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Abstract. This paper describes the traveling tournament problem, a
well-known benchmark problem in the field of tournament timetabling.
We propose an approximation algorithm for the traveling tournament
problem with the constraints such that both the number of consecutive
away games and that of consecutive home games are at most k. When
k ≤ 5, the approximation ratio of the proposed algorithm is bounded
by (2k − 1)/k + O(k/n) where n denotes the number of teams; when
k > 5, the ratio is bounded by (5k − 7)/(2k) + O(k/n). For k = 3, the
most investigated case of the traveling tournament problem to date, the
approximation ratio of the proposed algorithm is 5/3 + O(1/n); this is
better than the previous approximation algorithm proposed for k = 3,
whose approximation ratio is 2 + O(1/n).
Key words: traveling tournament problem, approximation algorithm,
lower bound, timetabling, scheduling

1 Traveling Tournament Problem

In the field of tournament timetabling, the traveling tournament problem (TTP)
is a well-known benchmark problem established by Easton, Nemhauser and
Trick [2]. The objective of TTP is to make a round-robin tournament that min-
imizes the total traveling distance of participating teams. The problem TTP
includes optimization aspects similar to those of the traveling salesman prob-
lem (TSP) and vehicle routing problems. However, TTP is surprisingly harder
than TSP: there is a 10-team TTP instance that has not yet been solved ex-
actly [6]. This contrasts starkly to TSP, for which a 10-city instance of TSP is
easy. For further discussions related to TTP and its variations, see [4, 5].

In the following, we introduce some terminology and then define TTP. We
are given a set T of n teams, where n ≥ 4 and even. Each team in T has its
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home venue. A game is specified by an ordered pair of teams. A double round-
robin tournament is a set of games in which every team plays every other team
once at its home venue and once at away (i.e., at the venue of the opponent);
consequently, exactly 2(n − 1) slots are necessary to complete a double round-
robin tournament.

Each team stays at its home venue before a tournament; then it travels to
play its games at the chosen venues. After a tournament, each team returns to its
home venue if the last game is played at away. When a team plays two consecutive
away games, the team goes directly from the venue of the first opponent to the
other without returning to its home venue.

Let V be the set of venues satisfying |V | = n. For any pair of venues i, j ∈ V ,
dij ≥ 0 denotes the distance between the venues i and j. We denote the distance
matrix (dij) by D, whose rows and columns are indexed by V . Throughout this
paper we assume that triangle inequality (dij+djk ≥ dik), symmetry (dij = dji),
and dii = 0 hold for any i, j, k ∈ V .

Given a constant (positive integer) k ≥ 3, the traveling tournament prob-
lem [2] is defined as follows.

Traveling Tournament Problem (TTP(k))
Input: a set of teams T and a distance matrix D = (dij), indexed by V .
Output: a double round-robin tournament S of n teams such that

C1. no team plays more than k consecutive away games;

C2. no team plays more than k consecutive home games;

C3. game i at j immediately followed by game j at i is prohibited;

C4. the total distance traveled by the teams is minimized.

In this paper, we assume that n is sufficiently larger than a fixed parameter k.
Constraints C1 and C2 are called the atmost constraints, and Constraint C3 is
called the no-repeater constraint. In the remainder of this paper, a double round-
robin tournament satisfying the above conditions C1–C3/C1–C4 are called a
feasible/optimal tournaments.

Various studies on TTP have been appeared in recent years, and most of them
considered TTP(3) [6]. Most of the best upper bounds of TTP instances are ob-
tained using metaheuristic algorithms; on the other hand, few researches have
been done to explore lower bounds and exact methods for TTP (see [5] for ex-
ample). Recently, three of the authors of this paper proposed (2+(9/4)/(n−1))-
approximation algorithm for TTP(3), which is the first approximation algorithm
with a constant ratio [3].

In this paper, we propose an approximation algorithm for TTP(k). When
k ≤ 5, the approximation ratio of our algorithm is bounded by (2k − 1)/k +
O(k/n); when k > 5, the approximation ratio is bounded by (5k − 7)/(2k) +
O(k/n). For k = 3, the approximation ratio of our algorithm is 5/3 + O(1/n);
that improves the approximation ratio of the previous algorithm for TTP(3),
whose ratio is 2 + (9/4)/(n− 1) = 2 + O(1/n).
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2 Algorithm

A key idea of our algorithm is the use of the Kirkman schedule and a shortest
Hamilton cycle. The classical Kirkman schedule satisfies the property that the
orders of opponents in almost all teams are very similar to a mutual cyclic
order of teams. Roughly speaking, our algorithm constructs an almost shortest
Hamilton cycle passing all the venues and finds a permutation of teams such
that the above cyclic order corresponds to the obtained Hamilton cycle.

In Section 2.1, we introduce how to make a single round-robin schedule with
a specific structure. In Section 2.2, we construct double round-robin schedules
based on the single round-robin schedule proposed in Section 2.1. In Section 2.3,
we consider an assignment of venues to teams in the schedules of Section 2.2.

In the following, “schedule without HA-assignment” means that “round-robin
schedule without concepts of home game, away game and venue.” In other words,
in a schedule without HA-assignment, only a sequence of opponents of each team
is decided, but the venues of these games are not specified.

2.1 Single Round-Robin Schedule

Denote the set of n teams by T = {0, 1, . . . , n − 1} and the set of n − 1 slots
S = {0, 1, . . . , n − 2}. A single round-robin schedule (without HA-assignment)
is a matrix K whose (t, s) element K(t, s) denotes the opponent of team t at
slot s. More precisely, K is a matrix such that

(1) rows and columns are indexed by T and S, respectively,

(2) every element of K is a team,

(3) a row of K indexed by t consists of teams T \ {t}, and

(4) for any pair (t, s) ∈ T × S, a team t′ = K(t, s) satisfies K(t′, s) = t.

The Kirkman schedule K∗ is a matrix defined by

K∗(t, s) =


s− t mod n− 1 (t 6= n− 1 and [s− t 6= t mod n− 1]),
n− 1 (t 6= n− 1 and [s− t = t mod n− 1]),
s/2 (t = n− 1 and s is even),
(s+ n− 1)/2 (t = n− 1 and s is odd).

Lemma 1. The Kirkman schedule K∗ is a single round-robin schedule.

Proof. The following table shows the Kirkman schedule with 10 teams.
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s
0 1 2 3 4 5 6 7 8

0 9 1 2 3 4 5 6 7 8
1 8 0 9 2 3 4 5 6 7
2 7 8 0 1 9 3 4 5 6
3 6 7 8 0 1 2 9 4 5

t 4 5 6 7 8 0 1 2 3 9
5 4 9 6 7 8 0 1 2 3
6 3 4 5 9 7 8 0 1 2
7 2 3 4 5 6 9 8 0 1
8 1 2 3 4 5 6 7 9 0
9 0 5 1 6 2 7 3 8 4

In the following, we prove that the Kirkman schedule satisfies Conditions:
(1) rows and columns are indexed by T and S, respectively,
(2) every element of K is a team,
(3) a row of K indexed by t consists of teams T \ {t}, and
(4) for any pair (t, s) ∈ T × S, a team t′ = K(t, s) satisfies K(t′, s) = t.

Conditions (1) and (2) are obvious.
First, we discuss condition (3). For any team t ∈ T \ {n− 1}, it is clear from

the definition that the row of K∗ indexed by t consists of teams T \{t}. Consider
the row of K∗ indexed by n− 1. For any team t ∈ T \ {n− 1}, if t ≤ n/2− 1, t
appears at slot 2t, and if n/2− 1 < t ≤ n− 2, t appears at slot 2t−n+ 1. Thus,
(n− 1)th row contains T \ {n− 1}.

Next, we consider condition (4).
Case 1: Consider the case that t ∈ T \ {n − 1} and s − t 6= t mod n − 1. The
opponent of team t at slot s, denoted by t′, satisfies t′ = s−t mod n−1. Clearly,
t′ 6= n − 1. Since s− t′ = s− (s− t) = t mod n− 1, the assumption s − t 6= t
mod n− 1 implies that s− t′ 6= t′ mod n− 1. Thus, the opponent of team t′ at
slot s satisfies K∗(t′, s) = s− (s− t) = t mod n− 1.
Case 2: Consider the case that t ∈ T \ {n − 1} and s − t = t mod n − 1. The
opponent of team t at slot s is team n − 1. When s is even, the opponent of
team n − 1 at slot s is team t′ = s/2. Since s = 2t mod n − 1 and s is even,
t′ = s/2 = t mod n− 1. If s is odd, the opponent of team n− 1 at slot s is team
t′ = (s+ n− 1)/2. Since s+ n− 1 = s = 2t mod n− 1 and s is odd, s+ n− 1
is even and thus t′ = (s+ n− 1)/2 = t mod n− 1.
Case 3: It is obvious for the case that t = n− 1. �

Next, we define HA-assignments of the Kirkman schedule. For constructing
variations of HA-assignments, we introduce a function f : U → {H,A} where
U = {i ∈ Z | i 6= 0 mod n − 1}. Given a function f , we define the negated
function ¬f : U → {H,A} by

¬f(i) =
{

H (f(i) = A),
A (f(i) = H).

Similarly, we define that ¬H is A and ¬A is H. We say that the function f is
HA-feasible if f satisfies
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(F1) ∀i,∀j ∈ U , [i = j mod n− 1 implies f(i) = f(j)], and
(F2) ∀i ∈ U , f(i) = ¬f(−i).

From the above definition, an HA-feasible function f is uniquely defined by
the sequence (f(1), f(2), . . . , f(n/2 − 1)). The second condition (F2) implies
that the sequence (f(−n/2+1), . . . , f(−2), f(−1)) is the reverse of the sequence
(¬f(1),¬f(2), . . . ,¬f(n/2−1)). Given an HA-feasible function f , we define that
for any pair of teams t, t′ ∈ T \{n−1}, the game between t and t′ is f(t′ − t)-game
of team t and ¬f(t′ − t) = f(t− t′)-game of team t′. (Here we note that H-game
means a home game, and A-game means an away game.) For constructing a
complete HA-assignment, we need to define an HA-pattern of team n − 1. We
introduce a root sequence (r0, r1, . . . , rn−2) ∈ {H,A}n−1 defined by

ri =

H (i 6= n− 3 and [i ∈ {0, 1, . . . , k − 1} mod 2k]),
A (i 6= n− 3 and [i ∈ {k, k + 1, . . . , 2k − 1} mod 2k]),
rn−2 (i = n− 3).

For example, when n = 32 and k = 5 the root sequence is

(HHHHH︸ ︷︷ ︸
k

AAAAA︸ ︷︷ ︸
k

HHHHH︸ ︷︷ ︸
k

AAAAA︸ ︷︷ ︸
k

HHHHH︸ ︷︷ ︸
k

AAAA
rn−3

H︸ ︷︷ ︸
k

rn−2

H ).

We define that team n− 1 plays rs-game at slot s and the opponent of n− 1 at
slot s plays ¬rs-game (at slot s).

As a consequence, given an HA-feasible function f (and the root sequence),
we can construct an HA-assignment of the Kirkman schedule K∗ as follows. For
any pair (t, s) ∈ T × S,

at slot s, team t plays

f(s− 2t)-game (t 6= n− 1 and [s− t 6= t mod n− 1]),
¬rs-game (t 6= n− 1 and [s− t = t mod n− 1]),
rs-game (t = n− 1).

When t 6= n− 1 and [s− t 6= t mod n− 1], the opponent of team t, denoted by
K∗(t, s), is defined by K∗(t, s) = s− t mod n− 1 and team t plays f(K∗(t, s)−
t)-game at slot s. Thus, K∗(t, s) − t = (s − t) − t = s − 2t mod n − 1 and
Definition (F1) implies f(K∗(t, s) − t) = f(s − 2t). The remaining cases are
trivial.

Next, we define variations of HA-assignments by introducing k HA-feasible
functions f1, f2, . . . , fk. For each α ∈ {1, 2, . . . , k}, we settle a function fα by
a sequence (fα(1), fα(2), . . . , fα(n/2− 1)), defined below. First, we consider an
infinite sequence that contains k consecutive ‘A’s and k consecutive ‘H’s alter-
nately. Next, we clip a sequence of length n/2− 1 whose top k − α+ 1 elements

are (

k−α︷ ︸︸ ︷
A,A, . . . ,A,H). Lastly, we set the first and second elements to ‘A’ and

change the penultimate element to the same element as the last (if it is re-
quired). When k = 3, we additionally set the third and fourth elements to ‘H.’
For example, when n = 32 and k = 5, the sequence
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Fα = (fα(−15), . . . , fα(−2), fα(−1), ∗, fα(1), fα(2), . . . , fα(15))
becomes
F1 = (AAHHHHAAAAAHHHH ∗AAAAHHHHHAAAAHH)
F2 = (AAHHHHHAAAAAHHH ∗AAAHHHHHAAAAAHH)
F3 = (AAAHHHHHAAAAAHH ∗AAHHHHHAAAAAHHH)
F4 = (AAAAHHHHHAAAAHH ∗AAHHHHAAAAAHHHH)
F5 = (AAAAAHHHHHAAAHH ∗AAHHHAAAAAHHHHH).

In the rest of this paper, Xα (α ∈ {1, 2, . . . , k}) denotes the Kirkman schedule
with an HA-assignment induced by an HA-feasible function fα.

2.2 Feasible Double Round-Robin Schedule

In the previous section, we introduced an HA-feasible function fα, the sequence

Fα = (fα(−n/2 + 1), . . . , fα(−2), fα(−1), ∗, fα(1), fα(2), . . . , fα(n/2− 1))

and the Kirkman schedule (with an HA-assignment)Xα for any α ∈ {1, 2, . . . , k}.
We set the center element (denoted by ∗) of Fα to A or H, and denote the
obtained sequence by FA

α or FH
α , respectively. Here we assume that the first

element of FA
α is adjacent with the last element of FA

α (and similarly assume
for FH

α ). Then an HA-pattern of team t ∈ T \{n−1} in schedule Xα is obtained
by a cyclic permutation of sequence FA

α or FH
α . In addition, the HA-pattern of

team n− 1 in schedule Xα is obtained by the root sequence.
From the definition of HA-feasible functions f1, f2, . . . , fk and the root se-

quence, the following property holds.

Theorem 1. For any single round-robin schedule Xα ∈ {X1, X2, . . . , Xk}, Xα sat-
isfies the atmost constraints.

Proof. It is clear from the fact that the HA-pattern of team t ∈ T \ {n − 1}
in schedule Xα is obtained by a cyclic permutation of sequence FA

α or FH
α . For

team n− 1, it is obvious. �

Next, we show a property of sequences FA
α and FH

α , which plays an important
role in constructing a double round-robin schedule.

Lemma 2. For any α ∈ {1, 2, . . . , k}, (1) every consecutive three elements of
the cyclic sequence FA

α is neither (HAH) nor (AHA); (2) every consecutive three
elements of the cyclic sequence FH

α is neither (HAH) nor (AHA).

Proof. First, consider the cyclic sequence FA
α . In the following, denote the ele-

ments of FA
α by (FA

α (−n/2 + 1), FA
α (−n/2 + 2), . . . , FA

α (n/2− 1)).
When k ≥ 4, the subsequence (FA

α (−4), FA
α (−3), . . . , FA

α (4)), denoted by F ′α,
satisfies that

F ′α =


(
−4

H
−3

H
−2

H
−1

H
0

A
1

A
2

A
3

A
4

A) (if k − α ≥ 4),
(A H H H A A A A H) (if k − α = 3),
(A A H H A A A H H) (if k − α = 2),
(A A H H A A A H H) (if k − α = 1),
(A A H H A A A H H) (if k − α = 0).
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Thus, every consecutive three elements of F ′α satisfies the required property.
When k = 3, the subsequence (FA

α (−6), FA
α (−5), . . . , FA

α (6)), denoted by F ′′α ,
satisfies that

F ′′α =

 (
−6

H
−5

A
−4

A
−3

A
−2

H
−1

H
0

A
1

A
2

A
3

H
4

H
5

H
6

A) (if α = 1),
(H H A A H H A A A H H A A) (if α = 2),
(H H A A H H A A A H H A A) (if α = 3).

Thus, every consecutive three elements of F ′′α satisfies the required property.
The subsequence

(FA
α (n/2− 4), FA

α (n/2− 3), FA
α (n/2− 2), FA

α (n/2− 1),
FA
α (−n/2 + 1), FA

α (−n/2 + 2), FA
α (−n/2 + 3), FA

α (−n/2 + 4))

is contained in a set of sequences defined by

(
n/2−4

A
n/2−3

A
n/2−2

A
n/2−1

A
−n/2+1

H
−n/2+2

H
−n/2+3

H
−n/2+4

H ),
( H A A A H H H A ),
( H H A A H H A A ),
( A A H H A A H H ),
( A H H H A A A H ),
( H H H H A A A A )


.

Every sequence in the above set satisfies that every consecutive three elements
is neither (HAH) nor (AHA). Since k ≥ 3, remained subsequences of consecutive
three elements satisfy the required property.

For the cyclic sequence FH
α , the result can be proved in a similar way. �

Lemma 2 and the definition of the root sequence imply the following.

Corollary 1. For any single round-robin schedule Xα ∈ {X1, X2, . . . , Xk}, Xα

satisfies: (1) the HA-pattern of each team at slots (n− 2, 0, 1) is neither (HAH)
nor (AHA); (2) the HA-pattern of each team at slots (n− 3, n− 2, 0) is neither
(HAH) nor (AHA).

For any α ∈ {1, 2, . . . , k}, given a single round-robin schedule Xα defined
above, we construct a double round-robin schedule as follows. First, we construct
a single round-robin schedule, denoted by Yα, by exchanging the first slot for the
last slot of Xα. Next, we construct a double round-robin schedule by the ordinary
mirroring as follows. Denote Yα the schedule obtained from Yα by reversing the
home and away. We concatenate two single round-robin schedules Yα and Y α to
obtain a double round-robin schedule, denoted by Zα.

Theorem 2. For any α ∈ {1, 2, . . . , k}, both of the single round-robin schedules
Yα and Yα satisfy the atmost constraints.

Proof. First, we consider the schedule Yα. Assume on the contrary the case
that there exist a team t ∈ T and consecutive k + 1 slots (s, s + 1, . . . , s + k)
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where team t plays home games at slots in (s, s + 1, . . . , s + k). Theorem 1
states that schedule Xα satisfies the atmost constraints. Thus the set of slots
{s, s+ 1, . . . , s+k} includes slot 0 or slot n−2, i.e., either s = 0 or s+k = n−2
holds.
Case 1: Consider the case that s = 0. If team t plays a home game at slot n− 2
in schedule Yα, then team t plays a home game at slot 0 in schedule Xα. Thus,
team t has consecutive home games with length k+1 at slots (0, 1, . . . , k) in Xα,
which contradicts with the fact that Xα satisfies the atmost constraints, shown
in Theorem 1. When team t plays an away game at slot n − 2 in schedule Yα,
team t plays an away game at slot 0 in schedule Xα. Then the HA-pattern of
team t at slots (n − 2, 0, 1) in schedule Xα is (HAH), which contradicts with
Corollary 1.
Case 2: We can deal with the case that s+ k = n− 2 in a similar manner.

In the remained cases, we can derive contradiction similarly. From the above,
Yα satisfies the atmost constraints.

It is obvious that Yα also satisfies the atmost constraints. �

Theorem 3. For any double round-robin schedule Zα ∈ {Z1, Z2, . . . , Zk}, Zα is
a feasible schedule.

Proof. The schedule Zα ∈ {Z1, Z2, . . . , Zk} is obtained by concatenating Yα
and Yα. It is obvious that schedule Zα satisfies the no-repeater constraint.

Assume on the contrary the case that there exist a team t ∈ T and consecutive
k+ 1 slots (s, s+ 1, . . . , s+ k) where team t plays home games at slots in (s, s+
1, . . . , s+ k). Theorem 2 states that the single round-robin schedules Yα and Yα
satisfy the atmost constraints. Thus, the set of slots {s, s+1, . . . , s+k} includes
both slot n− 2 and slot n− 1. Since k ≥ 3, {s, s+ 1, . . . , s+ k} contains either
{n− 3, n− 2, n− 1} or {n− 2, n− 1, n}.
Case 1: Consider the case that {s, s+ 1, . . . , s+ k} ⊇ {n− 3, n− 2, n− 1}. The
HA-pattern of team t at slots (n− 3, n− 2, n− 1) in schedule Zα is (HHH). Here
we note that
(1) slot n− 3 in schedule Zα corresponds to slot n− 3 in Xα,
(2) slot n− 2 in schedule Zα corresponds to slot 0 in Xα, and
(3) slot n − 1 in schedule Zα is obtained from slot n − 2 in schedule Xα by
reversing the home and away.
Then the HA-pattern of team t at slots (n−3, n−2, 0) in schedule Xα is (HAH),
which contradicts with Corollary 1.
Case 2: We can deal with the case that {s, s+ 1, . . . , s+ k} ⊇ {n− 2, n− 1, n}
in a similar manner.

In the remained cases, we can derive contradiction similarly.
The above discussion concludes that Zα satisfies the atmost constraints. �

2.3 Assignment of Venues

In Section 2.1, we defined that T is a set of teams and described a method
for constructing a double round-robin schedule of teams in T . In this section,
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we say that T is a set of imaginary teams (without venues) and each venue
in V represents a real team. We propose an algorithm for finding a bijection
between the set of venues V and the set of imaginary teams T . In this section,
‘a team t ∈ T ’ means ‘an imaginary team t ∈ T .’

Herein, we describe our algorithm. First, we choose α ∈ {1, 2, . . . , k} ran-
domly and construct a double round-robin schedule Zα with imaginary teams T .
Next, we apply Christofides’ algorithm for the traveling salesman problem to a
complete undirected graph with vertex set (venue set) V and edge length de-
fined by D, and obtain a Hamilton cycle HC. (Here we note that the length of
an undirected edge is well-defined by D, since D satisfies symmetry dij = dji.)
We denote a Hamilton cycle HC by a sequence (v0, v1, . . . , vn−1) of vertices
(venues). Lastly, we choose β ∈ {0, 1, . . . , n−1} randomly and construct a bijec-
tion π : T → V defined by π(i) = vj where T = {0, 1, . . . , n − 1} and j = i + β
mod n.

To determine an expected value of total traveling distance obtained by the
above algorithm, we introduce an undirected graph Gα defined by a double
round-robin schedule Zα. The graph Gα has a vertex set T , and a (multi) edge
set E(α) with partition {Et(α) | t ∈ T} where every edge in a multiset Et(α)
corresponds to a move of team t ∈ T in Zα. More precisely, multiset Et(α)
consists of following (at most) four types of edges;
(1) when team t plays two consecutive away games, Et(α) includes an edge
between two opponents,
(2) when team t plays consecutive pair of home and away games, Et(α) includes
an edge between t and opponent of the away game,
(3) if t plays away game at first slot, Et(α) includes an edge between t and
opponent in the away game,
(4) if t plays away game at last slot, Et(α) includes an edge between t and
opponent in the away game.
If we have a bijection π : T → V , the corresponding total traveling distance
becomes

∑
{i,j}∈E(α) dπ(i)π(j).

Next, we define a partition of E(α) consists of three subsets, called irregular
edges, regular Hamilton edges, and regular non-Hamilton edges. For any t ∈ T ,
an edge e in Et(α) is called irregular if e satisfies at least one of the following
conditions;
(I1) e has at least one parallel edge in Et(α),
(I2) e connects a pair of vertices in {t− 5, t− 4, . . . , t+ 5} ∪ {n− 2, n− 1, 0} ∪
{t− n/2 + 1, t− n/2 + 2, t− n/2 + 3} ∪ {t+ n/2− 3, t+ n/2− 2, t+ n/2− 1},
where every integer t+ i appearing above corresponds to a vertex (team) t′ ∈ T
with t′ = t+ i mod n,
(I3) e corresponds to a move between a pair of slots in {(0, 1), (n − 3, n − 2),
(n− 2, n− 1), (n− 1, n), (2n− 4, 2n− 3)},
(I4) e corresponds to a move caused by an away game at first slot (if it exists),
(I5) e corresponds to a move caused by an away game at last slot (if it exists),
(I6) e ∈ En−1(α), i.e., e corresponds to a move of team n− 1.
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Every non-irregular edge in E(α) is called regular. If a regular edge in E(α)
connects a pair of vertices {t, t′} with t′ = t+1 mod n, the edge is called regular
Hamilton. Here we note that every regular Hamilton edge corresponds to an edge
in Hamilton cycle H∗ defined by cyclic sequence (0, 1, . . . , n− 1) of T . The rests
of regular edges in E(α) are called regular non-Hamilton edges.

In the following, we determine the number of irregular edges in E(α). For
any team t ∈ T , undirected graph (T,Et(α)) is an Eulerian graph such that
every vertex t′ ∈ T \ {t} has two incident edges. Thus, every pair of vertices
has at most two parallel edges corresponding to consecutive three games with
the HA-pattern (H,A,H). From the definition of Zα, the number of vertex pairs
with parallel edges in Et(α) is bounded by a constant and thus the number
of irregular edges in Et(α) satisfying Condition I1 is bounded by a constant.
Obviously, the number of irregular edges in Et(α) satisfying Conditions I2–I5 is
also bounded by a constant. Consequently, for any team t ∈ T \ {n− 1}, Et(α)
contains a constant number of irregular edges. Since |En−1(α)| = O(n), the total
number of irregular edges in E(α) is O(n).

Next, we discuss the number of regular Hamilton edges. Every regular Hamil-
ton edge corresponds to a consecutive pair of away games of a team t ∈ T \{n−1}.
Thus, every team t ∈ T \ {n− 1} has at most (2n− 2)(k− 1)/(2k) ≤ n(k− 1)/k
regular Hamilton edges.

Finally, every regular non-Hamilton edge corresponds to a consecutive pair
of home game and away game of a team t ∈ T \ {n − 1}. Consequently, every
team t ∈ T \ {n− 1} has at most (2n− 2)2/(2k) ≤ 2n/k regular non-Hamilton
edges.

The below table shows upper bounds of sizes of three sets.

irregular edges O(n)
regular Hamilton edges n(n− 1)(k − 1)/k
regular non-Hamilton edges 2n(n− 1)/k

3 Lower Bounds

In the rest of this paper, we consider a complete undirected graph G with vertex
set (venue set) V and edge length defined by the distance matrix D. We can
relate every move of a real team to an undirected edge in G.

Let Ψ∗ be an optimal tournament of a given instance and ψ∗ the optimal
value. In the tournament Ψ∗, each real team v ∈ V visits every venue of opponent
exactly once, and we call the sequence of moves of v among venues a tour of v.
For each real team v ∈ V, ψ∗v denotes a tour distance of team v in Ψ∗. Obviously,∑
v∈V ψ

∗
v = ψ∗ holds.

Let η∗ be the length of shortest Hamilton cycle of a complete undirected
graph G. Since distance matrix D satisfies triangle inequalities, ψ∗v ≥ η∗ holds
for any v ∈ V . Consequently, we have the following lemma.

Lemma 3. The length η∗ of a shortest Hamilton cycle satisfies that ψ∗ ≥ nη∗.
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For each real team v ∈ V , ψhome
v denotes the sum of distances correspond-

ing to moves leaving or returning to its home v. We introduce a ratio a∗ =
(
∑
v∈V ψ

home
v )/ψ∗. Let τ∗ be the length of minimum spanning tree of a complete

undirected graph G. Then we have the following.

Lemma 4. The length τ∗ of a minimum spanning tree satisfies (1− a∗

2 )ψ∗≥ nτ∗.

Proof. For each real team v ∈ V , the tour of v in Ψ∗ consists of subcycles in the
complete undirected graph G, in which each subcycle includes vertex v. Each
subcycle includes exactly two edges incident to vertex v. If we delete a longer
edge in two edges incident to v for each subcycle, we obtain a spanning tree,
whose length is denoted by ψtree

v . Clearly, an inequality ψtree
v ≥ τ∗ holds. Since we

deleted longer edge alternatively, the sum of distances of deleted edges ψ∗v−ψtree
v

is greater than or equal to (1/2)ψhome
v . Thus, we have the following:

(1− a∗/2)ψ∗ = ψ∗ − (1/2)a∗ψ∗ =
∑
v∈V ψ

∗
v − (1/2)

∑
v∈V ψ

home
v

=
∑
v∈V (ψ∗v − (1/2)ψhome

v ) ≥
∑
v∈V ψ

tree
v ≥

∑
v∈V τ

∗ = nτ∗. �

We denote the sum total of distances of ordered pairs of venues by ∆,
i.e., ∆ def.=

∑
v∈V

∑
u∈V dvu.

Lemma 5. The sum of distances ∆ satisfies (a∗ + k−2
2 )ψ∗ ≥ ∆.

Proof. For each real team v ∈ V , the tour of v in Ψ∗ consists of subcycles in
the complete undirected graph G, such that each subcycle includes vertex v.
We denote the set of subcycles by Γv. For each subcycle C ∈ Γv, we denote the
(weighted) length of C by ψ∗v(C) and sum of lengths of two edges in C incident to
vertex v by ψhome

v (C). Clearly,
∑
C∈Γv

ψ∗v(C) = ψ∗v and
∑
C∈Γv

ψhome
v (C) = ψhome

v

hold. For each subcycle C ∈ Γv, C also denotes the set of vertices in C. We
denote the number of vertices in C by |C|.

Next, we show that for each cycle C ∈ Γv, the inequality∑
u∈C\{v} dvu ≤ ψhome

v (C) + (k − 2)(1/2)ψ∗v(C) (1)

holds. When |C| = 2, Inequality (1) obviously holds. Next, consider the case
|C| ≥ 3. For each vertex u in C \ {v}, subcycle C consists of two paths be-
tween v and u and thus symmetry and triangle inequalities imply the inequality
dvu ≤ (1/2)ψ∗v(C) and a (loose) inequality

∑
u∈C\{v} dvu ≤ (|C|−1)(1/2)ψ∗v(C).

Employing the value ψhome
v (C), we obtain a (tight) inequality as follows∑

u∈C\{v} dvu ≤ ψ
home
v (C) + (|C| − 3)(1/2)ψ∗v(C)

≤ ψhome
v (C) + (k − 2)(1/2)ψ∗v(C),

where the last relationship comes from the fact that every subcycle corresponds
to consecutive away games and thus |C| ≤ k + 1.
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The inequality (1) directly implies the following:

∆ =
∑
v∈V

∑
u∈V

dvu =
∑
v∈V

∑
u∈V \{v}

dvu =
∑
v∈V

∑
C∈Γv

∑
u∈C\{v}

dvu


≤
∑
v∈V

∑
C∈Γv

(
ψhome
v (C) +

k − 2
2

ψ∗v(C)
)

=
∑
v∈V

(∑
C∈Γv

ψhome
v (C) +

k − 2
2

∑
C∈Γv

ψ∗v(C)

)

=
∑
v∈V

(
ψhome
v +

k − 2
2

ψ∗v

)
= a∗ψ∗ +

k − 2
2

ψ∗. �

4 Approximation Ratio

Here we discuss the approximation ratio of our algorithm. Let (v0, v1, . . . , vn−1)
be a sequence of vertices (venues) corresponding to Hamilton cycle HC ob-
tained by Christofides’ algorithm. Our algorithm chooses β ∈ {0, 1, . . . , n − 1}
randomly and construct a bijection π : T → V defined by π(i) = vj where
T = {0, 1, . . . , n− 1} and j = i+ β mod n.

First, we consider the sum of weights of irregular edges, denoted by a random
variableWIR. For each irregular edge (t, t′) connecting t, t′ ∈ T, π(t) (and π(t′)) is
randomly assigned to a vertex in V . For any v ∈ V , the triangle inequalities imply
that dπ(t)π(t′) ≤ dπ(t)v+dvπ(t′), and thus dπ(t)π(t′) ≤ (1/n)

∑
v∈V (dπ(t)v+dvπ(t′))

holds. The expectation of dπ(t)π(t′) with respect to random selection of β satisfies

E[dπ(t)π(t′)] ≤
(

1
n

)∑
v∈V

(
E[dπ(t)v] + E[dvπ(t′)]

)
=
(

1
n

)∑
v∈V

((
1
n

)∑
u∈V

duv +
(

1
n

)∑
u∈V

dvu

)
=
(

2
n2

)∑
v∈V

∑
u∈V

duv =
(

2
n2

)
∆.

As discussed in Section 2.3, the number of irregular edges is bounded by O(n)
and consequently E[WIR] ≤ O(n)(2/n2)∆ = O(1/n)∆ holds.

Next, we consider the sum of weights of regular Hamilton edges, denoted
by WRH. On the length of HC, the following is a well-known theorem.

Lemma 6. [1] The length of HC is less than or equal to τ∗+ (1/2)η∗, where τ∗

and η∗ denote the length of minimum spanning tree and shortest Hamilton cycle
of a complete undirected graph G.

Since regular Hamilton edges in H∗ are contained in Hamilton cycle HC for
any β ∈ {0, 1, . . . , n − 1}, the above randomization implies that the expecta-

tion satisfies E[WRH] ≤ n(n− 1)(k − 1)
k

(ηC
n

)
≤ (n− 1)(k − 1)

k
(τ∗ + (1/2)η∗),

where ηC denotes the length of HC.
Lastly, we consider the sum of weights of regular non-Hamilton edges, de-

noted by WRnH. Recall that every regular non-Hamilton edge corresponds to a
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consecutive pair of a home game and an away game of a team t ∈ T \ {n − 1}.
We fix team t ∈ T \ {n− 1}, β ∈ {0, 1, . . . , n− 1}, and permutation π : T → V
with respect to β. For any team t′ ∈ T \ {t, n − 1}, a regular non-Hamilton
edge corresponding to a move of team t (real team π(t)) between venues π(t)
and π(t′) appears with probability at most 2/k with respect to random choice
of α ∈ {0, 1, . . . , k − 1} (and consequently sequence Fα), because our algorithm
constructs a double round-robin tournament by mirroring. Thus, we have that

E[WRnH] ≤
∑

t∈T\{n−1}

∑
β∈{0,1,...,n−1}

(
1
n

) ∑
t′∈T\{n−1,t}

(
2
k

)
dπ(t)π(t′)


≤
∑
t∈T

∑
β∈{0,1,...,n−1}

(
1
n

)(∑
t′∈T

(
2
k

)
dπ(t)π(t′)

)

=
(

2
kn

) ∑
β∈{0,1,...,n−1}

(∑
t∈T

∑
t′∈T

dπ(t)π(t′)

)
=
(

2
k

)
∆.

Finally, we determine the approximation ratio of our algorithm.

Theorem 4. When k ≤ 5, the approximation ratio of our algorithm is bounded
by (2k−1)/k+O(k/n). If k > 5, the ratio is bounded by (5k−7)/(2k)+O(k/n).

Proof. From the above discussion, the expectation of the objective value of a
solution obtained by our algorithm satisfies that

E[WIR +WRH +WRnH] ≤ O(1/n)∆+
(n− 1)(k − 1)

k
(τ∗ + (1/2)η∗) + (2/k)∆

≤ O(1/n)∆+
k − 1
k

nτ∗ +
k − 1

2k
nη∗ + (2/k)∆

≤ O(1/n)
(
a∗ +

k − 2
2

)
ψ∗ +

k − 1
k

(
1− a∗

2

)
ψ∗ +

k − 1
2k

ψ∗ +
(

2
k

)(
a∗ +

k − 2
2

)
ψ∗

≤ O(k/n)ψ∗ +
a∗(5− k) + (5k − 7)

2k
ψ∗.

When k ≤ 5, a∗ = 1 gives an upper bound (2k − 1)/k + O(k/n) of the approxi-
mation ratio. For k > 5, a∗ = 0 gives an upper bound (5k − 7)/(2k) + O(k/n).

�
We note that, if we run our algorithm for every pair of α ∈ {1, 2, . . . , k} and

β ∈ {0, 1, . . . , n − 1}, the above approximation ration can be always attainable
in polynomial time.
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