
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

On Shortest Disjoint Paths in Planar Graphs

Yusuke KOBAYASHI and Christian SOMMER

(Communicated by Kazuo MUROTA)

METR 2009–38 September 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

On Shortest Disjoint Paths in Planar Graphs

Yusuke Kobayashi∗ Christian Sommer†

Abstract

For a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}, the k disjoint paths
problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti for
each i = 1, . . . , k. In the corresponding optimization problem, the shortest disjoint paths
problem, the vertex-disjoint paths Pi have to be chosen such that a given objective function
is minimized. We consider two different objectives, namely minimizing the total path length
(minimum sum, or short: min-sum), and minimizing the length of the longest path (min-
max), for k = 2, 3.

min-sum: We extend recent results by Colin de Verdière and Schrijver to prove that, for
a planar graph and for terminals adjacent to at most two faces, the Min-Sum 2 Disjoint
Paths Problem can be solved in polynomial time. We also prove that, for six terminals
adjacent to one face in any order, the Min-Sum 3 Disjoint Paths Problem can be solved in
polynomial time.

min-max: The Min-Max 2 Disjoint Paths Problem is known to be NP-hard for general
graphs. We present an algorithm that solves the problem for graphs with tree-width 2 in
polynomial time. We thus close the gap between easy and hard instances, since the problem
is weakly NP-hard for graphs with tree-width at least 3.

1 Introduction

The vertex-disjoint paths problem is one of the classic problems in algorithmic graph theory and
combinatorial optimization, and has many applications, for example in transportation networks,
VLSI-design [7, 16], or routing in networks [14, 22]. The input of the vertex-disjoint paths
problem is a graph G = (V,E) and k pairs of vertices (s1, t1), . . . , (sk, tk), for which the algorithm
has to find k pairwise vertex-disjoint paths connecting si and ti, if they exist. Paths are called
vertex-disjoint if they have no vertices in common (except, possibly, at the end points).

In the optimization version of the problem, we are interested in short vertex-disjoint paths.
We may want to minimize the total length (minimum sum) or the length of the longest path
(min-max objective function). A more formal description of the problem is as follows.

Min-Sum k Disjoint Paths Problem (Min-Max k Disjoint Paths Problem)
Input: A graph G = (V,E), k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk) in G (which are

sometimes called terminals), and a length function l : E → R+.
Output : Vertex-disjoint paths P1, . . . , Pk in G such that Pi is from si to ti for i = 1, 2, . . . , k,

minimizing
∑k

i=1 l(Pi) (or minimizing maxi l(Pi)), where l(Pi) =
∑

e∈E(Pi)
l(e).

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology, Univer-
sity of Tokyo, Tokyo 113-8656, Japan E-mail: Yusuke Kobayashi@mist.i.u-tokyo.ac.jp Supported by JSPS
Research Fellowships for Young Scientists. This work was partially supported by the Global COE Program “The
research and training center for new development in mathematics”, MEXT, Japan.

†Department of Computer Science, Graduate School of Information Science and Technology, University of
Tokyo, and National Institute of Informatics, Tokyo, Japan E-mail: sommer@nii.ac.jp

1

1.1 Related work

If k is part of the input, the vertex-disjoint paths problem is one of Karp’s NP-hard prob-
lems [11], and it remains NP-hard even if G is constrained to be planar [13]. If k is a fixed
number, k pairwise vertex-disjoint paths can be found in polynomial time in directed planar
graphs [19] and in directed acyclic graphs [6], whereas the problem in general directed graphs
is NP-hard even if k = 2 [6]. It is known that the disjoint paths problem in undirected graphs
is solvable in polynomial time when k = 2 [20, 21, 24]. Perhaps the biggest achievement in
this area is Robertson and Seymour’s polynomial-time algorithm for the problem in undirected
graphs when k is fixed [17].

The optimization problem is considerably harder. The problem of finding disjoint paths
minimizing the total length is wide open and only a few cases are known to be solvable in
polynomial time (see also Table 1). First, finding k disjoint s-t paths (i.e., s1 = · · · = sk = s
and t1 = · · · = tk = t) with minimum total length (min-sum) is still possible in polynomial
time, since it reduces to finding the standard minimum cost flow [23]. The min-sum problem
is solvable in linear time for graphs with bounded tree-width [18]. For the following two cases,
the min-sum problem can also be reduced to the minimum cost flow problem and can thus be
solved in polynomial time:

• All sources (or sinks) coincide, that is, s1 = · · · = sk (or t1 = · · · = tk, respectively).

• The graph is planar, all terminals are incident with a common face, and their cyclic order
is s1, . . . , sk, tk, . . . , t1 (called well-ordered).

Another special case of the min-sum problem has recently been solved by Colin de Verdière and
Schrijver [3]. They showed the following:

Theorem 1 (Colin de Verdière and Schrijver [3]). If a given directed or undirected graph G is
planar, all sources are incident to one face S, and all sinks are incident to another face T ̸= S,
then we can find k vertex-disjoint paths in G with minimum total length in O(kn log n) time.

If the length of the longest path is to be minimized (min-max), the problem seems to be
harder than the min-sum problem. The problem of finding two s-t paths minimizing the length
of the longer path is NP-hard for an acyclic directed graph [10], but 2-approximable [12] using
the min-sum version. Moreover, the problem is strongly NP-hard for general directed graphs
when s1, s2, t1, and t2 are distinct [12]. For an overview, see Table 2.

Conditions Complexity
k = 2 directed NP-hard

directed, planar, one face OPEN
undirected OPEN
undirected, planar, two faces P (Theorem 2)

k = 3 undirected, planar, one face P (Theorem 11)
k: fixed undirected OPEN
k: general undirected NP-hard

s1 = · · · = sk and/or t1 = · · · = tk P (Min-cost flow)
planar, one face, well-ordered P (Min-cost flow)
planar, S ̸= T faces P [3]
bounded tree-width O(n) [18]

Table 1: Results for the Min-Sum Disjoint Paths Problem.

2

Conditions Complexity
k = 2 directed, acyclic, s1 = s2, t1 = t2 NP-hard [10]

pseudo-polynomial [12]
directed, s1 = s2, t1 = t2 2-approx. [12]
directed strongly NP-hard [12]
undirected, tree-width ≥ 3, planar NP-hard ([26] and Theorem 14)
undirected, tree-width ≤ 2 P (Theorem 18)

Table 2: Results for the Min-Max Disjoint Paths Problem.

Yet another variant of the objective function for the problem of finding two disjoint paths
for one pair of terminals is the following: Before summing up the path lengths, the length of the
longer path is multiplied by a factor α ∈ (0, 1), which parameterizes the cost function. α = 1
would yield the min-sum variant and α = 0 would yield the so-called ‘min-min’ variant, in
which the length of the shorter path is to be minimized, which is NP-hard [25]. For α ∈ (0, 1)
there is an approximation algorithm with ratio 1+α

2α , which, for directed graphs, is claimed to be
optimal unless the polynomial hierarchy collapses completely [27]. If the length of the shorter
path is multiplied by α ∈ (0, 1), there is an approximation algorithm with ratio 2

1+α , which is
claimed to be tight as well [26].

1.2 Contribution

We extend the min-sum results of Colin de Verdière and Schrijver [3] for undirected graphs and
k = 2 as follows: the two disjoint faces F1, F2 may be ‘mixed’ such that

• s1, s2, t1 are incident to F1 and t2 is incident to F2 (Theorem 3),

• s1, t1 are incident to F1 and s2, t2 are incident to F2 (Theorem 6).

Our algorithms consist of non-trivial reductions to Theorem 1. By combining Theorem 1 with
our new results, flow reductions, and trivially infeasible inputs, we obtain the following theorem.

Theorem 2. Let G = (V,E) be an undirected planar graph, and let F1 and F2 be its faces. If
each terminal is on one of the boundaries of F1 and F2, then the Min-Sum 2 Disjoint Paths
Problem in G is solvable in polynomial time.

We also give a polynomial-time algorithm for the Min-Sum Disjoint Paths Problem when
k = 3 and all terminals are incident to one face (Theorem 11). Our contribution is to give an
algorithm for the case when the terminals are not well-ordered, by a non-trivial reduction to
Theorem 1. For a summary, see Table 3.

one face two faces
k = 2 flow Theorems 1, 3, 6
k = 3 flow, Theorem 11 OPEN

Table 3: min-sum results in planar undirected graphs.

For the Min-Max 2 Disjoint Paths Problem, we draw the line between tractable and hard
problems: We prove weak NP-hardness of the Min-Max 2 Disjoint Paths Problem for planar
graphs with tree-width 3 using a reduction from the Partition problem (Theorem 14). We

3

later learned that the reduction was used independently in almost the same manner in [26]
already, without an explicit link to the tree-width and the min-max variant. For graphs with
tree-width 2 (including series-parallel graphs and outer-planar graphs), we provide a polynomial-
time algorithm (Theorem 18). The same algorithm also works for the Min-Min 2 Disjoint Paths
Problem and the α-variants from [26, 27].

For both the min-sum and the min-max versions and for the variants with cost functions
parameterized by α as defined in [26, 27], we give a pseudo-polynomial-time algorithm for
graphs with bounded tree-width (Theorem 19). The algorithm runs in polynomial time for the
min-sum objective function [18].

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and let n = |V |
denote the number of vertices. Since we consider vertex-disjoint paths, in what follows, we may
assume that the graph has no multiple edges and no self-loops. An edge connecting u, v ∈ V is
denoted by uv, whereas (u, v) represents the arc from u to v in a directed graph. For a subgraph
H of G, the vertex set and the edge set of H are denoted by V (H) and E(H), respectively.
Let δ(v) denote the set of edges incident to v ∈ V . For U ⊆ V , let G[U] be the subgraph of
G = (V,E) induced by U , that is, its vertex set is U and its edge set consists of all edges in
E with both ends in U . A graph G is planar if it can be embedded in a plane Σ such that no
edges intersect, except at their end points. To simplify notation, we do not distinguish between
a vertex of G and the point of Σ used in the embedding to represent the vertex, and we do
not distinguish between an edge and the curve on Σ representing it. A region is a subset of Σ,
and for a region R, let G[[R]] denote the subgraph of G consisting of the vertices and the edges
in R. For a face F of a planar graph, let ∂F denote the boundary of F . A planar graph is
outer-planar if it allows for a planar embedding such that all its vertices are on the outer face.
A path P , which is denoted by P = (v1, v2, . . . , vl), is a subgraph consisting of vertices v1, . . . , vl

and edges e1 = v1v2, . . . , el−1 = vl−1vl. When v1 = vl, it is called a cycle. A path (or a cycle) is
simple if vi ̸= vj for distinct i, j (except for v1 = vl). For a simple path P = (v1, v2, . . . , vl), let
P [vi,vj] denote the path (vi, vi+1, . . . , vj), and it is called a subpath of P . For a length function
l : E → R+, the length of a path P is denoted by l(P), and for a pair of vertices u, v ∈ V , let
dG(u, v) denote the length of a shortest path connecting u and v in G.

Suppose that two simple paths P1 = (v1
1, v

1
2, . . . , v

1
l1
) and P2 = (v2

1, v
2
2, . . . , v

2
l2
) in a planar

graph have a common vertex v1
i = v2

j = v. We say that P1 and P2 cross at v if vv1
i−1, vv2

j−1, vv1
i+1,

and v, v2
j+1 are incident with v cyclically in this order. Similarly, suppose that two paths P1

and P2 have a common subpath P in a planar graph. Assume that if we contract all edges in
P , then the two paths correspoding to P1 and P2 cross at the vertex corresponding to P . In
this case, we say that P1 and P2 cross at P . We say that a path or a cycle crosses with itself if
it has two crossing subpaths.

For a simple cycle C in a planar graph, the inside of C is the bounded closed region whose
boundary is C. We define the inside of C when C is not simple but does not cross with itself
(see Fig. 1).

The tree-width of a graph was introduced by Halin [8], but it went unnoticed until it was re-
discovered by Robertson and Seymour [15] and, independently, by Arnborg and Proskurowski [1].
The tree-width of a graph is defined as follows.

Definition 1. Let G be a graph, T a tree and let V = {Vt ⊆ V (G) | t ∈ V (T)} be a family of
vertex sets of G indexed by the vertices t of T . The pair (T,V) is called a tree-decomposition of
G if it satisfies the following three conditions:

4

C

Figure 1: Inside of a cycle.

• V (G) =
∪

t∈T Vt

• for every edge e ∈ G there exists a t ∈ T such that both ends of e lie in Vt

• If t, t′, t′′ ∈ V (T) and t′ lies on the path of T between t and t′′, then Vt ∩ Vt′′ ⊆ Vt′ .

The width of (T,V) is the number max{|Vt| − 1 | t ∈ T} and the tree-width tw(G) of G is the
minimum width of any tree-decomposition of G.

The tree-width is a good measure of the algorithmic tractability of graphs. It is known that
a number of hard problems on graphs, such as “Hamiltonian cycle” and “chromatic number”,
can be solved efficiently when the given graph has small tree-width [1]. A graph has tree-width 1
if and only if it is a forest, and families of graphs with tree-width at most 2 include outer-planar
graphs and series-parallel graphs.

3 Min-Sum Objective Function

In this section, we deal with the Min-Sum k Disjoint Paths Problem for k = 2, 3. To simplify
the arguments, we use a perturbation technique such that all shortest paths are unique (see [5]).
For E = {e1, e2, . . . , em} and l : E → R+, we use a new length function l′ : E → R+ defined
by l′(ei) = l(ei) + εi for each i, where ε is an infinitely small positive number. Then, each
path has a different length. In particular, the Min-Sum k Disjoint Paths Problem has a unique
optimal solution if it has a feasible solution. In what follows, in this section, we simply denote
the perturbed length function by l.

3.1 Min-Sum 2 Disjoint Paths Problem

In this section, we prove Theorem 2, which we restate here.

Theorem. Let G = (V,E) be an undirected planar graph, and let F1 and F2 be its faces. If
every terminal is on ∂F1 ∪ ∂F2, then the Min-Sum 2 Disjoint Paths Problem in G is solvable
in polynomial time.

Proof. The four terminals s1, s2, t1, and t2 may lie on two faces as follows:

• s1, s2, t1, and t2 are incident to F1 (min-cost flow [23] or trivially infeasible),

• s1, s2 are incident to F1 and t1, t2 are incident to F2 (Theorem 1 due to [3]),

• s1, s2, t1 are incident to F1 and t2 is incident to F2 (Theorem 3), or

• s1, t1 are incident to F1 and s2, t2 are incident to F2 (Theorem 6).

5

s2

s1 t1

t2

P

v

u
P1

P2

F1

Figure 2: Definitions of P , u, and v.

The remaining cases (e.g. the case with s2 alone on one face) are symmetric for undirected
graphs.

Theorem 3. Let G = (V,E) be an undirected planar graph, and F1 and F2 be its faces. If
three terminals are on ∂F1 and the remaining terminal is on ∂F2, then the Min-Sum 2 Disjoint
Paths Problem in G is solvable in O(n3 log n) time.

Proof. Let s1, s2, t1 ∈ ∂F1 and t2 ∈ ∂F2 be terminals. Let P be the shortest path connecting s1

and t2. The basic idea of the algorithm is to, for all pairs of vertices u, v on P , transform the
original problem to an instance of the problem that can be solved using the algorithm by Colin
de Verdière and Schrijver. The transformation is described in Lemma 5. In Lemma 4 we prove
that the solution remains optimal.

Lemma 4. Suppose that a pair of paths (P1, P2) is the unique optimal solution of the Min-Sum
2 Disjoint Paths Problem. Let u be the vertex in V (P1)∩V (P) closest to t2 in the ordering along
P , and let v be the vertex in V (P2) ∩ V (P [u,t2]) closest to u in the ordering along P (Fig. 2).
Then, P [v,t2] is a subpath of P2.

Proof. Suppose that P [v,t2] is not a subpath of P2, and define P ′
2 = P

[s2,v]
2 ∪P [v,t2]. By definition

of u and v, P1 and P ′
2 are disjoint. Since P is the shortest path, every subpath P [a,b] is the

shortest path between a and b, thus, l(P [v,t2]) < l(P [v,t2]
2), which implies that l(P ′

2) < l(P2).
Here we use the fact that the shortest path is unique. Then, (P1, P

′
2) is a shorter solution, which

contradicts the optimality of (P1, P2).

Lemma 5. For distinct vertices u, v on P such that u is closer to s1 than v, in O(n log n) time,
we can either find two simple disjoint paths P1 and P2 minimizing the total length l(P1) + l(P2)
such that

1. Pi connects si and ti for i = 1, 2,

2. u ∈ V (P1) and V (P1) ∩ V (P) ⊆ V (P [s1,u]), and

3. P2 ∩ P [u,t2] = P [v,t2],

or conclude that such P1 and P2 do not exist.

Proof. Delete all vertices in V (P [u,t2]) \ {u, v, t2}. This yields a graph G′. Note that u and v
are on the boundary of the same face F ′ in G′, because all internal vertices of P [u,v] have been
removed.

We find three paths Q1, Q2, and Q3 in G′ minimizing the total length such that

6

u

u1 u2

v1

v2

vp
vpv1

v2

w2

w1 wp

Figure 3: Construction of D2.

• Q1 connects s1 and u, Q2 connects t1 and u, Q3 connects s2 and v,

• V (Q2) ∩ V (Q3) = V (Q3) ∩ V (Q1) = ∅, and V (Q1) ∩ V (Q2) = {u}.

In order to apply Theorem 1, we divide u into two distinct vertices and construct a digraph
as follows. Let v1, v2, . . . , vp be the vertices in G′ adjacent to u such that v1, vp ∈ ∂F ′ and
uv1, uv2, . . . , uvp are incident to u in this order. Let D1 = (V1, E1) be the digraph obtained
from G−u by replacing each edge with two parallel arcs of opposite direction. Define a digraph
D2 = (V2, E2) (see Fig. 3) by

V2 = V1 ∪ {w1, w2, . . . , wp, u1, u2},

E2 = E1 ∪
p∪

i=1

{(vi, wi)} ∪
p−1∪
i=1

{(wi, wi+1), (wi+1, wi)} ∪ {(w1, u1), (wp, u2)}.

Define a new length function l′ : E2 → R+ as

l′(e) =


l(xy) if e = (x, y) or (y, x) for xy ∈ E,
l(viu) if e = (vi, wi),
0 otherwise.

By finding three disjoint paths Q′
1, Q

′
2, Q

′
3 with minimum total length such that Q′

1 is from s1 to
u1 (or u2, respectively), Q′

2 is from t1 to u2 (or u1, respectively), and Q′
3 is from s2 to v, we can

obtain the desired paths Q1, Q2, and Q3. This can be done in O(n log n) time by Theorem 1.
Then, P1 = Q1 ∪ Q2 and P2 = Q3 ∪ P [v,t2] are the desired disjoint paths in G.

By Lemma 4, we can find the optimal solution of the Min-Sum 2 Disjoint Paths Problem by
executing the procedure described in Lemma 5 for each pair of vertices u and v on the shortest
path between s1 and t2. This concludes the proof of Theorem 3.

Theorem 6. Let G = (V,E) be an undirected planar graph, and F1 and F2 be its faces. If
s1, t1 ∈ ∂F1 and s2, t2 ∈ ∂F2 are terminals, then the Min-Sum 2 Disjoint Paths Problem in G
is solvable in O(n3 log n) time.

Proof. Let C1
i and C2

i be components of ∂Fi − {si, ti} for i = 1, 2. We say that a path P

connecting s1 and t1 (or s2 and t2) is in the Cj
1 side of F2 (or in the Cj

2 side of F1, respectively)
if F1 and F2 are not on the inside of P ∪ Cj

1 (or P ∪ Cj
2 , respectively) for j = 1, 2 (Fig. 4).

The following lemma directly implies Theorem 6.

Lemma 7. For j1, j2 ∈ {1, 2}, there is an O(n3 log n) time algorithm to find two paths P1 and
P2 such that

7

s2

s1 t1

t2

F1

C1
1

C1
2

C1
1 side of F2

F2

C1
2 side of F2

Figure 4: C1
1 side and C1

2 side.

(1) Pi connects si and ti,

(2) P1 is on the Cj1
1 side of F2, P2 is on the Cj2

2 side of F1, and

(3) if the optimal solution of the original Min-Sum 2 Disjoint Paths Problem satisyfies (1)
and (2), (P1, P2) is the optimal solution.

In what follows, we show the lemma. By symmetry, it suffices to consider the case j1 = j2 =
1.

We take the shortest path connecting si and ti that is on the C1
i side for i = 1, 2. Note that

Ji is not necessarily simple, but Ji does not cross with itself (see Fig. 5). The inside of C1
i ∪ Ji

is denoted by Ri. A precise description of the algorithm of this part is as follows.

Lemma 8. We can find the shortest path Ji among all paths connecting si and ti that are on
the C1

i side in O(n log n) time.

Proof. We only deal with the case of i = 1. The case for i = 2 is analog. We find the shortest
paths Js from s1 to ∂F2 and Jt from t1 to ∂F2. Then, Js and Jt do not cross. Let vs and vt be
end vertices of Js and Jt in ∂F2, respectively. We choose a path J ⊆ ∂F2 connecting vs and vt

such that Js ∪ J ∪ Jt is on the C1
1 side of F2.

Then, the desired J1 is contained in the inside of C1
1 ∪ Js ∪ J ∪ Jt. By finding the shortest

path from s1 to t1 in the inside of C1
1 ∪ Js ∪ J ∪ Jt, we can find the desired J1. This can be

done in O(n log n) time by Dijkstra’s algorithm [4].

s2

s1

t2

t1

v

R1

J1

Figure 5: Case when J1 is not simple.

Then, one can see that R1 ∩ R2 ⊆ J1 ∩ J2. In other words, J1 and J2 do not cross.

8

s2

s1 t1

t2

J2

F1

C1
1

C2
1

J1

R1

F2

R2

s2

s1 t1

t2

J2

F1

C1
1

C2
1

J1

R1

F2

R2

Figure 6: Relation betwen F ′
1 and F ′

2.

Lemma 9. Suppose that J1, J2, R1, R2 are defined as above. Consider the problem of finding the
pair of paths minimizing the total length among the pairs of disjoint paths (P1, P2) satisfying (1)
and (2) of Lemma 7. If this problem has a feasible solution, then the optimal solution (P1, P2)
satisfies that Pi ⊆ Ri for i = 1, 2.

Proof. Suppose that (P1, P2) is the optimal solution of the problem, and the interior of a path
P

[u,v]
1 is in Σ − R1 for some u, v ∈ V (P1) ∩ V (J1).

Then, replace P1 by a new path P ′
1 defined by P ′

1 = (P1 \ P
[u,v]
1) ∪ J

[u,v]
1 . Since J1 is the

shortest path, we have l(J [u,v]
1) < l(P [u,v]

1), and hence l(P ′
1) < l(P1). P ′

1 and P2 are mutually
disjoint, because P1 and P2 are mutually disjoint. This contradicts the optimality of (P1, P2).
Hence, we have P1 ⊆ R1, and P2 ⊆ R2 is shown in the same way.

By this lemma, it suffices to find the disjoint paths in G[[R1 ∪ R2]]. We distinguish the
following two cases. In the first case, we consider simple paths Ji. In the second case, we
modify Ji such that we get a simple path, for which the procedure of the first case can be
applied.

Case 1: First, we consider the case when both J1 and J2 are simple. Define G′ = G[[R1∪R2]],
and let F ′

1 and F ′
2 be its faces containing F1 and F2, respectively. Then we can consider the

following two cases: F ′
1 = F ′

2 or F ′
1 ̸= F ′

2 (see Fig. 6). Since the case F ′
1 = F ′

2 is solvable by a
min-cost flow algorithm in G′, we may assume that F ′

1 ̸= F ′
2.

Then, there exist vertices v1 ∈ ∂F ′
2 ∩ J1 and v2 ∈ ∂F ′

1 ∩ J2. We take a sequence of vertices
v0
1, v

1
1, . . . , v

k1
1 in R1 such that v0

1 = v1, vk1
1 ∈ C1

1 (if C1
1 consists of one edge, we add a vertex

in the middle of the edge, and the added vertex is vk1
1) and vl

1 is on the boundary of the face
of G′ − ((δ(v0

1) ∪ · · · ∪ δ(vl−1
1)) − R2) containing F ′

2. Note that we can use G′ − {v0
1, . . . , v

l−1
1 }

instead of G′ − ((δ(v0
1) ∪ · · · ∪ δ(vl−1

1)) − R2) if v0
1, v

1
1, . . . , v

l−1
1 ̸∈ J2. We take v0

2, v
1
2, . . . , v

k2
2 in

the same way. We also note that such sequences exist, because J1 and J2 are simple.

Lemma 10. Given 0 ≤ l1 ≤ k1 and 0 ≤ l2 ≤ k2, we can find in O(n log n) time disjoint paths
P1 and P2 of minimum total length such that Pi passes through vli

i but not through v0
i , . . . , v

li−1
i

for each i.

Proof. We find four paths Ps1 , Pt1 , Ps2 , and Pt2 in Gl1,l2 = G′− ((δ(v0
1)∪ · · · ∪ δ(vl1−1

1))−R2)−
((δ(v0

2)∪ · · · ∪ δ(vl2−1
2))−R1) minimizing the total length such that Psi connects si and vli

i , Pti

connects ti and vli
i , and they are mutually vertex-disjoint except for V (Psi) ∩ V (Pti) = {vli

i }.

9

In Gl1,l2 , the vertices vl1
1 , s2, t2 are on the boundary of a common face, and the vertices

vl2
2 , s1, t1 are on the boundary of another face. Thus, using the same argument as in the proof

of Lemma 5, we can find in O(n log n) time four such paths by Theorem 1 with k = 4.
Then, P1 = Ps1 ∪ Pt1 and P2 = Ps2 ∪ Pt2 are the desired paths.

We can easily see that if a path Pi between si and ti is contained in Ri, then there exists
an integer 0 ≤ l ≤ ki such that Pi passes through vl

i but not through v0
i , . . . , v

l−1
i , because Pi

passes through at least one of v0
i , . . . , v

ki
i . Therefore, in order to solve the problem in Lemma 7,

it suffices to execute the procedure described in Lemma 10 for every pair (l1, l2). Hence, it can
be done in O(n3 log n) time.

Case 2: Next we consider the case when Ji is not simple. Assume that J1 passes through a
vertex v twice, and J

[s1,v]
1 ∪ J

[v,t1]
1 is a simple path which is shorter than J1 and in the C1

2 side
of F2 (see Fig. 5).

By Lemma 9, when we find the shortest disjoint paths (P1, P2) satisfying (1) and (2) in
Lemma 7, we may assume that P2 and J

[s1,v]
1 ∪ J

[v,t1]
1 intersect only at v, or do not intersect.

For a pair of paths (P1, P2) satisfying (1) and (2), if P2∩ (J [s1,v]
1 ∪J

[v,t1]
1) = ∅, (P1, P2) is not the

optimal solution of the original Min-Sum 2 Disjoint Paths Problem, because (J [s1,v]
1 ∪J

[v,t1]
1 , P2)

is shorter than (P1, P2).
Hence, we only consider the case when P2 passes through v. In this case, we find the shortest

path J ′
1 from s1 to t1 in G[[R1]] − v, and replace J1 with J ′

1. Then we can execute the same
procedure as for Case 1.

This completes the proof of Lemma 7, and Theorem 6 follows.

3.2 Min-Sum 3 Disjoint Paths Problem

Theorem 11. Let G = (V,E) be an undirected planar graph and let F be its face. If all six
terminals are on ∂F , then the Min-Sum 3 Disjoint Paths Problem in G is solvable in O(n4 log n)
time.

Proof. We assume that F is the outer unbounded face. By exchanging the labels of the vertices,
it suffices to consider the case when s1, t1, s2, t2, s3, and t3 are clockwise in this order along ∂F .
Note that, in the other cases, we can solve the problem by a minimum cost flow algorithm [23],
or we can conclude immediately that there is no feasible solution.

Let ∂Fi be the component of ∂F −{si, ti} that does not contain any terminals for i = 1, 2, 3.
For each i, let Ji be the shortest path connecting si and ti in G, and the inside of Ji ∪ ∂Fi is
denoted by Ri. Then, one can see that Ri ∩ Rj ⊆ Ji ∩ Jj for distinct i and j. In other words,
Ji and Jj do not cross (see Fig. 7).

In the same way as Lemma 9, we have the following lemma.

Lemma 12. If there exists a feasible solution of the Min-Sum 3 Disjoint Paths Problem, the
optimal solution (P1, P2, P3) satisfies that Pi ⊆ Ri for i = 1, 2, 3.

By Lemma 12, it suffices to deal with the graph G[[R1 ∪R2 ∪R3]]. For convenience, we add
to G[[R1 ∪ R2 ∪ R3]] three edges t1s2, t2s3, t3s1 such that all terminals are on the boundary of
the outer unbounded face. Let G′ denote the obtained planar graph.

Then, there exists a bounded face (or a single vertex) Q of G′ intersecting with J1, J2, and
J3. Take vi ∈ V (Ji) ∩ Q for i = 1, 2, 3 (see Fig. 7).

In a similar way as Case 1 in the proof of Lemma 7, we find a sequence of vertices
v0
1, v

1
1, . . . , v

k1
1 in R1 such that v0

1 = v1, vk1
1 ∈ ∂F1 and vl

1 is on the boundary of the face of

10

s2

s1

t2

t1

s3

t3

J1

J2J3

R1

R2

R3

v1

v2v3 s2

s1

t2

t1

s3

t3

J1

J2J3

R1

R2

R3

v1

v2
v3

Figure 7: Definitions of Ji and Ri.

G′−El
1 containing Q, where El

1 = (δ(v0
1)∪· · ·∪δ(vl−1

1))− (R2∪R3). We also find v0
i , v

1
i , . . . , v

ki
i

and define El
i for i = 2, 3 in the same way.

Next we show the following lemma.

Lemma 13. For integers l1, l2, l3 with 0 ≤ li ≤ ki, we can find in O(n log n) time disjoint paths
P1, P2, P3 of minimum total length such that Pi passes through vli

i but not through v0
i , . . . , v

li−1
i

for each i.

Proof. We find six paths Ps1 , Pt1 , Ps2 , Pt2 , Ps3 , and Pt3 in G′ −El1
1 −El2

2 −El3
3 minimizing the

total length such that Psi connects si and vli
i , Pti connects ti and vli

i , and they are mutually
vertex disjoint except for V (Psi) ∩ V (Pti) = {vli

i }. Since vl1
1 , vl2

2 , and vl3
3 are on the boundary

of a same face of G′ − El1
1 − El2

2 − El3
3 , using the same argument as the proof of Lemma 5, we

can find in O(n log n) time six such paths by Theorem 1 with k = 6.
Then, P1, P2, P3 defined by Pi = Psi ∪ Pti are the desired paths.

If a path Pi between si and ti is contained in Ri, then there exists an integer 0 ≤ l ≤ ki

such that Pi passes through vl
i but not through v0

i , . . . , v
l−1
i . Thus, in order to solve the original

problem, it suffices to execute the procedure described in Lemma 13 for every triple (l1, l2, l3),
which can be done in O(n4 log n) time.

4 Min-Max Objective Function

We reprove NP-hardness of the Min-Max 2 Disjoint Paths Problem for planar graphs with tree-
width 3, using a reduction from the Partition problem. We later learned that the reduction
was used independently in almost the same manner in [26] already, without an explicit link to
the tree-width and the min-max variant. For graphs with tree-width 2 (including series-parallel
graphs and outer-planar graphs), we provide a polynomial-time algorithmfor the Min-Max 2
Disjoint Paths Problem.

4.1 Hardness

In the Partition problem, we are given m items with weights w1, w2 . . . wm ∈ Z+, which are
to be split into two subsets of the same weight. The Partition problem is also one of Karp’s
NP-hard problems [11]. Note that the problem is weakly NP-hard, that is, it is NP-hard when
the input size of the problem is O(m + log(maxi wi + 1)). We also note that, using dynamic
programming, the problem is solvable in time polynomial in m and maxi wi + 1.

11

s t

w1

0 0

0

00

w2

0

0
0

00

0
0

0

0

0 0

0wm

0

0

u1,s u1,t u2,s u2,t u3,s um,tum,sum−1,t

v1,s v1,t v2,s v2,t v3,s vm,tvm,svm−1,t

Figure 8: Graph G with tree-width 3.

Observe that the hard graphs for the min-max objective function are trivial for the min-sum
objective function.

Theorem 14 ([26]). The Min-Max 2 Disjoint Paths Problem is (weakly) NP-hard for planar
graphs with tree-width at least 3.

Proof. The polynomial-time reduction from the NP-hard problem Partition(w0, w1, . . . , wm−1)
to a graph is shown in Fig. 8.

For each weight wi we add four vertices (two on each side, source and target) and six edges;
the graph G = (V,E) is defined by

V := {s, t} ∪
m∪

i=1

Vi, E := {su1,s, sv1,s, um,sum,t, vm,svm,t, um,tt, vm,tt} ∪
m−1∪
i=1

Ei,

where

Vi = {ui,s, ui,t, vi,s, vi,t}, Ei = {ui,sui,t, ui,tui+1,s, ui,tvi+1,s, vi,svi,t, vi,tvi+1,s, vi,tui+1,s}.

All edges have weight 0, except for the edges (ui,s, ui,t), which have weight wi. This graph
has tree-width 3 as we can put two consecutive vertices from one side and their counterparts
on the other side into a subset, which yields a path as tree-decomposition. Note that the graph
can be embedded in a plane without edge intersections.

Two optimal paths with respect to the min-max objective function solve the partition prob-
lem as follows: if the edge ui,sui,t is on path P1, include wi in set S1, otherwise include wi in
set S2. In each ‘step’ i, only one path may use the 0-edge and the other path is required to
take the wi-edge. The min-max objective function is optimized if and only if the weights are
partitioned evenly and both paths have the same length.

Corollary 15. The Min-Max 2 Disjoint Paths Problem is (weakly) NP-hard for planar graphs.

4.2 Polynomial-time algorithm for tree-width-2 graphs

We first give a polynomial-time algorithm for outer-planar graphs. Recall that a graph is outer-
planar if it can be drawn such that every vertex is incident to the outer face and no edges cross.
Consider the cyclic order of terminals in clock-wise direction of an outer-planar graph. For
k ≥ 2 terminal pairs, if there is a feasible solution – that is, there are k disjoint paths – it may
never happen that only one terminal of a pair (si, ti) lies between the terminals of another pair
(sj , tj), since their paths Pi and Pj would intersect. Without loss of generality, we may assume
that the cyclic order of the two terminal pairs is (s1, t1, t2, s2). Note that a minimum cost flow
algorithm can not optimize the min-max objective function. We name the sets of nodes between
the terminals by North, South, East, and West as follows: let W denote the nodes between s1

and s2, let N denote the nodes between s1 and t1, let E denote the nodes between t1 and t2,

12

and let S denote the nodes between s2 and t2. Nodes and edges from and to N may not be
used by P2 and, analogously, nodes in S are prohibited for P2. Of course, every edge may be
used by at most one path. Observe that if an edge between a node from W and a node from E
is part of the optimal solution, then all nodes and edges ‘below’ this edge may only be part of
P2 and all edges ‘above’ may only be part of P1. We split the problem of finding disjoint paths
into a polynomial number of two independent shortest path problems. Every pair of nodes from
({s2} ∪ W) × ({t2} ∪ E) defines a partition, which defines two vertex-induced subgraphs. The
algorithm solves two independent shortest path problems, one for each subgraph.

The running time can be improved by a linear factor if, instead of node pairs, we consider
edges between W and E .

Algorithm 1. Input: an undirected outer-planar graph G = (V,E), terminals s1, s2, t1, t2 ∈ V ,
w.l.o.g. in cyclic order (s1, t1, t2, s2).

Let W denote the nodes between s1 and s2, let N denote the nodes between s1 and t1, let
E denote the nodes between t1 and t2, and let S denote the nodes between s2 and t2.

1. For each pair (w, e) ∈ ({s2} ∪W) × ({t2} ∪ E) such that we ∈ E or (w, e) = (s2, t2)

• Partition W into W1 containing the nodes between w and s1 and W2 = W \W1

• Partition E into E1 containing the nodes between e and t1 and E2 = E \ E2

• Find a shortest path P1 between s1 and t1 in G1 = G[{s1, t1} ∪ N ∪W1 ∪ E1]

• Find a shortest path P2 between s2 and t2 in G2 = G[{s2, t2} ∪ S ∪W2 ∪ E2]

• Update the previous optimum (SP1, SP2) if (P1, P2) is a better solution

2. Return the optimal solution (SP1, SP2).

Theorem 16. Algorithm 1 optimally solves the Min-Max 2 Disjoint Paths Problem for outer-
planar graphs in time O(n2).

Proof. Time complexity: The number of edges between W and E is at most O(n). For each pair
of endpoints the algorithm solves two independent shortest path problems in time O(n) [9].

Correctness: Each edge may be used by at most one path. If an edge between a node from
W and a node from E is part of the optimal solution, then all nodes and edges ‘below’ this edge
may only be part of P2 and all edges ‘above’ may only be part of P1. Therefore, by computing
the solution for all possible partitions, the algorithm finds the optimal solution.

In what follows, we reduce the Min-Max 2 Disjoint Paths Problem in graphs with tree-
width 2 to the problem in outer-planar graphs.

Definition 2. A graph has contracted tree-width 2 if it has tree-width 2 and the corresponding
tree-decomposition (T,V) satisfies that no pair of vertices is contained in more than two vertex
sets of V, that is |Vt1 ∩ Vt2 ∩ Vt3 | ≤ 1 for any t1, t2, t3 ∈ V (T).

Lemma 17. Graphs with contracted tree-width 2 are outer-planar.

Proof. Proof is by induction. A graph consisting of three vertices is obviously outer-planar.
Let (T,V) be the tree-decomposition of G = (V,E) with contracted tree-width 2. Take a leaf
l ∈ V (T) of T and let V ′ =

∪
t̸=l Vt. Then, by induction hypothesis, G[V ′] is outer-planar. If

|Vl ∩ V ′| = 1 then G is obviously outer-planar, and so we may assume that Vl ∩ V ′ = {u, v}.
If there exists an edge connecting u and v on the boundary of G′, then G is outer-planar.
Otherwise, a pair {u, v} is part of two sets of V\Vl, which contradicts the definition of contracted
tree-width. This shows that G remains outer-planar.

13

We reduce the problem for a general graph with tree-width at most 2 to equivalent problems
in a graph with contracted tree-width 2 (which is also outer-planar), which we then solve using
Algorithm 1.

As the tree-width is at most 2, every set Vt ∈ V has cardinality at most three. The graph
induced by Vt and the edges of the original graph may consist of one or two edges or it may form
a triangle. The overlap with another set Vt′ consists of at most two vertices, |Vt ∩ Vt′ | ≤ 2 and
all these small graphs are linked forming a tree. In the tree decomposition (T,V), we update
the length of all edges uv that lie in more than two sets in V by deleting a subgraph or by
renaming the terminals.

Algorithm 2. Input: a graph G = (V,E) with tree-width at most 2, terminals s1, s2, t1, t2.

1. Compute a tree-decomposition (T,V) of G (see [2]). We may assume that Vi ̸= Vj for
distinct i, j ∈ V (T).

2. While there exist pairs {u, v} with ∃Vt1 , Vt2 , Vt3 , t1 ̸= t2 ̸= t3 ̸= t1, {u, v} ⊆ Vt1 ∩ Vt2 ∩ Vt3

compute G−{u, v} in which there are at least three distinct components Gi1 , Gi2 , . . . , Gip .

• If some component Gi contains no terminal, remove Gi, add an edge uv (if uv does
not exist), and update l(uv) ← min{l(uv), dGi+u+v(u, v)}.

• If all Gi1 , Gi2 , . . . , Gip contain terminals, then p = 3, 4 and two subgraphs, say
Gi1 , Gi2 , contain one terminal each. Rename the terminals such that the termi-
nal in Gi1 is s1. Compute dGi1

+u(s1, u) and dGi1
+v(s1, v) and do the same for the

terminal in Gi2 . Remove Gi1 and Gi2 and create new instances as follows.
If the terminals ‘match’, meaning that the terminal in Gi2 is t1, recursively create
four instances of the problem (u = s1, v = t1; u = t1, v = s1; v = s1 = t1; and
u = s1 = t1) and return the minimal solution. Otherwise, if the terminals do
not match, recursively create two instances of the problem and return the minimal
solution.

3. The resulting graph is outer-planar. Solve the problem using Algorithm 1.

Theorem 18. Algorithm 2 optimally solves the Min-Max 2 Disjoint Paths Problem for graphs
with tree-width at most 2 in time O(n3).

Proof. Time complexity (very scarce estimates): There will be at most O(n) reductions as there
are at most O(n) edges, and the second reduction in Step 2 occurs at most twice. Each reduction
affects at most O(n) components. Finding the shortest path in each component takes time at
most O(n) [9]. Therefore, all reductions take time at most O(n3). The recursive call occurs at
most twice with at most four instances each. This yields at most 4 · 4 = O(1) disjoint shortest
path problems in an outer-planar graph, each of which can be solved in time O(n3).

Correctness: Removing {u, v} splits the graph into at least three component graphs, since
T contains no cycle.

• If one component, say Gi, does not contain a single terminal s1, s2, t1, t2, update the
edge length of uv by min{l(uv), dGi+u+v(u, v)}. This works since only one path may pass
through Gi.

• If Gi contains exactly one terminal, say s1, remove Gi from G and solve the disjoint
shortest path problem for two separate instances u = s1 and v = s1, add dGi+u(s1, u) and
dGi+v(s1, v), respectively, and return the minimum solution. This works since P2 cannot
enter and leave Gi without interfering with P1.

14

• If Gi contains two terminals, then reduce another subgraph Gj using the rules from
above. At most two subgraphs may have this property and the resulting graph will have
the desired property for the pair {u, v}.

• The remaining cases are symmetric.

After Step 2, no edge uv is in more than two sets Vi, Vj of the tree-decomposition, which
is exactly the definition of contracted tree-width 2. The resulting graph is outer-planar by
Lemma 17. By computing the solution for all possible pairs, the algorithm finds the optimal
solution.

4.3 Pseudo-polynomial-time algorithm for bounded tree-width graphs

As shown in Theorem 14, the Min-Max k Disjoint Paths Problem is NP-hard even if k = 2
and the tree-width of the input graph is at most three, whereas the Min-Sum k Disjoint Paths
Problem can be solved in polynomial time in bounded tree-width graphs [18]. In this subsection,
for fixed k, we give a pseudo-polynomial-time algorithm for the Min-Max k Disjoint Paths
Problem in bounded tree-width graphs. Note that this technique also works for the weighted
versions introduced in [26, 27].

Theorem 19. Let G = (V,E) be a graph whose tree-width is bounded by a fixed constant, and
let ℓ : E → Z+ be an integer-valued length function. Then, for fixed k, the Min-Max k Disjoint
Paths Problem can be solved in time polynomial in |V | and ℓ(E).

Proof. We introduce a new problem called the weighted folio, whose unweighted version is
introduced in [15]. Let G = (V,E) be a graph, let ℓ : E → Z+ be an integer-valued length
function, and let X ⊆ V be a vertex set. A pair (X , z⃗) of a partition X = {X1, X2, . . . , Xp}
of X and an integer vector z⃗ = (z1, z2, . . . , zp) ∈ Zp

+ is realizable if there are disjoint trees
T1, T2, . . . , Tp in G such that Xi ⊆ V (Ti) and

∑
e∈E(Ti)

ℓ(e) = zi for i = 1, . . . , p. The weighted
folio is the problem to enumerate all realizable pairs (X , z⃗) in G. One can see that the solution
of the Min-Max k Disjoint Paths Problem is immediately derived from that of the weighted
folio in which X = {s1, . . . , sk, t1, . . . , tk}. That is, for a partition X = {{s1, t1}, . . . , {sk, tk}}
of X, it suffices to find a realizable pair (X , z⃗) minimizing maxi(zi). Note that the number of
realizable pairs is at most (|X|ℓ(E))|X|, which is polynomial size of ℓ(E) if |X| is fixed.

If the tree-width of the input graph is bounded by w, the weighted folio can be solved for
each bag using the standard dynamic programming technique, which takes time polynomial in
|V |, (w + |X|)w+|X|, and ℓ(E)w+|X| (see [1, 15]). This completes the proof.

References

[1] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[2] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[3] Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint two-face paths in
planar graphs. In STACS, pages 181–192, 2008.

[4] Edsger Wybe Dijkstra. A note on two problems in connection with graphs. Numerische
Math., 1:269–271, 1959.

15

[5] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–
104, 1990.

[6] Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10:111–121, 1980.

[7] András Frank. Paths, Flows, and VLSI-Layout, chapter Packing paths, cuts and circuits –
a survey, pages 49–100. Springer-Verlag, 1990.

[8] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[9] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. Journal of Computer and System Sciences,
55(1):3–23, 1997.

[10] Alon Itai, Yehoshua Perl, and Yossi Shiloach. The complexity of finding maximum disjoint
paths with length constraints. Networks, 12:277–286, 1981.

[11] Richard M. Karp. On the computational complexity of combinatorial problems. Networks,
5:45–68, 1975.

[12] Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. The complexity of find-
ing two disjoint paths with min-max objective function. Discrete Applied Mathematics,
26(1):105–115, 1990.

[13] James F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsletter, 5(3):31–36, 1975.

[14] Richard G. Ogier, Vladislav Rutenburg, and Nachum Shacham. Distributed algorithms
for computing shortest pairs of disjoint paths. IEEE Transactions on Information Theory,
39(2):443–455, 1993.

[15] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7:309–322, 1986.

[16] Neil Robertson and Paul D. Seymour. Paths, Flows, and VLSI-Layout, chapter An outline
of a disjoint paths algorithm, pages 267–292. Springer-Verlag, 1990.

[17] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[18] Petra Scheffler. A practical linear time algorithm for disjoint paths in graphs with bounded
tree-width. Technical Report 396, Technische Universität Berlin, 1994.

[19] Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal
on Computing, 23(4):780–788, 1994.

[20] Paul D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29:293–309, 1980.

[21] Yossi Shiloach. A polynomial solution to the undirected two paths problem. Journal of the
ACM, 27(3):445–456, 1980.

[22] Anand Srinivas and Eytan Modiano. Finding minimum energy disjoint paths in wireless
ad-hoc networks. Wireless Networks, 11(4):401–417, 2005.

16

[23] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–256, 1985.

[24] Carsten Thomassen. 2-linked graphs. European Journal of Combinatorics, 1:371–378, 1980.

[25] Bing Yang, Si-Qing Zheng, and Suresh Katukam. Finding two disjoint paths in a network
with min-min objective function. In IASTED International Conference on Parallel and
Distributed Computing and Systems, pages 75–80, 2003.

[26] Bing Yang, Si-Qing Zheng, and Enyue Lu. Finding two disjoint paths in a network with
normalized α−-min-sum objective function. In IASTED International Conference on Par-
allel and Distributed Computing and Systems, pages 342–348, 2005.

[27] Bing Yang, Si-Qing Zheng, and Enyue Lu. Finding two disjoint paths in a network with
normalized α+-min-sum objective function. In ISAAC, pages 954–963, 2005.

17

