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Abstract

In this paper, two improved versions of an existing Sinc-collocation scheme for the Fred-
holm integral equations of the second kind are presented. The first version is obtained by
improving the existing scheme so that it becomes more practical, and natural from a the-
oretical view point. Then it is rigorously proved that the convergence rate of the modified
scheme is O(exp(−c

√
N)), as suggested in the literature. In the second version, the variable

transformation employed in the original scheme, the “tanh transformation,” is replaced with
the “double exponential transformation.” It is proved that the replacement improves the
convergence rate to O(exp(−cN/ log N)). Numerical examples which support the theoretical
results are also given.

1 Introduction

Fredholm integral equations of the second kind take the form

u(x) − λ

∫ b

a
k(x, t)u(t) dt = g(x), a ≤ x ≤ b, (1.1)

where λ is a given constant, g(x) and k(x, t) are given continuous functions, and u(x) is the
solution to be determined. Since the equations are important in application, theory and numer-
ical methods for the equations have been studied by many authors, which are reviewed in some
books [2–7]. Most numerical methods in the literature have been focused on the cases where the
functions to be approximated are differentiable on the whole interval [a, b], and do not work well
when the functions behave badly at the endpoints (see, for example, Delves–Mohamed [3, Ex-
ample 4.2.5]).

The Sinc-collocation method recently reported by Rashidinia–Zarebnia [12] surmounts the
difficulty. Based on the Sinc approximation, they have derived their scheme without assuming
the smoothness at the endpoints, and they intuitively argued that the scheme can converge
exponentially, i.e., O(exp(−c1

√
N)). In fact, they confirmed the exponential convergence in

some cases by numerical experiments.
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The main purpose of this paper is to improve the Rashidinia–Zarebnia scheme (RZ scheme)
by proposing two alternative schemes. The first scheme is obtained by modifying the RZ scheme
in the following two points (we call it the “modified RZ scheme” throughout this paper). First,
we reformulate the basis functions of the approximate solution and collocation points in the
scheme. In the RZ scheme, the basis functions are selected depending on the values of the
solution u at the endpoints, i.e. u(a) and u(b). In a practical situation, however, it is hard
to obtain the values in prior to the computation, since the solution u is an unknown function
to be determined. To remedy the issue, we take the same approach as Stenger [16], where
basis functions are fixed in any cases. In connection with this modification, we also modify
the collocation points. Second, we give a concrete and optimal way to select the mesh size h.
In the RZ scheme, it is selected based on d and α, which are the smoothness parameters of
the unknown solution u (thus, again, they are essentially unknown before the computation).
Furthermore, granted that they are somehow known, the choice of h in the RZ scheme (based
on d and α) is not optimal. In this improvement, we utilize the same approach as in [11], which
have dealt with weakly-singular cases, and then show that d and α can be determined in prior
to the computation based on the given functions g and k. Based on these two improvement, we
finally prove in a rigorous manner that the convergence rate of the modified RZ scheme is in
fact O(exp(−c1

√
N)).

Based on the modified RZ scheme, we propose the second scheme that can achieve faster
convergence. The scheme is derived by replacing the variable transformation employed in the
(modified) RZ scheme, which is the standard “tanh transformation,” with the so-called “double
exponential transformation.” In a wide range of numerical analysis (such as function approxima-
tions and quadratures) it is known that such a replacement can accelerate the rate of convergence
(see, for example, [8,18]), and the observation encourages us to employ the transformation here
as well. In fact, it turns out both theoretically and numerically that the scheme with the double
exponential transformation enjoys the notably faster rate of convergence: O(exp(−c2N/ log N)).
We call this scheme the DE-Sinc scheme.

This paper is organized as follows. We first summarize theoretical results of Sinc methods in
Section 2. In Section 3, we briefly review the RZ scheme and sketch our ideas of improvement.
Section 4 is a preliminary section where the smoothness properties of the solution u are investi-
gated; the information is required in the subsequent sections. The modified RZ scheme is derived
in Section 5, and its convergence analysis is given in Section 6. The results are extended to the
DE-Sinc scheme in Section 7 and 8. Numerical experiments are shown in Section 9. Finally in
Section 10 we conclude this paper.

2 Basic definitions and theorems of Sinc methods

2.1 Sinc approximation and Sinc quadrature on the whole real line

Sinc methods are based on the Sinc approximation on the whole real line, expressed as

F (ξ) ≈
N∑

j=−N

F (jh)S(j, h)(ξ), ξ ∈ R, (2.1)

where h is the mesh size, suitably selected depending on properties of the function F and a
given positive integer N . Here S(j, h)(x) denotes the so-called Sinc function defined by

S(j, h)(ξ) =
sinπ(ξ/h − j)

π(ξ/h − j)
. (2.2)
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The quadrature rule (Sinc quadrature) can be derived by integrating both sides of (2.1) as
follows: ∫ ∞

−∞
F (ξ) dξ ≈

N∑
j=−N

F (jh)
∫ ∞

−∞
S(j, h)(ξ) dξ = h

N∑
j=−N

F (jh), (2.3)

which is actually nothing but the (truncated) trapezoidal formula.

2.2 SE-Sinc approximation and SE-Sinc quadrature on the finite interval

The variable x in the equation (1.1) is limited to the finite interval (a, b), whereas ξ in (2.1)
moves on R. In such a case, the tanh transformation is frequently used [16,17]:

x = ψSE(ξ) =
b − a

2
tanh

(
ξ

2

)
+

b + a

2
, (2.4)

which maps R onto (a, b). This transformation is also called the single exponential transfor-
mation, and accordingly we call it the SE transformation in what follows. The inverse map
is

ξ = {ψSE}−1(x) = log
(

x − a

b − x

)
. (2.5)

Incorporated with the SE transformation, the Sinc approximation (2.1) can be applied to the
function f defined on the finite interval (a, b) as follows:

f(ψSE(ξ)) =
N∑

j=−N

f(ψSE(jh))S(j, h)(ξ), ξ ∈ R, (2.6)

which is equivalent to:

f(x) =
N∑

j=−N

f(ψSE(jh))S(j, h)({ψSE}−1(x)), x ∈ (a, b). (2.7)

We call this approximation the SE-Sinc approximation. Besides, the Sinc quadrature (2.3) can
be applied to the integral over (a, b) by using the SE transformation as follows:∫ b

a
f(t) dt =

∫ ∞

−∞
f(ψSE(ξ)){ψSE}′(ξ) dξ ≈ h

N∑
j=−N

f(ψSE(jh)){ψSE}′(jh). (2.8)

We call this approximation the SE-Sinc quadrature. In order to state the error analysis of these
approximations, we here introduce the following function space.

Definition 2.1. Let α be a positive constant, and let D be a bounded and simply-connected
domain which satisfies (a, b) ⊂ D . Then Lα(D) denotes the family of functions f that satisfy
the following conditions: (i) f is analytic in D ; (ii) there exists a constant C such that for all z
in D

|f(z)| ≤ C|Q(z)|α, (2.9)

where the function Q is defined by Q(z) = (z − a)(b − z).

When the SE transformation is utilized, the domain D in Definition 2.1 should be eye-
shaped region: ψSE(Dd) = {z = ψSE(ζ) : ζ ∈ Dd}, where Dd is a strip domain defined by
Dd = {ζ ∈ C : | Im ζ| < d} for a positive constant d (cf. Stenger [16, Figure 1.7.4c]). Then
convergence theorems of the above approximations are described as follows.
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Theorem 2.2 (Stenger [16, Theorem 4.2.5]). Let f ∈ Lα(ψSE(Dd)) for d with 0 < d < π, let N
be a positive integer, and let h be selected by the formula

h =

√
πd

αN
. (2.10)

Then there exists a constant C which is independent of N , such that

max
a≤x≤b

∣∣∣∣∣∣f(x) −
N∑

j=−N

f(ψSE(jh))S(j, h)({ψSE}−1(x))

∣∣∣∣∣∣ ≤ C
√

N e−
√

πdαN . (2.11)

Remark 2.3. The definition of Lα(D) in Definition 2.1 is slightly different from the one in
Stenger [16, Definition 4.1.1], but they are equivalent if D = ψSE(Dd) and 0 < d < π [16,
p. 189]. In this paper we use Definition 2.1 since it is also convenient for the case of the DE
transformation, which is described later.

Theorem 2.4 (Stenger [16, Theorem 4.2.6]). Let (fQ) ∈ Lα(ψSE(Dd)) for d with 0 < d < π,
let N be a positive integer, and let h̃ be selected by the formula

h̃ =

√
2πd

αN
. (2.12)

Then there exists a constant C which is independent of N , such that∣∣∣∣∣∣
∫ b

a
f(t) dt − h̃

N∑
j=−N

f(ψSE(jh̃)){ψSE}′(jh̃)

∣∣∣∣∣∣ ≤ C e−
√

2πdαN . (2.13)

The mesh sizes h and h̃ in Theorem 2.2 and 2.4 are optimal in each approximation (see the
references for this optimality). Notice that they are different. In the Sinc-collocation method
described later, however, they should coincide in order to utilize the same collocation points. In
order to realize this we have two options: either use h of (2.10) in common, or h̃ of (2.12).

If we take the first option, Theorem 2.4 should be modified as follows. The convergence
order becomes worse, but it is still better than the order in (2.11), and thus the latter becomes
dominant when two approximations are combined.

Corollary 2.5 (Okayama et al. [11, Corollary 2.8]). Let (fQ) ∈ Lα(ψSE(Dd)) for d with 0 <
d < π, let N be a positive integer, and let h be selected by the formula (2.10). Then there exists
a constant C which is independent of N , such that∣∣∣∣∣∣

∫ b

a
f(t) dt − h

N∑
j=−N

f(ψSE(jh)){ψSE}′(jh)

∣∣∣∣∣∣ ≤ C e−
√

πdαN . (2.14)

In contrast, in the second option we need a modification of Theorem 2.2 as follows; it turns out
that the convergence rate is the worst of all the preceding results. The proof is straightforward
by taking h̃ of (2.12) in the proof of Theorem 2.2. Thus we see that the first option is clearly
better.

Corollary 2.6. Let f ∈ Lα(ψSE(Dd)) for d with 0 < d < π, let N be a positive integer, and let
h̃ be selected by the formula (2.12). Then there exists a constant C which is independent of N ,
such that

max
a≤x≤b

∣∣∣∣∣∣f(x) −
N∑

j=−N

f(ψSE(jh̃))S(j, h̃)({ψSE}−1(x))

∣∣∣∣∣∣ ≤ C e−
√

πdαN/2. (2.15)
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Remark 2.7. It is stated in Rashidinia–Zarebnia [12, Theorem 1] that the convergence rate is
O( e−

√
2πdαN ) with h̃ of (2.12), but we believe the actual order is a bit worse. As it is clarified in

the above discussion, the dominant error would be O( e−
√

πdαN/2) when h̃ of (2.12) is employed.
This can be confirmed by numerical experiments in Section 9.

2.3 DE-Sinc approximation and DE-Sinc quadrature on the finite interval

In order to improve the convergence rate of the approximations above, the so-called double
exponential transformation has been proposed (see, for example, [8, 18]):

x = ψDE(ξ) =
b − a

2
tanh

(π

2
sinh(ξ)

)
+

b + a

2
, (2.16)

which also maps R onto (a, b). We abbreviate it as the DE transformation. The inverse map is

ξ = {ψDE}−1(x) = log

 1
π

log
(

x − a

b − x

)
+

√
1 +

{
1
π

log
(

x − a

b − x

)}2
 . (2.17)

If the SE transformation is replaced with the DE transformation in (2.7) and (2.8), we call
them the DE-Sinc approximation and the DE-Sinc quadrature, respectively. In these cases,
the domain D in Definition 2.1 should be ψDE(Dd) = {z = ψDE(ζ) : ζ ∈ Dd} (cf. Tanaka et
al. [19, Figure 5]), and their convergence has been analyzed as stated below.

Theorem 2.8 (Tanaka et al. [19, Theorem 3.1]). Let f ∈ Lα(ψDE(Dd)) for d with 0 < d < π/2,
let N be a positive integer, and let h be selected by the formula

h =
log(2dN/α)

N
. (2.18)

Then there exists a constant C which is independent of N , such that

max
a≤x≤b

∣∣∣∣∣∣f(x) −
N∑

j=−N

f(ψDE(jh))S(j, h)({ψDE}−1(x))

∣∣∣∣∣∣ ≤ C exp
{

−πdN

log(2dN/α)

}
. (2.19)

Theorem 2.9 (Tanaka et al. [20, Theorem 3.1]). Let (fQ) ∈ Lα(ψDE(Dd)) for d with 0 < d <
π/2, let N be a positive integer, and let h̃ be selected by the formula

h̃ =
log(4dN/α)

N
. (2.20)

Then there exists a constant C which is independent of N , such that∣∣∣∣∣∣
∫ b

a
f(t) dt − h̃

N∑
j=−N

f(ψDE(jh̃)){ψDE}′(jh̃)

∣∣∣∣∣∣ ≤ C̃ exp
{

−2πdN

log(4dN/α)

}
. (2.21)

The mesh size in Theorem 2.9 is also different from the one in Theorem 2.8. In the case of
the same mesh size, the next assertion holds.

Corollary 2.10 (Okayama et al. [11, Corollary 2.9]). Let (fQ) ∈ Lα(ψDE(Dd)) for d with
0 < d < π/2, let N be a positive integer, and let h be selected by the formula (2.18). Then
there exists a constant C which is independent of N , such that∣∣∣∣∣∣

∫ b

a
f(t) dt − h

N∑
j=−N

f(ψDE(jh)){ψDE}′(jh)

∣∣∣∣∣∣ ≤ C exp
{

−2πdN

log(2dN/α)

}
. (2.22)
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2.4 Generalized SE/DE-Sinc approximation on the finite interval

According to Theorem 2.2 and 2.8, the function to be approximated by the SE/DE-Sinc ap-
proximation should belong to Lα(D) in order to achieve exponential convergence. By the condi-
tion (2.9), such a function is required to be zero at the endpoints, x = a and x = b, which seems
to be an impractical assumption. However, actually it can be relaxed to the following function
space Mα(D).

Definition 2.11. Let D be a bounded and simply-connected domain. Then we denote by
HC(D) the family of all functions that are analytic in D and continuous on D . The function
space is complete with the norm ‖ · ‖HC(D) defined by ‖f‖HC(D) = maxz∈D |f(z)|.

Definition 2.12. Let α be a constant with 0 < α ≤ 1 and let D be a bounded and simply-
connected domain which satisfies (a, b) ⊂ D . Then the space Mα(D) consists of all functions f
that satisfy the following conditions: (i) f ∈ HC(D); (ii) there exists a constant C for all z in
D such that

|f(z) − f(a)| ≤ C|z − a|α, (2.23)
|f(b) − f(z)| ≤ C|b − z|α. (2.24)

As pointed out in Stenger [16, p. 190], the translated function

T [f ](x) = f(x) − (b − x)f(a) + (x − a)f(b)
b − a

(2.25)

belongs to Lα(D) if f ∈ Mα(D). Then, if f ∈ Mα(ψSE(Dd)), we can apply the SE-Sinc
approximation to the function T f as:

T [f ](x) ≈
N∑

j=−N

T [f ](ψSE(jh))S(j, h)({ψSE}−1(x)). (2.26)

It can also be represented as

f(x) ≈ PSE
N [f ](x) = f(a)wa(x) +

N∑
j=−N

T [f ](ψSE(jh))S(j, h)({ψSE}−1(x)) + f(b)wb(x), (2.27)

where wa and wb are auxiliary basis functions defined by

wa(x) =
b − x

b − a
, wb(x) =

x − a

b − a
. (2.28)

In this paper we call the approximation (2.27) the generalized SE-Sinc approximation. In the
same manner, if f ∈ Mα(ψDE(Dd)), we can derive the generalized DE-Sinc approximation:

f(x) ≈ PDE
N [f ](x) = f(a)wa(x) +

N∑
j=−N

T [f ](ψDE(jh))S(j, h)({ψDE}−1(x)) + f(b)wb(x). (2.29)

We can obtain the convergence theorems for each case, which correspond to Theorem 2.2
and Theorem 2.8.

Theorem 2.13. Let f ∈ Mα(ψSE(Dd)) for d with 0 < d < π, let N be a positive integer, and
let h be selected by the formula (2.10). Then there exists a constant C which is independent of
N , such that

‖f − PSE
N f‖C([a, b]) ≤ C

√
N e−

√
πdαN . (2.30)
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Theorem 2.14. Let f ∈ Mα(ψDE(Dd)) for d with 0 < d < π/2, let N be a positive integer, and
let h be selected by the formula (2.18). Then there exists a constant C which is independent of
N , such that

‖f − PDE
N f‖C([a, b]) ≤ C exp

{
−πdN

log(2dN/α)

}
. (2.31)

3 Review of the Rashidinia–Zarebnia scheme and ideas to im-
prove it

After briefly describing the Rashidinia–Zarebnia (RZ) scheme, we sketch our ideas for improve-
ment.

3.1 The RZ scheme

Rashidinia–Zarebnia [12] have assumed the solution of (1.1) belongs to Lα(ψSE(Dd)), and con-
sidered the following four cases1:

Case 1. limx→a u(x) = limx→b u(x) = 0.

Case 2. limx→a u(x) 6= 0, limx→b u(x) = 0.

Case 3. limx→a u(x) = 0, limx→b u(x) 6= 0.

Case 4. limx→a u(x) 6= 0, limx→b u(x) 6= 0.

The solution u is approximated in different manners in each case. In the case 1, the approximate
solution uRZ

N is set as

u(x) ≈ uRZ
N (x) =

N∑
j=−N

ujS(j, h̃)({ψSE}−1(x)), (3.1)

and in the case 2,

u(x) ≈ uRZ
N (x) = u−Nwa(x) +

N∑
j=−N+1

ujS(j, h̃)({ψSE}−1(x)), (3.2)

and in the case 3,

u(x) ≈ uRZ
N (x) =

N−1∑
j=−N

ujS(j, h̃)({ψSE}−1(x)) + uNwb(x), (3.3)

and in the case 4,

u(x) ≈ uRZ
N (x) = u−Nwa(x) +

N−1∑
j=−N+1

ujS(j, h̃)({ψSE}−1(x)) + uNwb(x), (3.4)

where the mesh size h̃ is selected as (2.12). For the sake of simplicity, we describe their method
for the case 1 here. Let k(x, ·) satisfy the assumptions in Theorem 2.4 for all x in (a, b) uni-
formly. In order to obtain the unknown coefficients uj in (3.1), consider substituting uRZ

N into
1The cases 2–4 contradict the condition (2.9), but this is what the original paper says.
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the equation (1.1), and approximating the integral by Theorem 2.4 as

λ

∫ b

a
k(x, t)un(t) dt ≈ λh̃

N∑
j=−N

k(x, ψSE(jh̃))un(ψSE(jh̃)) · {ψSE}′(jh̃)

= λh̃

N∑
j=−N

k(x, ψSE(jh̃))uj · {ψSE}′(jh̃). (3.5)

The last equality holds since S(j, h̃)(ih̃) = δij , where δij is Kronecker’s delta. Then an approxi-
mated equation is obtained:

N∑
j=−N

{
S(j, h̃)({ψSE}−1(x)) − λh̃k(x, ψSE(jh̃)){ψSE}′(jh̃)

}
uj = g(x). (3.6)

Discretizing this equation at the collocation points:

xRZ
i = ψSE(ih̃), i = −N, . . . , N, (3.7)

leads to a system of linear equations

N∑
j=−N

{
δij − λh̃k(xRZ

i , xRZ
j ){ψSE}′(jh̃)

}
uj = g(xRZ

i ), i = −N, . . . , N. (3.8)

Here S(j, h̃)(ih̃) = δij is used again. By solving this system, we obtain coefficients uj in (3.1).
In the cases 2–4, they have derived respective Sinc-collocation methods by the same proce-

dure:

1. Substitute the approximate solution uRZ
N into the equation (1.1),

2. Approximate the integral based on Theorem 2.4,

3. Set collocation points as (3.7) and obtain a system of linear equations.

3.2 Discussions: Ideas to improve and reinforce the RZ scheme

From a practical and theoretical point of view, the RZ scheme can be further improved. We
here summarize the main ideas of the improvement.

3.2.1 How to determine the smoothness parameters of the solution (in Section 4)

In the RZ scheme, the parameters α and d of the solution u are required to determine the mesh
size h̃ by (2.12). However, since the solution u is an unknown function to be determined, the
scheme cannot be launched unless an way for finding (or at least estimating) α and d is equipped.
As a remedy, in Section 4 we show that the values of α and d can be found from the known
functions g and k.

3.2.2 Change of basis functions, collocation points, and mesh size (in Section 5)

Firstly, we modify the basis functions. In the RZ scheme, basis functions of the approximate
solution uRZ

N are selected from the four cases depending on the behavior of the solution u at
endpoints. It seems to be, however, quite hard to know it before solving the problem. Further-
more, in the cases 2–4, the solutions clearly would not belong to Lα(ψSE(Dd)) (see the footnote
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in Section 3.1). In the present paper, we suppose u ∈ Mα(ψSE(Dd)), and set the approximate
solution uSE

N based on the approximations (2.27) as

uSE
N (x) = u−N−1wa(x) +

N∑
j=−N

ujS(j, h)({ψSE}−1(x)) + uN+1wb(x), (3.9)

whose basis functions are fixed in any cases. In connection to this, we modify the collocation
points as

xSE
i =


a (i = −N − 1),
ψSE(ih) (i = −N, . . . , N),
b (i = N + 1),

(3.10)

in order that all the collocation points would be the support abscissas when we regard the
generalized SE-Sinc approximation (2.27) as an interpolation; i.e., f(xSE

i ) = PSE
N [f ](xSE

i ) holds.
This is a useful property for the subsequent theoretical analysis. In the RZ scheme, however,
the collocation points (3.7) coincide the abscissas for all i = −N + 1, . . . , N − 1, but not for
i = −N, N (strictly speaking, in the cases 2–4).

Secondly, we modify the mesh size. In the RZ scheme, the mesh size h̃ of (2.12) is selected.
In this case, the convergence rate of the SE-Sinc quadrature is O( e−

√
2πdαN ) according to The-

orem 2.4. But according to Corollary 2.6 the convergence rate of the SE-Sinc approximation is
worse: O( e−

√
πdαN/2), which reduces the performance of the scheme (recall the discussion in

Section 2). In the present paper, the mesh size h is selected as (2.10); this will allow us to obtain
the optimal rate: O(

√
N e−

√
πdαN ). This is because of Theorem 2.2 and Corollary 2.5.

3.2.3 Convergence analysis (in Section 6)

In their paper [12], it is claimed that the convergence rate of the RZ scheme is O(exp(−c1

√
N))

based on the intuitive discussion and numerical results, but rigorous theoretical analysis is
not given. On the other hand, they have given a certain error analysis of the Sinc-Nyström
method [13], which gives us a clue to analyze the present case (Sinc-collocation method). It will
be shown that the error analysis of the Sinc-collocation method can be reduced to that of the
Sinc-Nyström method, when the interpolation property f(xSE

i ) = PSE
N [f ](xSE

i ) holds (note that
this is guaranteed by the appropriate choice of the collocation points above). Then we can show
theoretically that the convergence rate of the modified RZ scheme is O(exp(−c1

√
N)).

3.2.4 Replacement of the variable transformation (in Section 7 and 8)

The variable transformation utilized in the RZ and the modified RZ schemes above is the SE
transformation, but we replace it with the DE transformation in Section 7. It is then shown in
Section 8 that the replacement improves the convergence rate to O(exp(−c2N/ log N)), which
is much faster than the case of the SE transformation.

4 Analysis of the smoothness properties of the solution

Throughout this section, let D represent either ψSE(Dd) or ψDE(Dd). We give below a sufficient
condition for u ∈ Mα(D) using the known functions g and k.

First we show u ∈ HC(D) under some assumptions (recall Definition 2.12). Suppose k(z, ·) ∈
HC(D) and k(·, w) ∈ HC(D) for all z, w ∈ D , and let us introduce the integral operator
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K : HC(D) → HC(D) defined by

K[f ](x) = λ

∫ b

a
k(x, t)f(t) dt. (4.1)

Note that the equation (1.1) can be rewritten as (I − K)u = g. The operator K is compact on
HC(D) as shown below.

Lemma 4.1. Let k(z, ·) ∈ HC(D) and k(·, w) ∈ HC(D) for all z, w ∈ D . Then the operator
K : HC(D) → HC(D) is compact.

Proof. It is easily seen that the operators K map the set {f : ‖f‖HC(D) ≤ 1} onto a uniformly
bounded and equicontinuous set. Therefore the claim follows from the Arzelà–Ascoli theorem
for complex functions (cf. Rudin [15, Theorem 11.28]). ¥

Then the existence and uniqueness of the solution are immediately shown by the Fredholm
alternative theorem.

Theorem 4.2. Suppose that the assumptions of Lemma 4.1 are fulfilled, and the homogeneous
equation (I−K)f = 0 has only the trivial solution f ≡ 0. Then the operator (I−K) : HC(D) →
HC(D) has a bounded inverse, (I − K)−1 : HC(D) → HC(D). Furthermore, if g ∈ HC(D),
then the equation (1.1) has a unique solution u ∈ HC(D).

Next we show u ∈ Mα(D). For this purpose the next theorem is useful.

Theorem 4.3 (Stenger [17, Theorem 6.1]). Let k(x, ·) ∈ L1(a, b) and k(·, t) ∈ Mα(D) for all
x, t ∈ (a, b), and g ∈ Mα(D). If the equation (1.1) has a unique solution u, then u ∈ Mα(D).

Combining Theorem 4.2 with 4.3, we obtain the desired result as stated below.

Theorem 4.4. Let k(z, ·) ∈ HC(D) and k(·, w) ∈ Mα(D) for all z, w ∈ D , and let also
g ∈ Mα(D). Furthermore, assume that the homogeneous equation (I − K)f = 0 has only the
trivial solution f ≡ 0. Then the equation (1.1) has a unique solution u ∈ Mα(D).

5 Derivation of the modified RZ scheme

In this section we show a concrete form of the modified RZ scheme roughly described in
§ 3.2.2. Suppose that the assumptions of Theorem 4.4 are fulfilled with D = ψSE(Dd). Then
u ∈ Mα(ψSE(Dd)), and accordingly we can set the approximate solution uSE

N as (3.9). Let us
substitute uSE

N into the equation (1.1), and approximate the integral operator K by KSE
N :

KSE
N [f ](x) = λh

N∑
j=−N

k(x, xSE
j )f(xSE

j ){ψSE}′(jh). (5.1)

In view of Theorem 2.13 and Corollary 2.5, the mesh size h is selected by the formula (2.10).
Finally, by setting the collocation points as x = xSE

i defined by (3.10), we obtain (2N + 3) ×
(2N + 3) system of linear equations:

{wa(xSE
i ) −KSE

N [wa](xSE
i )}u−N−1

+
N∑

j=−N

{
δij − λhk(xSE

i , xSE
j ){ψSE}′(jh)

}
uj

+ {wb(xSE
i ) −KSE

N [wb](xSE
i )}uN+1 = g(xSE

i ), i = −N − 1, −N, . . . , N, N + 1. (5.2)

10



Let us define n by n = 2N + 3, and let ESE
n and KSE

n be n × n matrices defined by

ESE
n =


1 0 · · · 0 0

wa(xSE
−N ) 1 O wb(xSE

−N )
...

. . .
...

wa(xSE
N ) O 1 wb(xSE

N )
0 0 · · · 0 1

 , (5.3)

KSE
n =


KSE

N [wa](a) · · · λhk(a, xSE
j ){ψSE}′(jh) · · · KSE

N [wb](a)
KSE

N [wa](xSE
−N ) · · · λhk(xSE

−N , xSE
j ){ψSE}′(jh) · · · KSE

N [wb](xSE
−N )

...
...

...
KSE

N [wa](xSE
N ) · · · λhk(xSE

N , xSE
j ){ψSE}′(jh) · · · KSE

N [wb](xSE
N )

KSE
N [wa](b) · · · λhk(b, xSE

j ){ψSE}′(jh) · · · KSE
N [wb](b)

 . (5.4)

Furthermore let gSE
n = [g(a), g(xSE

−N ), . . . , g(xSE
N ), g(b)]T. Then the resulting system of linear

equations (5.2) can be written in the matrix-vector form:

(ESE
n − KSE

n )un = gSE
n , (5.5)

where un = [u−N−1, u−N , . . . , uN , uN+1]T. By solving this for the coefficients un, the approx-
imate solution uSE

N is obtained by (3.9).

6 Convergence analysis of the modified RZ scheme

In this section, the convergence rate of the modified RZ scheme is rigorously given. Note that
in this section the norm ‖ · ‖C([a, b]) is used for evaluating the error instead of ‖ · ‖HC(D). This is
because we are interested in the error on the interval [a, b], not on the complex domain D . We
write X = C([a, b]) for short. We also regard K, KSE

N , PSE
N as operators from X onto X.

6.1 Sketch of the proof

In addition to the equations (1.1) and (5.5), we consider the following two equations:

(I −KSE
N )[v](x) = g(x), a ≤ x ≤ b, (6.1)

(I −PSE
N KSE

N )[w](x) = PSE
N [g](x), a ≤ x ≤ b. (6.2)

Then in § 6.2 it is shown that uSE
N = w = PSE

N v, and the error in the modified RZ scheme can be
evaluated as

‖u − uSE
N ‖X ≤ ‖u − PSE

N u‖X + ‖PSE
N ‖L(X,X)‖u − v‖X . (6.3)

We already have the estimate of the first term in Theorem 2.13. The terms ‖u − v‖X and
‖PSE

N ‖L(X,X) are estimated in § 6.3 and in § 6.4, respectively. Combining them, we obtain the
desired estimate.

6.2 Relations between the solutions uSE
N , v and w

Following Atkinson [2, § 4.3], we easily see that w = uSE
N . The proof is omitted.

Proposition 6.1. If the equation (6.2) has a unique solution w ∈ X, then the equation (5.5) is
uniquely solvable, and vice versa. Furthermore, w = uSE

N holds.

We also see uSE
N = PSE

N v as shown below.
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Proposition 6.2. The following two statements are equivalent:

(A) the equation (6.1) has a unique solution v ∈ X.

(B) the equation (6.2) has a unique solution w ∈ X.

Furthermore, w = PSE
N v and v = g + KSE

N w hold if the solutions exist.

Proof. We only show (A) ⇒ (B) since (B) ⇒ (A) can be shown in the same manner. The key
here is the interpolation property f(xSE

i ) = PSE
N [f ](xSE

i ), from which it follows that

KSE
N PSE

N f = KSE
N f. (6.4)

Assume (A). By applying PSE
N to both sides of (6.1), we have

PSE
N g = PSE

N v − PSE
N KSE

N v = (PSE
N v) − PSE

N KSE
N (PSE

N v) = (I − PSE
N KSE

N )(PSE
N v). (6.5)

This equation implies that there exists a solution w = PSE
N v ∈ X in the equation (6.2). Next we

show the uniqueness. Suppose that there exists another solution w̃ ∈ X in the equation (6.2),
and define a function ṽ as ṽ = g + KSE

N w̃. Then w̃ = PSE
N ṽ holds since w̃ is a solution of

the equation (6.2). Therefore ṽ = g + KSE
N (PSE

N ṽ) = g + KSE
N ṽ, which means ṽ is a solution

of the equation (6.1), and then v = ṽ from the uniqueness of the equation. Thus we have
w = PSE

N v = PSE
N ṽ = w̃, which shows the desired uniqueness. ¥

Using the propositions above and the following equality

u − uSE
N = u − w = (u −PSE

N u) + (PSE
N u − PSE

N v), (6.6)

we immediately have the next result.

Lemma 6.3. Assume that the equation (6.1) has a unique solution v ∈ X. Then the equa-
tion (5.5) is uniquely solvable, and the inequality (6.3) holds.

6.3 Error analysis of the Sinc-Nyström method

Next we show the existence and uniqueness of the solution v in (6.1), and estimate the term
‖u − v‖X . Actually, v is an approximate solution obtained by the so-called Sinc-Nystoröm
method that has been developed by Rashidinia–Zarebnia [13]. They have pointed out a certain
way of the analysis of the method, which utilizes the tool called “collectively compact operators.”

Definition 6.4. Let Wm : X → X (m = 1, 2, . . . ) be linear operators and let the set

{Wmf : m ≥ 1, ‖f‖X ≤ 1} (6.7)

be relatively compact on X. Then the set {Wm : m ≥ 1} is collectively compact.

The following theorem summarizes the important tools for the error analysis (see also, for
example, Kress [6] and Atkinson [2]).

Theorem 6.5 (Rashidinia–Zarebnia [13, Theorem IV]). Assume the following conditions:

1. k ∈ C([a, b] × [a, b]), and K is a linear compact operator on X.

2. The operator (I −K) is injective2.
2The original paper says I −K is “invertible,” but from their proof “injective” makes more sense.
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3. The set {KSE
N : N ≥ 1} is collectively compact on X.

4. For all f ∈ X it holds that ‖Kf −KSE
N f‖X → 0 (N → ∞).

5. For sufficiently large N it holds that ‖(I −K)−1(K −KSE
N )KSE

N ‖L(X,X) < 1.

Then the approximate inverses (I −KSE
N )−1 exist and are uniformly bounded,

‖(I −KSE
N )−1‖L(X,X) ≤

1 + ‖(I −K)−1KSE
N ‖L(X,X)

1 − ‖(I −K)−1(K −KSE
N )KSE

N ‖L(X,X)
. (6.8)

If the five conditions in Theorem 6.5 are fulfilled, then based on this theorem, we can easily
obtain the estimate for ‖u − v‖X , as will be shown in Theorem 6.10 (this has not been done
in [13] in a rigorous manner).

In what follows we show that they are in fact fulfilled under the assumptions in Theorem 4.4.
The conditions 1 and 2 are clear from the assumptions in Theorem 4.4. For the conditions 3
and 4, let us introduce some notations here. Let Q : X → R be an integral operator defined by
Qf =

∫ b
a f(t) dt, and Qm : X → R be a quadrature rule defined by

Qf ≈ Qmf =
m∑

j=1

wjf(tj), (6.9)

for some weights wj and quadrature node points tj . Furthermore, let Km be an approximate
operator of K based on Qm, defined by

K[f ](x) ≈ Km[f ](x) = λQm[k(x, ·)f(·)] = λ
m∑

j=1

wjk(x, tj)f(tj). (6.10)

Under this abstract setting, the next proposition holds.

Proposition 6.6 (Anselone [1, Proposition 2.1 and 2.2]). Suppose that Qmf → Qf for all
f ∈ X. Furthermore, let k ∈ C([a, b] × [a, b]). Then the next assertions hold:

3′. The set {Km : m ≥ 1} is collectively compact on X.

4′. For all f ∈ X it holds that ‖Kf −Kmf‖X → 0 (m → ∞).

If we define QSE
N : X → R by

Qf ≈ QSE
N f = h

N∑
j=−N

f(xSE
j ){ψSE}′(jh), (6.11)

which is nothing but the approximation (2.8), then we can use Proposition 6.6 by replacing Qm

with QSE
N , and Km with KSE

N (note that h is selected as (2.10) here). In this regard, we have
to show the assumption of Proposition 6.6: QSE

N f → Qf for all f ∈ X. For that purpose, the
Banach–Steinhaus theorem is useful.

Theorem 6.7 (cf. Atkinson [2, Corollary A.1]). Let X and Y be Banach spaces, and let
Q, Qm : X → Y be bounded linear operators. Let E be a dense subspace of X. Then in order
that Qmf → Qf for all f ∈ X, it is necessary and sufficient that

(a) Qmf → Qf for all f ∈ E.

(b) supm ‖Qm‖L(X,Y ) < ∞.
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We can prove the statements (a) and (b) as follows.

Lemma 6.8. For all f ∈ X it holds that QSE
N f → Qf as N → ∞.

Proof. Let E be a family of polynomials, which is a dense subspace of X = C([a, b]). Since
polynomials are analytic functions on the whole complex plain, clearly QSE

N f converges to Qf
for all f ∈ E (cf. Stenger [16, Corollary 4.2.7]). This implies (a) in Theorem 6.7. We prove (b)
next. It holds that for all f ∈ X

|QSE
N f |

‖f‖X
≤ h

N∑
j=−N

{ψSE}′(jh), (6.12)

and the right hand side converges to
∫ ∞
−∞{ψSE}′(t) dt as N → ∞. Thus it is uniformly bounded,

and we have ‖QSE
N ‖L(X,R) < ∞. This completes the proof. ¥

Finally, the condition 5 shall be shown by the next lemma.

Lemma 6.9 (Atkinson [2, Lemma 4.1.2]). Let K, Km : X → X be linear operators, and assume
the following two statements:

3′. The set {Km : m ≥ 1} is collectively compact on X.

4′. For all f ∈ X it holds that ‖Kf −Kmf‖X → 0 (m → ∞).

Then it holds that ‖(K −Km)Km‖L(X,X) → 0 (m → ∞).

The assumptions of this lemma have already been shown (i.e. conditions 1, 3 and 4), and
thus we immediately have

‖(I −K)−1(K −KSE
N )KSE

N ‖L(X,X) ≤ ‖(I −K)−1‖L(X,X)‖(K −KSE
N )KSE

N ‖L(X,X) → 0. (6.13)

Thus the all conditions 1–5 are satisfied, which allows us to obtain the error analysis of the
Sinc-Nyström method.

Theorem 6.10. Suppose that the assumptions in Theorem 4.4 are fulfilled with D = ψSE(Dd)
for d ∈ (0, π). Then there exists a positive integer N0 such that for all N ≥ N0, the equation (6.1)
has a unique solution v ∈ X. Furthermore, there exists a constant C for all N ≥ N0 such that

‖u − v‖X ≤ C e−
√

πdαN . (6.14)

Proof. Since (I −K) : X → X and (I −KSE
N ) : X → X have bounded inverses, it holds that

u − v = (I −K)−1g − (I −KSE
N )−1g

= (I −KSE
N )−1{(I −KSE

N ) − (I −K)}(I −K)−1g

= (I −KSE
N )−1{Ku −KSE

N u}. (6.15)

Clearly k(x, ·)u(·)Q(·) ∈ Lα(ψSE(Dd)) holds from k(x, ·) ∈ HC(ψSE(Dd)) and u ∈ Mα(ψSE(Dd)).
Therefore we can apply Corollary 2.5 as follows:

‖u − v‖X ≤ ‖(I −KSE
N )−1‖L(X,X)‖Ku −KSE

N u‖X ≤ ‖(I −KSE
N )−1‖L(X,X)C e−

√
πdαN . (6.16)

Theorem 6.5 claims ‖(I −KSE
N )−1‖L(X,X) is uniformly bounded, which completes the proof. ¥

Remark 6.11. In a precise sense, this theorem does not show the convergence rate of the Sinc-
Nyström method in Rashidinia–Zarebnia [13]. This is because the way of selecting the mesh
size is different; the formula (2.10) is used in this paper, whereas the formula (2.12) in [13].
Accordingly the rate of convergence should be different.
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6.4 Convergence theorem of the modified RZ scheme

What is left is to estimate ‖PSE
N ‖L(X,X) in (6.3); the following estimate is essential for that.

Lemma 6.12 (Stenger [16, p. 142]). Let h > 0. Then it holds that

sup
ξ∈R

N∑
j=−N

|S(j, h)(ξ)| ≤ 2
π

(3 + log N). (6.17)

Based on this estimate, we can deduce the next lemma immediately.

Lemma 6.13. There exists a constant C for all N such that ‖PSE
N ‖L(X,X) ≤ C log(N + 1).

Thus the desired estimate is obtained as follows.

Theorem 6.14. Suppose that the assumptions in Theorem 4.4 are fulfilled with D = ψSE(Dd)
for d ∈ (0, π). Then there exists a positive integer N0 such that for all N ≥ N0, the equation (5.5)
is uniquely solvable. Furthermore, there exists a constant C for all N ≥ N0 such that

‖u − uSE
N ‖X ≤ C

√
N e−

√
πdαN . (6.18)

7 Derivation of the DE-Sinc scheme

In this section, the DE-Sinc scheme is described, by replacing the SE transformation in the
modified RZ scheme with the DE transformation. Suppose that the assumptions of Theorem 4.4
are fulfilled with D = ψDE(Dd). Then u ∈ Mα(ψDE(Dd)), and accordingly we can set the
approximate solution uDE

N as

uDE
N (x) = u−N−1wa(x) +

N∑
j=−N

ujS(j, h)({ψDE}−1(x)) + uN+1wb(x). (7.1)

Let us substitute uDE
N into the equation (1.1), and approximate the integral operator K by KDE

N :

KDE
N [f ](x) = λh

N∑
j=−N

k(x, xDE
j )f(xDE

j ){ψDE}′(jh). (7.2)

In view of Theorem 2.14 and Corollary 2.10, the mesh size h is selected by the formula (2.18).
Finally, by setting the collocation points as x = xDE

i defined by

xDE
i =


a (i = −N − 1),
ψDE(ih) (i = −N, . . . , N),
b (i = N + 1),

(7.3)

we obtain n × n system of linear equations (recall n = 2N + 3):

(EDE
n − KDE

n )un = gDE
n , (7.4)

15



where gDE
n = [g(a), g(xDE

−N ), . . . , g(xDE
N ), g(b)]T, and EDE

n and KDE
n are n×n matrices defined by

EDE
n =


1 0 · · · 0 0

wa(xDE
−N ) 1 O wb(xDE

−N )
...

. . .
...

wa(xDE
N ) O 1 wb(xDE

N )
0 0 · · · 0 1

 , (7.5)

KDE
n =


KDE

N [wa](a) · · · λhk(a, xDE
j ){ψDE}′(jh) · · · KDE

N [wb](a)
KDE

N [wa](xDE
−N ) · · · λhk(xDE

−N , xDE
j ){ψDE}′(jh) · · · KDE

N [wb](xDE
−N )

...
...

...
KDE

N [wa](xDE
N ) · · · λhk(xDE

N , xDE
j ){ψDE}′(jh) · · · KDE

N [wb](xDE
N )

KDE
N [wa](b) · · · λhk(b, xDE

j ){ψDE}′(jh) · · · KDE
N [wb](b)

 . (7.6)

By solving this for the coefficients un in (7.4), the approximate solution uDE
N is obtained by (7.1).

8 Convergence analysis of the DE-Sinc scheme

In this section, the convergence rate of the DE-Sinc scheme is given under the same settings as
in Section 6. Since the proof goes almost in the same way as in the modified RZ scheme, we
only show the results here.

8.1 Sketch of the proof

In addition to the equations (1.1) and (7.4), we consider the following two equations:

(I −KDE
N )[v](x) = g(x), a ≤ x ≤ b, (8.1)

(I −PDE
N KDE

N )[w](x) = PDE
N [g](x), a ≤ x ≤ b. (8.2)

Then in § 8.2 it is shown that uDE
N = w = PDE

N v, and the error in the DE-Sinc scheme can be
evaluated as

‖u − uDE
N ‖X ≤ ‖u −PDE

N u‖X + ‖PDE
N ‖L(X,X)‖u − v‖X . (8.3)

We already have the estimate of the first term in Theorem 2.14. The terms ‖u − v‖X and
‖PDE

N ‖L(X,X) are estimated in § 8.3 and in § 8.4, respectively. Combining them, we obtain the
desired estimate.

8.2 Relations between the solutions uDE
N , v and w

The following propositions and lemma hold good.

Proposition 8.1. If the equation (8.2) has a unique solution w ∈ X, then the equation (7.4) is
uniquely solvable, and vice versa. Furthermore, w = uDE

N holds.

Proposition 8.2. The following two statements are equivalent:

(A) the equation (8.1) has a unique solution v ∈ X.

(B) the equation (8.2) has a unique solution w ∈ X.

Furthermore, w = PDE
N v and v = g + KDE

N w hold if the solutions exist.

Lemma 8.3. Assume that the equation (8.1) has a unique solution v ∈ X. Then the equa-
tion (7.4) is uniquely solvable, and the inequality (8.3) holds.
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8.3 Error analysis of the Sinc-Nyström method

If we define QDE
N : X → R by

Qf ≈ QDE
N f = h

N∑
j=−N

f(xDE
j ){ψDE}′(jh), (8.4)

we have the following lemma using Corollary 2.10.

Lemma 8.4. For all f ∈ X it holds that QDE
N f → Qf as N → ∞.

Besides, by the same arguments in § 8.3, the next theorem follows.

Theorem 8.5. Suppose that the assumptions in Theorem 4.4 are fulfilled with D = ψDE(Dd) for
d ∈ (0, π/2). Then there exists a positive integer N0 such that for all N ≥ N0, the equation (8.1)
has a unique solution v ∈ X. Furthermore, there exists a constant C for all N ≥ N0 such that

‖u − v‖X ≤ C exp
{

−2πdN

log(2πd/α)

}
. (8.5)

8.4 Convergence theorem of the DE-Sinc scheme

We can deduce the next lemma immediately from Lemma 6.12.

Lemma 8.6. There exists a constant C for all N such that ‖PDE
N ‖L(X,X) ≤ C log(N + 1).

Thus the desired estimate is obtained as follows.

Theorem 8.7. Suppose that the assumptions in Theorem 4.4 are fulfilled with D = ψDE(Dd) for
d ∈ (0, π/2). Then there exists a positive integer N0 such that for all N ≥ N0, the equation (7.4)
is uniquely solvable. Furthermore, there exists a constant C for all N ≥ N0 such that

‖u − uDE
N ‖X ≤ C exp

{
−πdN

log(2πd/α)

}
. (8.6)

9 Numerical examples

In this section, we show numerical results that illustrate the improvement achieved in the present
paper. All programs for computation were written in C++ with double-precision floating-point
arithmetic.

Let us first consider the following problem which is also conducted in Rashidinia–Zarebnia [12].

Example 9.1 (Rashidinia–Zarebnia [12, Example 1]). Consider

u(x) −
∫ 1

0
(3t − 6x2)u(t) dt =

1
4
− x, 0 ≤ x ≤ 1, (9.1)

whose solution is u(x) = x(x − 1).

According to Theorem 4.4, u ∈ M1(ψSE(Dπ−ε)) and u ∈ M1(ψDE(D(π−ε)/2) in this case. Here
ε denotes an arbitrary small positive number, and we choose ε = π − 3.14 in what follows. We
select h by the formula (2.10) with α = 1 and d = π − ε in the modified RZ scheme, and by the
formula (2.18) with α = 1 and d = (π − ε)/2 in the DE-Sinc scheme. In contrast, Rashidinia–
Zarebnia [12] have chosen α = 1/2 and d = π/2, and selected h̃ by the formula (2.12). The
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Table 1. Computational results of Example 9.1.

N h̃ (2.12) ERZ
N h (2.10) ESE

N h (2.18) EDE
N

5 1.98692 7.16816e-03 1.40461 6.21548e-04 0.550732 1.37362e-03
10 1.40496 3.11497e-04 0.993207 5.07910e-06 0.344681 4.92750e-07
15 1.14715 2.39353e-05 0.810950 1.06313e-07 0.256818 1.59098e-10
20 0.993459 2.55171e-06 0.702303 3.77483e-09 0.206998 5.55627e-14
25 0.888577 3.40053e-07 0.628159 1.90739e-10 0.174524 1.72236e-16
30 0.811156 5.34663e-08 0.573428 1.24724e-11 0.151514 1.77636e-16
35 0.750984 9.56543e-09 0.530891 9.95601e-13 0.134273 2.09766e-16
40 0.702481 1.90005e-09 0.496603 9.33555e-14 0.120828 1.66610e-16
45 0.662306 4.11757e-10 0.468202 1.00659e-14 0.110020 3.10862e-16
50 0.628319 9.60836e-11 0.444176 1.03095e-15 0.101125 5.32907e-16

values of the mesh sizes are presented in Table 1. In the table, ERZ
N , ESE

N and EDE
N mean the

maximum of absolute errors on the respective collocation points, defined by

ERZ
N = max

i=−N, ..., N
|u(xRZ

i ) − uRZ
N (xRZ

i )|, (9.2)

ESE
N = max

i=−N−1,−N, ..., N, N+1
|u(xSE

i ) − uSE
N (xSE

i )|, (9.3)

EDE
N = max

i=−N−1,−N, ..., N, N+1
|u(xDE

i ) − uDE
N (xDE

i )|. (9.4)

In addition, let E1001 be the maximum of absolute errors on 1001 equally-spaced points, defined
by

E1001 = max
i=0, 1, ..., 999, 1000

|u(xi) − uN (xi)|, (9.5)

where xi = a + (b − a)i/1000, and uN denotes one of uRZ
N , uSE

N , uDE
N . The errors are shown in

Figure 1. From both of the table and figure, we can conclude that the modified RZ scheme is more
accurate than the original RZ scheme, and the DE-Sinc scheme further improves the convergence
profile. Furthermore, the rates of convergence in the graph correspond to the theoretical results
in Theorem 6.14 and Theorem 8.7, i.e. O(

√
N e−

√
πdαN ) and O(exp(−πdN/ log(2dN/α))). In

the case of the original RZ scheme, O( e−
√

πdαN/2) is observed from the graph, which coincides
with the discussion in Remark 2.7.

Next we consider the case where there is derivative singularity at the endpoint x = a.

Example 9.2 (Delves–Mohamed [3, Example 4.2.5]). Consider

u(x) −
∫ π/2

0
(xt)3/4u(t) dt = x1/2

{
1 − π2

9

(πx

2

)1/4
}

, 0 ≤ x ≤ π/2, (9.6)

whose solution is u(x) = x1/2.

In this case u ∈ M1/2(ψSE(Dπ−ε)) and u ∈ M1/2(ψDE(D(π−ε)/2)), and we select h using these
parameters α and d. It is not straightforward to select h̃ in the RZ scheme since the strategy is
not given to choose the parameters α and d appearing in (2.12). For the experiment, we choose
α = 1/2 and d = π − ε, which are the same values as the modified RZ scheme. The results are
plotted in Figure 2, and we can observe similar results to Example 9.1.
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Figure 1. Errors of Example 9.1.
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Figure 2. Errors of Example 9.2.

10 Concluding remarks

In this paper, two improved versions of the Sinc-collocation method by Rashidinia–Zarebnia [12]
are derived: the modified RZ scheme (in Section 5) and the DE-Sinc scheme (in Section 7). The
modified RZ scheme has the following advantages compared to the original one: (1) a concrete
and optimal strategy to choose parameters α and d are given in Section 4; (2) the exponential
convergence O(exp(−c1

√
N)) is guaranteed in a rigorous manner in Section 6, and in fact the

rate of convergence is better than the original one as seen in Section 9. In addition to the
advantages, the DE-Sinc scheme gets much faster rate of convergence: O(exp(−c2N/ log N));
this is also confirmed theoretically and numerically in Section 8 and 9, respectively. It should
be also noted that the schemes enjoy exponential convergence whether the functions to be
approximated have endpoint singularities or not.

Future works include followings. Firstly, the Sinc-collocation method for Volterra integral
equations has also been proposed by Rashidinia–Zarebnia [14], and we can establish similar
results to the present paper. Secondly, as described in Remark 6.11, the issue of rigorous
convergence analysis has been left for the Sinc-Nyström methods, in both cases of the SE trans-
formation [13] and the DE transformation [9]. Thirdly, error estimates with explicit constants
that users can compute are desired for verified numerical computation. This can be done by
examining the constants appearing in the convergence theorems, and using the results in [10].
We are now working on these matters, and the results will be reported somewhere else soon.
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