Pricing Swing Options
in an Incomplete Market

Yusuke TASHIRO
(Communicated by Kazuo MUROTA)

METR 2009–43 September 2009
The METR technical reports are published as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.
Pricing Swing Options in an Incomplete Market

Yusuke TASHIRO

September, 2009

Abstract

We propose a pricing method by mathematical programming for typical swing options on a lattice model. An important feature of our method is the capability to price swing options in an incomplete market. In an incomplete market, the price of a swing option is defined as an upper and a lower bound of arbitrage-free prices. We formulate the problem of finding an upper bound as a linear program. For a lower bound, we give a bilinear programming formulation.

We also show that the problem of pricing typical swing options has a particular optimal solution such that there are only seven kinds of changed amounts in the solution. Using the solution, we improve upon the result of the previous works of Jaillet, Ronn and Tompaidis (2004) and Barrera-Esteve, Bergeret, Dossal, Gobet, Meziou, Munos and Reboul-Salze (2006).

1 Introduction

With recent deregulation of energy markets, many derivative instruments have been designed. Some of these are swing options. Swing options are generally traded in gas and electricity markets. A holder of a swing option buys fixed amount of energy from an option seller at fixed dates, and then the holder also has rights to change the amount at some times. The amount is subject to daily and periodic (monthly or annual) constraints. The number of rights is also limited. The option holder changes the amount depending on their purpose, such as maximizing-profit and request of demand.

The valuation of swing options is known to be more difficult than that of vanilla options, because swing options have not only timing constraints but also volume constraints. Typical techniques for pricing swing options are the least-squares Monte-Carlo method and dynamic programming.

The least-squares Monte-Carlo method was applied by Longstaff and Schwartz [9] to American option pricing. Dörr [3], Meinshausen and Hambly [10] and Barrera-Esteve et al. [1] extended the least-squares Monte-Carlo method to swing options.

On the other hand, dynamic programming was studied by Jaillet et al. [7], Lari-Lavassani et al. [8] and Thompson [13]. They expressed the underlying asset price process on a lattice and computed the option price by the backward procedure.

However, these techniques do not cover every setting of swing options. First, these techniques are applicable to the pricing problem in a complete market. This setting is usual, but not adequate when a market is incomplete. Second, with these techniques, it is difficult to consider changed volume as a continuous value, so that some discretized values are used. Thus, these techniques may give biased price.
Our approach is pricing by mathematical programming. Mathematical programming is flexible enough to add constraints as conditional expressions. Swing option pricing by mathematical programming can also treat changed amount as a continuous variable. Haarbrücker and Kuhn [5] and Steinbach and Vollebrecht [12] recently studied swing option pricing. Haarbrücker and Kuhn [5] proposed the valuation of swing options with ramping constraints on a scenario tree. Steinbach and Vollebrecht [12] proposed the valuation technique by reducing a scenario tree and using a scenario fan.

Our swing option setting is typical and similar to that of Jaillet et al. [7]. Our swing option has local (daily) constraints, global (annual) constraints, and timing constraints. Our formulation is based on a scenario lattice. However, on a lattice, a formulation that is similar to that of previous works by mathematical programming is not successful because swing options are path-dependent options. Thus, to begin with, we decompose the lattice to a tree, formulate the pricing problem on the tree, and find an optimal solution that has particular changed amounts. Then using the particular solution, we formulate the pricing problem on the lattice. Furthermore, the particular solution improves the method of Jaillet et al. [7] in terms of the time complexity, and that of Barrera-Esteve et al. [1] in terms of computation time and accuracy.

An advantage of our approach is that the formulated pricing problem can be extended to that in an incomplete market. In an incomplete market, we define the pricing problem as the problems of finding an upper bound and a lower bound of “arbitrage-free prices”. For American options, Föllmer and Schied [4] showed a pricing method using the Snell envelope in a discrete case. Pennanen and King [11] and Camci and Pinar [2] studied pricing of American options by stochastic programming in an incomplete market. These pricing methods are performed under the martingale probability for the underlying asset. In energy markets, it is difficult to store the underlying asset, so that the pricing is meaningless under the martingale probability for the underlying asset. However, there are futures contracts and some tradable products that relate to the underlying asset process in energy markets. We then use the martingale probability Q for these products, and we formulate the upper and lower bound problems of swing options as mathematical programming in an incomplete market.

The paper is organized as follows. Section 2 provides the definition of swing options and a formulation of the pricing problem on a tree. Section 3 shows a particular solution of the pricing problem on a tree, and using the particular solution, formulates the efficient pricing problem as mathematical programming on a lattice. In Section 4, the solution also improves upon speed and accuracy of other pricing methods. Section 5 focuses on the pricing problem in an incomplete market, and formulates the upper and the lower bound problem. In addition, we design a backward algorithm to compute the upper and lower bounds and show a numerical result. Section 6 concludes.

2 The model

2.1 Swing options

There are a buyer and a seller of energy. They close a contract to buy some amount u_t of energy at a strike price of K_t at date $t = t_i$ ($i = 0, 1, \ldots, T - 1$). A swing option in this paper is defined as rights to change of delivery amount with this contract. When a swing option is added to the contract, the buyer can change the amount from u to $u + v_t$ up to $L(\leq T)$ times at $t = t_0, t_1, \ldots, t_{T-1}$ under some constraints. One of the constraints is a
local constraint for DCQ (Daily Contract Quantity)
\[v_{\text{min}} \leq v_t \leq v_{\text{max}}, \]
where \(v_{\text{min}} \leq 0, v_{\text{max}} \geq 0, \) and \(v_{\text{min}} \) and \(v_{\text{max}} \) are time-invariant. Total changed amount is also limited by a global constraint for ACQ (Annual Contract Quantity)
\[V_{\text{min}} \leq \sum_{t=0}^{T-1} v_t \leq V_{\text{max}}. \]
Furthermore, the interval of exercise is also restricted. The option holder exercising a right at \(t_i \) cannot change amount during \(t_i < t < t_i + \Delta t_R. \) Here \(\Delta t_R \) is called the refraction time.

2.2 Asset price processes and profits

We describe an asset price process on a scenario lattice. Figure 1 is an example of our scenario lattice. Such a lattice is often called a trinomial tree. Let \(N \) denote the set of nodes of a lattice, \(S_n \) the underlying asset price\(^1\) at node \(n, \) and \(N_t \) the set of nodes at \(t_i. \) We denote by \(B(n) \) and \(C(n) \) the set of parents and children of node \(n, \) respectively. In this paper, we call a lattice with \(|B(n)| \leq 1\) for any \(n \) as a tree. We define \(p_{mn}(>0) \) as the transition probability from node \(n \) to node \(m (m \in C(n)). \) Concerning the probability at node \(n, \) inflow must be equal to outflow, so that the following equation holds for each \(n: \)
\[
\sum_{m \in B(n)} p_{mn} = \sum_{k \in C(n)} p_{nk}.
\]

![Figure 1: An example of a scenario lattice](image)

In this example, at node 6, \(p_{16} + p_{26} + p_{36} \) must be equal to \(p_{6,11} + p_{6,12} + p_{6,13}. \) Such relation (equation (1)) holds at each node.

At each node, a buyer may change amount of energy. We assume a buyer faces not demand problems but financing problems. Namely, we permit a buyer to sell excess amount at a market price. Then a profit made by changed amount \(v_n \) at node \(n \) is represented as
\[v_n(S_n - K_n). \]

2.3 Pricing on a tree

We assume that a buyer is rational; thus we define the price of a swing option as the maximum expected value of the total profit. Our aim is pricing swing options by mathematical programming on a lattice. On a formulation using mathematical programming,

\(^1\)\(S_n \) is already discounted by a risk-free asset. We also discount a strike price \(K_n \) that is equal to \(K_t (n \in N_t). \)
the number of variables is proportional to the number of states on the model. However, because of the constraints for ACQ, states of a node are path-dependent. The number of states on a model is generally proportional to the number of paths.

Example 1. Let us consider a swing option in Figure 1. We assume that a buyer exercises a right at node 1 with \(v_1 = 1 \) and exercises a right at node 2 with \(v_2 = 2 \). Then at node 6, the state from node 1 and that from node 2 are different.

For dealing with path-dependence of swing options, we first decompose the lattice into a tree and consider pricing on a tree. Here decomposing the lattice into a tree means that any node that has more than one parent is decomposed into nodes such that each node has only a parent. Then the number of paths is equal to the number of nodes in the maturity on the tree. Thus a path-dependent formulation is equivalent to that on the tree, and we consider the pricing problem on the tree.

Let \(M_i \) denote the set of nodes of a tree at \(t_i \) and \(e_n \) denote a variable representing whether or not a right is exercised at node \(n \) of a tree. For example, \(e_n = 1 \) means an exercise of a right at node \(n \). Then the optimization problem of maximizing the expected value is as follows:

\[
\begin{align*}
\max_{v, e} & \quad E[v_n(S_n - K_n)] \\
\text{s.t.} & \quad v_{\min} e_n \leq v_n \leq v_{\max} e_n \quad (n \in \mathcal{M}_T) \\
& \quad V_{\min} \leq \sum_{m \in \mathcal{A}(n)} v_m \leq V_{\max} \quad (n \in \mathcal{M}_{T-1}) \\
& \quad \sum_{m \in \mathcal{A}(n)} e_m \leq L \quad (n \in \mathcal{M}_{T-1}) \\
& \quad e_n \in \{0, 1\} \quad (n \in \mathcal{M}_{T-1}) \\
& \quad e_n + e_m \leq 1 \quad (n \in \mathcal{M}_i, m \in \mathcal{M}_{j,n}, i < j, t_j - t_i < \Delta t_R)
\end{align*}
\]

where \(\mathcal{M}_{T-} = \{ n \mid n \in \mathcal{M}_i, i \leq T - 1 \} \), \(\mathcal{M}_{i,n} \) is the set of node \(m \in \mathcal{M}_i \) such that \(m \) is a sink node of node \(n \), and \(\mathcal{A}(n) \) is the path history from the root to node \(n \).

3 **Pricing on a lattice**

In subsequent sections, we assume for simplicity that \(t_{i+1} - t_i = \Delta t \) \((i = 0, \ldots, T - 1) \) and the refraction time \(\Delta t_R = \Delta t \). The extension to general \(t_i \) is easy.

3.1 **A particular solution**

In Section 2, we formulated pricing on a tree made of a lattice. However, the tree may have an exponential number of nodes, so that exponential time is necessary to solve Problem (2). We aim to reduce the time to be proportional to the number of nodes on the lattice.

We focus on a value of changed amount \(v_n \). If the value of \(v_n \) is chosen from a discrete set \(\{v^1, \ldots, v^k\} \), the number of states on a lattice can be described as the number of possible combinations of exercise times with each of \(v^i \). The following theorem shows that there is a particular optimal solution in terms of a value of \(v_n \).

Theorem 1. In the set of optimal solutions of Problem (2), there is a solution such that there are at most seven kinds of values of \(v_n \) in the solution.

Proof. First, without loss of generality we can change the constraints of Problem (2) from \(\sum_{m \in \mathcal{A}(n)} e_m \leq L \) to \(\sum_{m \in \mathcal{A}(n)} e_m = L \), because if there is a path with \(\sum_{m \in \mathcal{A}(n)} e_m < L \),
the path satisfies \(\sum_{m \in A(n)} e_m = L \) by the exercise of residual rights with zero amount at non-exercised nodes. We name this modified problem as \((P') \).

We define two properties of node \(n \):

- “bang-bang”: \(e_n = 1 \) and \(v_n \in \{v_{\text{min}}, v_{\text{max}}\} \),
- “non bang-bang”: \(e_n = 1 \) and \(v_n \neq v_{\text{min}}, v_{\text{max}} \).

We also define a property of a path \(l \):

- “tight”: \(\sum_{m \in l} v_m = V_{\text{min}} \) or \(\sum_{m \in l} v_m = V_{\text{max}} \).

Concerning Problem \((P') \), the next lemma holds:

Lemma 1. Problem \((P') \) has an optimal solution with the following property:

- For any node \(n \) with “non bang-bang” such that \(\sum_{m \in A(n)} e_m < L \), there is a “tight” path \(l \) such that \(n \in l \) and if \(m \in l \) is a sink node of node \(n \) then node \(m \) is not “non bang-bang”.

Proof. We assume that there is no optimal solution with the above property, and we take an optimal solution. Then in the solution, for some node \(n \) with “non bang-bang” such that \(\sum_{m \in A(n)} e_m < L \), any “tight” path including node \(n \) includes a “non bang-bang” node \(m \) under node \(n \). We focus on such nodes \(n \) and \(m \). We can consider two transformations of the optimal solution with no effect on global constraints:

- to decrease the value \(v_n \) by \(\Delta \) and increase the value \(v_m \) by \(\Delta \),
- to increase the value \(v_n \) by \(\Delta \) and decrease the value \(v_m \) by \(\Delta \),

where \(\Delta \) is a sufficiently small positive constant. At least one transformation does not reduce the objective value, because the objective function of Problem \((P') \) is linear. By increasing \(\Delta \), the value \(v_n \) at not less than one node changes to \(v_{\text{min}} \) or \(v_{\text{max}} \). This change is represented in Figure 2. By repeating the transformation for node \(n \), a path including node \(n \) satisfies the desired property. By the transformations for any node with “non bang-bang” in order from the root of the tree, the desired property is added to the optimal solution.

![Figure 2: A transformation of the optimal solution](image)

About node 1, the optimal solution is transformed not to reduce the objective function. Then the solution changes in two patterns. On the top of Figure, node 1 is “bang-bang”. On the bottom, an upper or a lower path satisfies the property of Lemma 1.

We now analyze the particular solution claimed in Lemma 1. Let us look at the value of \(v_n \) such that \(n \) is “non bang-bang” step by step from the root.

5
Step 1: Look at \(v_n \) such that there is no source node of node \(n \) with “non bang-bang”

By Lemma 1, there is a “tight” path that includes node \(n \) and does not include a node with “non bang-bang” except \(n \). On the path, each node \(m \) (\(\neq n \)) is “bang-bang” or satisfies \(m = 0 \). The number of nodes with “bang-bang” is \(L-1 \), and \(v_m \) at node \(m \) with “bang-bang” is equal to \(v_{\text{max}} \) or \(v_{\text{min}} \). In addition, the path has a total volume of \(V_{\text{min}} \) or \(V_{\text{max}} \) because the path is “tight”. If the total volume is \(V_{\text{min}} \), \(v_n \) must have only a value. The value is \((V_{\text{min}} - L \cdot v_{\text{min}}) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}} \). Similarly, if the total volume is \(V_{\text{max}} \), \(v_n \) must be equal to \(v_{\text{max}} - (L \cdot v_{\text{min}} - V_{\text{max}}) \mod (v_{\text{max}} - v_{\text{min}}) \). Let \((V_{\text{min}} - L \cdot v_{\text{min}}) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}} \) be equal to \(v^3 \) and \(v_{\text{max}} - (L \cdot v_{\text{min}} - V_{\text{max}}) \mod (v_{\text{max}} - v_{\text{min}}) \) be equal to \(v^4 \).

Step 2: Look at \(v_n \) such that there is a source node of node \(n \) with “non bang-bang”

Let the source node of node \(n \) with “non bang-bang” denote \(n' \). About \(n \), by Lemma 1, there is a “tight” path that does not include a node with “non bang-bang” except \(n \) and \(n' \). From Step 1, a value of \(v_{n'} \) is \(v^3 \) or \(v^4 \). Furthermore, the path has a total volume of \(V_{\text{min}} \) or \(V_{\text{max}} \) because of “tight”. If the total volume is \(V_{\text{min}} \) or \(V_{\text{max}} \), \(v_n \) has only a value in regard to each \(v^3 \) or \(v^4 \). When \(v_{n'} = v^3 \), \(v_n \) is equal to \(v_{\text{min}} \) or \(v_{\text{max}} \) from Step 1. When \(v_{n'} = v^4 \), \(v_n \) is equal to \((v^3 - v^4) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}} \). On the other hand if the total volume is \(V_{\text{max}} \), when \(v_{n'} = v^4 \), \(v_n \) is equal to \(v_{\text{min}} \) or \(v_{\text{max}} \) from Step 1, and when \(v_{n'} = v^3 \), \(v_n \) is equal to \(v^5 \). Let \((v^3 - v^4) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}} \) be equal to \(v^5 \) and \(v_{\text{max}} - (v^3 - v^4) \mod (v_{\text{max}} - v_{\text{min}}) \) be equal to \(v^6 \).

Step 3: Look at \(v_n \) such that there are two source nodes of node \(n \) with “non bang-bang”

Let the source nodes of node \(n \) with “non bang-bang” denote \(n' \) and \(n'' \). From Step 2, \(v_{n'} + v_{n''} \) is equal to \(v^3 + v^6 \) or \(v^4 + v^5 \). However, by a calculation, \(v^3 + v^6 \) is equal to \(v_{\text{max}} + v^6 \), and \(v^4 + v^5 \) is equal to \(v_{\text{min}} + v^3 \). Thus if \(v_{n'} + v_{n''} \) is equal to \(v^3 + v^6 \), \(v_n \) must be \(v^5 \) from Step 2. If \(v_{n'} + v_{n''} \) is equal to \(v^4 + v^5 \), \(v_n \) must be \(v^6 \) in the same way.

In the case that there are more than two source nodes of node \(n \) with “non bang-bang”, \(v_n \) must also be \(v^5 \) or \(v^6 \) from Steps 2 and 3.

Eventually, there is a particular solution such that the value of \(v_n \) is chosen from \(\{v_{\text{max}}, v_{\text{min}}, v^3, v^4, v^5, v^6, 0\} \) in the solution.

In conclusion, the possible values of \(v_n \) are as follows:

\[
\begin{align*}
v^1 &= v_{\text{min}}, \\
v^2 &= v_{\text{max}}, \\
v^3 &= (V_{\text{min}} - L \cdot v_{\text{min}}) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}}, \\
v^4 &= v_{\text{max}} - (L \cdot v_{\text{min}} - V_{\text{max}}) \mod (v_{\text{max}} - v_{\text{min}}), \\
v^5 &= (v^3 - v^4) \mod (v_{\text{max}} - v_{\text{min}}) + v_{\text{min}}, \\
v^6 &= v_{\text{max}} - (v^3 - v^4) \mod (v_{\text{max}} - v_{\text{min}}), \\
v^0 &= 0.
\end{align*}
\]

In particular, when \(v_{\text{min}} = -1 \), \(v_{\text{max}} = 1 \) and \(V_{\text{min}}, V_{\text{max}} \) have an integer value, if \(e_n = 1 \) then \(v_n \) must be \(v_{\text{min}} \) or \(v_{\text{max}} \). Thus the next corollary holds:

Corollary 1. When \(v_{\text{min}} = -1 \), \(v_{\text{max}} = 1 \) and \(V_{\text{min}}, V_{\text{max}} \) have an integer value, there are at most three kinds as the value of \(v_n \) for Problem (2).
3.2 Formulating the pricing problem on a lattice

In this section, we formulate the pricing problem on a lattice with the use of the particular solution given in Section 3.1.

We can consider a state of a node as a combination of exercise times with each of \(v_1, \ldots, v_6 \). Each exercise time is not more than \(L \), so that the number of states is not more than \(\sum_{i=0}^{L} i + 5 \binom{5}{i} + 6 \binom{6}{i} \). We can give more efficient representation. Let \(\text{Num}_n(v^i) \) denote the exercise time with \(v^i \) between the root and node \(n \). The next proposition reduces the number of states:

Proposition 1. A state of a node can be described as a combination of exercise times with each of only \(v_1, \ldots, v_4 \) on a lattice, and the number of states is at most \(L + 2 \binom{2}{2} + 2 \cdot (L + 1) \binom{2}{2} \).

Proof. First, from the proof of Theorem 1,

\[
\text{Num}_n(v^3) + \text{Num}_n(v^4) \leq 1. \tag{4}
\]

Second, we focus on \(\text{Num}_n(v^5) \) and \(\text{Num}_n(v^6) \). When \(\text{Num}_n(v^3) + \text{Num}_n(v^4) = 0 \), \(\text{Num}_n(v^5) \) and \(\text{Num}_n(v^6) \) are equal to 0 because of the proof of Theorem 1. When \(\text{Num}_n(v^3) + \text{Num}_n(v^4) = 1 \), \(v^5 \) and \(v^6 \) must be alternatively chosen from Step 3 of the proof of Theorem 1, so that

\[
|\text{Num}_n(v^3) - \text{Num}_n(v^4) + 2 (\text{Num}_n(v^5) - \text{Num}_n(v^6))| \leq 1. \tag{5}
\]

This equation means that if \(\text{Num}_n(v^5) > \text{Num}_n(v^6) \) then \(\text{Num}_n(v^5) - \text{Num}_n(v^6) = 1 \) and \(\text{Num}_n(v^4) = 1 \). Furthermore, because \(v^4 + v^5 = v^1 + v^3 \) and \(v^3 + v^6 = v^2 + v^4 \), \(\text{Num}_n(v^5) \) can be equal to \(\text{Num}_n(v^6) \). Moreover, \(v^5 + v^6 = v^1 + v^2 \) for equation (3), and thus \(\text{Num}_n(v^5), \text{Num}_n(v^6) \) can be equal to 0.

As a result, we can describe a state of node \(n \) as a combination of exercise times with each of only \(v_1, \ldots, v_4 \). Then the number of the states is at most \(L + 2 \binom{2}{2} + 2 \cdot L + 1 \binom{2}{2} \) because of equation (4) and \(\text{Num}_n(v^1) + \text{Num}_n(v^2) + \text{Num}_n(v^3) + \text{Num}_n(v^4) \leq L \).

Let a state of node \(n \) denote a combination of exercise times \((\text{Num}_n(v^1), \text{Num}_n(v^2), \text{Num}_n(v^3), \text{Num}_n(v^4))\), \(x^i_n \) a probability at node \(n \) with a state \(j \), and \(x^{i,j}_n \) a probability of changed amount \(v^i \) at node \(n \) with a state \(j \). Then a profit at node \(n \) with a state \(j \) is

\[
\sum_{i \in I_j} v^i (S_n - K_n) x^{i,j}_n,
\]

where \(I_j \) is the index set of changeable amounts in a state \(j \). Then the pricing problem is to maximize the sum of profits at each node with each state by assigning the probability \(x^i_n \) to \(x^{i,j}_n \). Figure 3 designs an example of the problem. A formulation of the problem is as follows:
\[
\begin{align*}
\text{max. } & \sum_{n \in \mathcal{N}_{T-}} \sum_{j \in J} \sum_{i \in I_j} v^i (S_n - K_n) x_{n}^{i,j} \\
\text{s.t. } & x_{0}^{(0,0,0,0)} = 1 \\
& x_{0}^{j} = 0 \quad (j \in J \setminus \{(0,0,0,0)\}) \\
& x_{n}^{j} = \sum_{i \in I_j} x_{n}^{i,j} \quad (n \in \mathcal{N}_{T-}) \\
& x_{n}^{i,j} \in \{0, x_{n}^{j}\} \quad (n \in \mathcal{N}_{T-}, i \in I_j) \\
& x_{n}^{i,j} = p_{nk} x_{n}^{i,j} \quad (n \in \mathcal{N}_{T-}, k \in C(n), i \in I_j) \\
& x_{n}^{j} = \sum_{m \in B(n)} \sum_{i \in I_{[j]}} x_{m}^{i,j-i} \quad (n \in \mathcal{N} \setminus \{0\}) \\
& x_{n}^{j} \geq 0 \quad (n \in \mathcal{N}_{T-}) \\
& x_{n}^{j} \geq 0 \quad (n \in \mathcal{N}_{T}, |j| = L) \\
& x_{n}^{j} = 0 \quad (n \in \mathcal{N}_{T}, |j| < L) \\
\end{align*}
\]

where \mathcal{N}_{T-} is the node set for any $t \leq t_{T-1}$, $|j|$ is an exercise time in a state j, J is the feasible set of a state j, $[j-i]$ is the state that changes to a state j by the exercise with v^i, and $I_{[j]}$ is the set of index i such that $|j-i| \geq 0$. The 3rd and 4th constraints are assigning the probability x_{n}^{j} to $x_{n}^{i,j}$.

\[j = (2,2,1,0) \quad j = (2,2,0,1) \]

\[j = (2,3,0,1) \quad j = (2,3,1,0) \]

\[\text{Figure 3: An example of Problem (6)} \]

In the example, the option buyer at node n with states $j = (2,2,1,0)$ and $(2,2,0,1)$ chooses a changed volume from the set of changeable amounts. The choices are equivalent to assigning the probability at node n with the state j. Thus the choices determine the probability at nodes $C(n)$.

Problem (6) is not linear programming because of the equation (\ast). However, Problem (6) is equivalent to a linear programming problem by the next theorem.

\[
[j-i] = \begin{cases}
 j - e_{i} & (i \leq 4), \\
 j - f_{i} & (i \geq 5),
\end{cases}
\]

where $e_{0} = (0,0,0,0)$, e_{i} is the ith unit vector, of which ith component is 1, $f_{5} = (1,0,-1,1)$, and $f_{6} = (0,1,1,-1)$.

\footnote{The 4th constraint may be more flexible, in other words, $x_{n}^{i,j}$ may be more freely chosen, but the constraint is described as the equation (\ast) for simplicity. This simplification is justified by Theorem 2.}
Theorem 2. Let us consider the problem including the equation $x_{i,j}^n \geq 0$ in place of the equation (\ast) in Problem (6), and call the problem as Problem A. Then Problem A has the same optimal value as Problem (6).

Proof. In Problem A, the feasible set is convex and its extreme point is obviously a feasible point in Problem (6). Hence this problem has the same optimal value as Problem (6). □

4 Improving other methods by Theorem 1

In Section 3, for the problem of pricing swing options on a tree, we show the presence of a particular solution such that there are at most seven kinds of changed amounts. The solution actually exists independent of a pricing model. Then we can apply this property to other pricing methods and improve upon the methods in terms of computation time.

4.1 Improving the result of Jaillet et al. (2004)

In this section, we improve the result of Jaillet et al. [7] with the aid of Theorem 1.

Jaillet et al. [7] proposed a pricing method of swing options by dynamic programming approach. Their swing options are similar to ours. One difference is that their swing options allow v_{min} and v_{max} to be time-varying.

Their approach uses a multiple layer lattice. The lattice is distinguished by the number of residual rights and the sum of changed amounts. Their approach starts from the maturity date and works by backward induction.

To valuate a swing option, they discretize the changeable amount at each date. They limit the changeable amount to M kinds at even intervals, such as $1, 2, \ldots, M$. Then the total number of lattices is $\sum_{k=1}^{L} kM = O(L^2M)$, and their pricing method has the time complexity $O(NL^2M^2)$. When v_{min} and v_{max} are time-invariant, our result improves their time complexity as follows:

Theorem 3. If v_{min} and v_{max} are time-invariant in the problem of Jaillet et al. [7], the time to solve the problem reduces $O(NL^2)$ from $O(NL^2M^2)$.

Proof. In the case where v_{min} and v_{max} are time-invariant, the number of states is at most $L^2C_2 + 2L+1C_2 = O(L^2)$ from Proposition 1. Because a state j represents a combination of the number of residual rights and the sum of changed amounts, the number of lattices is also $O(L^2)$. Furthermore, from Theorem 1 only seven kinds of the changeable amounts are necessary at each node. Thus seven times of a computation are necessary per node for backward induction. Then the time complexity is $N \cdot 7 \cdot O(L^2) = O(NL^2)$. □

4.2 Improving the least-squares Monte-Carlo method

In this section, we improve a pricing method by the least-squares Monte-Carlo method.

Dörr [3], Meinshausen and Hambly [10] and Barrera-Esteve et al. [1] extended the least-squares Monte-Carlo method to swing options. Barrera-Esteve et al. [1] particularly focused on swing options with changeable amount. They considered the set of discrete admissible values of v_n and designed a pricing algorithm by the least-squares Monte-Carlo method. They defined the set of discrete admissible values as $\{v_{\text{min}}, v_{\text{min}} + \Delta v, \ldots, v_{\text{max}} - \Delta v, v_{\text{max}}\}$ where Δv is a positive value.

However, for our typical swing options, we can get explicit admissible values. Thus we can perform the Monte-Carlo simulation faster and more accurately. Some numerical examples show the improvement.
Table 1: Comparison of our method and Barrera-Esteve et al. ($V_{\text{max}} = -V_{\text{min}} = 30$)

<table>
<thead>
<tr>
<th></th>
<th>option price</th>
<th>standard error</th>
<th>computation time (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrera-Esteve et al.</td>
<td>248.92</td>
<td>0.17</td>
<td>6276</td>
</tr>
<tr>
<td>ours</td>
<td>249.01</td>
<td>0.16</td>
<td>2078</td>
</tr>
</tbody>
</table>

The simulation is performed on a computer with 2GHz CPU and 2GB memory.

Table 2: Comparison of our method and Barrera-Esteve et al. ($V_{\text{max}} = 27.1$ and $V_{\text{min}} = -25.25$)

<table>
<thead>
<tr>
<th></th>
<th>option price</th>
<th>standard error</th>
<th>computation time (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrera-Esteve et al.</td>
<td>226.10</td>
<td>-</td>
<td>15219</td>
</tr>
<tr>
<td>ours</td>
<td>225.26</td>
<td>0.16</td>
<td>2043</td>
</tr>
</tbody>
</table>

The simulation is performed on a computer with 2GHz CPU and 2GB memory. The standard error of Barrera-Esteve et al. [1] is blank because the option price of 233.85 is computed using linear interpolation.

Example 2. We compare our method with that of Barrera-Esteve et al. [1]. Both methods are performed with 1000 paths per simulation and with six basis functions, and we set the price as the mean of 500 simulations.

We assume that the underlying asset process $\{S_t\}$ is the following mean-reverting process:

$$dX_t = -aX_t dt + \sigma dZ_t, \quad S_t = S_0 \exp(X_t),$$

(8)

where $S_0 = 100$, $X_0 = 0$, $a = 2$, and $\sigma = 0.1$. For a swing option, we set parameters $T = 20$, $\Delta t = 0.1$, $L = 15$, $K = 100$, and $v_{\text{max}} = -v_{\text{min}} = 4$. For two kinds of global constraints we perform the simulation of the swing option pricing.

First, we consider the global constraint of $V_{\text{max}} = -V_{\text{min}} = 30$. In this case, the method of Barrera-Esteve et al. [1] with $\Delta v = 2$ estimates a true value, so that we compare both methods in terms of the computation time. Table 1 shows that our method is faster than that of Barrera-Esteve et al. [1].

Second, we consider the global constraint of $V_{\text{max}} = 27.1$ and $V_{\text{min}} = -25.25$. In this case, by setting of $\Delta v = 0.05$ the method of Barrera-Esteve et al. [1] estimates a true value. However, $\Delta v = 0.05$ is so small that the computational burden becomes high. We thus set $\Delta v = 1$ and evaluate the option price using linear interpolation, and then their method may estimate a biased value. Table 2 reports that our method is much faster than that of Barrera-Esteve et al. [1] because Δv is smaller than in the first case. In addition, the option price of Barrera-Esteve et al. [1] is biased from ours, so that their method with $\Delta v = 1$ estimates a biased value.

5 Pricing in an incomplete market

5.1 Formulating the pricing problem in an incomplete market

In Sections 2, 3 and 4, we defined the price of a swing option as the expected value under the probability P. However, the probability P is not generally used in option pricing. Alternatively, the martingale probability Q that is equivalent to P is used. This pricing
method is based on the arbitrage pricing theory.

Nevertheless, in some studies swing options are priced under the probability P. In energy markets the underlying asset cannot be preserved and cannot be used to hedge profits of an option, so that the definition of the martingale probability Q for the underlying asset is meaningless. However, in energy markets, futures contracts related to the underlying asset price are tradable. Thus hedging by the futures contracts allows us to define the pricing problem under the martingale probability Q for the futures contracts.

To define the martingale probability Q on a lattice, we decompose the lattice into a tree, and get the martingale probability on the tree. Then, by recomposing the lattice, we get the martingale probability Q on the lattice. If Q is unique, a market is complete; otherwise a market is incomplete.

When a market is complete, the pricing problem is obtained by replacing P by Q on Problem (6) and the price is unique. Taking the dual of Problem (6), we get the following problem:

$$\min_z z_0^{(0,0,0,0)}$$

s.t. $z_n - \sum_{k \in C(n)} p_{nk} z_k^{[j+i]} \geq v^i(S_n - K_n)$ \quad (n \in N_{T-}, i \in I_j)$ \quad (9)

$z_n^j \geq 0$ \quad (n \in N_T, |j| = L)

where $|j+i|$ is the state such that $j+i + j-i = 2j$. In Problem (9), z can be regarded as a contingent claim. In a complete market any contingent claim is replicatable; then, by substituting z into a portfolio of tradable assets, we can rewrite Problem (9) as the hedging problem. Let U denote the set of tradable assets and $U_n \in \mathbb{R}^{[U]}$ the set of prices of U at node n. The tradable assets include futures contracts and a risk-free asset. These prices are already discounted by the risk-free asset, and thus the risk-free asset price U_n^0 is equal to 1 for any n. Then the hedging form of Problem (9) is as follows:

$$\min_{\theta} U_0 \theta_n^{(0,0,0,0)}$$

s.t. $U_n(\theta_n^{[j+i]} - \theta_n^{[j+i]}) \geq v^i(S_n - K_n)$ \quad (n \in N_{T-}, i \in I_j)$ \quad (10)

$\theta_n^j = \theta_n^{k-}$ \quad (n \in N_{T-}, k \in C(n))

$U_n \theta_n^j \geq 0$ \quad (n \in N_T, |j| = L)

where θ_n represents the holding amount of the tradable assets U at node n. Problem (10) has a similar form to that of European and American options. On the dual problem, we can easily add more realistic constraints, like transaction costs.

On the other hand, when a market is incomplete, the price is not unique. Let Q denote the set of the martingale probability Q. The price under $Q \in Q$ is called the arbitrage-free price. In an incomplete market, an upper bound and a lower bound of arbitrage-free prices are important, so that we discuss these pricing problems. We obtain the pricing problems by adding the martingale condition to Problem (6). In this regard, the constraints for $x_n^{i,j}$ in Problem (6) are replaced by

$$\sum_{k \in C(n)} q_{nk} x_n^{i,j}_k = x_n^{i,j} \quad (n \in N_{T-}, k \in C(n), i \in I_j),$$

$$x_n^{i,j} U_k = x_n^{i,j} U_n \quad (n \in N_{T-}, i \in I_j),$$

(11)

where q_{nk} is an element of the probability Q. However, the constraint $q_{nk} x_n^{i,j} = x_n^{i,j}$ is not necessary because the martingale condition (the second constraint) includes the constraint.
We rewrite $x_{nk}^{i,j}$ to $y_{nk}^{i,j}$ for simplicity, and then the pricing problem of the upper bound is as follows:

$$\begin{align*}
\text{max } y & \quad \text{max } x \\
\sum_{n \in N_{T_+}} \sum_{j \in J} \sum_{i \in I_j} v^i(S_n - K_n) x_{nk}^{i,j} & = 1 \\
\text{s.t. } & x_0 = 1 \\
& x_0^{i,j} = 0 \\
& x_n = \sum_{i \in I_j} x_{nk}^{i,j} \\
& \sum_{k \in C(n)} y_{nk}^{i,j} \mu_k = x_{nk}^{i,j} \eta_n \\
& x_n^{i,j} = \sum_{m \in B(n)} \sum_{i \in I_j} y_{mn}^{i,j} (n \in N_{T_+}, i \in I_j)
\end{align*}$$

(12)

The upper bound problem is a linear programming problem, and easy to solve. In addition, the dual problem of Problem (12) is as follows:

$$\begin{align*}
\text{min } z_0 & \quad \text{max } y, \theta \\
\sum_{n \in N_{T_+}} \sum_{k \in C(n)} \sum_{j \in J} \sum_{i \in I_j} \left(-U_k \theta_n^{i,j} + z_k^{j+1} \right) y_{nk}^{i,j} & = 1 \\
\text{s.t. } & z_n - U_n \theta_n^{i,j} \geq v^i(S_n - K_n) \quad (n \in N_{T_+}, i \in I_j) \\
& U_k \theta_n^{i,j} \geq z_k^{j+1} \quad (n \in N_{T_+}, k \in C(n), i \in I_j) \\
& U_n \theta_n^{i,j} \geq 0 \quad (n \in N_{T_+}, |j| = L)
\end{align*}$$

(13)

By comparing Problem (13) with Problem (10), or in other words, by comparing an incomplete market with a complete market, we verify that the difference between Problem (13) and Problem (10) is only inequality of the second constraint.

On the other hand, the pricing problem of the lower bound is obtained by replacing max_y by min_y on Problem (12). However, the lower bound problem is a min-max programming problem, which is difficult to solve. We thus fix y and consider the dual for z:

$$\begin{align*}
\text{min } z & \quad \text{max } y, \theta \\
\sum_{n \in N_{T_+}} \sum_{k \in C(n)} \sum_{j \in J} \sum_{i \in I_j} \left(-U_k \theta_n^{i,j} + z_k^{j+1} \right) y_{nk}^{i,j} & = 1 \\
\text{s.t. } & z_n - U_n \theta_n^{i,j} \geq v^i(S_n - K_n) \quad (n \in N_{T_+}, i \in I_j) \\
& \sum_{k \in C(n)} \sum_{j \in J} \sum_{i \in I_j} y_{nk}^{i,j} U_k = \sum_{m \in B(n)} \sum_{i \in I_j} y_{mn}^{i,j} \eta_n \quad (n \in N_{T_+} \{0\}) \\
& z_n \geq 0 \quad (n \in N_{T_+}, |j| = L) \\
& y_{nk}^{i,j} \geq 0 \quad (n \in N_{T_+}, i \in I_j)
\end{align*}$$

(14)

where $\theta \in \mathbb{R}^{|U|}$. This is a bilinear programming problem and generally easier to solve than a min-max programming problem. The second term of the objective function means the expectation value of additional borrowing (or lending) at each node.
Problem (12) can be also solved by a backward algorithm because x and y can be separately chosen at each time. The pricing algorithm is as follows:

1. Set $t = T - 1$.

2. At each node $n \in N_t$ and in each state j, choose $x_{n}^{i,j} = x_{n}^{*,i,j}$ such that $\sum_{i \in I_j} x_{n}^{i,j} = 1$ and $x_{n}^{i,j}$ maximizes $\sum_{i \in I_j} v^i (S_n - K_n) x_{n}^{i,j}$. Put $x_{n}^{*,j} = \sum_{i \in I_j} v^i (S_n - K_n) x_{n}^{*,i,j}$.

3. If $t = 0$, then $\sum_{i \in I_j} x_{0}^{*,j}$ is the upper (lower) bound of arbitrage-free prices; otherwise set $t = t - 1$.

4. At each node $n \in N_t$ and in each state j, choose $y_{nk}^{i,j} = y_{nk}^{*,i,j}$, where $k \in C(n)$, such that $\sum_{k \in C(n)} y_{nk}^{i,j} U_k = U_n$ and $y_{nk}^{i,j}$ maximizes (minimizes) $\sum_{k \in C(n)} y_{nk}^{i,j} x_{k}^{*,[i+j]}$. Set $\Phi_n^{*,i,j} = \sum_{k \in C(n)} y_{nk}^{*,i,j} x_{k}^{*,[i+j]}$.

5. At each node $n \in N_t$ and in each state j, choose $x_{n}^{*,i,j} = x_{n}^{*,i,j}$ such that $\sum_{i \in I_j} x_{n}^{i,j} = 1$ and $x_{n}^{*,i,j}$ maximizes $\sum_{i \in I_j} (v^i (S_n - K_n) + \Phi_n^{*,i,j}) x_{n}^{*,i,j}$. Put $x_{n}^{*,j} = \sum_{i \in I_j} (v^i (S_n - K_n) + \Phi_n^{*,i,j}) x_{n}^{*,i,j}$. Return to Step 3.

This algorithm is sequential, so that if the problem size is large, we can save memory to solve by using this algorithm.

5.2 A numerical result

In this section, we give a numerical example of solving the upper and lower bounds of arbitrage-free prices of a swing option.

We first give the description of a swing option. We set $T = 20$, $L = 15$, $v_{\text{max}} = -v_{\text{min}} = 4$, $V_{\text{max}} = 27.1$, and $V_{\text{min}} = -25.25$. This setting is same as that in Section 4.2. The strike price K is given later.

Second we define a lattice as a trinomial tree. Figure 4 represents the trinomial tree. In each time there are three nodes, and each node can transit to any node in next time. We denote the asset prices of the upper, middle, and lower nodes by S^a, S^b, and S^c, respectively.

![Figure 4: The trinomial tree in the numerical example](image)

We assume that the underlying asset process $\{S_t\}$ is as follows:

$$dX_t = -aX_t dt + \sigma dZ_t,$$

(15)
Table 3: The upper and lower bounds of arbitrage-free prices of the swing option

<table>
<thead>
<tr>
<th>K</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>268.6</td>
<td>43.8</td>
</tr>
<tr>
<td>100</td>
<td>262.3</td>
<td>2.2</td>
</tr>
<tr>
<td>98</td>
<td>271.5</td>
<td>47.7</td>
</tr>
<tr>
<td>50</td>
<td>1303.1</td>
<td>1139.7</td>
</tr>
</tbody>
</table>

We use CPLEX11.2 and a computer with 2GHz CPU and 2GB memory.

\[
S_t = S_0 \exp(X_t),
\]

where \(S_0 = 100\), \(X_0 = 0\), \(a = 2\) and \(\sigma = 0.1\). We also assume \(t_0 = 0\) and the time step \(\Delta t = 0.1\), so that \(t_T = 2\). We set prices on the tree in accordance with Hull and White [6], and then \(S^u_t = 100 \exp(\sigma \sqrt{3} \Delta t) = 105.63\), \(S^l_t = 100\) and \(S^c_t = 100 \exp(-\sigma \sqrt{3} \Delta t) = 94.67\) for any \(t\).

We assume that we can trade only a risk-free asset and a futures contract with the maturity date \(t_T\) and the risk-free rate is equal to 0. We set these as \(U\). The price of the futures contract \(F(t, t_T)\) is as follows\(^4\):

\[
F(t, t_T) = E_t[S_T]
= S_0 \exp \left(\exp(-a(t_T - t))X_t + \frac{\sigma^2}{4a} (1 - \exp(-2a(t_T - t))) \right). \tag{17}
\]

In the above settings, we solve the upper and lower bounds of arbitrage-free prices of the swing option. We choose some values as \(K\) and see the change of the price. Table 3 shows the result. The upper and lower bounds considerably differ in this example, especially at \(K = 100\).

6 Conclusion

In this paper, we have proposed a pricing method for typical swing options on a lattice model. Dealing with path-dependence of swing options, we find a particular solution of swing options in terms of changed amount. Using the solution, we have formulated the problem of pricing swing options as linear programming. This pricing method can naturally extend to the pricing in an incomplete market. We have formulated the problem of finding the upper and lower bounds of arbitrage-free prices as a linear program and a bilinear program, respectively. Moreover, we have proposed a backward algorithm for finding the upper and lower bounds.

The particular solution also improves some previous works in terms of time complexity and accuracy, and we have demonstrated these improvements in numerical examples. The constraints of our swing option are more limited than those of the previous works, but the constraints are typical, so that these improvements are expected to be useful of practical significance.

\(^4\)This pricing formula is actually incorrect in this case, because the underlying asset is cannot be preserved and the pricing based on the arbitrage theory is meaningless. However, we do not need accurate prices and we only need an example of prices on the tree, so that there is no problem.
Acknowledgment

This work was supported by Global COE Program “The research and training center for new development in mathematics”, MEXT, Japan.

References

