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Hierarchical subspace models for contingency tables

Hisayuki Hara∗, Tomonari Sei† and Akimichi Takemura‡§

September 2009

Abstract

For statistical analysis of multiway contingency tables we propose modeling in-
teraction terms in each maximal compact component of a hierarchical model. By
this approach we can search for parsimonious models with smaller degrees of free-
dom than the usual hierarchical model, while preserving conditional independence
structures in the hierarchical model. We discuss estimation and exacts tests of the
proposed model and illustrate the advantage of the proposed modeling with some
data sets.

Keywords : context specific interaction model, divider, Markov bases, split model, uniform
association model.

1 Introduction

Modeling of the interaction term is an important topic for two-way contingency tables,
because there is a large gap between the independence model and the saturated model.
This problem is clearly of importance for contingency tables with three or more factors.
However modeling strategies of higher order interaction terms have not been fully dis-
cussed in literature. In this paper we propose modeling interaction terms of multiway
contingency tables by considering each maximal compact component of a hierarchical
model.

For two-way contingency tables the uniform association model (Goodman [1979, 1985])
and the RC association model (Goodman [1979, 1985], Kuriki [2005]) are often used
for modeling interaction terms. In the analysis of agreement among raters, where data
are summarized as square contingency tables with the same categories, many models
with interaction in diagonal elements and their extension to multiway tables have been
considered (e.g. Tanner and Young [1985], Tomizawa [2009]). Hirotsu [1997] proposed
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a two-way change point model and Hara et al. [2009] generalized it to a subtable sum
model. For multiway contingency tables Højsgaard [2003] considered the split model as
a generalization of graphical models. The context specific interaction model defined by
Højsgaard [2004] is a more general model than the split model.

We give a unified treatment of these models as submodels of hierarchical models.
Malvestuto and Moscarini [2000] showed that a hierarchical model possesses a compaction,
i.e. the variables are grouped into maximal compact components separated by dividers.
Variables of different maximal compact components separated by a divider are condition-
ally independent given the variables of the divider. Furthermore the likelihood function
factors as a rational function of marginal likelihoods, where the numerator corresponds to
maximal compact components and the denominator corresponds to dividers. By this fac-
torization, statistical inference on a hierarchical model can be localized to each maximal
compact component. In the case of decomposable model, maximal compact components
and dividers reduce to maximal cliques and minimal vertex separators of a chordal graph,
respectively, and the above factorization is well known (e.g. Section 4.4 of Lauritzen
[1996]).

In a usual hierarchical model each maximal interaction effect is saturated, i.e. there
is no restriction on the parameters for maximal interaction effects. However, as in the
two-way tables, we can consider submodels for interaction effects. In the modeling pro-
cess, it is advantageous to treat each maximal compact component of a hierarchical model
separately and to keep the compaction of the hierarchical model. By respecting the com-
paction of the hierarchical model, conditional independence property and the localization
property of the hierarchical model are preserved. We call a resulting model a hierarchi-
cal subspace model. We prove some properties of our proposed model and illustrate its
advantage with some data sets.

The organization of the paper is as follows. For the rest of this section, as a motivating
example, we consider a submodel of the conditional independence model for three-way
contingency tables. In Section 2 we define the hierarchical subspace model and discuss the
localization of inference through the decomposition of the model into maximal extended
compact components. We also discuss maximum likelihood estimation of the proposed
model. In Section 3 we study the split model in the framework of this paper. In Section
4 we present construction of Markov bases for conditional tests of the model. Fitting of
the proposed model to several real data sets is presented in Section 5. Some concluding
remarks are given in Section 6.

1.1 A motivating example: subspace conditional independence
model for three-way tables

As an illustration of hierarchical subspace models we discuss a submodel of conditional
independence model for three-way tables. Denote the sample size by n = x+++. Consider
an I × J ×K contingency table and let pijk denote the probability of the cell. Marginal
probabilities are denoted by pi++, pij+, etc. Similar notation is used for the frequencies
x = {xijk} of the contingency table. Consider the conditional independence model i ⊥⊥
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k | j, which is expressed by
log pijk = aij + bjk. (1)

In the usual conditional independence model, aij’s and bjk’s are free parameters. Now
suppose that we have known functions φij depending on i and j and ψjk depending on
j and k. Separating main effects, consider the following submodel of the conditional
independence model

log pijk = αi + βj + γk + δφij + δ′ψjk. (2)

The parameters of this model are {αi}I
i=1, {βj}J

j=1, {γk}K
k=1 and δ, δ′. The uniform associ-

ation model is specified by φij = ij. The two-way change point model in Hirotsu [1997]
is specified by

φij =

{
1, if i ≤ I1 and j ≤ J1,

0, otherwise,

where 1 ≤ I1 < I, 1 ≤ J1 < J . Similarly we can specify ψjk according to many well
known models.

As a submodel of the conditional independence model, i ⊥⊥ k | j holds for (2) and we
can write

pijk =
pij+p+jk

p+j+

.

Moreover, since {βj}J
j=1 are free parameters, the model is saturated for the main effect

of the second factor. This implies that the maximum likelihood estimate (MLE) of the
model is obtained as

p̂ijk =
p̂ij+p̂+jk

x+j+/n
. (3)

Here p̂ij+ is the MLE of the following model for the marginal probability

log pij+ = αi + βj + δφij (4)

and p̂ij+ only depends on the marginal frequencies {xij+}. Similarly p̂+jk is the MLE for
(j, k)-marginal probabilities:

log p+jk = βj + γk + δ′ψjk. (5)

In this way the maximum likelihood estimation of the model (2) is localized to estimations
of two marginal models.

In our model (2) it is important to note that δ and δ′ are free parameters. Consider
an additional constraint H : δ = δ′ to (2):

log pijk = αi + βj + γk + δ(φij + ψjk). (6)

This model is still log-affine and contained in the conditional independence model. How-
ever, because both the (i, j)-marginals and the (j, k)-marginals are relevant for the esti-
mation of the common value of δ, we can not localize estimation of the parameters to
two marginal tables. This consideration shows that it is convenient to set up a log-affine
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model, which is “conformal” to the conditional independence model. We will appropri-
ately define the notion of conformality in Section 2.

In our model we can also allow certain patterns of structural zeros. Consider the data
on song sequence of a wood pewee in Section 7.5.2 of Bishop et al. [1975]. The data is
shown in Table 1. The wood pewee has a repertoire of four distinctive phrases. The
observed data consists of 198 triplets of consecutive phrases (i, j, k) ∈ {1, 2, 3, 4}3. It is a
4× 4× 4 contingency table with the cells of the form (i, i, k) and (i, j, j) being structural
zeros.

Table 1: Triples of phrases in a song sequence of a wood pewee, with repeats deleted.

Third place
First place Second place A B C D

A A — — — —
B 19 — 2 2
C 2 26 — 0
D 12 5 0 —

B A — 9 6 12
B — — — —
C 24 1 — 1
D 1 2 0 —

C A — 4 22 0
B 3 — 22 0
C — — — —
D 1 0 0 —

D A — 11 0 4
B 5 — 1 1
C 0 0 — 0
D — — — —

Source: Craig [1943]

The model considered in Bishop et al. [1975] is written as

pijk = 1{i6=j}e
aij1{j 6=k}e

bjk , (7)

where aij and bjk are free parameters. With some abuse of notation (7) can be written as

log pijk = aij1{i6=j} + (−∞)1{i=j} + bjk1{j 6=k} + (−∞)1{j=k}.

As (2), this model is a conditional independence model and also it is saturated for the
main effect of the second factor. Therefore the MLE for this model is again expressed as
(3). An appropriate handling of (−∞) and further analysis are given in Section 5.

In Section 3, we also consider the split model defined by Højsgaard [2003] as an
important example of the hierarchical subspace model. Here we give an example of the
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split model for the three-way table {xijk} by

log pijk = ai + bj + ck + (dij + ejk)1{j∈J1},

where J1 is a subset of {1, . . . , J}. This model means that the interaction between i and
j (resp. j and k) exists only if j ∈ J1. The general definition of split models is given in
Section 3 and a numerical example of it is given in Section 5.

We now consider the conditional goodness of fit test of the model based on the Markov
basis methodology (Diaconis and Sturmfels [1998]). Assume that φij’s and ψjk’s in (2)
are integers. Furthermore suppose that Markov bases B12 and B23 are already obtained
for two marginal models (4) and (5). Following the notation in Section 2 of Dobra and
Sullivant [2004], write a particular move z = {z(i, j)} of degree d in the Markov basis B12

for (4) as
z = [{(i1, j1), . . . , (id, jd)}‖{(i′1, j′1), . . . , (i′d, j′d)}], (8)

where (i1, j1), . . . , (id, jd) are cells (with replication) of positive elements of z and (i′1, j
′
1),

. . . , (i′d, j
′
d) are cells of negative elements of z. By replication we mean that the same cell

(i, j) is repeated |z(i, j)| times in (8). Extend the move z to three-way table as

zk1,...,kd = [{(i1, j1, k1), . . . , (id, jd, kd)}‖{(i′1, j′1, k1), . . . , (i
′
d, j

′
d, kd)}],

where k1, . . . , kd ∈ {1, . . . , K} are arbitrary. Similarly for a move

z̃ = [{(j1, k1), . . . , (jd, kd)}‖{(j′1, k′1), . . . , (j′d, k′d)}] ∈ B23

let
z̃i1,...,id = [{(i1, j1, k1), . . . , (id, jd, kd)}‖{(i1, j′1, k′1), . . . , (id, j′d, k′d)}].

Let B{1,2},{2,3} denote a Markov basis for conditional independence model (1). Following
the argument in Dobra and Sullivant [2004] we easily see that

B = B{1,2},{2,3} ∪ {zk1,...,kdeg z ,z ∈ B12, 1 ≤ k1, . . . , kdeg z ≤ K}
∪ {z̃i1,...,ideg z̃ , z̃ ∈ B23, 1 ≤ i1, . . . , ideg z̃ ≤ I}

is a Markov basis for (2). Therefore the problem of conditional test of the model (2) is
also localized to two marginal models.

For the rest of this paper, we generalize the above results to a log-affine model.

2 Hierarchical subspace models and their decompo-

sitions

In this section we give a definition of hierarchical subspace models for I1 × · · · × Im
contingency tables and discuss its decomposition by partial edge separators. In Section
2.1 we define a hierarchical subspace model. In Section 2.2 we prove that for any log-affine
model there exists a natural smallest decomposable model, such that the the log-affine
model is a hierarchical subspace model of the decomposable model. In Section 2.3 we
discuss properties of hierarchical models containing a given log-affine model.
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2.1 Definition of a hierarchical subspace model

We give a definition of a hierarchical subspace model and also discuss the localization of
maximum likelihood estimation of the proposed model. We follow notation of Lauritzen
[1996] and Malvestuto and Moscarini [2000].

Let V = RI1×···×Im denote the set of I1 × · · · × Im tables with real entries, where
Ij ≥ 2 for all j. V is considered as an I1 × · · · × Im-dimensional real vector space of
functions (tables) from I = [I1] × · · · × [Im] to R, where [J ] denotes {1, . . . , J}. A
probability distribution over I is denoted by {p(i), i ∈ I}. Let L be a linear subspace
of V containing the constant function 1 ∈ L. A log-affine model specified by L is given
by log p(·) ∈ L, where log p(·) denotes {log p(i), i ∈ I}. In the following we only consider
linear subspaces of V containing the constant function 1.

Let D be a subset of [m] = {1, . . . ,m}. iD = {ij, j ∈ D} is a D-marginal cell. p(iD)
denotes the marginal probability of a probability distribution p(·). Similarly x(iD) denotes
the marginal frequency of the contingency table x = {x(i), i ∈ I}. As in Sei et al. [2008]
let

LD = {ψ ∈ V | ψ(i1, . . . , im) = ψ(i′1, . . . , i
′
m) if ih = i′h, ∀h ∈ D}

denote the set of functions depending only on iD. LD is considered as RID , where ID =∏
h∈D Ih. Hence we have L[m] = V . For a subspace L and D ⊂ [m], we say that D is

saturated in L if LD ⊂ L. D is saturated in L if and only if the sufficient statistic for L
fixes all the D-marginals of the contingency table. Note that if D is saturated in L, then
every E ⊂ D is saturated in L.

Let ∆ denote a simplicial complex on [m] and let red ∆ denote the set of maximal
elements, i.e. facets, of ∆. Then the hierarchical model associated with ∆ is defined as

log p(·) ∈ L∆
def
=

∑
D∈red∆

LD,

where the right-hand side is the summation of vector spaces. We note that red ∆ is
considered as a hypergraph. Here we summarize some notions on hypergraphs according
to Malvestuto and Moscarini [2000]. A subset of a hyperedge of red ∆ is called a partial
edge. A partial edge S is a separator of red ∆ if the subhypergraph of red ∆ induced by
[m] \ S is disconnected. A partial edge separator S of red ∆ is called a divider if there
exist two vertices u, v ∈ [m] that are separated by S but by no proper subset of S. If
two vertices u, v ∈ [m] are not separated by any partial edge, u and v are called tightly
connected. A subset C ⊂ [m] is called a compact component if any two variables in C are
tightly connected. Denote the set of maximal compact components of red ∆ by C. Then
there exists a sequence of maximal compact components C1, . . . , C|C| such that

(C1 ∪ · · · ∪ Ck−1) ∩ Ck = Sk

and Sk, k = 2, . . . , |C| are dividers of red ∆. We denote S = {S2, . . . , S|C|}. S is a multiset
in general.
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Let W1, . . . ,WK be linear subspaces of V and let W = W1 + · · · +WK . We say that
a subspace L is conformal to {Wj}K

j=1 if

L = (L ∩W1) + · · · + (L ∩WK).

Any L conformal to {Wj}K
j=1 is clearly a subspace of W . Note that the relation L =

L ∩W ⊃ (L ∩W1) + · · · + (L ∩WK) always holds but the inclusion is strict in general.
Consider the models (2) and (6) in Section 1.1. Let K = 2 and let W1 := L{1,2} and
W2 := L{2,3}. In the case of the model (2),

L ∩W1 = {αi + βj + δφij}, L ∩W2 = {βj + γk + δ′ψjk},

where αi, βj, γk, δ, δ
′ ∈ R are free parameters. Hence L = (L ∩W1) + (L ∩W2) and (2) is

conformal to two marginal spaces {L{1,2}, L{2,3}}. In the case of the model (6), however,

L ∩W1 = {αi + βj}, L ∩W2 = {βj + γk}.

Hence (L ∩ W1) + (L ∩ W2) = {αi + βj + γk} and the model (6) is not conformal to
{L{1,2}, L{2,3}}.

Given a subspace L consider a hierarchical model L∆ ⊃ L. We present the following
definition of a hierarchical subspace model.

Definition 1. L is a hierarchical subspace model (HSM) of L∆ if the following conditions
hold:

1. L ⊂ L∆.

2. Each divider S ∈ S of red ∆ is saturated in L, i.e. LS ⊂ L.

3. L is conformal to the set of subspaces {LC , C ∈ C}.

Condition 2 guarantees that the MLE p̂(i) satisfies

p̂(i) =

∏
C∈C p̂(iC)∏
S∈S p̂(iS)

=

∏
C∈C p̂(iC)∏

S∈S x(iS)/n
. (9)

By Condition 3 the marginal probability p̂(iC) in the numerator of (9) coincides with
the MLE of the model L ∩ LC , which is computed only on the marginal table x(iC).
We confirm this fact. By induction, it is sufficient to consider the case C = {C,R}
with S = C ∩ R. The MLE of the model L is the maximizer of

∑
ix(i) log p(i) subject

to log p(·) ∈ L and
∑

i p(i) = 1. By Condition 3 we write log p(·) = θC + θR with
θC ∈ L ∩ LC and θR ∈ L ∩ LR. Since LS is saturated both in L ∩ LC and L ∩ LR, we
can assume

∑
iC\S

eθC(iC) = 1 for each iS without loss of generality. Hence the problem

is decomposed into two parts: maximization of
∑

iC
x(iC)θC(iC) subject to θC ∈ L ∩ LC

and
∑

iC\S
eθC(iC) = 1, and maximization of

∑
iR
x(iR)θR(iR) subject to θR ∈ L∩LR and∑

iR
eθR(iR) = 1. Since the maximizer θ̂C does not depend on R, it is computed from the

case R = S. We have θ̂C(i) = log{p̌(iC)/(x(iS)/n)}, where p̌(iC) is the MLE of the model
L∩LC . Hence the computation of the MLE of an HSM of L∆ is localized to each C ∈ C.
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2.2 Ambient decomposable model of a log-affine model

In Definition 1, L is an HSM of a particular L∆. Note that by definition every log-affine
model L is an HSM of the saturated model L[m]. Therefore every log-affine model L has
a hierarchical model for which L is an HSM and a natural question is to look for a small
simplicial complex ∆ such that L is an HSM of L∆. As the main theoretical result of
this paper we show in Theorem 1 below that for each log-affine model L there exists a
natural smallest decomposable model LH such that L is an HSM of LH. We call such LH
the ambient decomposable model of L.

We want to define the ambient decomposable model in such a way that the condi-
tional independence model i ⊥⊥ k | j is the ambient decomposable model for (2) and the
saturated model L[3] is the ambient decomposable model for (6).

In order to define the ambient decomposable model, we first define connectedness of
L and a partial edge separator of L. L is called disconnected if there exists a non-empty
proper subset A of [m] such that L is conformal to {LA, LAC}, where AC denotes the
complement of A. This means that the variables in A and the variables in AC are inde-
pendent and independently modeled in L. We call L connected if L is not disconnected. It
is obvious that under this definition L can be decomposed into its connected components
and each connected component can be investigated separately. Therefore from now on we
assume that L is connected.

Definition 2. A non-empty subset S of [m] is called a partial edge separator of L if [m]
is partitioned into three non-empty and disjoint subsets {A1, A2, S} such that

1. S is saturated in L.

2. L is conformal to {LA1∪S, LA2∪S}.

Then we call the triple (A1, A2, S) a decomposition of L. When the model L has a partial
edge separator, we call L reducible. A pair of vertices i and j are called tightly connected
in L if there does not exist a decomposition (A1, A2, S) of L such that i ∈ A1 and j ∈ A2.
When L is not reducible, we call L prime.

A set of vertices such that any two of them are tightly connected in L is called extended
compact component of L. The set of maximal extended compact components of L is
considered as a hypergraph and is denoted by H. Denote by LH the hierarchical model
induced by H. Then we have the following theorem.

Theorem 1. LH is the smallest decomposable model with respect to inclusion relation
such that L is an HSM of LH.

The following corollary is obvious from (9).

Corollary 1. The MLE p̂(i) satisfies

p̂(i) =

∏
C∈H p̂(iC)∏

S∈S x(iS)/n
,

where S is the set of dividers of H and p̂(iC) depends only on the marginal table x(iC).
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The rest of this subsection is devoted to a proof of Theorem 1. Before we give the
proof, we present some lemmas required to prove the theorem.

Lemma 1. If S is a partial edge separator of L, S is also a partial edge separator of H.

Proof. Since S is saturated in L, S is an extended compact component. Hence S is a
partial edge of H. Denote by H([m] \ S) the subhypergraph of H induced by [m] \ S.
Assume that S is not a separator of H. Then H([m] \ S) is connected.

Since S is a separator of L, there exists a decomposition (A,B, S) of L by definition.
Define H̃(A) and H̃(B) by

H̃(A) := {C ∈ H | A ∩ C 6= ∅}, H̃(B) := {C ∈ H | B ∩ C 6= ∅}.

Then we have H̃(A)∩ H̃(B) = ∅ which contradicts the fact that H([m] \ S) is connected.

By using Lemma 1, we can prove the following lemma in the same way as Theorem 5
in Malvestuto and Moscarini [2000].

Lemma 2. H is acyclic.

Denote by S the set of dividers of H.

Lemma 3. Suppose S ∈ S is a divider of H with a decomposition (A,B, S). Then S is
a partial edge separator of L with a decomposition (A,B, S).

Proof. Since S is a divider, there exists a pair of vertices {u, v} such that S is the unique
minimal partial edge separating u and v. Then there exists a decomposition (A,B, S)
such that u ∈ A and v ∈ B. Any vertices in A and any vertices in B are not tightly
connected in L. This implies that there exists a partial edge separator S ′ ⊂ S of L and
a decomposition (A′, B′, S ′) of L satisfying A′ ⊃ A and B′ ⊃ B. From Lemma 1, S ′ is
also a partial edge separator of H. Noting that S is the unique minimal partial edge of
H separating u and v, we have S ′ = S. Then (A,B, S) is a decomposition of L.

Now we provide a proof of Theorem 1.

Proof of Theorem 1. It is obvious that L ⊂ LH. From Lemma 3, every divider S ∈ S
of H is a partial edge separator of L and hence saturated in L. From Lemma 2, H is
considered as the set of maximal cliques of a chordal graph GH. Let Ck, k = 1, . . . , K, be
a perfect sequence of maximal cliques in GH (see e.g. Section 2.1.3 of Lauritzen [1996]).
Let

Bk := C1 ∪ C2 ∪ · · · ∪ Ck, Rk := (CK ∪ CK−1 ∪ · · · ∪ Ck) \ Sk, Sk := Bk−1 ∩ Ck.

It is known that SK is a divider of H with a decomposition (BK−1, RK , SK). From Lemma
3, SK is a partial edge separator in L with the same decomposition. Hence L is conformal
to {LBK−1

, LCK
}, i.e.

L = (L ∩ LBK−1
) + (L ∩ LCK

).
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In the same way SK−1 is a partial edge separator in L with a decomposition (BK−2, RK−1, SK−1)
and hence L is conformal to {LBK−2

, LCK∪CK−1
}, i.e.

L = (L ∩ LBK−2
) + (L ∩ LCK∪CK−1

)

=
[(

(L ∩ LBK−1
) + (L ∩ LCK

)
)
∩ LBK−2

]
+
[(

(L ∩ LBK−1
) + (L ∩ LCK

)
)
∩ LCK−1∪CK

]
= (L ∩ LBK−2

) + (L ∩ LCK−1
) + (L ∩ LCK

).

By iterating this procedure, we can obtain L = (L ∩ LC1) + · · · + (L ∩ LCK
). Hence L is

conformal to {LC , C ∈ H}. Therefore L is an HSM of LH.
Suppose that there exists a smaller decomposable model LH′ ⊂ LH for which L is an

HSM. Then there exist C ∈ H and a divider S ′ of H′ such that S ′ ⊂ C. This contradicts
the fact that any vertices in C are tightly connected in L.

2.3 Hierarchical models containing a log-affine model

In Theorem 1 we have shown the existence of the smallest decomposable model containing
a log-affine model. Then a natural question is to ask whether there exists the smallest
hierarchical model containing a log-affine model. In general this does not hold and we
here discuss properties of hierarchical models containing a log-affine model.

As an example consider the model (6). Although (6) is a submodel of the conditional
independence model i ⊥⊥ k | j, (6) is not an HSM of the conditional independence model.
The difficulty lies in the fact that a hierarchical model containing L may have a partial
edge separator which is not a partial edge separator of L.

Given a log-affine model L, consider the set of hierarchical models L∆ containing L:
{L∆ | L∆ ⊃ L}. Because of the relation L∆ ∩L∆′ = L∆∩∆′ it follows that there exists the
smallest hierarchical model in {L∆ | L∆ ⊃ L}. We call the smallest hierarchical model
containing L as hierarchical closure of L and denote the corresponding simplicial complex
and the hierarchical model by ∆̄(L) and L∆̄(L), respectively. Note that for both (2) and
(6), the hierarchical closure is the three-way conditional independence model (1).

We call a log-affine model L a tight hierarchical subspace model if L is an HSM of
L∆̄(L). If L is a tight HSM, obviously ∆̄(L) is the smallest simplicial complex such that
L is its HSM.

We now present an example of a log-affine model L of a 5-way contingency table,
which has two minimal hierarchical models ∆1, ∆2, such that L is an HSM of both L∆1

and L∆2 . Consider the following model L of 5-way contingency tables:

log p(i1, . . . , i5) =
5∑

j=1

α{j}(ij) + θ
(
ψ{1,2}(i1, i2) + ψ{1,3}(i1, i3) + ψ{2,3}(i2, i3)

+ ψ{2,4}(i2, i4) + ψ{3,5}(i3, i5) + ψ{4,5}(i4, i5)
)
,

where the main effects α{j}’s and θ are parameters and ψ{j,j′}’s are fixed functions. The
hierarchical closure of this model is given by

red ∆̄ = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 5}, {4, 5}}
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which has a divider {2, 3}. Hence L is not tight. Note that L is an HSM of any L∆, such
that L∆ does not possess a partial edge separator and L ⊂ L∆. As in Figure 1 define

red ∆1 = red ∆̄ ∪ {{1, 4}}, red ∆2 = red ∆̄ ∪ {{1, 5}}.

Then L is an HSM of both L∆1 and L∆2 .

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

or

Figure 1: Two ways to cross a divider of the hierarchical closure

3 Split model as a hierarchical subspace model

We consider the split model by Højsgaard [2003]. An example of the split model for three-
way tables is L = Li2=1

{1} + Li2=1
{3} + Li2=2

{1,3}, which represents that there exists a conditional
interaction of i1 and i3 given i2 only if i2 = 2. A precise definition is given below.

We first define the context specific interaction (CSI) model (Højsgaard [2004]). The
split model is a particular case of the CSI model. Recall that V = R|I| is the set of all
tables. For any subset B of [m] and jB ∈ IB, we consider a subspace LjB of V in that
only the jB-slice has nonzero components, that is,

LjB = {ψ ∈ V | ψ(i) = 0 if iB 6= jB} .
=
{
ψ ∈ V | ψ(i) = f(i[m]\B)1{iB=jB}, f : I[m]\B → R

}
.

If B is empty, we define Lj∅ = V with a dummy symbol j∅. For any subsets B and D of
[m] and any level jB ∈ IB, we define a subspace

LjB

D = LD∪B ∩ LjB =
{
ψ ∈ V | ψ(i) = f(iD\B)1{iB=jB}, f : ID\B → R

}
.

The subspace LjB

D represents a context specific interaction, that is, an interaction over iD

exists only if iB = jB. The following relation is easily proved:

LD∪B =
∑

jB∈IB

LjB

D . (10)

A context specific interaction (CSI) model is a direct sum of subspaces LjB

D for a set of
(jB, D)’s. It is easily shown that any hierarchical model is a CSI model.

11



Next we define split models. In order to clarify the definition, we consider a more
general model, the split subspace model. The split model is a particular case of the split
subspace models. Although Højsgaard [2003] defined the split model on the basis of a
graphical model, we let the graphical model be a decomposable model for simplicity.

Consider a decomposable model L∆ with the set of maximal cliques C. For each
C ∈ C choose a subset Z(C) ⊂ C. We admit the case where Z(C) is empty. For each

jZ(C) ∈ IZ(C), choose a subspace N
jZ(C)

C ⊂ L
jZ(C)

C such that

∀C ′ ∈ C \ {C}, L
jZ(C)

C∩C′ ⊂ N
jZ(C)

C ⊂ L
jZ(C)

C . (11)

Then a log-affine model L is defined by

L =
∑
C∈C

NC , NC =
∑

jZ(C)∈IZ(C)

N
jZ(C)

C . (12)

We call L a split subspace model with root C if it satisfies (11) and (12). The following
proposition holds.

Proposition 1. Let L∆ be a decomposable model with the cliques C. Then any split
subspace model L with root C is an HSM of L∆.

Proof. We first check L ⊂
∑

C∈C LC . Since L =
∑

C∈C NC , it is sufficient to showNC ⊂ LC

for each C ∈ C. However, this is clear because N
jZ(C)

C ⊂ L
jZ(C)

C ⊂ LC for any jZ(C). Next
we prove that LS ⊂ L for any divider S. From the definition of dividers of decomposable
models, there exist two cliques C and C ′ (C 6= C ′) such that S = C ′∩C. By the relations
(10) and (11), we have

LS ⊂ L(C′∩C)∪Z(C) =
∑

jZ(C)∈IZ(C)

L
jZ(C)

C′∩C ⊂
∑

jZ(C)∈IZ(C)

N
jZ(C)

C = NC .

Therefore LS ⊂ L. Lastly, we prove that L is conformal to {LC | C ∈ C}. We have
already proved NC ⊂ LC . Since NC is also a subspace of L, we obtain NC ⊂ L ∩ LC and
therefore L =

∑
C∈C NC ⊂

∑
C∈C(L ∩ LC). The opposite inclusion is obvious.

Now we define a split model as a special case of split subspace models. We say that
any decomposable model is a split model of degree zero. Then a split model of degree one
is defined as the decomposition (12) with

N
jZ(C)

C =
∑

D∈C
jZ(C)
C

L
jZ(C)

D ,

where CjZ(C)

C is a decomposable model with the vertex set C \ Z(C). Here we assume

∀C ′ ∈ C \ {C}, ∃D ∈ CjZ(C)

C s.t. (C ∩ C ′) \ Z(C) ⊂ D (13)
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to assure the condition (11). Split models of degree greater than one are defined recur-
sively. See Højsgaard [2003] for details.

In Section 5, we will consider an example of the split model (of degree one). The
following elementary lemma is useful to obtain the MLE of split models.

Lemma 4. Let I =
∪

λ Jλ be a partition of I and consider subspaces Nλ ⊂ V such that

Nλ ⊂ {ψ ∈ V | ψ(i) = 0 if i /∈ Jλ}.

Then the MLE of the model
∑

λNλ is given by p̂(i) =
∑

λ(nλ/n)p̂λ(i)1{i∈Jλ}, where p̂λ(i)
is the MLE of the model Nλ with the total frequency nλ =

∑
i∈Iλ

x(i).

4 Conditional tests of hierarchical subspace models

via Markov bases

In this section we discuss conditional tests of our proposed model via Markov bases
technique. In Section 1.1, we have discussed that the divide-and-conquer approach of
Dobra and Sullivant [2004] still works for the model (2). In this section we generalize the
argument to an HSM L.

Let x = {x(i)}i∈I denote an m-way contingency table, where x(i) denotes the fre-
quency of the cell i ∈ I. Let b be the set of sufficient statistics for L. We assume that the
elements of b are integer combinations of the frequencies x(i). For a hierarchical model
L∆, b is written by

b = {xD(iD), iD ∈ ID, D ∈ red ∆},

where xD(iD) =
∑

i
DC∈I

DC
x(iD, iDC ). We consider b as a column vector with dimension

ν. We order the elements of x appropriately and consider x as a column vector. Then the
relation between the joint frequencies x and the marginal frequencies b is written simply
as

b = Ax,

where A is a ν × |I| integer matrix. A is called the configuration for L.
For a subset D ⊂ [m], denote L(D) := L ∩ LD. Let (A1, A2, S) be a decomposition

of L and define V1 := A1 ∪ S and V2 := A2 ∪ S. Since L is conformal to {LV1 , LV2}, we
note that L(V1) and L(V2) are marginal models corresponding to V1 and V2, respectively.
Denote by AV1 = {aV1(iV1)}iV1

∈IV1
and AV2 = {aV2(iV2)}iV2

∈IV2
the configurations for the

marginal models L(V1) and L(V2), where aV1(iV1) and aV2(iV2) denote column vectors of
AV1 and AV2 , respectively. Noting that iV1 = (iA1iS) and iV2 = (iSiA2), the configuration
A for L is written by

A = AV1 ⊕S AV2 = {aV1(iA1iS) ⊕ aV2(iSiA2)}iA1
∈IA1

,iS∈IS ,iA2
∈IA2

,

where

aV1(iA1iS) ⊕ aV2(iSiA2) =

(
aV1(iA1iS)
aV2(iSiA2)

)
.
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Given b, the set
Fb = {x ≥ 0 | b = Ax}

of contingency tables sharing the same b is called a fiber. An integer array z = {z(i)}i∈I
of the same dimension as x is called a move if Az = 0. As in (8), we denote z with degree
d as

z = [{i1, . . . , id}‖{i′1, . . . , i′d}],

where i1, . . . , id ∈ I are cells (with replication) of positive elements of z and i′1, . . . , i
′
d ∈ I

are cells of negative elements of z. Moves are used for steps of Markov chain Monte Carlo
simulation within each fiber. If we add or subtract a move z to x ∈ Fb, then x± z ∈ Fb

and we can move from x to another state x + z (or x − z) in the same fiber Fb, as long
as there is no negative element in x + z (or x − z). A finite set M of moves is called a
Markov basis if for every fiber the states become mutually accessible by the moves from
M.

Assume that B(V1) and B(V2) are Markov bases for L(V1) and L(V2), respectively. Let
z1 = {z1(iV1)}iV1

∈IV1
∈ B(V1) and z2 = {z2(iV2)}iV2

∈IV2
∈ B(V2). Since S is saturated, we

have ∑
iV1\S∈IV1\S

z1(iV1) = 0,
∑

iV2\S∈IV2\S

z2(iV2) = 0.

Hence z1 and z2 can be written as

z1 = [{(i1, j1), . . . , (id, jd)}||{(i′1, j1), . . . , (i
′
d, jd)}], (14)

z2 = [{(j1,k1), . . . , (jd,kd)}||{(j1,k
′
1), . . . , (jd,k

′
d)}],

respectively, where ik, i
′
k ∈ IA1 , jk ∈ IS and kk,k

′
k ∈ IA2 for k = 1, . . . , d.

Definition 3 (Dobra and Sullivant [2004]). Define z1 ∈ B(V1) as in (14). Let k :=
{k1, . . . ,kd} ∈ IA2 × · · · × IA2. Define zk

1 by

zk
1 := [{(i1, j1,k1), . . . , (id, jd,kd)}||{(i′1, j1,k1), . . . , (i

′
d, jd,kd)}].

Then we define Ext(B(V1) → L) by

Ext(B(V1) → L) := {zk
1 | k ∈ IA2 × · · · × IA2}.

In the same way as Lemma 5.4 in Dobra and Sullivant [2004] we can obtain the
following lemma.

Lemma 5. Suppose that z1 ∈ B(V1) as in (14). Then Ext(B(V1) → L) is the set of moves
for L.

Proof. Let z ∈ Ext(B(V1) → L). Then we have

Az =

( ∑
iV1

∈IV1
aV1(iV1)zV1(iV1)∑

iV2
∈IV2

aV2(iV2)zV2(iV2)

)
,
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where
zV1(iV1) =

∑
i
V C
1

∈I
V C
1

z(i), zV2(iV2) =
∑

i
V C
2

∈I
V C
2

z(i).

Since zV1(iV1) = z1(iV1) and z1 ∈ B(V1),
∑

iV1
∈IV1

aV1(iV1)zV1(iV1) = 0. From Definition

3, zV2(iV2) = 0 for all iV2 ∈ IV2 . Hence Az = 0.

Theorem 2. Let B(V1) and B(V2) be Markov bases for L(V1) and L(V2), respectively. Let
BV1,V2 is a Markov basis for the hierarchical model with two cliques V1 and V2. Then

B := Ext(B(V1) → L) ∪ Ext(B(V2) → L) ∪ BV1,V2 . (15)

is a Markov basis for L.

We can prove the theorem in the same way as Theorem 5.6 in Dobra and Sullivant
[2004]. Suppose that L is an HSM of LH. Then Theorem 2 implies that a Markov
basis for L is obtained from B(C), C ∈ H, by recursively using (15). This shows that
the computation of a Markov basis can be localized according to the maximal extended
compact components of L.

Concerning Markov bases of the split model of Section 3 we state the following lemma.

Lemma 6. With the same notation as in Lemma 4, a Markov basis of the model
∑

λNλ

is given by union of Markov bases of Nλ.

5 Examples

In this section we give several applications of HSMs. In Section 5.1 we analyze the data
on song sequence of a wood pewee, which we already discussed in Section 1.1. In Section
5.2 we consider an example of a split model.

5.1 Sequences of unrepeated events

Consider the data on song sequence of a wood pewee in Table 1. As mentioned in Section
1.1, it is a 4 × 4 × 4 contingency table with the cells of the form (i, i, k) and (i, j, j)
being structural zeros. The probability function {pijk} satisfies the condition piik = 0 and
pijj = 0, or equivalently, log piik = −∞ and log pijj = −∞. Hence {log pijk} is not an
element of V = R4×4×4. However we can replace V by R|Ī|, where

Ī = I \
(
{(i, i, j), i, j ∈ [4]} ∪ {(i, j, j), i, j ∈ [4]}

)
,

and consider log-affine models of R|Ī|. Formally it is more convenient to proceed with
V = R4×4×4 allowing log piik = log pijj = −∞.

We first consider the conditional independence model

LModel1 = L{1,2} + L{2,3},
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which corresponds to (7). The MLE of this model is explicitly given by

p̂ijk =
xij+x+jk

nx+j+

=
xij+1{i6=j}x+jk1{j 6=k}

nx+j+

.

A Markov basis of the model is BModel1 = B{1,2},{2,3} (see Theorem 2 for the notation). An
experimental result that compares the saturated model and Model 1 is given in Figure 2.
Both the asymptotic and experimental estimates of the p-value are almost zero.

Although Model 1 does not fit the data, we proceed to consider a submodel of Model 1
for theoretical interest. Let

Lmodel2 =
{
αi + βj + γk + φi1{i=j} + ψj1{j=k}

}
.

This model is an HSM of L{1,2} +L{2,3}. It represents a quasi-independence model for the
three-way table. The MLE of the model is

p̂ijk =
p̂

(1)
ij p̂

(2)
jk

x+j+/n
,

where p̂
(1)
ij and p̂

(2)
jk are the MLE of the 2-way quasi-independence models with the diagonal

structural zeros, that is,

p̂
(1)
ii = eα̂ieβ̂j1{i6=j}, p̂

(1)
i+ = xi++/n, p̂

(1)
+j = x+j+/n,

p̂
(2)
jj = eβ̂jeγ̂k1{j 6=k}, p̂

(2)
j+ = x+j+/n, p̂

(2)
+k = x++k/n.

They are computed by the iterative proportional fitting method. By Theorem 2, a Markov
basis is given by

BModel2 = B{1,2},{2,3} ∪ Ext(B({1, 2}) → V ) ∪ Ext(B({2, 3}) → V )

where B({1, 2}) and B({2, 3}) are the Markov bases of the 2-way quasi-independence
model with structural zeros obtained by Aoki and Takemura [2005]. An experimental
result that compares the Model 1 and Model 2 is given in Figure 2.

5.2 WAM data

Here we deal with a real data called women and mathematics (wam) data used in Højsgaard
[2003]. The data is shown in Table 2. The data consists of the following six factors: (1) At-
tendance in math lectures (attended=1, not=2), (2) Sex (female=1, male=2), (3) School
type (suburban=1, urban=2), (4) Agree in statement “I’ll need mathematics in my future
work” (agree=1, disagree=2), (5) Subject preference (math-science=1, liberal arts=2) and
(6) Future plans (college=1, job=2). We consider two models Højsgaard [2003] treated.
The first model is a decomposable model

LModel1 = L{1,2,3,5} + L{2,3,4,5} + L{3,4,5,6}.
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(a) Deviance of Model 1 (G2 = 142.4). (b) Deviance of Model 2 from Model 1 (G2 = 66.9).

Figure 2: The empirical distribution and asymptotic distribution of deviance G2 for the
wood pewee data. The degree of freedom is 16 and 10, respectively. The number of steps
in the MCMC procedure is 105.

By Theorem 2, a Markov basis of this model is given by

BModel1 = B{1,2,3,5},{2,3,4,5,6} ∪ B{1,2,3,4,5},{3,4,5,6}.

The second model is a split model

LModel2 = L{1,2,3,5} + Lj3=1
{2,5} + Lj3=1

{4,5} + Lj3=2
{2,4,5} + L{3,4,5,6}.

This model is indeed a split model (of degree one) with

C = {{1, 2, 3, 5}, {2, 3, 4, 5}, {3, 4, 5, 6}},
Z({1, 2, 3, 5}) = ∅, Cj∅

{1,2,3,5} = {{1, 2, 3, 5}},

Z({2, 3, 4, 5}) = {3}, Cj3=1
{2,3,4,5} = {{2, 5}, {4, 5}}, Cj3=2

{2,3,4,5} = {{2, 4, 5}},

Z({3, 4, 5, 6}) = ∅, Cj∅
{3,4,5,6} = {{3, 4, 5, 6}}.

The condition (13) is easily checked. The MLE is calculated if one decomposes the table
into those for j3 = 1 and j3 = 2 and then calculates the MLE separately (Lemma 4). By
Theorem 2 and Lemma 6, a Markov basis of this model is

BModel2 = Bi3=1
{1,2,5},{4,5,6} ∪ B{1,2,3,5},{2,3,4,5,6} ∪ B{1,2,3,4,5},{3,4,5,6},

where we put Bi3=1
{1,2,5},{4,5,6} = B{1,2,5},{4,5,6} ∩ Li3=1.

We calculate the p-value of the deviance of Model 2 from Model 1 by the MCMC
method. The number of steps in the MCMC procedure is 105. The result is as follows.
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Table 2: Survey data concerning the attitudes of high-school students in New Jersey
towards mathematics.

School Suburban school Urban school
Sex Female Male Female Male
Plans Preference Attend Not Attend Not Attend Not Attend Not
College Math-sciences

Agree 37 27 51 48 51 55 109 86
Disagree 16 11 10 19 24 28 21 25
Liberal arts
Agree 16 15 7 6 32 34 30 31
Disagree 12 24 13 7 55 39 26 19

Job Math-sciences
Agree 10 8 12 15 2 1 9 5
Disagree 9 4 8 9 8 9 4 5
Liberal arts
Agree 7 10 7 3 5 2 1 3
Disagree 8 4 6 4 10 9 3 6

Source: Fowlkes et al. [1988]
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Figure 3: The empirical and asymptotic distributions of the deviance of Model 2 from
Model 1.

Deviance df p-value (asymptotic) p-value (MCMC)
1.851 2 0.396 0.399±0.012

The confidence interval of the p-value is computed on the basis of the batch-means method.
The empirical distribution and asymptotic distribution of the deviance are given in Fig-
ure 3. Since the sample size of the data is large, the results of the asymptotic method
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and MCMC method are almost the same.

6 Concluding remarks

We proposed a hierarchical subspace model, by defining the notion of conformality of linear
subspaces to a given hierarchical model. The notion of an HSM gives a modeling strategy
of multiway tables and unifies various models of interaction effects in the literature. We
illustrated practical advantage of our modeling strategy with some data sets.

In this paper we only considered log-affine model. Note that there are some nonlinear
models of interaction terms for two-way tables, such as the RC association model. It seems
clear that we can separately fit a nonlinear model to each maximal compact component of a
hierarchical model, as long as the models for dividers are saturated. However conformality
of a general nonlinear model with respect to a given hierarchical model has to be carefully
defined and this is left to our future study.

The separation by dividers are closely related to the notion of collapsibility (e.g. As-
mussen and Edwards [1983]) of hierarchical models. Localization of statistical inference to
the marginal table of a maximal compact component seems to correspond to the collapsi-
bility to the component. Also our results for Markov bases for HSMs are closely related
to those of Sullivant [2007]. Sullivant [2007] is more concerned with Markov bases for
models with latent variables and marginalization of latent variables. Collapsibility and
marginalization properties of HSM require further investigation.

In the computation of the MLE for the hierarchical models, it is known that the algo-
rithm can be localized into the marginal tables of maximal cliques for chordal extension
of the simplicial complex associated with the model, which is smaller than maximal com-
pact component (e.g. Badsberg and Malvestuto [2001]). By using the notion of ambient
hierarchical model discussed in Section 2.3, it may be possible to localize the inference to
smaller units than maximal extended compact component also in the HSMs.

Another important question on hierarchical subspace model is the necessity of sat-
uration of the model for dividers. Saturation of the model for dividers is a sufficient
condition for localization of statistical inference, but it may not be a necessary condition.
There may exist some important models, for which statistical inferences can be localized
to extended compact components without the requirement of saturation of dividers. This
question also needs a careful investigation.
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