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Abstract

We propose a new optimization algorithm for Multiple Kernel Learning (MKL) with gen-
eral convex loss functions. The proposed algorithm is a proximal minimization method that
utilizes the “smoothed” dual objective function and converges super-linearly. The sparsity
of the intermediate solution plays a crucial role for the efficiency of the proposed algorithm.
Consequently our algorithm scales well with increasing number of kernels. Experimental
results show that our algorithm is favorable against existing methods especially when the
number of kernels is large (> 1000).

1 Introduction

Kernel methods are powerful nonparametric methods in machine learning and data analysis.
Typically a kernel method fits a decision function that lies in some Reproducing Kernel Hilbert
Space (RKHS). In such a learning framework, the choice of a kernel has a strong impact on the
performance of a method. Instead of using a single kernel, Multiple Kernel Learning (MKL)
aims to find an optimal combination of multiple kernels. In fact, it has been reported [11]
that using multiple kernel improves performances in learning tasks that involves multiple and
heterogeneous data sources. More specifically MKL fits a decision function of the form of f(x) =∑M

m=1 fm(x)+b where each fm belongs to different RKHSs Hm (m = 1, . . . ,M) corresponding to
different basis kernels km. Each basis kernel km may be constructed on different feature subsets
of input x, or different kernel types (e.g., Gaussian, polynomial) with different parameter values
(e.g., Gaussian width, polynomial order), or even may rely on different heterogeneous data
sources associated with the same learning problem. This provides considerable flexibility to fit
various types of problems. According to recent formulations [1, 17, 13], MKL selects the decision
function as the minimizer of the following optimization problem:

minimize
fm∈Hm,b∈R

N∑
i=1

ℓ

(
yi,

M∑
m=1

fm(xi) + b

)
+ C

M∑
m=1

∥fm∥Hm (1)

where {xi, yi}N
i=1 are labeled training examples, ℓ(·, ·) is a convex loss function (e.g., hinge,

logistic, squared loss) and ∥ · ∥Hm is the norm in the RKHS Hm
1. A nice property of the

above formulation is that the solution becomes sparse due to the mixed norm penalization

1Note that in the literature [1, 17, 13], a different but an equivalent regularization term has been considered.
See Sec. 4 for details.
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∑
m ∥fm∥Hm similarly to group Lasso [22, 2]. Thus we can select kernels in a convex optimization

problem. The resulting decision function is nicely interpretable because only a small number
of fms are used. However, solving MKL is challenging because the objective function is non-
differentiable due to the non-smoothness of the regularization term. To overcome this difficulty,
several methods have been proposed.

Roughly speaking, two types of methods have been proposed so far. The first are constraints-
based methods [11, 1] that cast the problem as constrained convex optimization problems. [11]
formulated MKL as semi-definite programming (SDP) problem. [1] casted the problem as a
second order conic programming (SOCP) problem and proposed an SMO-like algorithm to
deal with medium-scale problems. The second are upper-bound-based methods [17, 13, 5].
These methods upper-bound the objective function by a smooth function with some auxiliary
variables; they iteratively (a) solves a single kernel learning problem, such as SVM, and (b)
updates the auxiliary variable. A nice property of this type of methods is that it can make
use of existing well-tuned solvers for the single kernel problem. Semi-Infinite Linear Program
(SILP) approach proposed by [17] utilizes a cutting plane method for the update of the auxiliary
variable. SimpleMKL proposed by [13] performs a gradient descent on the auxiliary variables. It
was reported that SimpleMKL converges faster than former methods. [20] proposed a novel Level
Method as an improvement of SILP and SimpleMKL. HessianMKL proposed by [5] replaced the
gradient descent update of SimpleMKL with a Newton update. At each iteration, HessianMKL
solves a Quadratic Programming (QP) problem with the size of the number of kernels to obtain
the Newton update direction. Therefore it is efficient when the number of kernels is small.

In this article, we propose a new efficient MKL algorithm, which we call SpicyMKL. The
proposed method computes descent steps through the optimization of a smoothed dual objective
function, which arises from a proximal minimization [15] in the primal. From the general theory
of proximal minimization method, the proposed method converges super-linearly. The primal
variable is sparse at each iteration due to the so-called soft threshold operation [8, 7, 6, 21]; this
sparsity is effectively exploited in the proposed algorithm. Therefore SpicyMKL scales well with
increasing number of kernels. Numerical experiments show that we are able to train a classifier
with 3000 kernels in less than 10 seconds.

2 Framework of MKL

In the MKL problem, we assume that we are given n samples (xi, yi)N
i=1 where xi belongs

to an input space X and yi belongs to an output space Y (usual settings are Y = {±1} for
classifications and Y = R for regressions). We define the gram matrix with respect to the kernel
function km as Km = (km(xi, xj))i,j . We assume the gram matrix Km is positive definite2. The
inner product induced by a positive definite matrix K ∈ RN×N is written as ⟨α, β⟩K := α⊤Kβ
for α, β ∈ Rn, and the norm induced by this inner product is written by ∥α∥K :=

√
⟨α, α⟩K .

MKL fits the decision function of the form f(x) + b =
∑M

m=1 fm(x) + b as the minimizer of
Eq. (1) where each fm is an element of a different RKHS Hm. By the representer theorem [10],
the optimal solution of Eq. (1) is attained in the form of fm(x) =

∑
i km(x, xi)αm,i. If we write

αm = (αm,1, . . . , αm,N )⊤, α = (α⊤
1 , . . . , α⊤

M )⊤ ∈ RMN and K̄ = (K1, . . . ,KM ) ∈ RN×NM , then
the optimization problem Eq. (1) is reduced to the following finite dimensional optimization
problem:

minimize
α∈RMN ,b∈R

N∑
i=1

ℓ(yi, (K̄α)i + b) + C
M∑

m=1

∥αm∥Km

2To avoid numerical instability, we added 10−8 to diagonal elements of Km in the numerical experiments.
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where (·)i represents the i-th element of a vector. Here the loss function ℓ(y, f) may be taken as
a hinge loss max(1− yf, 0) or a logistic loss log(1 + exp(−yf)) for a classification problem, or a
squared loss (y − f)2 or a SVR loss max(|y − f | − ϵ, 0) for a regression problem. For simplicity
we rewrite the above problem as

(P) minimize
α∈RMN ,b∈R

fℓ(K̄α + b1) + ϕCK(α), (2)

where 1 = (1, . . . , 1)⊤ and

fℓ(z) =
N∑

i=1

ℓ(yi, zi), ϕCK(α) =
M∑

m=1

ϕCKm(αm) = C
M∑

m=1

∥αm∥Km .

According to [1, 17], it can be shown that the optimal solution of (P) has a form of f⋆(x)+ b⋆ =∑N
i=1 α̂⋆

i (
∑M

m=1 d⋆
mkm(x, xi)) + b⋆ where 0 ≤ d⋆

m ≤ 1 and
∑M

m=1 d⋆
m = 1.

3 An augmented Lagrangian method for MKL

In this section, we first introduce our method as a proximal minimization method. Second,
we assume that the loss function is twice differentiable and derive a Newton method for the
inner minimization. Finally, the method is extended to the situation that the loss function is
non-differentiable.

3.1 Dual augmented Lagrangian method as a proximal minimization method:

The minimization problem (P) is a convex but a non-differentiable problem. We apply the
proximal minimization method [15] to our problem (P) to obtain a new variant of the dual
augmented Lagrangian method proposed in [18] (see also [9, 12, 3]). The proximal minimization
method converts the problem (P) into a sequence of “smoothed” minimization problems as
follows:

(α(t+1), b(t+1))= argmin
α∈RMN ,b∈R

(
fℓ(K̄α+b1)+ϕCK(α)+

M∑
m=1

∥αm − α
(t)
m ∥2

Km

2γ
(t)
m

+
(b − b(t))2

2γ
(t)
b

)
, (3)

where 0 < γ
(1)
m ≤ γ

(2)
m ≤ . . . and 0 < γ

(1)
b ≤ γ

(2)
b ≤ . . . are nondecreasing sequences of penalty

parameters and (α(t), b(t)) is an approximate minimizer at the t-th iteration. Starting from some
initial solution (α(0), b(0)), it is known that the sequence α(t) (t = 0, 1, 2, . . .) converges to the
minimum of (P) at a rate roughly proportional to 1/ min(γ(t)

m , γb); thus when the sequences of
penalty parameters go to infinity the proposed algorithm converges super-linearly [15]. In order
to carry out the minimization in Eq. (3) in practice, we use the Lagrangian duality [4] and
rewrite Eq. (3) as a min-max problem (see also [15]).

min
α∈RMN

b∈R

(
max
ρ∈RN

u∈RMN

(
−f∗

ℓ (−ρ) −
M∑

m=1
ϕ∗

CKm
(Kmum) − b

N∑
i=1

ρi −
M∑

m=1
α⊤

mKm(ρ − um)
)

+
M∑

m=1

1

2γ
(t)
m

∥αm − α
(t)
m ∥2

Km
+ 1

2γ
(t)
b

(b − b(t))2
)

, (4)

where f∗
ℓ and ϕ∗

CKm
are the convex conjugate functions of fℓ and ϕCKm (see [4]) and we define

u = (u⊤
1 , . . . , u⊤

M ) ∈ RMN and um ∈ RN (m = 1, . . . ,M). It is easy to verify that the inner
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Table 1: Algorithm of SpicyMKL

1. Choose a sequence γ
(t)
m → ∞ (m = 1, . . . ,M), γ

(t)
b → ∞ as t → ∞.

2. Minimize the augmented Lagrangian with respect to ρ:

ρ(t) =argminρ

(
f∗

ℓ (−ρ)+
∑

m
1

2γ
(t)
m

∥STm

γ
(t)
m C

(α(t)
m +γ

(t)
m ρ(t))∥2

Km
+ 1

2γ
(t)
b

(b(t) + γ
(t)
b

∑
i ρi)2

)
.

3. Update α
(t+1)
m ← STm

γ
(t)
m C

(
α

(t)
m + γ

(t)
m ρ(t)

)
, b(t+1) ← b(t) + γb

∑
i ρ

(t)
i .

4. Repeat 2. and 3. until the stopping criterion is satisfied.

maximization yields the first two terms in Eq. (3). Now we can exchange the order of minimiza-
tion and maximization because the function to be min-maxed in the above equation is a convex
function for (α, b) and a concave function for (ρ, u) (see Chapter 36 of [14]). By minimizing
Eq. (4) with respect to (α, b) and maximizing it with respect to um we obtain the following
update equations (see Appendix A for the derivation):

α
(t+1)
m = STm

γ
(t)
m C

(α(t)
m + γ

(t)
m ρ(t)) (m = 1, . . . ,M), (5)

b(t+1) = b(t) + γ
(t)
b

∑N
i=1 ρ

(t)
i . (6)

where the well known soft thresholding function (see [8, 7, 6, 21]) STm
C is defined for the MKL

problem as follows:

STm
C (v) = v

max(∥v∥Km − C, 0)
∥v∥Km

,

and ρ(t) ∈ Rn is the minimizer of the function φγ(t)(ρ; α(t), b(t)) defined as follows:

φγ(ρ; α(t), b(t)) = f∗
ℓ (−ρ) +

M∑
m=1

1
2γm

∥STm
γmC(α(t)

m + γmρ)∥2
Km

+
1

2γb
(b(t) + γb

∑
i

ρi)2, (7)

where γ = (γ1, . . . , γM , γb)⊤ ∈ RM+1. At every iteration we minimize φγ(t)(ρ; α(t), b(t)) with
respect to ρ and use the minimizer ρ(t) in the update rules (Eqs. (5) and (6)). The overall algo-
rithm is shown in Table 1. We call the proposed algorithm Sparse Iterative MKL (SpicyMKL).
The above update equations (5)-(6) exactly correspond the augmented Lagrangian method for
the dual of (P) (see [18]) but derived in a simpler way using the techniques from [15].

3.2 Minimizing the augmented Lagrangian function:

Note that the augmented Lagrangian (AL) function φγ(ρ; α, b) (Eq. (7)) that we need to mini-
mize at every iteration is convex and differentiable. This minimization can be carried out using
standard techniques such as the Newton method or the quasi-Newton method. We use the
Newton method because we can exploit the sparsity in the intermediate solution in the com-
putation of the gradient and the Hessian of the objective function. The case where ℓ∗(y, ·) is
non-differentiable is discussed in the next subsection. Let vm = αm + γmρ. If the conjugate
loss function f∗

ℓ is twice differentiable (more specifically if ℓ∗(y, ·) is so), the gradient and the
Hessian of φγ(ρ; α, b) can be written as follows:

∇ρφγ(ρ;α, b) = ∇ρf
∗
ℓ (−ρ) +

∑
m∈M+

KmSTm
γmC (αm + γmρ) + (b + γb

∑
i

ρi)1, (8)
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∇2
ρφγ(ρ;α, b) = ∇2

ρf
∗
ℓ (−ρ) +

∑
m∈M+

γm

(
(1 − qm)Km + qmKmṽmṽ⊤mKm

)
+ γb11⊤, (9)

where M+ is the set of indices such that ∥vm∥Km > γmC, qm = γmC
∥vm∥Km

, and ṽm = vm/∥vm∥Km

(m ∈ M+).

Remark 1. The computation of the gradient and the Hessian of φγ(ρ; α, b) is efficient because
they require only the terms corresponding to the active kernels, i.e. the set of m such that
∥αm + γmρ∥Km

> γmC.

Note that the domain of ℓ∗(y, ·) may be some closed interval in R as long as we know that
the minimum of the AL function φγ(ρ; α, b) is not attained at the boundary of the domain. This
is for example the case for the logistic loss function whose conjugate is the negative entropy
function ℓ∗(yi,−ρi) = (yiρi) log(yiρi) + (1 − yiρi) log(1 − yiρi). In this case, the violation of the
constraint can be easily prevented by the line search performed at each Newton iteration. The
case the minimum is attained typically at the boundary (e.g., the hinge loss) is handled in the
next subsection.

3.3 Explicitly handling boundary constraints:

The Newton method with line search described in the last section is unsuitable when the con-
jugate loss function ℓ∗(y, ·) has a non-differentiable point in the interior of its domain or it has
finite gradient at the boundary of its domain. We use the same augmented Lagrangian technique
for these cases. More specifically we introduce additional primal variables so that the AL func-
tion φγ(·; α, b) becomes differentiable. We explain this in the case of hinge loss for classification.
Generalization to other cases is straightforward, but we omit the details due to the lack of spaces.
To this end, we introduce two sets of slack variables ξ = (ξ1, . . . , ξN )⊤ ≥ 0, ζ = (ζ1, . . . , ζN )⊤ ≥ 0
as in standard SVM literatures (see e.g., [16]). The basic update equation (Eq. (3)) is rewritten
as follows3:

(α(t+1), b(t+1), ξ(t+1), ζ(t+1)) =

argmin
α∈R(MN),b∈R
ξ∈RN

+ ,ζ∈RN
+

{
f(α, b, ξ, ζ) +

M∑
m=1

∥αm−α
(t)
m ∥2

Km

2γ
(t)
m

+ (b−b(t))2

2γ
(t)
b

+ ∥ξ−ξ(t)∥2

2γ
(t)
ξ

+ ∥ζ−ζ(t)∥2

2γ
(t)
ζ

}
,

where

f(α, b, ξ, ζ) =

{∑N
i=1 ξi + ϕCK(α) (if yi((

∑M
m=1 Kmαm)i + b) = 1 − ξi + ζi,∀i),

+∞ (otherwise).

This function f can again be expressed in terms of maximum over ρ ∈ RN , u ∈ RMN as follows:

f(α, b, ξ, ζ) = max
ρ∈RN ,u∈RMN

{
−

N∑
i=1

(−yiρi) −
M∑

m=1

ϕ∗
CKm

(Kmum) − b
N∑

i=1

ρi −
M∑

m=1

α⊤
mKm(ρ − um)

+
N∑

i=1

ξi(1 − yiρi) +
N∑

i=1

ζi(yiρi)

}
.

3R+ is the set of non-negative real numbers
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We exchange the order of minimization and maximization as before and remove α, b, ξ, ζ, and
um by explicitly minimizing or maximizing over them (see also Appendix A). Finally we obtain
the following update equations.

α
(t+1)
m = STm

γ
(t)
m C

(α(t)
m + γ

(t)
m ρ(t)), b(t+1) = b(t) + γ

(t)
b

∑N
i=1 ρ

(t)
i (10)

ξ
(t+1)
i = max(0, ξ

(t)
i − γ

(t)
ξ (1 − yiρ

(t)
i )), ζ

(t+1)
i = max(0, ζ

(t)
i − γ

(t)
ζ yiρ

(t)
i ) (11)

where ρ(t) ∈ RN is the minimizer of the function φγ(t)(ρ; α(t), b(t), ξ(t), ζ(t)) defined as follows:

φγ(ρ; α, b, ξ, ζ) = −
N∑

i=1
yiρi +

M∑
m=1

1
2γm

∥STm
γmC(αm + γmρ)∥2

Km
+ 1

2γb
(b + γb

N∑
i=1

ρi)2

+ 1
2γξ

N∑
i=1

max(0, ξi − γξ(1 − yiρi))2 + 1
2γζ

N∑
i=1

max(0, ζi − γζyiρi)2, (12)

and γ = ({γm}M
m=1, γb, γξ, γζ)⊤ ∈ RM+3

+ . The gradient and the Hessian of φγ with respect to ρ
can be obtained in a similar way to Eqs. (8) and (9). Thus we apply the Newton method. The
overall algorithm is analogous to Table 1 with update equations (10)-(12).

3.4 Technical details of computations:

We used Armijo’s rule to find a step size of the Newton method. During the back tracking to find
the step size, the computational bottle-neck is the computation of ∥ρ+ c∆ρ∥Km (m = 1, . . . ,M)
where ∆ρ is the Newton update direction and 0 < c ≤ 1 is a step size. However, this computation
is needed only on the active kernels {m | ∥ρ + αm

γm
∥Km > C or ∥ρ + ∆ρ + αm

γm
∥Km > C} because

of the convexity of ∥ · ∥Km . This reduces considerable amount of computation.

4 Relations to existing methods

4.1 Iterative Shrinkage/Thresholding:

Another approach to minimize Eq. (3) is to linearly approximate the loss term fℓ(K̄α + b1) as
follows:

fℓ(K̄α + b1) ≃ fℓ(z(t)) + ∇zfℓ(z(t))(K̄(α − α(t)) + (b − b(t))1)

where z(t) = K̄α(t) + b(t)1. Minimization over α and b yields the following update equations:

α(t+1)
m = STm

γ
(t)
m C

(
α(t)

m − γ(t)
m ∇zfℓ(z(t))

)
, b(t+1) = b(t) − γ

(t)
b

N∑
i=1

(∇zfℓ(z(t)))i

This is equivalent to the popular iterative shrinkage/thresholding (IST) algorithm ([8, 7, 6, 19]
see also [21]) generalized to the MKL setting. Thus the proposed SpicyMKLcan be considered
as the exact version of the proximal minimization method (Eq. (3)) whereas the IST approach
approximately minimizes Eq. (3).

4.2 Correspondence of regularization terms:

The regularization term in SILP, SimpleMKL and HessianMKL is defined by C′

2 (
∑

m ∥fm∥Hm)2

instead of C(
∑

m ∥fm∥Hm) in our formulation (see Eq. (1)). However, two formulations are
equivalent because the minimizer {f⋆

m}M
m=1 of our formulation with the regularization parameter

6



C also minimizes the objective function of SimpleMKL with the regularization parameter C ′

that is defined by
C ′ = C(

∑M
m=1 ∥f⋆

m∥Hm). (13)

This is given by the relation ∇fm
1
2(

∑
m ∥fm∥Hm)2 = (

∑
m ∥fm∥Hm)∇fm∥fm∥Hm where ∇fm is

a subdifferential with respect to fm.

5 Numerical experiments

In this section, we experimentally investigate the performance of the proposed method and
existing MKL methods using several datasets of binary classification tasks4. We compared our
algorithm SpicyMKL to SimpleMKL [13] and HessianMKL [5].

5.1 Performances on UCI benchmark datasets

The experimental settings were borrowed from the paper [13] of SimpleMKL, but we used larger
number of kernels. We used 5 datasets from the UCI repository: ‘Liver’, ‘Pima’, ‘Ionospher’,
‘Wpbc’, ‘Sonar’. The candidate kernels were Gaussian kernels with 24 different bandwidths (0.1
0.25 0.5 0.75 1 2 3 4 · · · 19 20). and polynomial kernels of degree 1 to 3. All of 27 different
kernel funcionts (Gaussian kernels with different bandwidths and polynomial kernels of degrees
1 to 3) were applied to individual variables as well as jointly over all the variables, i.e., in total
we have 27× (n + 1) candidate kernels, where n is the number of variables. All kernel matrices
were normalized to unit trace, and were precomputed prior to running the algorithms.

For SpicyMKL, we report the result from two loss functions, the hinge loss and the lo-
gistic loss. For SimpleMKL and HessianMKL, we used the hinge loss. All methods were
implemented in Matlab R⃝. For SimpleMKL and HessianMKL, we used Matlab codes avail-
able from http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html and
http://olivier.chapelle.cc/ams/ respectively.

For each dataset, we randomly chose 80 % of all sample points for training samples and
the remaining 20 % were used for test samples. This procedures were repeated 10 times. Ex-
periments were run on 3 different regularization parameters C = 0.005, 0.05 and 0.5. We
converted the regularization parameter C of our formulation (2) to that for SimpleMKL and
HessianMKL by Eq. (13). We employed a stopping criterion utilizing the relative duality gap,
(primal obj − dual obj)/primal obj, for both algorithms: with tolerance 0.01. The primal ob-
jective for SpicyMKL can be computed by using α(t) and b(t). In order to compute the dual
objective, we first project ρ to the l∞ ball by ρ̃′ = ρ/ max{maxm{∥ρ∥Km/C}, 1} and next project
to the equality constraint ρ̃ = ρ̃′ − 1(

∑
ρ̃′i)/N . Then we compute the dual objective function of

SpicyMKL as −f∗
ℓ (−ρ̃). The same technique can be found in [19].

The performance of each method is summarized in Figure 5.1. From top to bottom, are
shown means of CPU time, test accuracy, and the number of kernels finally selected by the
algorithms, with standard deviations over 10 trials. We can see that SpicyMKL tends to be
faster than SimpleMKL (factor of 5 ∼ 80), and faster than HessianMKL when the number of
kernels M is large. In all datasets, SpicyMKL becomes faster as C increases. This is because
as the regularization becomes stronger the number of active kernels during the optimization
decreases at a faster rate. Accuracies of all methods are nearly identical. This indicates that
SpicyMKL properly converges to the optimal one. SpicyMKL using the logistic loss tends to
show faster CPU time than that using the hinge loss. This is because, by the strict convexity of
the conjugate function of the logistic loss, the Newton method in the inner loop (minimization of
φγ with respect to ρ) converges faster than the hinge loss. An interesting point is that although

4All the experiments were executed on Intel Core i7 2.93GHz with 6GB RAM.
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Figure 1: Mean and standard deviation of performance measures for each MKL method for UCI
datasets.

the logistic loss is often faster to train, yet the accuracy is nearly identical to that of the hinge
loss. Moreover, when C is large (strong regularization), the solution under the logistic loss tends
to be sparser than that under the hinge loss. For the hinge loss, the number of kernels selected
by SpicyMKL is almost the same as that selected by SimpleMKL.

Figure 2(a) contains plots of the relative duality gaps of SpicyMKL (with hinge loss) and
SimpleMKL against CPU time, both on the ‘Ionospher’ dataset. We can see that the duality gap
of SpicyMKL rapidly drops. Figure 2(b) shows the number of kernels as a function of the CPU
time spent by the algorithm. Here we again observe rapid decrease in the number of kernels in
SpicyMKL. This reduces huge amount of computation per iteration.

5.2 Scaling against the sample size and the number of kernels

Here we investigate the scaling of CPU time against the number of kernels and the sample
size. We used 2 datasets from IDA benchmark repository5: ‘Ringnorm’ and ‘Splice’. The same
relative duality gap criterion with tolerance 0.01 is used. We generated the basis kernels by
randomly selecting subsets of features and applying a Gaussian kernels with random width
σ = 5χ2 + 0.1, where χ2 is a chi-squared random variable. In Figure 3 the number of kernels
is increased from 50 to 6000. The vertical axis shows the CPU time averaged over 10 random
train-test splitting where the size of training set was fixed to 200. We observe that the CPU time
of HessianMKL is the smallest for small number of kernels, but it grows rapidly as the number
of kernels increases. On the other hand, CPU time of SpicyMKL has a milder dependency
to the number of kernels. In particular, SpicyMKL is tens times faster than SimpleMKL and
HessianMKL when the number of kernels is 6000. In Figure 4 the number of training samples
is increased. The number of kernels is fixed to 20. The scaling behaviour of the CPU time of
SpicyMKL is comparable to other methods.

5http://ida.first.fhg.de/projects/bench/benchmarks.htm
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6 Conclusion and future direction

In this article, we have proposed a new efficient training algorithm for MKL with general con-
vex loss functions. The proposed SpicyMKL algorithm generates a sequence of primal variables
by iteratively optimizing a smoothed version of the dual MKL problem. The outer loop of
SpicyMKL is a proximal minimization method and it converges super-linearly. The inner min-
imization is efficiently carried out by the Newton method. The numerical experiments show
SpicyMKL scales well with increasing number of kernels and it has similar scaling behaviour
against the number of samples to conventional methods. The logistic-loss SpicyMKL has shown
the best computational efficiency and improved sparsity at a comparable test accuracy. Future
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work includes a second order modification of the update rule of the primal variables and applying
the techniques used SpicyMKL for upper-bound based methods.

A Derivation of the update equations

We start from the min-max equation (Eq. (4)) and derive the SpicyMKL update equations
(Eqs. (5)-(7)). First by exchanging the order of minimization and maximization and completing
the squares, we obtain,

Eq. (4) = max
ρ∈RN

u∈RMN

{
−f∗

ℓ (−ρ) −
M∑

m=1

(
ϕ∗

CKm
(Kmum) + α

(t)
m

⊤
Km(ρ − um) + γ

(t)
m
2 ∥ρ − um∥2

Km

)

+ min
α∈RMN

b∈R

(
M∑

m=1

∥αm−α
(t)
m −γ

(t)
m (ρ−um)∥2

Km

2γ
(t)
m

+

(
b−b(t)−γ

(t)
b

N
P

i=1
ρi

)2

2γ
(t)
b

)
−b(t)

N∑
i=1

ρi−
γ
(t)
b
2

( N∑
i=1

ρi

)2
}

. (14)

Furthermore by turning the maximization into a minimization and moving the minimization
with respect to um inside, we have,

Eq. (4) = − min
ρ∈RN

{
f∗

ℓ (−ρ) +
∑M

m=1 Φm(ρ) + b(t)
∑N

i=1 ρi + γ
(t)
b
2

(∑N
i=1 ρi

)2
}

, (15)

where

Φm(ρ) = min
u′

m∈RN

(
ϕ∗

CKm
(Kmu′

m/γ(t)
m ) +

1

2γ
(t)
m

∥u′
m − (α(t)

m + γ(t)
m ρ)∥2

Km

)
+ const,

(we redefined γ
(t)
m um as u′

m for notational convenience) and const is a term that only depends
on γ(t) and α(t). Now since ϕCKm(v) = C∥v∥Km , we have

ϕ∗
CKm

(Kmu) =

{
0 (∥u∥Km ≤ C),
+∞ (otherwise).

Let v
(t)
m = α

(t)
m + γ

(t)
m ρ. From a simple geometric consideration, we have,

u′(t)
m = v(t)

m

min(∥v(t)
m ∥Km , γ

(t)
m C)

∥v(t)
m ∥Km

= v(t)
m − STm

γ
(t)
m C

(vm).

Thus we obtain,

Φm(ρ) =
1

2γ
(t)
m

∥STm

γ
(t)
m C

(α(t)
m + γ(t)

m ρ)∥2
Km

. (16)

We obtain Eq. (7) by substituting Eq. (16) into Eq. (15) and rearranging terms. Furthermore,
from the minimization in Eq. (14) we have:

α
(t+1)
m = α

(t)
m + γ

(t)
m ρ(t) − u

′(t)
m = STm

γ
(t)
m C

(α(t)
m + γ

(t)
m ρ(t)), b(t+1) = b(t) + γb

∑N
i=1 ρ

(t)
i

where ρ(t) is the minimizer in Eq. (15) or Eq. (7).
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