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Abstract

Many complex networks are described by directed links; in such net-
works, a link represents, for example, the control of one node over the
other node or unidirectional information flows. Some centrality mea-
sures are used to determine the relative importance of nodes specif-
ically in directed networks. We analyze such a centrality measure
called the influence. The influence represents the importance of nodes
in various dynamics such as synchronization, evolutionary dynamics,
random walk, and social dynamics. We analytically calculate the in-
fluence in various networks, including directed multipartite networks
and a directed version of the Watts-Strogatz small-world network. The
global properties of networks such as hierarchy and position of short-
cuts, rather than local properties of the nodes, such as the degree, are
shown to be the chief determinants of the influence of nodes in many
cases. The developed method is also applicable to the calculation of
the PageRank. We also numerically show that in a coupled oscillator
system, the threshold for entrainment by a pacemaker is low when the
pacemaker is placed on influential nodes. For a type of random net-
work, the analytically derived threshold is approximately equal to the
inverse of the influence. We numerically show that this relationship
also holds true in a random scale-free network and a neural network.

1 Introduction

Networks abound in various fields; a network is a collection of nodes and
links, where a link connects a pair of nodes. Most real-world networks are not
entirely regular or random and have prominent properties as modeled by, for
example, small-world, scale-free, hierarchical, and modular networks [1, 2].
In such networks, some nodes are considered to be more important than
the others. Depending on the definition of importance, various centrality
measures, which quantify the relative importance of different nodes, have
been proposed. The most frequently used centrality measures are perhaps
the degree (i.e., the number of links owned by a node) and the betweenness
(i.e., the normalized number of shortest paths connecting any pair of nodes
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passing through the node in question) [2, 3, 4]. New centrality measures
have also been proposed in the field of complex networks [5, 6].

Although many centrality measures are available, very few of these de-
scribe the importance of nodes in collective behavior of nodes on networks
(see [6]). In a previous study, we proposed a centrality measure called the
influence [7]. The influence of a node denotes its importance in different
types of dynamics. It represents the amplitude of the response of a syn-
chronized network when an input is given to a certain node [8], the fixation
probability for a newly introduced type (e.g., new information) at a node
in voter-type evolutionary dynamics [9], the stationary density of a simple
random walk in continuous time [9], the so-called reproductive value of a
node [10], and the influence of a node in the DeGroot’s model of consensus
formation [11]. It makes sense to consider the influence only in directed
networks; in undirected networks, the influences of all the nodes take an
identical value. In principle, the influence as a centrality measure is close to
the PageRank, which was originally developed for ranking websites [13].

To assess the influence (and also the PageRank) in real complex net-
works, it is not sufficient to take into account the local property of the node,
such as the degree. The global structure of networks such as the small-world
property, modular structure, and self-similarity [1, 2] generally affects the
influence values.

In the present study, we analytically determine the influence of nodes in
model networks such as weighted chain, directed multipartite networks with
a hierarchical structure, and a directed version of the Watts-Strogatz small-
world network [14]. For this purpose, we exploit the symmetry in networks
and the relationship between the enumeration of directed spanning trees
and the influence. We reveal the discrepancy between the actual influence
and that predicted by the mean-field approximation (MA), which takes into
account only the degree. In fact, the nodes that occupy globally important
positions in terms of influence are generally different from those that are lo-
cally important. The globally important nodes govern the abovementioned
dynamics on networks. Finally, to demonstrate the application of the influ-
ence as a centrality measure, we analyze a system of coupled oscillators and
show that nodes with large influence values entrain other nodes relatively
easily, i.e., with a relatively small coupling strength.

2 Influence

Consider a directed and weighted network having N nodes. The weight of
the directed link from node i to node j is denoted by wij . We set wij = 0
when the link is absent. The influence of node i is denoted by vi. We define
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vi as the solution for the following set of N linear equations:

vi =

∑N
j=1 wijvj

kin
i

, (1 ≤ i ≤ N), (1)

where kin
i ≡

∑N
j=1 wji is the indegree of node i, and the normalization is

given by
∑N

i=1 vi = 1. When node i has many outgoing links, vi can be large
because there are many terms on the right-hand side of Eq. (1). When node
i has many incoming links, node i is interpreted to be governed by many
nodes. Then, vi can be small because of the divisive factor kin

i in Eq. (1).
The rationale for the definition given in Eq. (1) is that vi represents the
importance of nodes in different types of dynamics on networks, as explained
in Sec. 1. Values of vi for two example networks are shown in Fig. 1.

Note that vi = 1/N for any network with kin
i = kout

i (1 ≤ i ≤ N), where
kout

i ≡
∑N

j=1 wij is the outdegree. The undirected network is included in
this class of networks. Therefore, the influence has a nontrivial meaning
only in directed networks. This situation also holds true in the case of the
PageRank; in undirected networks, the PageRank is a linear function of the
degree of node [13].

The MA of vi is given by

vi =

∑N
j=1 wijvj

kin
i

≈
∑N

j=1 wij v̄

kin
i

∝ kout
i

kin
i

, (2)

where v̄ ≡
∑N

j=1 vj/N = 1/N . In Secs. 3 and 4, we argue that Eq. (2)
does not satisfactorily describe vi in certain practically important types
of networks, including the Watts-Strogatz small-world network. For these
networks, we calculate the exact vi by using different methods.

The value of vi can be associated with the number of directed spanning
trees rooted at node i, as described below. Equation (1) implies that vi is
the left eigenvector of the Laplacian matrix L, whose (i, j) element is equal
to Lii =

∑N
j=1,j 6=i wji and Lij = −wji (i 6= j). The corresponding eigenvalue

is equal to 0;
∑N

i=1 viLij = 0 (1 ≤ j ≤ N). The (i, j) cofactor of L is given
as

D (i, j) ≡ (−1)i+j det L (i, j) , (3)

where L(i, j) is an (N − 1) × (N − 1) matrix obtained by deleting the i-th
row and the j-th column of L. Because

∑N
j=1 Lij = 0 (1 ≤ i ≤ N), D (i, j)

is independent of j. Therefore, considering the fact that L has eigenvalue 0,
we obtain

N∑
i=1

D(i, i)Lij =
N∑

i=1

D(i, j)Lij

= det L = 0, (1 ≤ j ≤ N). (4)
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Equation (4) indicates that (D (1, 1) , . . . , D (N,N)) is the left eigenvector
of L with eigenvalue 0. Therefore, we obtain

vi ∝ D (i, i) = det L (i, i) . (5)

According to the matrix tree theorem [15], det L (i, i) is equal to the
sum of the weights of all directed spanning trees of G rooted at node i. The
weight of a spanning tree is defined as the product of the weights of the
N − 1 links used in the spanning tree. Therefore, we can calculate vi by
enumerating the spanning trees.

3 Calculation of influence in some model networks

In this section, we analytically calculate the influence for several networks.
Through these calculations, we show that the influence extracts the globally
important nodes, which is beyond the scope of the MA: kout

i /kin
i . Such nodes

are located upstream in the hierarchy that is defined by the directionality
of the links or around the source of a valuable directed shortcut.

3.1 Weighted chain

Consider a weighted chain of N nodes, as shown in Fig. 2(a). There is a link
from node i to node i+1 with the weight wi,i+1 > 0 for each 1 ≤ i ≤ N − 1.
There is a link from node i to node i − 1 with the weight wi,i−i > 0 for
each 2 ≤ i ≤ N . Generally, wi,i+1 is not equal to wi+1,i. There are no
other links. There is only one spanning tree rooted at each node i, which
is represented by 1 ← 2 ← . . . ← i − 1 ← i → i + 1 → . . . N − 1 → N ,
where the arrow denotes either a directed link or a directed path without
confusion. Therefore,

vi =
w2,1w3,2 . . . , wi,i−1wi,i+1wi+1,i+2 . . . wN−1,N

N
, (6)

where the normalization constant is given by

N =
N∑

i=1

w2,1w3,2 . . . , wi,i−1wi,i+1wi+1,i+2 . . . wN−1,N . (7)

Note that the position of the node, whether located in the middle or the
periphery of the chain, does not affect the value of vi.

Consider a special case where w1,2 = w2,3 = . . . = wN−1,N = 1 and
w2,1 = w3,2 = . . . = wN,N−1 = ε (Fig. 2(b)). For this network, we obtain

vi =
εi−1(1 − ε)
(1 − εN )

. (8)
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When ε is small, node i having a small i is more influential. With the
normalization constant neglected, the MA yields kout

1 /kin
1 = 1/ε, kout

2 /kin
2 =

. . . = kout
N−1/kin

N−1 = 1, and kout
N /kin

N = ε. The MA is inconsistent with
Eq. (8), except under the limit ε → 0, in which case v1 ≈ 1, v2, . . . , vN ≈ 0.

3.2 Weighted cycle

Consider a weighted cycle having N nodes, as depicted in Fig. 2(c). The
weighted cycle is constructed by adding two links N → 1 and 1 → N with
the weights wN,1 and w1,N , respectively, to the weighted chain.

In this network, there are N spanning trees rooted at node i, i.e., j ←
j + 1 ← . . . i− 1 ← i → i + 1 → . . . → j − 1, where 1 ≤ j ≤ N , nodes N + 1
and 0 are identified with nodes 1 and N , respectively. Therefore, we obtain

vi ∝ wi,i+1wi+1,i+2 . . . wi−2,i−1 + wi,i−1wi,i+1 . . . wi−3,i−2

+ wi−1,i−2wi,i−1wi,i+1 . . . wi−4,i−3 + . . . , (9)

where wN,N+1 ≡ wN,1 and w1,0 ≡ w1,N .
In the weighted chain, only the weights of the descending links, i.e.,

wj,j+1 for j ≥ i and wj+1,j for j + 1 ≤ i, contribute to vi. In contrast, in
the weighted cycle, both wj,j+1 and wj+1,j (j, j + 1 6= i) contribute to vi.
Therefore, in the weighted cycle, the effect of each link weight on vi is more
blurred than that in the case of the weighted chain. This property comes
from the fact that node i and node j (i 6= j) are connected in two ways, i.e.,
clockwise and anticlockwise.

As a special case, consider a directed cycle in which w2,1 = w3,2 = . . . =
wN,N−1 = w1,N = 0, w1,2 = w2,3 = . . . = wN−1,N = 1, and wN,1 = ε
(Fig. 2(d)). In this network, the values of the influence are equal to

v1 =
1

1 + (N − 1)ε
, (10)

v2 = . . . = vN =
ε

1 + (N − 1)ε
. (11)

The MA, which yields kout
1 /kin

1 = 1/ε, kout
2 /kin

2 = . . . = kout
N−1/kin

N−1 = 1, and
kout

N /kin
N = ε, is inconsistent with Eq. (11), except when ε → 0.

3.3 Directed multipartite network

Consider the directed L-partite network, as schematically shown in Fig. 3(a).
Layer ` (1 ≤ ` ≤ L) contains N` nodes. Each node in layer ` sends directed
links to all the N`+1 nodes in layer ` + 1, where layer L + 1 is identified as
layer 1. Because of symmetry, all nodes in layer ` have the same value of
influence, denoted by v`. From Eq. (1), we obtain

N`−1v` = N`+1v`+1, (1 ≤ ` ≤ L), (12)
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where N0 ≡ NL. By combining Eq. (12) with the normalization condition∑L
`=1 N`v` = 1, we obtain

v` =
1

N`−1N`
∑L

`′=1 N−1
`′

. (13)

3.3.1 Super-star

The super-star, which was introduced in [16] to study the fixation probability
in networks, is a variant of the directed multipartite network. The super-star
shown in Fig. 3(b) is generated as a superposition of a certain number of
identical directed multipartite networks with N1 = N3 = N4 = . . . = NL = 1
and N2 = z (≥ 1). Each multipartite network is called a leave. The leaves
are superposed such that they share a single node in layer 1. The indegree
and outdegree of this node are equal to the number of leaves.

It can be easily shown that vi is independent of the number of leaves.
Therefore, we consider the case of a single leave. Then, Eq. (13) yields

v1 = v4 = v5 = . . . = vL =
z

z(L − 1) + 1
, (14)

v2 = v3 =
1

z(L − 1) + 1
. (15)

Surprisingly, the node in layer 1 does not have a particularly large influence
value. Given z ≥ 2, the nodes in the expanded layer (i.e., layer 2) and the
node that receives convergent links from this layer (i.e., layer 3) have small
influence values. These relationships are not predicted by the MA. The MA
yields kout

2 /kin
2 = kout

4 /kin
4 = kout

5 /kin
5 = . . . = kout

N /kin
N = 1, kout

1 /kin
1 = z,

and kout
3 /kin

3 = 1/z; the actual v1 and v2 values are essentially smaller than
the values predicted by the MA.

3.3.2 Funnel

The funnel, shown in Fig. 3(c), was introduced in [16] along with the super-
star; it is also a directed multipartite network. The funnel has N` = zL−`

nodes in layer ` (1 ≤ ` ≤ L). Using Eq. (13), we obtain

v` =


z − 1
zL − 1

, (` = 1),

z − 1
zL − 1

z2`−L−2, (2 ≤ ` ≤ L).
(16)

The nodes in layer L are most influential, and the node in layer 2 is least
influential. The nodes in layer 1 are intermediately influential. For a large
z, they are as influential as a node in layer ≈ L/2. These relationships
are not predicted by the MA, which yields the followin results: kout

1 /kin
1 =

kout
L /kin

L = zL−2 and kout
2 /kin

2 = . . . = kout
L−1/kin

L = z−2.
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3.4 Directionally biased random network

The networks considered in the previous sections have inherent global direc-
tionality due to the presence of asymmetrically weighted or unidirectional
links from node to node or from layer to layer. The directionality of networks
is a main cause for the deviation in the vi values from those predicted by the
MA. To examine the effect of directionality in further detail, we study the
directionally biased random network [17]. To generate a network from this
model, we prepare a strongly connected directed random graph with mean
indegree and mean outdegree z and specify a root node, which is placed in
layer 1. The root node is the source of directed links to about z nodes, which
are placed in layer 2. We align all the nodes according to their distance from
the root. Except in the layers near the last layer, the number of nodes in
layer ` grows roughly as z`−1. We set the weights of the forward links, i.e.,
links from layer ` to layer `+1, as unity. We set the weights of the backward
links, i.e., links from layer ` to layer `′, where ` > `′, as ε. The weights of
the parallel links, i.e., those connecting two nodes in the same layer, are ar-
bitrary; they do not affect the value of vi in the following derivation. When
ε = 1, the network is an unweighted directed random graph, if the weight
of the parallel link is equal to unity at ε = 1. When ε = 0, the network is
purely feedforward and no longer strongly connected. The feedforwardness
is parameterized by ε.

The directionally biased random network is approximated by using a
modified tree as follows [17]. We assume that each node has z outgoing
links and that each node except the root node has only one “parent” node,
namely, the node in the previous layer from where it receives a feedforward
link. Further assume that there are L layers and that layer ` (1 ≤ ` ≤ L) has
z`−1 nodes. The number of nodes is equal to (zL−1)/(z−1). At this point,
the constructed network is a tree. Then, we add backward links with weight
ε to this tree. When z is large, most backward links in the original network
originate from layer L, because layer L has a majority of nodes. Therefore,
we assume that, in the approximated network, the backward links with
weight ε originate only from the the nodes in layer L. This approximation
is accurate when z is sufficiently large. The other links in the approximated
network have the weight of unity. For a sufficiently large z, all nodes in the
same layer have almost the same connectivity pattern. In terms of incoming
links, a node receives approximately one forward link from the previous
layer and z backward links from layer L. The approximated network is
schematically shown in Fig. 4. On an average, each node in layer L is the
source of an directed link to each node with an effective weight ε′. Because
kout

i = εz for a node in layer L is approximated by ε′(zL−1)/(z−1) ≈ ε′zL−1,
we obtain ε′ ≈ εz−L+2.

The influence of a node in layer `, denoted by v`, satisfies the following
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relationships:

zL−1ε′v1 = zv2, (17)
(zL−1ε′ + 1)v` = zv`+1, (2 ≤ ` ≤ L − 1). (18)

On substituting ε′ ≈ εz−L+2 in Eq. (18) and considering the normalization
given by

L∑
`=1

z`−1v` = 1, (19)

we obtain

v` ≈

(εz + 1)−L+1, (` = 1),

(εz + 1)−L+`−1 z−`+2ε, (2 ≤ ` ≤ L).
(20)

For a small ε, the network is close to feedforward, and v1 is relatively
large; v` varies as v` ∝

(
ε + z−1

)`. When z is sufficiently large, we obtain
v` ∝ ε`, which coincides with the results obtained for the network shown in
Fig. 2(b) (Sec. 3.1).

To test our theory, we generate a directionally biased random network
with N = 5000 and z = 10. For ε = 0.5, the values of vi of all the nodes are
plotted against the values obtained from the MA in Fig. 5(a). Although the
values obtained from the MA are strongly correlated with vi, there is some
variation in vi for a fixed kout

i /kin
i . The average and the standard deviation

of vi in each layer are plotted by the circles and the corresponding error bars,
respectively, in Fig. 5(b). The influence of a node decreases exponentially
with `, as predicted by Eq. (20) (Eq. (20) for ` ≥ 2 is represented by the
line in Fig. 5(b)). The average and the standard deviation of vi obtained
by the MA are plotted by the squares and the corresponding error bars,
respectively. The values obtained from the MA are scaled by a multiplicative
factor C, where C is selected such that vi = Ckout

i /kin
i for the root node

(i.e., ` = 1). Figure 5(b) shows that kout
i /kin

i is generally small for node i in
a downstream layer. However, the decrease in vi with ` is much more than
that in kout

i /kin
i . The hierarchical nature of the network is revealed by the

vi values and not satisfactorily by the local degree. The results for ε = 0.1
shown in Figs. 5(c) and (d) provide further evidence for our claim.

3.5 Small-world networks

In this section, we analyze the influence in the directed unweighted small-
world network model, which is a variant of the Watts-Strogatz model [14].
To generate a network, we start with an undirected cycle of N nodes, in
which each node is connected to its immediate neighbor on both sides. At
this stage, kin

i = kout
i = 2 is satisfied for all i. Then, we add a directed
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shortcut to the network, as schematically shown in Fig. 6(a). The source
and the target of the shortcut are denoted by nodes s and t, respectively.
The distance between node s and node t along the cycle is assumed to be
min(N1, N2), where N2 ≡ N − N1.

We enumerate the number of directed spanning trees rooted at node
r, which is N nodes away from node s along the cycle, where 0 ≤ N ≤
max(N1, N2). There are N spanning trees that do not use the shortcut, as
derived in Sec. 3.2. Any spanning tree that uses the shortcut includes the
directed path r → . . . → s, which contains N + 1 nodes. The choice of the
other links is arbitrary with the restriction that a spanning tree must be
formed. The N1 − N − 1 nodes between node r and node t in Fig. 6(a) are
reached from node r or node t by a directed path along the cycle. There are
N1 − N choices regarding the formation of this part of the spanning tree.
The N2−1 nodes between node s and node t are reached from node s or node
t by a directed path along the cycle. There are N2 choices regarding the
formation of this part of the spanning tree. In sum, there are N+(N1−N)N2

spanning trees rooted at v. Therefore, the influence of v is large (small) for
the v that is close to the source (target) of the shortcut. In the region on
the cycle where no source or target of a shortcut is located, the influence of
a node changes linearly with the distance between the source of the shortcut
and the node, because N+(N1−N)N2 ∝ N . We call such a region, including
the two border points, the segment.

Next, we consider small-world networks with two directed shortcuts.
There are three qualitatively different possible arrangements of the short-
cuts, as shown in Figs. 6(b), 6(c), and 6(d). The lengths of the four segments
are denoted by N1, N2, N3, and N4, such that N1 + N2 + N3 + N4 = N .

In the network shown in Fig. 6(b), a node is located at either of the three
essentially different positions denoted by a, b, and c. We first enumerate
spanning trees rooted at node a. The distance from node a to the source of a
shortcut, i.e., node s, is denoted by N (0 ≤ N ≤ N1). There are N spanning
trees that do not use the shortcuts. There are (N1 − N)(N2 + N3 + N4)
spanning trees that use the shortcut s → t but not s′ → t′. There are
(N1 +N2−N)N3 spanning trees that use the shortcut s′ → t′ but not s → t.
There are (N1 −N)N2N3 spanning trees that use both shortcuts, which can
be explained as follows. The directed path a → s → s′ is included in such a
spanning tree. The N1−N−1 nodes between node a and node t are reached
along the cycle from node a or node t. The N2 − 1 nodes between node t
and node t′ are reached along the cycle from node t or node t′. The N3 − 1
nodes between node t′ and node s′ are reached along the cycle from node t′

or node s′. In sum, the number of spanning trees rooted at node a is equal
to

N + (N1 −N)(N2 + N3 + N4) + (N1 + N2 −N)N3 + (N1 −N)N2N3, (21)

which is proportional to the influence of node a. If N is sufficiently large and
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the two shortcuts are randomly placed, the last term in Eq. (21) is of the
highest order because Ni = O(N) (1 ≤ i ≤ 4). As in the case of the network
with one shortcut, the influence changes linearly within one segment.

Similarly, the number of spanning trees rooted at node b is equal to

N + N1(N2 + N3 + N4 − N) + (N1 + N2 + N)N3 + N1N2N3, (22)

where N (0 ≤ N ≤ N4) is the distance from node b to node s along the
cycle. The number of spanning trees rooted at node c is equal to

N + (N2 − N)N3 + N1N, (23)

where N (0 ≤ N ≤ N2) is the distance from node c to node t along the
cycle. Owing to the absence of a third-order term in Eq. (23), the influence
values of the nodes located on the segment between the two targets of the
shortcuts are very small.

The quantities given in Eqs. (21), (22), and (23) are linear in N . There-
fore, the influence changes linearly within each segment. This is true for the
other two types of arrangements of shortcuts shown in Figs. 6(c) and 6(d).

This linear relationship also holds true in the case of more than two
shortcuts. To show this, we consider a general directed small-world net-
work and focus on a segment on the cycle, which is schematically shown
in Fig. 6(e). Without loss of generality, we assume that a node v in the
segment is located N and N1 −N nodes away from the two border points of
the segment. We distinguish three types of spanning trees rooted at node r.
First, some spanning trees include both r → . . . → 1 and r → . . . → 2. We
denote the number of such spanning trees by S1. Second, some spanning
trees include r → . . . → 1 and not r → . . . → 2. For these spanning trees,
node 2 is reached via a path r → 1 → . . . → 2. To enumerate such span-
ning trees, denote by S2 the number of directed trees that span the network
excluding the nodes in the segment between node r and node 2. Third, the
other spanning trees include r → . . . → 2 and not r → . . . → 1. Denote by
S3 the number of directed trees that span the network excluding the nodes
in the segment between node r and node 1. The number of spanning trees
rooted at node r is equal to

S1 + S2(N1 − N) + S3N.

Therefore, the influence of node r changes linearly with N (0 ≤ N ≤ N1).
The thick line in Fig. 7(a) indicates the numerically obtained values of

vi for a small-world network with three shortcuts. We set N = 5000. The
nodes are aligned according to their position in the cycle. In accordance with
the theoretical prediction, vi changes linearly with i within each segment.
vi is very small for 1250 ≤ i ≤ 1666, because these nodes are between two
targets of shortcuts.
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In theory, it is assumed that each node is initially connected to only its
nearest neighbors on the cycle (i.e., kin

i = kout
i = 2). However, values of vi

are almost the same if the underlying cycle has kin
i = kout

i = 4 (i.e., each
node is connected to two neighbors on each side) or kin

i = kout
i = 6. The

results for kin
i = kout

i = 4 and those for kin
i = kout

i = 6 are indicated by
the medium and thin lines, respectively, in Fig. 7(a). The three lines are
observed to almost overlap with each other.

To examine the effect of shortcuts in more general small-world networks,
we generate a small-world network by rewiring many links [14]. We place
N = 5000 nodes on a cycle and connect a node to its five immediate neigh-
bors on each side, such that kin

i = kout
i = 10. Then, out of 50000 directed

links, we rewire 500 randomly selected ones to create directed shortcuts. The
sources and targets of shortcuts are chosen randomly from the network with
the restriction that self loops and multiple links must be avoided. Because
of rewiring, the mean degree 〈k〉 = 10.

As shown in Fig. 7(b), the MA strongly disagrees with the observed vi

[9]. The values of vi are plotted against the circular positions of the nodes
in Fig. 7(c). vi changes gradually along the cycle, which is consistent with
our analytical results. The peaks and troughs in Fig. 7(c) correspond to
the sources and targets of the shortcuts, respectively. For a node near a
source (target), vi is large (small), whereas the MA estimate ∝ kout

i /kin
i

is not as affected by the position of the shortcuts as vi. The relationship
between vi/(kout

i /kin
i ) and vi is shown in Fig. 7(d). The MA is exact along

the horizontal line, i.e., vi = (kout
i /kin

i )/(
∑N

j=1 kout
j /kin

j ). Nodes with large
(small) vi tend to be located near sources (targets) of shortcuts. For such
nodes, vi is usually larger (smaller) than the value obtained by the MA.

4 Entrainment of a network by a pacemaker

As an application of the influence as a centrality measure, we examine a
system of coupled phase oscillators having a pacemaker [17, 18]. Consider a
dynamical system of phase oscillators given by

φ̇i = ωi +
κ

〈k〉

N∑
j=1

wji sin (φj − φi) , (1 ≤ i ≤ N), (24)

where the mean degree 〈k〉 =
∑N

i′,j′=1 wi′j′/N provides the normalization
for the coupling strength κ. The phase and the intrinsic frequency of the
i-th oscillator are denoted by φi ∈ [0, 2π) and ωi, respectively. We assume a
pacemaker, i.e., an oscillator that is not influenced by the other oscillators,
in the network. Equation (24) emulates a pacemaker system, where the
pacemaker is placed at node i0, if we force wji0 = 0 (1 ≤ j ≤ N). We
examine the possibility of the pacemaker to entrain the other oscillators
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into its own intrinsic rhythm. For this, we assume that ωi = ω (i 6= i0) is
identical for the N − 1 oscillators and that ωi0 takes a different value. By
redefining φi − ωt as the new φi and rescaling time, we set ωi0 = 1 and
ωi = 0 (i 6= i0) without loss of generality.

Depending on the network and the position of the pacemaker, there exists
a critical threshold κcr such that the entrainment is realized for κ > κcr

[18, 17]. When entrained, the actual frequency of all oscillators becomes
exactly the same as that of the pacemaker, i.e., ωi0 = 1. Thus, the condition
for the entrainment is given by

φ̇i =
κ

〈k〉

N∑
j=1

wji sin (φj − φi) = 1, (1 ≤ i ≤ N, i 6= i0). (25)

In general, entrainment [17, 19] and synchrony [20] are easy realized for
feedforward networks. Because of the intuitive meaning of the influence, κcr

may be small if vi0 is large. We analytically show this for the directionally
biased random network with a sufficiently large z. In the directionally biased
random network, a node in layer ` receives a forward link with weight unity
from layer `−1. Although a forward link is absent for a node in layer 1, this
factor is negligible because layer 1 contains only one node. Most backward
links with weight ε to a node in layer `, where ` ≤ L − 1, originate from
layer L, as discussed in Sec. 3.4. The number of parallel links is smaller
than that of backward links. We assume that the weight of the parallel link,
which was assumed to be arbitrary in Sec. 3.4, is equal to ε, such that all
the incoming links to a node in layer L, except one forward link, also have
weight ε. Under this condition, we approximate 〈k〉 ≈ 1 + εz.

Denote by κ
(`)
cr the typical critical coupling strength when the pacemaker

is located at a node in layer ` in a directionally biased random network.
First, we consider the case in which node i0 coincides with the root node in
the directionally biased random network, i.e., ` = 1. This case was analyzed
in our previous studies [17, 18]. In the entrained state, the phase difference
between the oscillators in the same layer is small, and the phases of the
oscillators in layers with small ` are more advanced. Therefore, we assume
that the phases of all the oscillators in the same layer are identical. We set
the difference between the phase of the oscillator in layer ` and that in layer
` + 1 to ∆φ`. The entrainment occurs if and only if ∆φ1, . . ., ∆φL−1 stay
constant in a long run. We obtain [17, 18]

∆φ` =
(1 + εz)L−`

κ
, (1 ≤ ` ≤ L − 1). (26)

By applying the threshold condition ∆φ1 = 1, we obtain

κ(1)
cr = (1 + εz)L−1 . (27)
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Next, we consider the case in which node i0 is located in layer L. We
expect κ

(L)
cr to be large because the pacemaker is located downstream of the

network. To analyze this case, we redraw the network as a directionally
biased random network, such that node i0 is located at the root. Then, sta-
tistically, the network is the same as the original directionally biased random
network in terms of the positions of the nodes and the links. However, the
effective link weight in the redrawn network is equal to ε, because most links
in the original network are backward links with weight ε. By assuming that
all links in the redrawn network have weight ε, the result for unweighted
directed random graph [17, 18] translates into

∆φ¯̀ =
(1 + εz) (1 + z)L−¯̀−1

κε
, (1 ≤ ¯̀≤ L − 1), (28)

where ¯̀ is the layer number in the redrawn network. Analogous to the
derivation of Eq. (27) from Eq. (26), from Eq. (28), we derive

κ(L)
cr =

(1 + εz) (1 + z)L−2

ε
. (29)

When node i0 is located in the (L−M + 1)-th layer (2 ≤ M ≤ L− 1) in
the original network, we redraw the network in a similar manner, such that
node i0 is located at the root. The redrawn network is schematically shown
in Fig. 9. For this network, we obtain

∆φ¯̀ =

 (1+z)L−M (1+εz)M−¯̀

κ , (1 ≤ ¯̀≤ M − 1),
(1+εz)(1+z)L−¯̀−1

κε , (M ≤ ¯̀≤ L − 1),
(30)

which yields
κ(L−M+1)

cr = (1 + εz)M−1 (1 + z)L−M . (31)

From Eqs. (27), (29), and (31), we obtain

κ(`)
cr =

{
(1 + εz)L−` (1 + z)`−1 , (1 ≤ ` ≤ L − 1),
(1+εz)(1+z)L−2

ε , (` = L).
(32)

Under the condition εz À 1, Eq. (32) gives

κ(`)
cr ≈ εL−` zL−1, (1 ≤ ` ≤ L). (33)

Moreover, Eq. (20) yields

v` ≈ ε−L+` z−L+1, (1 ≤ ` ≤ L). (34)

Therefore, we obtain

κ(`)
cr ≈ 1

v`
, (1 ≤ ` ≤ L). (35)
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Equation (35) shows that the pacemaker located at an influential node
can easily realize the entrainment. We validate this prediction by direct
numerical simulations of the pacemaker system on a directionally biased
random network with N = 200, z = 10, and ε = 0.1. To judge whether
the entrainment has been realized for a value of κ, we measure the ratio of∑N

i=1,i6=i0
[φi (t = T ) − φi (t = 0.8T )]

/
(N − 1) to φi0(t = T )−φi0(t = 0.8T ),

where T is the duration of a run. The first 80% of a run is discarded as
transient. The ratio represents the average phase shift of the oscillators,
other than the pacemaker, relative to that of the pacemaker. If this value
is more than 0.99, we consider the entrainment to be achieved. Because the
transient is shorter for larger κ, we set T = 5 × 105/κ.

The values of κcr when the pacemaker is located at different nodes are
plotted against vi in Fig. 8(a). The line in the figure represents κcr = v−1

i ,
i.e., Eq. (35). The numerically obtained κcr roughly matches the theoretical
one although the condition εz À 1 is violated. The same values of κcr

are plotted against the MA estimate vi ≈ (kout
i /kin

i )/
∑N

j=1(k
out
j /kin

j ) in
Fig. 8(b). We find a larger spread of data in this plot as compared to that
in Fig. 8(a); vi predicts κcr more accurately than the MA.

Next, we set the weight of the parallel link to unity, as done in [17]. The
values of κcr for this version of the directionally biased random network are
shown in Figs. 8(c) and 8(d). The results are qualitatively the same as those
shown in Figs. 8(a) and 8(b). The dependence of κcr on vi is weak in the new
network (Fig. 8(c)) as compared to the previous network (Fig. 8(a)) mainly
for the following reason. Because of the difference in the weights of parallel
links, 〈k〉 in the new network is larger than that in the previous network.
Then, κ

(L)
cr is smaller for the new network, since it is inversely proportional

to the effective link weight. We expect that κcr for nodes in intermediate
layers can also be explained using the same approach.

The result κcr ≈ v−1
i is derived for the directionally biased random net-

work. Although it is no guaranteed that this relationship holds true in other
types of networks, we test the applicability of the relation κcr ≈ v−1

i in a
scale-free network and a neural network.

We generate a directed scale-free network using the configuration model
[1]. The degree distributions are independently given for kin

i and kout
i by

p(kin) ∝ k−γin and p(kout) ∝ k−γout , respectively. We set γin = γout = 2.5
and N = 200. The minimum degree is set to 3. The duration of a run and
the length of the traisient are equal to those in the case of the directionally
biased random networks. The values of κcr are plotted against vi and the
MA in Figs. 8(e) and 8(f), respectively. The relation κcr ≈ v−1

i fits the data
reasonably well, even though the scale-free network is not a directionally
biased random network. In contrast, kout

i /kin
i poorly predicts κcr, as shown

in Fig. 8(f).
We next examine the C. elegans neural network [21, 22] based on chem-
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ical synapses, which serve as directed links. The network has the largest
strongly connected component with N = 237 nodes. The number of synapses
from neuron i to neuron j defines wij . We set T = 2.5 × 107/κ to appro-
priately exclude the transient. The values of κcr are plotted against vi and
the MA in Figs. 8(g) and 8(h), respectively. The values of κcr exceeding 107

are not plotted because direct numerical simulations need too much time.
Similar to the case of scale-free networks, vi predicts κcr better than kout

i /kin
i

does.

5 Conclusions

In this study, we have analyzed the centrality measure called the influence
in various networks. The influence extracts the magnitude with which a
node controls or impacts the entire network along directed links. We have
analytically shown that the source of the shortcut in a directed version of
the Watts-Strogatz small-world network and the root node in hierarchical
networks have large influence values. This is not accurately predicted if we
approximate the influence of a node by its degree. Although by definition,
the influence is based on local connectivity, the global structure of networks
does affect the influence values. We also analyzed the effect of the location of
a pacemaker on the capability of entrainment in a system of coupled phase
oscillators. The pacemaker located at a node with a large influence value
entrains the other oscillators relatively easily.

In the analysis of some model networks, including the Watts-Strogatz
small-world network, we used the method based on the enumeration of di-
rected spanning trees. This method can be applied to the estimation of the
PageRank of nodes, because the PageRank can be mapped to the influence
if we reverse links and rescale the link weight [7, 9]. Application of our
results to other centrality measures for directed networks is warranted for
future study.
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(a) (b)

0.1

0

Figure 1: Influence of nodes in networks having N = 20. A dark color of the
node represents a large value of vi. (a) Directed network generated by the
configuration model. The indegree and outdegree follow independent power-
law distributions with the scaling exponent 2.5 and the minimum degree 2.
(b) Directed Watts-Strogatz network with three shortcuts. See Sec. 3.5 and
Sec. 4 for details of the network models. The networks are visualized by
Pajek [12].
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Figure 2: Schematic of (a) weighted chain, (b) special case of weighted chain,
(c) weighted cycle, and (d) special case of weighted cycle.
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Figure 3: Schematic of (a) multipartite network, (b) super-star, and (c)
funnel.
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Figure 4: Schematic of directionally biased random network under tree ap-
proximation.
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Figure 5: vi for a directionally biased random network with N = 5000. We
set (a, b) ε = 0.5 and (c, d) ε = 0.1. In (a) and (c), vi is plotted against the
MA results. The lines represent the MA: vi = (kout

i /kin
i )/

∑N
j=1(k

out
j /kin

j ).
In (b) and (d), vi (circles) and rescaled kout

i /kin
i (squares) averaged over all

the nodes in each layer are plotted against layer number. The error bars
indicate the standard deviation obtained from vi of all the nodes in the same
layer.
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Figure 6: Schematics of directed small-world network having (a) one short-
cut, (b, c, d) two shortcuts, and (e) general number of shortcuts.
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Figure 7: vi in directed small-world networks with N = 5000. (a) Results
for small-world network with three added shortcuts. The thick, medium,
and thin lines correspond to the networks in which the mean degree of the
underlying cycle is equal to 2, 4, and 6, respectively. (b, c, d) Results for
directed small-world network with 〈k〉 = 10 and 500 rewired shortcuts. In (a)
and (c), vi is plotted against the position of the node in the underlying cycle.
In (b), vi is plotted against (kout

i /kin
i )/

∑N
j=1(k

out
j /kin

j ); the line represents
the MA result. In (d), the relationship between vi/(kout

i /kin
i ) and vi is shown.
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Figure 8: Relationships between κcr and vi. (a, b) Directionally biased
random network with N = 200 and weight of parallel links equal to ε. (c, d)
Directionally biased random network with N = 200 and weight of parallel
links equal to unity. (e, f) Directed scale-free network with N = 200. (g,
h) C. elegans neural network with N = 237. The data are plotted against
vi in (a, c, e, g) and against (kout

i /kin
i )/

∑N
j=1(k

out
j /kin

j ) in (b, d, f, h). The
lines in (a, c, e, g) represent κcr ≈ v−1

i .

25



1 L

εz εz
εz

1

εz

εzMM-1 M+11 ε ε

Figure 9: Schematic of redrawn directionally biased random network when
the pacemaker is located in layer L − M + 1 in the original directionally
biased random network.
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