
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Pricing Swing Options
in an Incomplete Market

Yusuke TASHIRO

(Communicated by Kazuo MUROTA)

METR 2009–43 September 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Pricing Swing Options in an Incomplete Market

Yusuke TASHIRO∗

September, 2009

Abstract

We propose a pricing method by mathematical programming for typical swing
options on a lattice model. An important feature of our method is the capability to
price swing options in an incomplete market. In an incomplete market, the price of
a swing option is defined as an upper and a lower bound of arbitrage-free prices. We
formulate the problem of finding an upper bound as a linear program. For a lower
bound, we give a bilinear programming formulation.

We also show that the problem of pricing typical swing options has a particular
optimal solution such that there are only seven kinds of changed amounts in the
solution. Using the solution, we improve upon the result of the previous works of
Jaillet, Ronn and Tompaidis (2004) and Barrera-Esteve, Bergeret, Dossal, Gobet,
Meziou, Munos and Reboul-Salze (2006).

1 Introduction

With recent deregulation of energy markets, many derivative instruments have been de-
signed. Some of these are swing options. Swing options are generally traded in gas and
electricity markets. A holder of a swing option buys fixed amount of energy from an option
seller at fixed dates, and then the holder also has rights to change the amount at some
times. The amount is subject to daily and periodic (monthly or annual) constraints. The
number of rights is also limited. The option holder changes the amount depending on
their purpose, such as maximizing-profit and request of demand.

The valuation of swing options is known to be more difficult than that of vanilla op-
tions, because swing options have not only timing constraints but also volume constraints.
Typical techniques for pricing swing options are the least-squares Monte-Carlo method
and dynamic programming.

The least-squares Monte-Carlo method was applied by Longstaff and Schwartz [9] to
American option pricing. Dörr [3], Meinshausen and Hambly [10] and Barrera-Esteve et
al. [1] extended the least-squares Monte-Carlo method to swing options.

On the other hand, dynamic programming was studied by Jaillet et al. [7], Lari-
Lavassani et al. [8] and Thompson [13]. They expressed the underlying asset price process
on a lattice and computed the option price by the backward procedure.

However, these techniques do not cover every setting of swing options. First, these
techniques are applicable to the pricing problem in a complete market. This setting is
usual, but not adequate when a market is incomplete. Second, with these techniques, it is
difficult to consider changed volume as a continuous value, so that some discretized values
are used. Thus, these techniques may give biased price.

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,
University of Tokyo, Tokyo 113-8656, Japan. E-mail: yusuke tashiro@mist.i.u-tokyo.ac.jp

1

Our approach is pricing by mathematical programming. Mathematical programming
is flexible enough to add constraints as conditional expressions. Swing option pricing
by mathematical programming can also treat changed amount as a continuous variable.
Haarbrücker and Kuhn [5] and Steinbach and Vollebrecht [12] recently studied swing option
pricing. Haarbrücker and Kuhn [5] proposed the valuation of swing options with ramping
constraints on a scenario tree. Steinbach and Vollebrecht [12] proposed the valuation
technique by reducing a scenario tree and using a scenario fan.

Our swing option setting is typical and similar to that of Jaillet et al. [7]. Our swing
option has local (daily) constraints, global (annual) constraints, and timing constraints.
Our formulation is based on a scenario lattice. However, on a lattice, A formulation that is
similar to that of previous works by mathematical programming is not successful because
swing options are path-dependent options. Thus, to begin with, we decompose the lattice
to a tree, formulate the pricing problem on the tree, and find an optimal solution that
has particular changed amounts. Then using the particular solution, we formulate the
pricing problem on the lattice. Furthermore, the particular solution improves the method
of Jaillet et al. [7] in terms of the time complexity, and that of Barrera-Esteve et al. [1] in
terms of computation time and accuracy.

An advantage of our approach is that the formulated pricing problem can be extended
to that in an incomplete market. In an incomplete market, we define the pricing problem
as the problems of finding an upper bound and a lower bound of “arbitrage-free prices”.
For American options, Föllmer and Schied [4] showed a pricing method using the Snell
envelope in a discrete case. Pennanen and King [11] and Camci and Pinar [2] studied
pricing of American options by stochastic programming in an incomplete market. These
pricing methods are performed under the martingale probability for the underlying asset.
In energy markets, it is difficult to store the underlying asset, so that the pricing is
meaningless under the martingale probability for the underlying asset. However, there are
futures contracts and some tradable products that relate to the underlying asset process
in energy markets. We then use the martingale probability Q for these products, and
we formulate the upper and lower bound problems of swing options as mathematical
programming in an incomplete market.
　The paper is organized as follows. Section 2 provides the definition of swing options

and a formulation of the pricing problem on a tree. Section 3 shows a particular solution
of the pricing problem on a tree, and using the particular solution, formulates the efficient
pricing problem as mathematical programming on a lattice. In Section 4, the solution also
improves upon speed and accuracy of other pricing methods. Section 5 focuses on the
pricing problem in an incomplete market, and formulates the upper and the lower bound
problem. In addition, we design a backward algorithm to compute the upper and lower
bounds and show a numerical result. Section 6 concludes. 　

2 The model

2.1 Swing options

There are a buyer and a seller of energy. They close a contract to buy some amount ut of
energy at a strike price of Kt at date t = ti (i = 0, 1, . . . , T − 1). A swing option in this
paper is defined as rights to change of delivery amount with this contract. When a swing
option is added to the contract, the buyer can change the amount from u to u + vt up to
L(≤ T) times at t = t0, t1, . . . , tT−1 under some constraints. One of the constraints is a

2

local constraint for DCQ (Daily Contract Quantity)

vmin ≤ vt ≤ vmax,

where vmin ≤ 0, vmax ≥ 0, and vmin and vmax are time-invariant. Total changed amount
is also limited by a global constraint for ACQ (Annual Contract Quantity)

Vmin ≤
T−1∑
t=0

vt ≤ Vmax.

Furthermore, the interval of exercise is also restricted. The option holder exercising a right
at ti cannot change amount during ti < t < ti + ∆tR. Here ∆tR is called the refraction
time.

2.2 Asset price processes and profits

We describe an asset price process on a scenario lattice. Figure 1 is an example of our
scenario lattice. Such a lattice is often called a trinomial tree. Let N denote the set of
nodes of a lattice, Sn the underlying asset price1 at node n, and Ni the set of nodes at ti.
We denote by B(n) and C(n) the set of parents and children of node n, respectively. In
this paper, we call a lattice with |B(n)| ≤ 1 for any n as a tree. We define pmn(> 0) as the
transition probability from node n to node m (m ∈ C(n)). Concerning the probability at
node n, inflow must be equal to outflow, so that the following equation holds for each n:∑

m∈B(n)

pmn =
∑

k∈C(n)

pnk. (1)

123 60 111213
Figure 1: An example of a scenario lattice

In this example, at node 6, p16 + p26 + p36 must be equal to p6,11 + p6,12 + p6,13. Such relation (equation

(1)) holds at each node.　

At each node, a buyer may change amount of energy. We assume a buyer faces not
demand problems but financing problems. Namely, we permit a buyer to sell excess amount
at a market price. Then a profit made by changed amount vn at node n is represented as

vn(Sn − Kn).

2.3 Pricing on a tree

We assume that a buyer is rational; thus we define the price of a swing option as the
maximum expected value of the total profit. Our aim is pricing swing options by math-
ematical programming on a lattice. On a formulation using mathematical programming,

1Sn is already discounted by a risk-free asset. We also discount a strike price Kn that is equal to Kt

(n ∈ Nt).

3

the number of variables is proportional to the number of states on the model. However,
because of the constraints for ACQ, states of a node are path-dependent. The number of
states on a model is generally proportional to the number of paths.

Example 1. Let us consider a swing option in Figure 1. We assume that a buyer exercises
a right at node 1 with v1 = 1 and exercises a right at node 2 with v2 = 2. Then at node
6, the state from node 1 and that from node 2 are different.

For dealing with path-dependence of swing options, we first decompose the lattice into
a tree and consider pricing on a tree. Here decomposing the lattice into a tree means that
any node that has more than one parent is decomposed into nodes such that each node has
only a parent. Then the number of paths is equal to the number of nodes in the maturity
on the tree. Thus a path-dependent formulation is equivalent to that on the tree, and we
consider the pricing problem on the tree.

Let Mi denote the set of nodes of a tree at ti and en denote a variable representing
whether or not a right is exercised at node n of a tree. For example, en = 1 means an
exercise of a right at node n. Then the optimization problem of maximizing the expected
value is as follows:

max
v,e

. E[vn(Sn − Kn)]

s.t. vminen ≤ vn ≤ vmaxen (n ∈ MT−)
Vmin ≤

∑
m∈A(n)

vm ≤ Vmax (n ∈ MT−1)∑
m∈A(n)

em ≤ L (n ∈ MT−1)

en ∈ {0, 1} (n ∈ MT−)
en + em ≤ 1 (n ∈ Mi, m ∈ Mj,n, i < j, tj − ti < ∆tR)

(2)
where MT− = {n | n ∈ Mi, i ≤ T − 1}, Mi,n is the set of node m ∈ Mi such that m is
a sink node of node n, and A(n) is the path history from the root to node n.

3 Pricing on a lattice

In subsequent sections, we assume for simplicity that ti+1 − ti = ∆t (i = 0, . . . , T − 1) and
the refraction time ∆tR = ∆t. The extension to general ti is easy.

3.1 A particular solution

In Section 2, we formulated pricing on a tree made of a lattice. However, the tree may have
an exponential number of nodes, so that exponential time is necessary to solve Problem
(2). We aim to reduce the time to be proportional to the number of nodes on the lattice.

We focus on a value of changed amount vn. If the value of vn is chosen from a discrete
set {v1, . . . , vk}, the number of states on a lattice can be described as the number of
possible combinations of exercise times with each of vi. The following theorem shows that
there is a particular optimal solution in terms of a value of vn.

Theorem 1. In the set of optimal solutions of Problem (2), there is a solution such that
there are at most seven kinds of values of vn in the solution.

Proof. First, without loss of generality we can change the constraints of Problem (2) from∑
m∈A(n) em ≤ L to

∑
m∈A(n) em = L, because if there is a path with

∑
m∈A(n) em < L,

4

the path satisfies
∑

m∈A(n) em = L by the exercise of residual rights with zero amount at
non-exercised nodes. We name this modified problem as (P′).

We define two properties of node n:

• “bang-bang”: en = 1 and vn ∈ {vmin, vmax},

• “non bang-bang”: en = 1 and vn ̸= vmin, vmax.

We also define a property of a path l:

• “tight”:
∑
m∈l

vm = Vmin or
∑
m∈l

vm = Vmax.

Concerning Problem (P′), the next lemma holds:

Lemma 1. Problem (P′) has an optimal solution with the following property:

• For any node n with “non bang-bang” such that
∑

m∈A(n) em < L, there is a “tight”
path l such that n ∈ l and if m ∈ l is a sink node of node n then node m is not “non
bang-bang”.

Proof. We assume that there is no optimal solution with the above property, and we take
an optimal solution. Then in the solution, for some node n with “non bang-bang” such
that

∑
m∈A(n) em < L, any “tight” path including node n includes a “non bang-bang” node

m under node n. We focus on such nodes n and m. We can consider two transformations
of the optimal solution with no effect on global constraints:

• to decrease the value vn by ∆ and increase the value vm by ∆,

• to increase the value vn by ∆ and decrease the value vm by ∆,

where ∆ is a sufficiently small positive constant. At least one transformation does not
reduce the objective value, because the objective function of Problem (P′) is linear. By
increasing ∆, the value vn at not less than one node changes to vmin or vmax. This
change is represented in Figure 2. By repeating the transformation for node n, a path
including node n satisfies the desired property. By the transformations for any node with
“non bang-bang” in order from the root of the tree, the desired property is added to the
optimal solution.

: “non bang-bang”: “bang-bang”
orchange1
or

Figure 2: A transformation of the optimal solution

About node 1, the optimal solution is transformed not to reduce the objective function. Then the solution

changes in two patterns. On the top of Figure, node 1 is “bang-bang”. On the bottom, an upper or a

lower path satisfies the property of Lemma 1.　

We now analyze the particular solution claimed in Lemma 1. Let us look at the value
of vn such that n is “non bang-bang” step by step from the root.

5

Step 1: Look at vn such that there is no source node of node n with “non bang-bang”

By Lemma 1, there is a “tight” path that includes node n and does not include a node
with “non bang-bang” except n. On the path, each node m (̸= n) is “bang-bang” or
satisfies em = 0. The number of nodes with “bang-bang” is L−1, and vm at node m
with “bang-bang” is equal to vmax or vmin. In addition, the path has a total volume
of Vmin or Vmax because the path is “tight”. If the total volume is Vmin, vn must have
only a value. The value is (Vmin−L ·vmin) mod (vmax−vmin)+vmin. Similarly, if the
total volume is Vmax, vn must be equal to vmax− (L ·vmin−Vmax) mod (vmax−vmin).
Let (Vmin −L · vmin) mod (vmax − vmin) + vmin be equal to v3 and vmax − (L · vmin −
Vmax) mod (vmax − vmin) be equal to v4.

Step 2: Look at vn such that there is a source node of node n with “non bang-bang”

Let the source node of node n with “non bang-bang” denote n′. About n, by Lemma
1, there is a “tight” path that does not include a node with “non bang-bang” except
n and n′. From Step 1, a value of vn′ is v3 or v4. Furthermore, the path has a total
volume of Vmin or Vmax because of “tight”. If the total volume is Vmin, vn has only
a value in regard to each v3 or v4. When vn′ = v3, vn is equal to vmin or vmax from
Step 1. When vn′ = v4, vn is equal to (v3 − v4) mod (vmax − vmin) + vmin. On the
other hand if the total volume is Vmax, when vn′ = v4, vn is equal to vmin or vmax

from Step 1, and when vn′ = v3, vn is equal to vmax−(v3−v4) mod (vmax−vmin). Let
(v3−v4) mod (vmax−vmin)+vmin be equal to v5 and vmax−(v3−v4) mod (vmax−vmin)
be equal to v6.

Step 3: Look at vn such that there are two source nodes of node n with “non bang-bang”

Let the source nodes of node n with “non bang-bang” denote n′ and n′′. From Step
2, vn′ + vn′′ is equal to v3 + v6 or v4 + v5. However, by a calculation, v3 + v6 is equal
to vmax + v4, and v4 + v5 is equal to vmin + v3. Thus if vn′ + vn′′ is equal to v3 + v6,
vn must be v5 from Step 2. If vn′ + vn′′ is equal to v4 + v5, vn must be v6 in the
same way.

In the case that there are more than two source nodes of node n with “non bang-bang”,
vn must also be v5 or v6 from Steps 2 and 3.

Eventually, there is a particular solution such that the value of vn is chosen from
{vmax, vmin, v

3, v4, v5, v6, 0} in the solution.

In conclusion, the possible values of vn are as follows:

v1 = vmin,
v2 = vmax,
v3 = (Vmin − L · vmin) mod (vmax − vmin) + vmin,
v4 = vmax − (L · vmin − Vmax) mod (vmax − vmin),
v5 = (v3 − v4) mod (vmax − vmin) + vmin,
v6 = vmax − (v3 − v4) mod (vmax − vmin),
v0 = 0.

(3)

In particular, when vmin = −1, vmax = 1 and Vmin, Vmax have an integer value, if en = 1
then vn must be vmin or vmax. Thus the next corollary holds:

Corollary 1. When vmin = −1, vmax = 1 and Vmin, Vmax have an integer value, there are
at most three kinds as the value of vn for Problem (2).

6

3.2 Formulating the pricing problem on a lattice

In this section, we formulate the pricing problem on a lattice with the use of the particular
solution given in Section 3.1.

We can consider a state of a node as a combination of exercise times with each of
v1, . . . , v6. Each exercise time is not more than L, so that the number of states is not

more than
L∑

i=0

i+5C5 =L+6 C6. We can give more efficient representation. Let Numn(vi)

denote the exercise time with vi between the root and node n. The next proposition
reduces the number of states:

Proposition 1. A State of a node can be described as a combination of exercise times with
each of only v1, · · · , v4 on a lattice, and the number of states is at most L+2C2 +2 ·L+1 C2.

Proof. First, from the proof of Theorem 1,

Numn(v3) + Numn(v4) ≤ 1. (4)

Second, we focus on Numn(v5) and Numn(v6). When Numn(v3) + Numn(v4) = 0,
Numn(v5) and Numn(v6) are equal to 0 because of the proof of Theorem 1. When
Numn(v3) + Numn(v4) = 1, v5 and v6 must be alternatively chosen from Step 3 of the
proof of Theorem 1, so that

|Numn(v3) − Numn(v4) + 2
(
Numn(v5) − Numn(v6)

)
| ≤ 1. (5)

This equation means that if Numn(v5) > Numn(v6) then Numn(v5) − Numn(v6) = 1
and Numn(v4) = 1. Furthermore, because v4 + v5 = v1 + v3 and v3 + v6 = v2 + v4,
Numn(v5) can be equal to Numn(v6). Moreover, v5 + v6 = v1 + v2 for equation (3), and
thus Numn(v5),Numn(v6) can be equal to 0.

As a result, we can describe a state of node n as a combination of exercise times with
each of only v1, . . . , v4. Then the number of the states is at most L+2C2+2 ·L+1C2 because
of equation (4) and Numn(v1) + Numn(v2) + Numn(v3) + Numn(v4) ≤ L.

Let a state of node n denote a combination of exercise times(
Numn(v1),Numn(v2), Numn(v3), Numn(v4)

)
, xj

n a probability at node n with a state j,
and xi,j

n a probability of changed amount vi at node n with a state j. Then a profit at
node n with a state j is ∑

i∈Ij

vi(Sn − Kn)xi,j
n ,

where Ij is the index set of changeable amounts in a state j. Then the pricing problem is
to maximize the sum of profits at each node with each state by assigning the probability
xj

n to xi,j
n . Figure 3 designs an example of the problem. A formulation of the problem is

as follows:

7

max
x

.
∑

n∈NT−

∑
j∈J

∑
i∈Ij

vi(Sn − Kn)xi,j
n

s.t. x
(0,0,0,0)
0 = 1

xj
0 = 0 (j ∈ J\{(0, 0, 0, 0)})

xj
n =

∑
i∈Ij

xi,j
n (n ∈ NT−)

xi,j
n ∈ {0, xj

n} (n ∈ NT−, i ∈ Ij) (∗)
xi,j

nk = pnkx
i,j
n (n ∈ NT−, k ∈ C(n), i ∈ Ij)

xj
n =

∑
m∈B(n)

∑
i∈I[j]

xi,[j−i]
mn (n ∈ N\{0})

xj
n ≥ 0 (n ∈ NT−)

xj
n ≥ 0 (n ∈ NT , |j| = L)

xj
n = 0 (n ∈ NT , |j| < L)

(6)

where NT− is the node set for any t ≤ tT−1, |j| is an exercise time in a state j, J is the
feasible set of a state j, [j − i] is the state2 that changes to a state j by the exercise with
vi, and I[j] is the set of index i such that [j − i] ≥ 0. The 3rd and 4th constraints3 are
assigning the probability xj

n to xi,j
n .

Figure 3: An example of Problem (6)

In the example, the option buyer at node n with states j = (2, 2, 1, 0) and (2, 2, 0, 1) chooses a changed

volume from the set of changeable amounts. The choices are equivalent to assigning the probability at

node n with the state j. Thus the choices determine the probability at nodes C(n).　

Problem (6) is not linear programming because of the equation (∗). However, Problem
(6) is equivalent to a linear programming problem by the next theorem.

2

[j − i] =

(

j − ei (i ≤ 4),

j − fi (i ≥ 5),
(7)

where e0 = (0, 0, 0, 0), ei is the ith unit vector, of which ith component is 1, f5 = (1, 0,−1, 1), and
f6 = (0, 1, 1,−1).

3The 4th constraint may be more flexible, in other words, xi,j
n may be more freely chosen, but the

constraint is described as the equation (∗) for simplicity. This simplification is justified by Theorem 2.

8

Theorem 2. Let us consider the problem including the equation xi,j
n ≥ 0 in place of the

equation (∗) in Problem (6), and call the problem as Problem A. Then Problem A has the
same optimal value as Problem (6).

Proof. In Problem A, the feasible set is convex and its extreme point is obviously a feasible
point in Problem (6). Hence this problem has the same optimal value as Problem (6).

4 Improving other methods by Theorem 1

In Section 3, for the problem of pricing swing options on a tree, we show the presence of
a particular solution such that there are at most seven kinds of changed amounts. The
solution actually exists independent of a pricing model. Then we can apply this property
to other pricing methods and improve upon the methods in terms of computation time.

4.1 Improving the result of Jaillet et al. (2004)

In this section, we improve the result of Jaillet et al. [7] with the aid of Theorem 1.
Jaillet et al. [7] proposed a pricing method of swing options by dynamic programming

approach. Their swing options are similar to ours. One difference is that their swing
options allow vmin and vmax to be time-varying.

Their approach uses a multiple layer lattice. The lattice is distinguished by the num-
ber of residual rights and the sum of changed amounts. Their approach starts from the
maturity date and works by backward induction.

To valuate a swing option, they discretize the changeable amount at each date. They
limit the changeable amount to M kinds at even intervals, such as 1, 2, . . . , M . Then the
total number of lattices is

∑L
k=1 kM = O(L2M), and their pricing method has the time

complexity O(NL2M2). When vmin and vmax are time-invariant, our result improves their
time complexity as follows:

Theorem 3. If vmin and vmax are time-invariant in the problem of Jaillet et al. [7], the
time to solve the problem reduces O(NL2) from O(NL2M2).

Proof. In the case where vmin and vmax are time-invariant, the number of states is at most
L+2C2 +2 ·L+1 C2 = O(L2) from Proposition 1. Because a state j represents a combination
of the number of residual rights and the sum of changed amounts, the number of lattices
is also O(L2). Furthermore, from Theorem 1 only seven kinds of the changeable amounts
are necessary at each node. Thus seven times of a computation are necessary per node for
backward induction. Then the time complexity is N · 7 · O(L2) = O(NL2).

4.2 Improving the least-squares Monte-Carlo method

In this section, we improve a pricing method by the least-squares Monte-Carlo method．
Dörr [3], Meinshausen and Hambly [10] and Barrera-Esteve et al. [1] extended the

least-squares Monte-Carlo method to swing options. Barrera-Esteve et al. [1] particularly
focused on swing options with changeable amount. They considered the set of discrete
admissible values of vn and designed a pricing algorithm by the least-squares Monte-Carlo
method. They defined the set of discrete admissible values as {vmin, vmin +∆v, . . . , vmax −
∆v, vmax} where ∆v is a positive value.

However, for our typical swing options, we can get explicit admissible values. Thus
we can perform the Monte-Carlo simulation faster and more accurately. Some numerical
examples show the improvement.

9

Table 1: Comparison of our method and Barrera-Esteve et al. (Vmax = −Vmin = 30)

option price standard error computation time
(second)

Barrera-Esteve et al. 248.92 0.17 6276
ours 249.01 0.16 2078

The simulation is performed on a computer with 2GHz CPU and 2GB memory.

Table 2: Comparison of our method and Barrera-Esteve et al. (Vmax = 27.1 and Vmin =
−25.25)

option price standard error computation time
(second)

Barrera-Esteve et al. 226.10 - 15219
ours 225.26 0.16 2043

The simulation is performed on a computer with 2GHz CPU and 2GB memory. The standard error of

Barrera-Esteve et al. [1] is blank because the option price of 233.85 is computed using linear interpolation.

Example 2. We compare our method with that of Barrera-Esteve et al. [1]. Both methods
are performed with 1000 paths per simulation and with six basis functions, and we set the
price as the mean of 500 simulations.

We assume that the underlying asset process {St} is the following mean-reverting
process:

dXt = −aXtdt + σdZt, St = S0exp(Xt), (8)

where S0 = 100, X0 = 0, a = 2, and σ = 0.1. For a swing option, we set parameters
T = 20, ∆t = 0.1, L = 15, K = 100, and vmax = −vmin = 4. For two kinds of global
constraints we perform the simulation of the swing option pricing.

First, we consider the global constraint of Vmax = −Vmin = 30. In this case, the method
of Barrera-Esteve et al. [1] with ∆v = 2 estimates a true value, so that we compare both
methods in terms of the computation time. Table 1 shows that our method is faster than
that of Barrera-Esteve et al. [1].

Second, we consider the global constraint of Vmax = 27.1 and Vmin = −25.25. In this
case, by setting of ∆v = 0.05 the method of Barrera-Esteve et al. [1] estimates a true
value. However, ∆v = 0.05 is so small that the computational burden becomes high. We
thus set ∆v = 1 and evaluate the option price using linear interpolation, and then their
method may estimate a biased value. Table 2 reports that our method is much faster than
that of Barrera-Esteve et al. [1] because ∆v is smaller than in the first case. In addition,
the option price of Barrera-Esteve et al. [1] is biased from ours, so that their method with
∆v = 1 estimates a biased value.

5 Pricing in an incomplete market

5.1 Formulating the pricing problem in an incomplete market

In Sections 2, 3 and 4, we defined the price of a swing option as the expected value under
the probability P . However, the probability P is not generally used in option pricing.
Alternatively, the martingale probability Q that is equivalent to P is used. This pricing

10

method is based on the arbitrage pricing theory.
Nevertheless, in some studies swing options are priced under the probability P . In

energy markets the underlying asset cannot be preserved and cannot be used to hedge
profits of an option, so that the definition of the martingale probability Q for the under-
lying asset is meaningless. However, in energy markets, futures contracts related to the
underlying asset price are tradable. Thus hedging by the futures contracts allows us to
define the pricing problem under the martingale probability Q for the futures contracts.

To define the martingale probability Q on a lattice, we decompose the lattice into a
tree, and get the martingale probability on the tree. Then, by recomposing the lattice,
we get the martingale probability Q on the lattice. If Q is unique, a market is complete;
otherwise a market is incomplete.

When a market is complete, the pricing problem is obtained by replacing P by Q on
Problem (6) and the price is unique. Taking the dual of Problem (6), we get the following
problem:

min
z

. z
(0,0,0,0)
0

s.t. zj
n −

∑
k∈C(n)

pnkz
[j+i]
k ≥ vi(Sn − Kn) (n ∈ NT−, i ∈ Ij)

zj
n ≥ 0 (n ∈ NT , |j| = L)

(9)

where [j + i] is the state such that [j + i] + [j − i] = 2j. In Problem (9), z can be regarded
as a contingent claim. In a complete market any contingent claim is replicatable; then,
by substituting z into a portfolio of tradable assets, we can rewrite Problem (9) as the
hedging problem. Let U denote the set of tradable assets and Un ∈ R|U | the set of prices
of U at node n. The tradable assets include futures contracts and a risk-free asset. These
prices are already discounted by the risk-free asset, and thus the risk-free asset price U0

n

is equal to 1 for any n. Then the hedging form of Problem (9) is as follows:

min
θ

. U0θ
(0,0,0,0)
0−

s.t. Un(θj
n− − θ

[j+i]
n) ≥ vi(Sn − Kn) (n ∈ NT−, i ∈ Ij)

θj
n = θj

k− (n ∈ NT−, k ∈ C(n))
Unθj

n− ≥ 0 (n ∈ NT , |j| = L)

(10)

where θn represents the holding amount of the tradable assets U at node n. Problem (10)
has a similar form to that of European and American options. On the dual problem, we
can easily add more realistic constraints, like transaction costs.

On the other hand, when a market is incomplete, the price is not unique. Let Q denote
the set of the martingale probability Q. The price under Q ∈ Q is called the arbitrage-free
price. In an incomplete market, an upper bound and a lower bound of arbitrage-free prices
are important, so that we discuss these pricing problems. We obtain the pricing problems
by adding the martingale condition to Problem (6). In this regard, the constraints for xi,j

n

in Problem (6) are replaced by

qnkx
i,j
n = xi,j

nk (n ∈ NT−, k ∈ C(n), i ∈ Ij),∑
k∈C(n)

xi,j
nkUk = xi,j

n Un (n ∈ NT−, i ∈ Ij), (11)

where qnk is an element of the probability Q. However, the constraint qnkx
i,j
n = xi,j

nk is not
necessary because the martingale condition (the second constraint) includes the constraint.

11

We rewrite xi,j
nk to yi,j

nk for simplicity, and then the pricing problem of the upper bound is
as follows:

max
y

max
x

.
∑

n∈NT−

∑
j∈J

∑
i∈Ij

vi(Sn − Kn)xi,j
n

s.t. x
(0,0,0,0)
0 = 1

xj
0 = 0 (j ∈ J\{(0, 0, 0, 0)})

xj
n =

∑
i∈Ij

xi,j
n (n ∈ NT−)∑

k∈C(n)

yi,j
nkUk = xi,j

n Un (n ∈ NT−, i ∈ Ij)

xj
n =

∑
m∈B(n)

∑
i∈I[j]

yi,[j−i]
mn (n ∈ N\{0})

yi,j
n ≥ 0 (n ∈ NT−, i ∈ Ij)

xi,j
n ≥ 0 (n ∈ NT−, i ∈ Ij)
xj

n ≥ 0 (n ∈ NT , |j| = L)
xj

n = 0 (n ∈ NT , |j| < L)

(12)

The upper bound problem is a linear programming problem, and easy to solve. In
addition, the dual problem of Problem (12) is as follows:

min
z,θ

. z
(0,0,0,0)
0

s.t. zj
n − Unθi,j

n ≥ vi(Sn − Kn) (n ∈ NT−, i ∈ Ij)
Ukθ

i,j
n ≥ z

[j+i]
k (n ∈ NT−, k ∈ C(n), i ∈ Ij)

Unθj
n ≥ 0 (n ∈ NT , |j| = L)

(13)

By comparing Problem (13) with Problem (10), or in other words, by comparing an
incomplete market with a complete market, we verify that the difference between Problem
(13) and Problem (10) is only inequality of the second constraint.

On the other hand, the pricing problem of the lower bound is obtained by replacing
maxy by miny on Problem (12). However, the lower bound problem is a min-max pro-
gramming problem, which is difficult to solve. We thus fix y and consider the dual for
x:

min
y

min
z,θ

. z
(0,0,0,0)
0 +

∑
n∈NT−

∑
k∈C(n)

∑
j∈J

∑
i∈Ij

(
−Ukθ

i,j
n + z

[j+i]
k

)
yi,j

nk

s.t.
∑

k∈C(0)

∑
i∈Ij

y
i,(0,0,0,0)
0k = 1∑

k∈C(0)

∑
i∈Ij

yi,j
0k = 0 (j ∈ J\{(0, 0, 0, 0)})

zj
n − Unθi,j

n ≥ vi(Sn − Kn) (n ∈ NT−, i ∈ Ij)∑
k∈C(n)

∑
i∈Ij

yi,j
nkUk =

∑
m∈B(n)

∑
i∈I[j]

yi,[j−i]
mn Un (n ∈ NT−\{0})

zj
n ≥ 0 (n ∈ NT , |j| = L)

yi,j
n ≥ 0 (n ∈ NT−, i ∈ Ij)

(14)
where θ ∈ R|U |. This is a bilinear programming problem and generally easier to solve than
a min-max programming problem. The second term of the objective function means the
expectation value of additional borrowing (or lending) at each node.

12

Problem (12) can be also solved by a backward algorithm because x and y can be
separately chosen at each time. The pricing algorithm is as follows:

1. Set t = T − 1.

2. At each node n ∈ Nt and in each state j, choose xi,j
n = x∗,i,j

n such that
∑

i∈Ij
xi,j

n = 1

and xi,j
n maximizes

∑
i∈Ij

vi(Sn − Kn)xi,j
n . Put x∗,j

n =
∑

i∈Ij
vi(Sn − Kn)x∗,i,j

n .

3. If t = 0, then
∑

i∈Ij
x∗,j

0 is the upper (lower) bound of arbitrage-free prices; otherwise
set t = t − 1.

4. At each node n ∈ Nt and in each state j, choose yi,j
nk = y∗,i,jnk , where k ∈ C(n), such

that
∑

k∈C(n) yi,j
nkUk = Un and yi,j

nk maximizes (minimizes)
∑

k∈C(n) yi,j
nkx

∗,[i+j]
k . Set

Φ∗,i,j
n =

∑
k∈C(n) y∗,i,jnk x

∗,[i+j]
k .

5. At each node n ∈ Nt and in each state j, choose xi,j
n = x∗,i,j

n such that
∑

i∈Ij
xi,j

n = 1

and xi,j
n maximizes

∑
i∈Ij

(vi(Sn −Kn)+Φ∗,i,j
n)xi,j

n . Put x∗,j
n =

∑
i∈Ij

(vi(Sn −Kn)+

Φ∗,i,j
n)x∗,i,j

n . Return to Step 3.

This algorithm is sequential, so that if the problem size is large, we can save memory to
solve by using this algorithm.

5.2 A numerical result

In this section, we give a numerical example of solving the upper and lower bounds of
arbitrage-free prices of a swing option.

We first give the description of a swing option. We set T = 20, L = 15, vmax =
−vmin = 4, Vmax = 27.1, and Vmin = −25.25. This setting is same as that in Section 4.2.
The strike price K is given later.

Second we define a lattice as a trinomial tree. Figure 4 represents the trinomial tree.
In each time there are three nodes, and each node can transit to any node in next time.
We denote the asset prices of the upper, middle, and lower nodes by Sa, Sb, and Sc,
respectively.

Figure 4: The trinomial tree in the numerical example

We assume that the underlying asset process {St} is as follows:

dXt = −aXtdt + σdZt, (15)

13

Table 3: The upper and lower bounds of arbitrage-free prices of the swing option

upper bound lower bound
K = 102 268.6 43.8
K = 100 262.3 2.2
K = 98 271.5 47.7
K = 50 1303.1 1139.7

We use CPLEX11.2 and a computer with 2GHz CPU and 2GB memory.

St = S0exp(Xt), (16)

where S0 = 100, X0 = 0, a = 2 and σ = 0.1. We also assume t0 = 0 and the time step
∆t = 0.1, so that tT = 2. We set prices on the tree in accordance with Hull and White [6],
and then Sa

t = 100exp(σ
√

3∆t) = 105.63, Sb
t = 100 and Sc

t = 100exp(−σ
√

3∆t) = 94.67
for any t.

We assume that we can trade only a risk-free asset and a futures contract with the
maturity date tT and the risk-free rate is equal to 0. We set these as U . The price of the
futures contract F (t, tT) is as follows4:

F (t, tT) = Et[ST]

= S0exp
(

exp(−a(tT − t))Xt +
σ2

4a
(1 − exp(−2a(tT − t)))

)
.

(17)

In the above settings, we solve the upper and lower bounds of arbitrage-free prices of
the swing option. We choose some values as K and see the change of the price. Table
3 shows the result. The upper and lower bounds considerably differ in this example,
especially at K = 100.

6 Conclusion

In this paper, we have proposed a pricing method for typical swing options on a lattice
model. Dealing with path-dependence of swing options, we find a particular solution
of swing options in terms of changed amount. Using the solution, we have formulated
the problem of pricing swing options as linear programming. This pricing method can
naturally extend to the pricing in an incomplete market. We have formulated the problem
of finding the upper and lower bounds of arbitrage-free prices as a linear program and
a bilinear program, respectively. Moreover, we have proposed a backward algorithm for
finding the upper and lower bounds.

The particular solution also improves some previous works in terms of time complexity
and accuracy, and we have demonstrated these improvements in numerical examples. The
constraints of our swing option are more limited than those of the previous works, but the
constraints are typical, so that these improvements are expected to be useful of practical
significance.

4This pricing formula is actually incorrect in this case, because the underlying asset is cannot be
preserved and the pricing based on the arbitrage theory is meaningless. However, we do not need accurate
prices and we only need an example of prices on the tree, so that there is no problem.

14

Acknowledgment

This work was supported by Global COE Program “The research and training center for
new development in mathematics”, MEXT, Japan.

References

[1] Barrera-Esteve, C., Bergeret, F., Dossal, C., Gobet, E., Meziou, A., Munos, R. and
Reboul-Salze, D., Numerical Methods for the Pricing of Swing Options: A Stochastic
Control Approach. Methodology and Computing in Applied Probability, 8 (2006), 517–
540.

[2] Camci, A. and Pinar, M. C., Pricing American Contingent Claims by Stochastic
Linear Programming. Optimization, 58 (2009), 627–640.

[3] Dörr, U., Valuation of Swing Options and Examination of Exercise Strategies by
Monte Carlo Techniques. Thesis, University of Oxford, 2003.
http://www.maths.ox.ac.uk/filemanager/active?fid=918

[4] Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time.
De Gruyter: Berlin, 2004.

[5] Haarbrücker, G. and Kuhn, D., Valuation of Electricity Swing Options by Multistage
Stochastic Programming. Automatica, 45 (2009), 889–899.

[6] Hull, J., White, A., Numerical Procedures for Implementing Term Structure Models
I: Single Factor Models. Journal of Derivatives, 2 (1994), 37–48.

[7] Jaillet, P., Ronn, E. I. and Tompaidis, S., Valuation of Commodity-based Swing
Options. Management Science, 50 (2004), 909–921.

[8] Lari-Lavassani, A., Simchi, M. and Ware, A., A Discrete Valuation of Swing Options.
Technical Report, Canadian Applied Mathematics Quarterly, 9 (2001), 35–74.

[9] Longstaff, F. A. and Schwartz, E. S., Valuing American Options by Simulation: A
Simple Least-Squares Approach. Review of Financial Studies, 14 (2001), 113–147.

[10] Meinshausen, N. and Hambly, B. M., Monte Carlo Methods for the Valuation of
Multiple Exercise Options. Mathematical Finance, 14 (2004), 557–583.

[11] Pennanen, T. and King, A., Arbitrage Pricing of American Contingent Claims in
Incomplete Markets —A Convex Optimization Approach. Working Paper, 2006.
http://math.tkk.fi/~teemu/american.pdf

[12] Steinbach, M. C. and Vollebrecht, H. -J., Efficient Stochastic Programming Tech-
niques for Electricity Swing Options. In: Kallrath J., Pardalos P. M., Rebennack S.
and Scheidt M. (Eds), Optimization in the Energy Industry. Springer: Berlin, 2009,
pp. 485–506.

[13] Thompson, A., Valuation of Path-Dependent Contingent Claims with Multiple Exer-
cise Decisions Over Time: The Case of Take-or-Pay. Journal of Financial and Quan-
titative Analysis, 30 (1995), 271–293.

15

