

τ+
rq ∈ {0, 1}, τ−rq ∈ {0, 1} (36)

for each r = 1, . . . , d, where M � 0 is a constant. We easily see in (32)–(36) that τ+
rq = 1 implies

that the constraint condition λ+
rq ≥ 0 in (30) is active, while τ+

rq = 0 implies that the constraint
condition αsj(r)−ζrq ≥ 0 in (29) is active. Similarly, τ−rq indicates whether λ−rq ≥ 0 or αsj(r) +ζrq ≥ 0
should be active. It should be clear that (32)–(35) are linear inequality constraint conditions.

7.2 Reduction of equilibrium equations

In this section we reformulate (26) into a tractable form, where x is supposed to satisfy (18)–(20).
Note that (27) can also be dealt with in a manner similar to (26).

It is known that the stiffness matrix for a truss can be written in the form of

K(x) =
∑

1≤i≤m
xihihT

i , (37)

where h1, . . . ,hm ∈ Rd are constant vectors. Alternatively, (37) is rewritten as

K(x) = H diag(x)HT, (38)

where H =
[
h1 · · · hm

]
∈ Rd×m. By using (37) and (38), the condition (26) is reduced to

Hvq = f̃ + F0ζq, (39)

viq = xiĉiq, i = 1, . . . ,m, (40)

ĉiq = hT
i uq, i = 1, . . . ,m, (41)

where vq and ĉq are the auxiliary variables.
Define cipq (p = 1, . . . , k) by

cipq =




ĉiq if tip = 1,

0 if tip = 0,
(42)

from which we can decompose ĉiq as

ĉiq =
∑

1≤p≤k
cipq. (43)
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It follows from (18), (42), and (43) that (40) is reduced to

viq =
∑

1≤p≤k
xicipq

=
∑

1≤p≤k

( ∑

1≤l≤k
ξltil

)
cipq

=
∑

1≤p≤k
ξpcipq (44)

for each i = 1, . . . ,m, because at most one of ti1, . . . , tik is equal to one, while the others are
vanishing. For simplicity, define cq and t by

cq =




(ci1q)mi=1
...

(cikq)mi=1


 ∈ Rkm, t =




(ti1)mi=1
...

(tik)mi=1


 ∈ Rkm.

Then, from (44) we see that (40) is reduced to

vq = (ξT ⊗ Im)cq. (45)

By substituting (45) into (39), we obtain

H(ξT ⊗ Im)cq = f̃ + F0ζq. (46)

On the other hand, we can rewrite (44) as

M(1− tip) ≥ |cipq − ĉiq|, Mtip ≥ |cipq|, p = 1, . . . , k, (47)

where M is a sufficiently large constant. The substitution of (41) into (47) yields

−M(1km − t) ≤ cq − (1k ⊗HT)uq ≤M(1km − t), (48)

−Mt ≤ cq ≤Mt. (49)

As a consequence, when x and t satisfy (18)–(20), then the condition (26) is equivalently rewrit-
ten as (46), (48), and (49). Similarly, we can see that the condition (27) is reduced to

H(ξT ⊗ Im)γq = −aq, (50)

−M(1km − tp) ≤ γq − (1k ⊗HT)µq ≤M(1km − t), (51)

−Mt ≤ γq ≤Mt. (52)

7.3 Reduction of stress constraints

We reformulate the design-dependent constraint condition (17f) by using the results obtained in
sections 7.1 and 7.2.

We utilize the decomposition of the equilibrium equations introduced in (39)–(41). For the
existing member, i.e. xi > 0, we see that the condition |σi(u)| ≤ σ̄ can be rewritten as

|ĉiq| ≤ c̄i (q = i), (53)

11



where c̄i =
√
E/liσ̄ and E is the elastic modulus. By using (42) and (53), the condition (17f) is

equivalently rewritten as
∣∣∣
∑

1≤p≤k
cipq

∣∣∣ ≤ c̄i (q = i), i = 1, . . . ,m. (54)

For each i = 1, . . . ,m, we can decompose (54) into two linear inequalities. Hence, for the stress
constraints, the condition (25) in (25)–(31) should be replaced with

∑

1≤p≤k
cipq ≤ c̄i (q = i), i = 1, . . . ,m, (55)

∑

1≤p≤k
cipq ≥ −c̄i (q = m+ i), i = 1, . . . ,m. (56)

Note that we put

aT
q u =




σi(u) for q = i,

−σi(u) for q = m+ i,
i = 1, . . . ,m.

in order to embed (54) into the form of (25)–(31).
It should be noted that in (25)–(31) we require the existence of the Lagrange multiplies corre-

sponding to the worst case. However, if a member is removed, then the corresponding Lagrange
multipliers do not necessarily exist. Thus, in consideration of the stress constraints, not only (53)
but also the constraints on the Lagrange multipliers should be treated as the vanishing constraints.
Among (27)–(31), it is sufficient to remove only (27), because λ+

q = λ−q = uq = 0 always becomes
feasible to (28)–(31) for any ζq satisfying (29). In other words, (27) is required to be satisfied only
for the existing members, which is realized by

|aq +H(ξT ⊗ Im)γq| ≤M
(

1−
∑

1≤p≤k
tip

)
1d (q = i,m+ i), i = 1, . . . ,m. (57)

Note that if xi = 0, then ti1 = · · · = tik = 0, and hence (57) is reduced to |aq +H(ξT ⊗ I)γq| ≤M
as expected.

8 Kinematical determinacy constraint

A tractable sufficient condition for (17e) is presented.
By f ∈ F(s) we suppose that uncertain forces can be applied to all the existing nodes. Let

f j ∈ Rdim denote the external nodal load applied to the jth node. From the definition (4) of sj , we
see that any external load applied to the existing nodes can be written as

∑
1≤j≤n sjT

T
j f j . Hence,

the condition (17e) is satisfied if and only if there exists a vector ǔ ∈ Rd satisfying

K(x)ǔ =
∑

1≤j≤n
sjTT

j f j , ∀f j ∈ Rdim (1 ≤ j ≤ n). (58)

Note that the equilibrium equations in (58) are nonlinear conditions in terms of x and ǔ. On the
other hand, we do not need to consider any performance constraint condition on ǔ. Hence, instead
of (58) it is sufficient to consider the existence of the set of axial forces of the existing members which
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satisfies the equilibrium conditions against the external loads. Thus, we see that (58) is satisfied if
and only if there exists v̌ ∈ Rm satisfying

v̌i = 0 (∀i : xi = 0), Hv̌ =
∑

1≤j≤n
sjTT

j f j , (59)

for any f j ∈ Rdim (1 ≤ j ≤ n). Note that (59) consists of the linear equations in terms of v̌, which
is the reason why we prefer (59) to (58).

Since
∑

1≤p≤k tip = 0 holds if and only if xi = 0, the condition v̌i = 0 (∀i : xi = 0) in (59) can
be written as linear inequalities in terms of v̌ and t. In contrast, it is difficult deal with infinitely
many external loads f j ∈ Rdim (1 ≤ j ≤ n). In this paper we consider a sufficient condition for
(59) by considering only some samples f̌ j ∈ Rdim (j = 1, . . . , n) which are randomly generated.
Consequently, a sufficient condition for (59) is obtained as

Hv̌ =
∑

1≤j≤n
sjTT

j f̌ j , (60)

−M
∑

1≤p≤k
tip ≤ v̌i ≤M

∑

1≤p≤k
tip, i = 1, . . . ,m. (61)

As a heuristic way to deal with (17e), we consider (60) and (61) as the constraint conditions in the
robust truss topology optimization problem.

9 Mixed integer programming formulations

MIP formulations of the problem (17) are presented.

9.1 Linear inequality constraints

Instead of the design-dependent constraint conditions (17f) in the problem (17), we first consider
the linear inequality constraint conditions (24) as the constraints on the mechanical performance.

In section 6 we have shown that the constraint condition (17b) is equivalent to (18)–(20), while
the constraint condition (17c) has been reduced to (21) and (22). In section 7, the robust constraint
conditions consisting of (17d) and (24) have been shown to be equivalent to (25)–(28) and (32)–(36).
Moreover, we have shown that (26) is equivalent to (46), (48), and (49), while (27) is equivalent to
(50)–(52). As a sufficient condition for (17e), we have presented (60) and (61) in section 8.

As a consequence, if we consider (24) instead of (17f), we can see that the problem (17) is reduced

13



to the following MIP problem:

min
∑

1≤i≤m
li
∑

1≤p≤k
ξptip

s.t.
∑

1≤p≤k
tip ≤ 1, i = 1, . . . ,m,

tip ≤ sj ≤ 1 (∀i ∈ Ij ; ∀p), j = 1, . . . , n,
sj ≤

∑

i∈Ij

∑

1≤p≤k
tip, j = 1, . . . , n,

Hv̌ =
∑

1≤j≤n
sjTT

j f̌ j ,

−M
∑

1≤p≤k
tip ≤ v̌i ≤M

∑

1≤p≤k
tip, i = 1, . . . ,m,

t ∈ {0, 1}km,

∀q = 1, . . . , ` :





aT
q uq ≤ bq,
H(ξT ⊗ Im)cq = f̃ + F0ζq,

−M(1km − t) ≤ cq − 1k ⊗HTuq ≤M(1km − t),
−Mt ≤ cq ≤Mt,
H(ξT ⊗ Im)γq = −aq,
−M(1km − t) ≤ γq − 1k ⊗HTµq ≤M(1km − t),
−Mt ≤ γq ≤Mt,
λ+
q − λ−q = −FT

0 µq,

0 ≤ αsj(r) − ζrq ≤Mτ+
rq, r = 1, . . . , d,

0 ≤ λ+
q ≤M(1d − τ+

q ),
0 ≤ αsj(r) + ζrq ≤Mτ−rq, r = 1, . . . , d,
0 ≤ λ−q ≤M(1d − τ−q ),
τ+
q ∈ {0, 1}d, τ−q ∈ {0, 1}d.





(62)

In the problem (62), the continuous variables are s, v̌, uq, ζq, cq, γq, µq, λ
+
q , and λ−q , while the

binary variables are t, τ+
q , and τ−q (q = 1, . . . , `). Since (62) is a 0–1 mixed integer programming

problem, it can be solved by using available software packages based on branch-and-cut algorithms,
e.g., CPLEX [13].

9.2 Stress constraints

In this section we present a MIP formulation of the robust truss topology optimization considering
the stress constraints. In addition to the conditions considered in section 9.1, we have shown in
section 7.3 that the stress constraints (17f) are reduced to (55)–(57). Consequently, the problem (17)
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is equivalently rewritten as the following MIP problem:

min
∑

1≤i≤m
li
∑

1≤p≤k
ξptip

s.t.
∑

1≤p≤k
tip ≤ 1, i = 1, . . . ,m,

tip ≤ sj ≤ 1 (∀i ∈ Ij ; ∀p), j = 1, . . . , n,
sj ≤

∑

i∈Ij

∑

1≤p≤k
tip, j = 1, . . . , n,

Hv̌ =
∑

1≤j≤n
sjTT

j f̌ j ,

−M
∑

1≤p≤k
tip ≤ v̌i ≤M

∑

1≤p≤k
tip, i = 1, . . . ,m,

t ∈ {0, 1}km,

∀q = 1, . . . , 2m :





H(ξT ⊗ Im)cq = f̃ + F0ζq,

−M(1km − t) ≤ cq − 1k ⊗HTuq ≤M(1km − t),
−Mt ≤ cq ≤Mt,
−M(1km − t) ≤ γq − 1k ⊗HTµq ≤M(1km − t),
−Mt ≤ γq ≤Mt,
λ+
q − λ−q = −FT

0 µq,

0 ≤ αsj(r) − ζrq ≤Mτ+
rq, r = 1, . . . , d,

0 ≤ λ+
q ≤M(1d − τ+

q ),
0 ≤ αsj(r) + ζrq ≤Mτ−rq, r = 1, . . . , d,
0 ≤ λ−q ≤M(1d − τ−q ),
τ+
q ∈ {0, 1}d, τ−q ∈ {0, 1}d.∑

1≤p≤k
cipq ≤ c̄i (q = i), i = 1, . . . ,m,

∑

1≤p≤k
cipq ≥ −c̄i (q = m+ i), i = 1, . . . ,m,

−M
(

1−
∑

1≤p≤k
tip

)
1d ≤ aq +H(ξT ⊗ I)γq

≤M
(

1−
∑

1≤p≤k
tip

)
1d (q = i,m+ i), i = 1, . . . ,m.





(63)

10 Numerical experiments

The robust optimal topologies are found for various trusses by solving the proposed MIP formulation.
Computation has been carried out on Quad-Core Xeon E5450 (3 GHz) with 16 GB RAM. We solve
the problem (63) by using CPLEX Ver.11.2 [13] with the default settings.

10.1 12-bar truss

Consider a 12-bar plane truss illustrated in Figure 3, where m = 12, W = 1 m, and H = 0.6 m. The
two nodes on the left-hand side are pin-supported, and hence d = 8.

As the nominal external load f̃ , the vertical force of 5 kN is applied to the bottom-right node.
The uncertainty model of the external load is defined by (8) with f0 = 0.5 kN. The elastic modulus
is E = 2 GPa. The stress constraint of each member is considered, where the upper bound of the
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f
∼

x

y

H

W W

Figure 3: A 12-bar truss.

(a) The nominal case. (b) α = 1.0.

(c) α = 2.0. (d) α = 3.0.

Figure 4: The optimal solutions of the 12-bar truss example.

Table 1: Computational results of the 12-member truss example.

α Volume (cm3) CPU (sec) Nodes

nominal 3166.19 0.1 72

1.0 4332.38 663.7 9453

2.0 4549.29 2111.4 42797

3.0 4549.29 5690.1 137492
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f
∼

x

y

Figure 5: A 2× 2 truss.

modulus of stress is σ̄ = 20 MPa. The member cross-sectional area of each member is chosen from
the set {0, 5, 10, 15} in cm2, i.e. X = {0, 5, 10, 15}12 with k = 3 in (17b).

The obtained optimal solutions are shown in Figure 4, where the width of each member is
proportional to its cross-sectional area. Figure 4(a) depicts the conventional optimal solution without
considering the uncertainties, which is kinematically indeterminate. In Figure 4(b)–Figure 4(d) we
show the robust optimal solutions for various values of the magnitude of uncertainty, α. The topology
of robust optimal solution depends on α in general, although the solutions at α = 2.0 and at α = 3.0
coincide. The computational results are listed in Table 1.

10.2 2× 2 truss

We next consider a 2× 2 grid truss illustrated in Figure 5. Each node is connected with each other
node by a member, unless it corresponds to an overlapping member, i.e. m = 26. The lengths of
horizontal and vertical members are 1 m. The three nodes on the left-hand side are pin-supported,
and hence d = 12. A vertical force of 10 kN is applied to the bottom-right node as the nominal load
f̃ , while the coefficient in the uncertainty model (8) is f0 = 1 kN. The upper bound of the modulus
of the stress is σ̄ = 10 MPa for each member . The cross-sectional are of each member is chosen
from the set {0, 20} in cm2.

The obtained optimal solutions are shown in Figure 6. Figure 6(a) illustrates the conventional
optimal solution considering only f̃ . Figure 6(b)–Figure 6(e) show the variation of the robust
optimal topology with respect to the magnitude of uncertainty, α. It is emphasized that the nominal
optimal solution in Figure 6(a) is kinematically indeterminate, while the robust optimal solutions
in Figure 6(b)–Figure 6(e) are kinematically determinate.

10.3 29-bar truss

Consider a 29-bar truss illustrated in Figure 7. The nodes (a) and (b) are pin-supported, i.e. m = 29
and d = 20. The lengths of horizontal and vertical members are 1 m. As the nominal external load f̃ ,
the vertical forces of 2.5 kN are applied to the nodes (c) and (d). The coefficient in the uncertainty
model (8) is f0 = 0.25 kN. The upper bound of the modulus of the stress is σ̄ = 20 MPa. The
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(a) The nominal case. (b) α = 1.0. (c) α = 2.0.

(d) α = 3.0. (e) α = 4.0.

Figure 6: The optimal solutions of the 2× 2 truss example.

f
∼

x

y

f
∼

(a)

(b)

(c) (d)

Figure 7: A 29-bar truss.
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(a) The robust optimal solution for X =

{0, 10}m (in cm2).

(b) The robust optimal solution for X =

{0, 5, 10}m (in cm2).

(c) The robust optimal solution for X =

{0, 5, 15}m (in cm2).

Figure 8: The optimal solutions of the 29-bar truss example for α = 1.0.

obtained robust optimal solutions are shown in Figure 8. It is observed from Figure 8 that the
robust truss topology depends on the set of candidates of member cross-sectional areas.

11 Conclusions

A rigorous formulation, as well as a global optimization method, has been presented for the robust
truss topology optimization problem considering the stress constraints under the load uncertainty.
We have proposed a design-dependent model of uncertainty in the external load in order to deal
with the variation of truss topology in the course of optimization. Under several assumptions, e.g.
the discreteness of member cross-sectional areas, it has been shown that the robust optimization
problem can be reduced to a mixed integer programming (MIP) problem, which is solved globally.
It is noted that the constraints on the Lagrange multipliers, as well as those on the member stress,
should vanish if the corresponding member disappears.

Our MIP formulation inevitably includes large numbers of variables and constraint conditions,
which makes it difficult to apply the presented approach to large-scale structures. It remains as
our future work to develop an efficient algorithm which is applicable to large-scale robust topology
optimization problems considering the stress constraint conditions. On the other hand, as a distin-
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guished property of the presented approach, it is emphasized that the global optimal solution of our
formulation can be found by using a well-developed MIP solver. Hence, the results obtained by our
method can be used as benchmark examples for evaluating the performance of any other algorithm,
e.g. an optimization method based on the local optimality or heuristic strategy, which is regarded
as one of important contributions of our paper.
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