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Abstract

This paper is concerned with cooperative stabilization for LTI ho-
mogeneous multi-agent dynamical systems. We first formulate the co-
operative stabilization problem by constant output feedback and show
that it can be reduced to a stabilization problem with complex gain
feedback. We then present several classes of systems in which the
system is cooperatively stabilizable if and only if it can be stabilized
alone. We also show a multi-agent system with even number of agents
whose dynamics is represented by a 4th order transfer function, which
can be stabilized by cooperation even if any single agent alone is not
stabilizable.

1 Introduction

Due to the insatiable growth of computation speed of the computer and
the increasing demand for complex networking, modern engineering sys-
tems have become more and more complex, hierarchical, and subject to a
multitude of system dimensions. This also motivates us to analyze complex
dynamical systems in nature such as bio systems and atmosphere.

To cope with these challenges, many studies of different approaches in
a variety of areas have been made. One of the bulk flows in these stud-
ies is the decentralized autonomous control of the multi-agent systems (see
e.g., [7] and references therein.). There have been many researches in the
form of proposing a specific approach within an individual problem for-
mulation, but very few results are available so far to provide a unifying
theoretical framework and most of researches are focused on the analysis
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such as stability rather than synthesis issues including stabilization. In ana-
lyzing such complex, large-scale systems from the control-theoretic point of
view, it is possible to address these issues by applying existing methods to
high-dimensional systems in its standard form. However, since the system
dimension of the overall system can grow considerably fast as the dimen-
sions of its subsystems become large, it is important to establish a unified
approach which provides us with a methodology for analyzing and designing
(large-scale) multi-agent dynamical systems in which agents autonomously
cooperate through mutual information exchange.

Recently, the authors and their research group introduced a new frame-
work as one of the unified expressions of multi-agent systems. It is called
a linear time-invariant system with a generalized frequency variable [3, 4].
Specifically, the transfer function G(s) representing the overall dynamics of a
multi-agent system is described by simply replacing s by a rational function
#(s) in a transfer function G(s), i.e., G(s) :== G(p(s)). We call ¢(s) the gen-
eralized frequency variable, although the similar form were introduced in [8]
as one of general extensions and the robust stability was investigated. This
class of system descriptions has a potential to provide a theoretical founda-
tion for analyzing and designing large-scale dynamical systems in a variety
of areas. For example, the framework of the generalized frequency variable
can be applied to the analysis and synthesis of central pattern generators
(CPGs) [6] and gene-protein regulatory networks [1, 9] as well as consensus
and formation problems as surveyed in [7].

There are two motivations for focusing on stabilization rather than sta-
bility in this paper.

e Theoretical Point of View: There exists a very fundamental nat-
ural question stated as “Is there any advantage of cooperation?”, or
“Is there any case where h(s) is not stabilizable alone (not “solely
stabilizable”) but it is stabilizable by cooperation of multiple agents
(“cooperatively stabilizable”) 77

e Application Point of View: In gene regulatory networks, the lin-
earized model h(s) should be unstable for the existence of limit cycle
oscillations, but the total system should be stable for synchronization.

We here ounly investigate the most fundamental case, i.e., constant output
feedback stabilization by focusing on the gap between the sole stabilizability
and cooperative stabilizability.

The organization of this paper is as follows. In Section 2, we introduce
the class of linear systems with generalized frequency variables and provide
their dynamical equations in the frequency and time domains. Section 3
is devoted to the stability condition. In Section 4, we define the coopera-
tive stabilization by gain output feedback and explain related notions and
the several properties. The investigations for 2nd order subsystems and



two classes of 3rd order subsystems are made in Section 5. Section 6 de-
rives a result on the gap between the cooperative stabilization and the sole
stabilization for three class of higher order subsystems and applies it to an
inverted pendulum system. In Section 7, we give a numerical example of 4th
order system which is cooperatively stabilizable but not solely stabilizable.
Finally, we provide concluding remarks in Section 8.

We use the following notation. The sets of real numbers and complex
numbers are denoted by R and C, respectively. The complex conjugate of
z € C is denoted by Z. For a square matrix A, the set of eigenvalues is
denoted by o(A). For matrices A and B, A ® B means their Kronecker
product. Let the open left-half complex plane be denoted by C_ := {s €
C | Re(s) < 0}.

2 Linear Systems with Generalized
Frequency Variable

In this section, we introduce linear systems with generalized frequency vari-
ables and provide their dynamical equations in the frequency and time do-
mains, or the transfer function description and the state-space realization
[3, 4]. Consider the linear time-invariant system described by the transfer
function

G(s) = C (%In + A) T BiD-7 ([‘CA g] ,h(s)In) W

where h(s) is a single-input single-output, k-th order, strictly proper transfer
function, A € R**" B ¢ R*™™™ C € RP*", D € RP*"™ and F, denotes the
upper linear fractional transformation.

The system G(s) can be viewed as an interconnection of n identical
agents, each of which has the internal dynamics h(s). As depicted in Fig. 1,
the interconnection structure is specified by A, and the input-output struc-
ture for the whole system is specified by B, C', and D. Defining the standard
transfer function as

G(s) = C(sI, + A)~'B + D, (2)
the system G(s) can be described as

G(s) = G((s)),  ¢(s) := 1/h(s). (3)

Note that the variable ‘s’ in (2) characterizes frequency properties of the
transfer function G(s) and that G(s) is generated by simply replacing ‘s’ by
‘¢(s)’ in G. Hence, we say that the system (3) is described by the transfer
function G with the generalized frequency variable ¢(s) [3, 4].
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Figure 1: LTI Systems with Generalized Frequency Variable

Let h(s) have a minimal realization h(s) ~ (A, bn,cp,0), where A), €
REXE by, € RF, ¢, € RVF. It can be shown [3, 4] that a realization of G(s)
is given by G(s) ~ (A, B,C, D), where

A = In [029) Ah —A® (bhch) c Rnk;xnk,
B = B®b, e R**m = (C®c¢, € RRXE (4)
D = DeR*™,

or

A = A, @1, — (byep) @ A € Rk
D = DeRPX™,

As seen in the formulae of the state-space realizations, the size of the
state vector is nk which is normally quite large. Hence, it is not our approach
to directly deal with the realization of G(s) ignoring the structural informa-
tion, but rather, we will aim to investigate the fundamental properties such
as stability of G(s) in terms of G(s) and h(s).

3 Stability Condition

As shown in [3, 4], (A, B,C, D) is minimal if (A, B,C, D) and (A, by, ¢, 0)
are both minimal realizations. This is a distinct feature in comparison with
corresponding results for the standard cascade, parallel and feedback con-
nections of two systems, where we need to care pole/zero cancellations.
Since there is no chance of occurrences of pole/zero cancellations, the linear
time-invariant system with the generalized frequency variable G(s) given by
(3) is stable, or all the poles of G(s) are in C_, if and only if the feedback
system X(h(s), A) depicted in Fig 2 is internally stable. In other words, the
stability of G(s) is equivalent to that of

-1
Ha(s) = (%I%—A) = (¢(s)I +A) (6)



Figure 2: Feedback system X (h(s), A)

or H(s) is proper and analytic in the closed right half complex plane.

Thus, the problem is now to find a necessary and sufficient condition for
stability of the linear time-invariant system (6) in terms of the generalized
frequency variable ¢(s) := 1/h(s) and the interconnection matrix A. There
are two fundamental results on dynamical system theory, namely a Hurwitz-
type stability test for characteristic polynomials with complex coefficients
in [2] and a generalized Lyapunov inequality in [5, 10], which play key roles
in deriving a systematic way of checking the stability.

The following proposition together with the Hurwitz-type stability test
in [2] leads to a necessary and sufficient condition for the stability of H 4(s)
[10].

Proposition 1 Let a matriz A € R*™" and a strictly proper rational func-

tion h(s) =n(s)/d(s) be given. Define Ha(s) by (6) and p(\,s) by
p(A,s) :=d(s) + An(s) . (7)

Suppose that n(s) and d(s) are coprime. The following statements are equiv-
alent:

(i) Ha(s) is stable.
(it) o(A) CA:={ Xe C | p(\s) is Hurwitz }.

4 Cooperative Stabilization

4.1 Notions of stabilizability

We here define several notions of stabilizability for h(s). We say that h(s)
is solely stabilizable if there exists a constant output feedback gain so that
the closed-loop system is stable, or all the poles are in the open left half
complex plane C_. We say that h(s) is cooperatively stabilizable if there
exists a matrix A € R"*" such that all the poles of H 4(s) are stable.
There are two motivations for considering the stabilization problem as
stated in the introduction section. One is a purely theoretical motivation,



and the other is from the view point of application for synchronization of a
bunch of oscillatory elements.

Let us introduce the following two related notions of stabilizability for
h(s):

e real gain output feedback stabilizability (Real-GOFS): h(s) is
Real-GOF'S if there exists a real scalar gain k£ € R so that p(},s) :=
d(s) + kn(s) = 0 has no roots in the closed right half complex plane.

e complex gain output feedback stabilizability (Complex-GOFS):
h(s) is Complez-GOFS if there exists a complex scalar gain A € C so
that p(A, s) := d(s) + An(s) = 0 has no roots in the closed right half
complex plane.

It is clear that Real-GOFS implies Complez-GOFS, and we have a very
interesting question in engineering: “Is there a gap between Real-GOFS and
Complex-GOFS?” This actually corresponds to our original question from
the view point of control theory, because we can readily see the following
facts:

Proposition 2
e h(s) is solely stabilizable if and only if it is Real-GOFS.

o h(s) is cooperatively stabilizable if and only if it is Complez-GOFS.

4.2 Properties on cooperative stabilization

This subsection is devoted to several properties on the cooperative stabiliza-
tion.

It is obvious that any stable h(s) is solely stabilizable and hence it is
cooperatively stabilizable. Although [3] claimed that any minimum phase
system is cooperatively stabilizable, it is not true as seen in the following
counterexample.

Let us consider a 2nd order system expressed as

1

h(s) = m

Since the characteristic polynomial for output feedback with constant gain
k is s? — s+ k, we can see that the system cannot be stabilized for any choice
of k. In other words, the system is not solely stabilizable (Real-GOFS). Let
us examine the cooperative stabilizability for n = 2. Define

A — |:a]. a2:| c R2><2
az a4



and calculate the characteristic polynomial. Then we have
s(s —1)+a a
as s(s—1)+ayq

= -2+ (a1 4 ag + 1)s* — (a1 + aq)s + ayaq — azas .

1
\W”\ -

Since the coefficient of the s® term is always negative no matter how we
choose A, we can see the system is not cooperatively stabilizable for n = 2.
Indeed, we can show that the system is not cooperatively stabilizable for
any n by applying Proposition 3 given below.

We can see from the stability condition derived in [3, 4, 10] that stabi-
lizability for a given h(s) is equivalent to the non-emptiness of €2, which is
defined as the complement of the image of ¢(s) for Re(s) > 0 in the com-
plex plane. It is also trivial that h(s) is solely stabilizable if and only if the
corresponding €29 includes a segment of the real axis. Note that

e If n is odd, the matrix A has at least one real eigenvalue, and we can
set A so that all the eigenvalues of A are real.

e If n is even, we can choose a matrix A of which all the eigenvalues are
purely complex numbers.

Then, we have the following proposition.

Proposition 3

o When n is odd, h(s) is cooperatively stabilizable if and only if h(s) is
Real-GOFS.

o When n is even, h(s) is cooperatively stabilizable if and only if h(s) is
Complex-GOFS.

The second statement of the above proposition yields a purely mathe-
matical problem defined as follows:

For a given strictly proper transfer function h(s), the problem is to find
a necessary and sufficient condition for the existence of 2 by 2 real constant
matriz A so that the numerator of |Io + h(s)A| is a Hurwitz polynomial.

We will focus on the gap between Real-GOFS and Complez-GOFS in the
subsequent sections.

5 Cooperative Stabilizability for
Low Order Systems

5.1 Stability test

We first show a useful stability condition to check the condition (ii) in Propo-
sition 1. It is based on an interlacing property of even and odd parts of the
characteristic polynomial.



Lemma 1 /5, p. 334]
For a given polynomial of order n with complex coefficients expressed as

n

p(s) =D (o + Bij)s*, (8)

1=0

define two real polynomials ¢r(s) and ¢;(s) as

p(js) := ¢r(s) + ¢1(s)7 - (9)

Then, p(s) is Hurwitz, or all the roots of p(s) = 0 lie in the open left half
complez plane, if and only if the following conditions hold:

(7/) Qp_100p + /anl/gn >0.

(ii) All the roots of ¢r(s) and ¢r(s) are real, simple, and interlacing.

5.2 Stabilizability for 2nd order systems

We will investigate the cooperative stabilizability for strictly proper 2nd
order systems based on Lemma 1. Since any strictly proper 2nd order system

can be represented by
cs+1

= — ]-
ha($) = Fo s (10)
or
hos(s) = —— (11)
22 s2+as+b

with appropriate constant gain, we only treat the above two classes of sys-
tems. The goal of this subsection is to show the equivalence of Real-GOFS
and Complez-GOFS for both hgi(s) and hga(s). In other words, we will
prove for any strictly proper 2nd order system h(s) that it is cooperatively
stabilizable if and only if it is solely stabilizable, or h(s) is not cooperatively
stabilizable if it cannot be stabilized by itself.

Example 1:  Consider a system hsi(s) expressed as (10). Since the cor-
responding p(A, s) is given by

p(A,s)=s+as+b+Aes+1) =5+ (a4 cx+cyj)s + (b +x +yj) ,
we have
or(s) = —s —cys+ (b+1x), ¢1(s)=(a+cax)s+y
We first see that x should be chosen so that

a+cx >0 (12)



holds in order to satisfy the condition (i) in Lemma 1. Since the root of
#1(s) =0 is given by z1 := —y/(a + cz),

y? cy?

+
(a+cx)? a+cx

br(21) = —

+(b+z)>0

should hold for satisfying the interlacing property. It is noted that the above
condition is equivalent to

(b4 z)(a+ cz)? — {1 —c(a +cx)}y? > 0. (13)

We make a detailed investigation by considering two cases depending on
the sign of c.
e Case 1 (c > 0) : Let us set y = 0 and choose any x satisfying x >
max{—a/c, —b}. Then, we see that both the conditions (12) and (13) hold,
and hence h(s) is Real-GOFS, which implies that it is Complex-GOFS.
e Case 2 (¢ <0) : Since 1 — c¢(a + cx) > 1, the inequality condition (13) is
rewritten as

2 _ (b+2)(a+ cx)?
l—cla+cx) =

The condition always holds for y = 0 if it holds for non-zero y. This implies
that hoi(s) is Real-GOFS if it is Complez-GOFS.

Example 2: p(),s) for hoa(s) defined by (11) is expressed as
p(\s)=s+as+b+rs=s"+(a+z+yj)s+b.
Hence, we have
or(s) = —s* —ys+b, ¢r(s) = (a+z)s.

In order to satisfy the condition (i) in Lemma 1, = should be chosen
so that the inequality (12) holds. Since ¢;(s) = 0 has a root at the origin
regardless of the choice of y, ¢r(s) = 0 has to have one positive root and one
negative root. Hence, b > 0 is required. It is clear that any real number x
satisfying (12) stabilizes hoz(s), which implies the equivalence of Real-GOFS
and Complex-GOFS.

5.3 Stabilizability for 3rd order systems

We here investigate the cooperative stabilizability for two classes of 3rd order
systems using Lemma 1. The target classes are

1

h =
31(5) s34+ as?2 4 bs + ¢

: (14)

and
s

h = . 15
32(5) s34+ as?+bs+c (15)

9



We will show that Complex-GOFS is equivalent to Real-GOFS for any
h(s) in the classes, or h(s) is not cooperatively stabilizable if it cannot be
stabilized alone.

Example 3: Noting that p(A, s) for hg;(s) defined by (14) is expressed as
p(\s) =53 +as? +bs+c+A=5+as’ +bs+ (c+z+yj),

we have
or(s) = —as® + (x+c¢), é1(s) = —s3 4 bs+y.

It is obvious from the condition (i) in Lemma 1 that a should be positive.
Moreover, x has to be chosen so that

c+x>0

holds in order for ¢r(s) = 0 to have two real roots. Since ¢;(s) is a mono-
tonically decreasing function with respect to a real number s for b < 0, b
should be positive no matter how we choose y. Hence, a > 0 and b > 0 are
necessary conditions for the cooperative stabilizability.

Let us suppose y = 0 under the assumptions of ¢ > 0 and b > 0. We can
see that ¢;(s) = 0 has three real roots at s = 0 and s = v/b. Therefore,
the interlacing property holds for any z satisfying

T+c<ab.

This implies that the positivities of @ > 0 and b > 0 are the necessary and
sufficient condition for the sole stabilizability, and hence we can conclude
that Real-GOFS and Complez-GOFS are equivalent.

Example 4: Since p(), s) for h3a(s) defined by (15) is expressed as
p(\,s) =5 +as’ + (b+x+yj)s+c,

we have
br(s) = —as®’ —ys+c, ¢i(s)=—s>+(b+x)s.

Similar to Example 3, a should be positive for the condition (i) in
Lemma 1. We can also see that ¢7(s) = 0 has three real roots at s = 0
and s = £v/b + x for any choice of y, if we choose x so that b+ x is posi-
tive. Note that the necessary and sufficient condition for ¢z(s) = 0 having
one positive and one negative roots is ¢ > 0 and y? 4+ 4ac > 0. Under this
condition with y > 0, the interlacing property can be written as

2V +b>y+Vy? +4dac.

Since the right hand side of the inequality is a monotonically increasing
function in the non-negative interval y > 0, the inequality holds for y = 0 if
it is satisfied for a positive number y. Since the similar discussion is valid
for y < 0, we can prove the equivalence of Real-GOFS and Complex-GOFS.

10



6 Cooperative Stabilizability for
Higher Order Systems

6.1 Cooperative stabilizability vs sole stabilizability

We can generalize the results for the two classes of 3rd order systems shown
in the previous section to three classes of higher order systems. The main
theorem of this section is as follows.

Theorem 1 Real-GOFS and Complex-GOFS are equivalent, or h(s) is not
cooperatively stabilizable if it cannot be stabilized alone, for any h(s) which
belongs to one of the following three classes:

Ho(s)é{h(s):%W?ﬁo}a (16)
Hals) 2 (o) = 25 1K £ 0. a0 20} a7
82 12
Ha(s) £ {hs) = ") [0, deh) 03 (18)
where
d(s) =s"+a, 15" 14+ +as+ap. (19)

(Proof) Let us express the numerator of h(s) as
n(s) = as® + s+ (20)
and define dr(s) and dy(s) by
d(js) = dr(s) +di(s)j -
Then, we have

®r(s) = dgr(s)+ (—axs® — Bys + yz) , (21)
Or(s) = di(s) + (—ays® + Bus +yy) (22)

since
An(s) = (aw52 + Bxs +yz) + (ay52 + Bys +vy)J -

We first assume [ = 0 in order to prove the classes for Ho(s) and Ha(s).
It is clear that ®p(s) does not depend on the value of y. Let s1 < s9 <
--+ < s¢ be real roots of ®p(s) = 0, where / = n and ¢ = n — 1 when n is
even and odd, respectively.
e 1 is even: Set z; = s; and 2o = $;41 forany ¢ = 1,2,--- ,n—1, and define
q1 and g2 as q1 = dj(z1) and g2 = dj(z2). Then, the interlacing property
can be expressed as

(I)[(Zl) . (I)[(ZQ) <0.

11



In other words, if h(s) is Complez-GOFS then there exists a A = x, + y.J
which satisfies

O;(21) - @1(z2) = {q — (@2 =y} {a2 — (azd — )y}
= e —{a(az —7) + q@lazi — )}y
+(ozf —Y)(azs —y)ys < 0. (23)

Noting that the condition holds for A = x, — y,J if it is satisfied for A =
T4 + YsJ, We have

01z + {a1(azd =) + qa(azf — P}y + (02f = 7)(az3 —7)yZ < 0. (24)
Adding two inequalities (23) and (24) leads to

g2 + (azf = 7)(az3 —7)y; < 0. (25)
Suppose that ay < 0 holds. Then, we can readily see that A = z, also
satisfies the condition, which implies the equivalence of Real-GOFS and
Complez-GOFS.

e n is odd: The difference we should pay attention to in comparison with
the even case is that the order of ®p(s) is smaller than that of ®;(s) by 1.
Therefore, the number of inequalities for checking the interlacing property
is n — 2, and hence we have to prove that ®;(s) = 0 has a real root smaller
than sj.

Suppose n = 4m + 1. Then the condition can be written as

1 — (asf =)y >0,

since ®;(—o00) < 0 holds. Noting that the same inequality should be satisfied
for —y,, we see ¢; > 0 has to hold, and hence it is satisfied even for y = 0.
Since a similar discussion is valid for n = 4m — 1, the proofs for Hy(s)
and H(s) are now complete.
We focus on the case for Hq(s). Since n(s) = s, we have

Dpr(s) =dr(s) —ys, ®r(s)=di(s)+zs.

Therefore, we see that roots of ®;(s) = 0 are independent of the choice of
y and that ®;(s) is an odd function with a root at the origin s = 0. Noting
this fact, we define z; and 23 as consecutive real positive roots of ®;(s) = 0.
Then, the interlacing property can be expressed as

Pr(z1) - Pr(ze) = {dr(21) — 219«} - {dr(21) — 2194}
= dp(z1)dr(22) — {dr(21)2z2 + dr(22)21 }y«
—i—zleyf < 0.

12
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Figure 3: The inverted pendulum system.

Adding the corresponding inequality for —y, to the above inequality, we
have
dr(z1)dg(z2) + ZlZQyz <0. (26)

We can see from this together with z1z9 > 0 that the interlacing property
holds even for y = 0. It is trivial that the interlacing property for s = 0 holds,
because ®r(s) = dr(s) does not depend on the value of y. Consequently,
the claim is true for odd numbers of n. We can prove the odd case by a
similar treatment done for the cases of Hy(s) and Hy(s). O

6.2 Example: inverted pendulum

For an illustration of our results on tracking performance limitations we
consider the inverted pendulum system shown in Fig. 3, where an inverted
pendulum is mounted on a motor driven-cart. We assume that the pendulum
moves only in the vertical plane, i.e., we consider a two dimensional control
problem. We here assume that M, m, and 2¢ respectively denote the mass
of the cart, the mass of the pendulum, and the length of the pendulum.
We also assume that the friction between the track and the cart is p and
that between the pendulum and the cart is pp,. We consider an uniform
pendulum so that its inertia is given by I = émEQ.

The equations of motion between the control input u, or the force to the
cart, and the position of the cart « and the angle of the pendulum 6 are
represented by

%m@é + Mpé —mglld = —m/lzi ,
(M +m)i + i +mld = u

under the assumption that the angle @ is small. Taking the Laplace trans-
form of the system equations yields

Fml2O(s)s? + ppO(s)s — mglO(s) = —mlX (s)s?,
(M +m)X(s)s? + s X (s)s + mlO(s)s? = U(s) .

Then, the transfer functions from u to 6 (denoted by Py) and from u to z

13



(denoted by P,) are, respectively, expressed as

—mls §m€232 + pps —mgl

Pyls) = D(s) ’ Pe(s) = sD(s) ’

where
D(s) = azs® 4+ ass® + ars + ag

with ag := —pymgl, a1 := —(M+m)mgl+ppp, az == (M-I—m)up—l—%,utmEZ,
and as := $(4M + m)m/?.

Note that the constant term of the denominator of Py(s), or ag, is neg-
ative and cannot be changed by any real constant feedback, since the nu-
merator has a zero at s = 0. Similarly, we see that the term ags in the
denominator of P,(s) is irrelevant to the choice of the real feedback gain.
These investigates show that both Py(s) and P,(s) are not Real-GOFS.

Now apply Theorem 1 to Py(s). Since Py(s) belongs to H;(s) defined
n (18), we see that Py(s) is not Complex-GOFS, or it is not cooperatively
stabilizable. We also see that P,(s) with p, is in Hy(s), and hence it is
not cooperatively stabilizable. This together with the continuity property
with respect to pp yields that Py(s) is not cooperatively stabilizable for
sufficiently small 1, > 0.

7 An Example: Real-GOFS # Complex-GOFS

It seems non-trivial to find a transfer function h(s) with order less than or
equal to three that has no gap between Real-GOFS and Complex-GOFS.
We now show an example of 4th order system which has the gap, i.e., it is
cooperatively stabilizable (Complez- GOFS) but not solely stabilizable (Real-
GOFS).

7.1 System description

The transfer function A(s) of an agent is given by

100(s + 2)(155* — 550009 + 10)
(s = 1)2(s + 1)(s 4 100) ’

h(s) = — (27)

and the corresponding p(J, s) is expressed as

19 1 21
As)=(s—1)%(s+1 100) — A - 100(s + 2) (=52 — )
p(A;5) = (5 = 1)%(s + 1)(s + 100) (s + 235" ~ 500000° * 10’

The even and odd parts of

p(Ajs) = ¢r(s) + jou(s)
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are expressed as follows:

1899999 524999
_ A 3 2 _
dr(s) = s* — 190ys” + (101 + =000 x)s® + 5500 s — 420w +100,
1899999 524999
_ _ 3 2 _ _ _
ér(s) = (1902 — 99)s” + %000 + ( 5500 © 99)s — 420y .

7.2 Stabilizability

We first investigate the stabilizability by real gain feedback (Real-GOFS).
For y =0, ¢r(s) can be written as

1899999
5000

Hence, the condition for ¢x(s) having four real roots is given by

1899999

br(s) = s* + (101 + z)s% — 420z + 100 .

¢r(0) >0 and — (101 + 5000 x) >0
1899999

2 J— J—
and (101 + 2000 x)* —4(—420x + 100) > 0
& x<0.238095- - and x < —0.265789 - - -
and « > —0.194819--- ;2 < —0.348393 - - -
o o< —0.348393-- - . (28)

Since ¢;(s) is represented by

524999
2500

the condition for ¢;(s) having three real roots is given by

b1(s) = s{(190z — 99)s? 4 (—

x_gg)}a

(40 + )

>0 & z>0521052-- 2 < —0.471429-- - .
(1902 — 99) ¢ v

Let s = 0,24,z be the three roots of ¢7(s) = 0. Then, the interlacing
property among real roots of ¢p(s) and ¢;(s) is expressed as

dr(z4) <0 & >6.167---x10°, 0 <2 < 0.5174--- .

This inequality clearly violates inequality (28), which implies that this sys-
tem is not Real-GOFS.

7.3 Stability region

This section is devoted to the derivation of the stability region for coopera-
tive feedback. To this end, we consider the cooperative feedback control law

represented by
u=Fy=—Ay (29)



where u := [uy,--- ,u,]’, y := [y1,- - ,yn]?, and F := —A € R™*", The
stability region ¢, or the allocatable region in the complex plane in which
all the eigenvalues of F' should lie to guarantee the feedback stability, can be
represented by a series of inequalities which are systematically derived by
a Hurwitz-type stability test developed in [10]. The sequence of inequality
conditions A; > 0 (i = 1,2,3,4) any eigenvalue A\ = z + jy of F' should
satisfy are given by
A >0 < x> -99/190

and the shaded regions in Figs. 4 ~ 6. The region which satisfies all four
inequality conditions are illustrated in Fig. 7. We can see that the region
does not include the real axis in the complex plane. Hence, there exists
no real gain which stabilizes h(s). However, the stability region Q9 is non-
empty as seen in Fig. 7, and hence h(s) can be stabilized by choosing F' so
that all the eigenvalues lie in the shaded area of Fig. 7.

Im

Figure 4: Region satisfying Ay > 0

Applying the stability condition provided in [10], the stability region in
which all the eigenvalues of F' should lie is illustrated in the shaded region of
Fig. 7. We can see from the figure that the stability region does not include
the real axis, and hence we can conclude that h(s) is not solely stabilizable.
However, the region is not empty, which implies that h(s) is cooperatively
stabilizable. Actually, any multi-agent system with even number of agents
can be stabilized if we set the matrix F' so that all the eigenvalues lie in the
shaded region.

For instance, if we set

=[] o

or the two eigenvalues of F' are set at (—1 £ j)/2 marked as white circles in
Fig. 7. Then, we can stabilize the total system. Note that the control law
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Figure 5: Region satisfying A3z > 0

Im

0.5

Figure 6: Region satisfying Ay > 0

in this case is given by

up = —(y1—Yy2)/2
{ uz = —(y1+y2)/2 3

which has the following interesting features:

1. The aim of the second agent’s control is to make the average of the
outputs of two agents.

2. The first agent is trying to follow the second agent, or to reduce the
difference of the two agents.

That is, the second agent plays a role of the leader and the first one is just a
follower. It should be emphasized that the different roles of two agents only
achieves the stability requirement, since any symmetric matrix F’ or A has
only real eigenvalues which cannot stabilize the system.

17



Figure 7: Stability region for h(s) given by ( 27)

In order to confirm the cooperative stabilization by the control law (31),
we check the behaviours of the outputs of two agents with an initial condition
given by

2o = [0.3919, 0.3998, 0.2771, —0.9328, —0.8624, —0.3608, 0.0617, 0.3089]”" .

The simulation result depicted in Fig. 8 confirms the achievement of stabi-
lization, although the responses are oscillatory.

15

10

-10

0 0.5 1 1.5 2 2.5 3

Time

Figure 8: Simulation for h(s) given by ( 27)

8 Concluding Remarks

This paper has investigated cooperative stabilization for LTI homogeneous
multi-agent dynamical systems. We first defined the cooperative stabiliza-

18



tion problem by constant output feedback and showed that it can be reduced
to a stabilization problem with complex gain feedback. We then presented
several classes of systems in which the system is cooperatively stabilizable
if and only if it can be stabilized alone. We have also shown a multi-agent
system with even number of agents whose dynamics is represented by a 4th
order transfer function, which can be stabilized by cooperation even if any
single agent alone is not stabilizable.
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Education, Science, Sport, and Culture, Japan under Grant 19656104 and
21246067.
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