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Abstract

This paper studies pursuit formation stabilization problem in target-
enclosing operations by multiple homogeneous dynamic agents. To this
end, we first present Lyapunov and asymptotic stability conditions
which should hold for the on-line path generation laws. The forma-
tion control scheme combined with a cyclic pursuit based distributed
on-line path generator satisfying the derived stability conditions guar-
antees the required global convergence property with theoretical rigor.
Next, based on the above results, we introduce a D-stability problem
by considering the requirements for multi-agent system’s transient per-
formance, and then develop a simple diagrammatic pursuit formation
stability criterion. Then, as for the formation stabilization problem
when agent’s dynamics and its local controller are given, we develop an
optimization problem subject to LMI constraints derived based on the
generalized Kalman-Yakubovich-Popov (GKYP) lemma to maximize
the connectivity gain of a cyclic pursuit based on-line path generator.
It provides a permissible range of gain, which guarantees the satisfac-
tion not only of a global formation stability condition but also of a
required performance specification. Finally, a constrained polynomial
optimization problem is developed, in order to design agent’s local con-
troller parameters guaranteeing that a connectivity gain becomes the
maximum one satisfying the global formation stability condition for
a class of dynamic agents given a priori. Several examples are given
to illustrate its distinctive features and the achievement of a desired
pursuit pattern.
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1 Introduction

Formation control which coordinates the motion of relatively simple and
inexpensive multiple agents is one of the essential technologies that enable
agents to cover a larger operational area and achieve complex tasks (see [14,
13, 2] and the references therein). Several research groups recently developed
coordination control strategies which achieve an enclosing formation around
a specific area (object) by multiple agents using local information [10, 9, 11,
15, 5].

Recently, Kim and Sugie [8] proposed a distributed on-line path planning
method for target-enclosing operations by multi-agent systems based on a
modified cyclic pursuit strategy. Despite its simple but particularly effec-
tive nature for target-enclosing tasks, it could be a considerable drawback
in real implementations that each agent is assumed to be a point mass with
full actuation. That is, since agent’s dynamics is not explicitly considered
in path planning, their approach may suffer from the potential problem
that each agent cannot precisely track its designed trajectory. In this case,
the global convergence of multiple agents to the designated formation may
not be achieved. In order to overcome the above difficulties, Kim et al. [7]
recently developed a distributed pursuit cooperative control scheme for mul-
tiple dynamic agents, and then presented a simple diagrammatic formation
stability analysis method based on the results given in Hara et al. [3].

In this paper, we consider multiple agents in 3D space, which have com-
mon system dynamics and identical local controllers. For such multi-agent
dynamical systems, this paper proposes optimization-based formation stabi-
lization strategies for a distributed cooperative control for target-enclosing
operations based on a cyclic pursuit scheme. To this end, we first summa-
rize the following conventional results presented by Kim et al. [7] in Sec-
tions 4-5: a formation stability analysis of distributed cooperative control
for target-enclosing operations by multiple homogeneous dynamic agents.
Next, we introduce a D-stability problem by considering the requirements
for the above multi-agent system’s transient performance, and develop the
diagrammatic pursuit formation D-stability criterion at the end of Section
5. Then, based on the above results, the following two kinds of optimization
problems for a pursuit formation stabilization are considered:
[Problem S1] Maximization of a connectivity gain of a cyclic pursuit based
on-line path generator, which satisfies for given agent’s dynamics and its
local controller not only a global formation stability condition but also a
required multi-agent system’s performance specification.
[Problem S2] Optimization of agent’s local controller parameters for a class
of agent’s dynamics given a priori, so that a given connectivity gain becomes
the maximum one guaranteeing the global pursuit formation stability.
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In order to derive an optimization problem for “Problem S1”, we first show
that the required pursuit formation stability condition can be converted
to the linear matrix inequalities (LMIs), which are numerically tractable
and can be solved efficiently, based on the generalized Kalman-Yakubovich-
Popov (GKYP) lemma [4, 6]. Then, a concrete optimization problem subject
to LMI constraint conditions for maximizing the connectivity gain, which
satisfies the requirements given in “Problem S1”, is developed in Section
6. Further, in order to clearly show its distinctive features, the special case
such as an optimization-based pursuit formation stabilization scheme for
a class of multi-agent dynamical systems combined with PID controllers
is presented in Section 7.2. Finally, we develop a constrained polynomial
optimization problem to solve “Problem S2” in Section 8. It provides a
considerably simple and systematic optimization-based local PD controller
design method, which guarantees the global pursuit formation stability of
a considered multi-agent dynamical system. Several numerical examples
illustrate its distinctive features and the achievement of a desired pursuit
pattern.

The following notations will be used hereafter: For a Hermitian matrix,
M > 0, M ≥ 0, M < 0, and M ≤ 0 denote positive definiteness, posi-
tive semidefiniteness, negative definiteness, and negative semidefiniteness,
respectively. The transpose and complex conjugate transpose of the matrix
M are denoted by MT and M∗, respectively. The symbol Hn denotes the
set of n×n Hermitian matrices. The Kronecker product of matrices Γ and P
is Γ⊗P . The real and imaginary parts of a complex variable z is represented
by Re[z] and Im[z], respectively.

2 System description and control aim

Consider a group of n agents dispersed in 3D space as shown in Figure 1(a).
All agents are ordered from 1 to n; i.e., A1, A2, · · · , An. We define Ai+1

as prey agent of Ai
1. Denote the position vectors of the stationary target

object and the moving agent Ai (i = 1, 2, · · · , n) in the inertial frame by
xo ∈ R3 and xi(t) ∈ R3, respectively. It is assumed that an agent Ai can
measure the following vectors:

di := xi − xo, ai := xi − xi+1. (1)

Define the target-fixed frame {Γobj} where the origin is at the center of the
target object, and Xobj-, Yobj- and Zobj-axes are parallel to x-, y- and z-axes
of the inertial frame, respectively. Let bi denote the projected vector of di

onto the Xobj-Yobj plane in the target-fixed frame, and define the following

1In the following, subscript ‘n + 1’ is equivalent to ‘1’; i.e., the case that the i-th agent
simply pursues the (i + 1)-th agent with modulo n is considered.
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Figure 1: System description and formation controller configuration

scalars:
θi = ∠(ex,bi), αi = ∠(bi,di), di := |di|, (2)

where ex denotes the unit vector in the Xobj-direction of {Γobj}, and ∠(x,y)
denotes the counter-clockwise angle from the vector x to the vector y. Then,
di can be represented as di = [di cos θi cos αi, di sin θi cos αi, di sinαi]T . Note
that θi+1 and δθi(:= θi+1 − θi) can be calculated in a similar way based on
(1), since di+1 = di − ai holds.

Suppose that all agents Ai (i = 1, 2, · · · , n) have common system dynamics
described by a MIMO plant as follows:

yi(s) :=
[
θi(s), di(s), αi(s)

]T = P(s)ui(s) (3)

where yi(s) is the system output, ui(s) is the control input, and P(s) is the
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diagonal transfer matrix defined as

P(s) := diag(pθ(s), pd(s), pα(s)).

In other words, we assume that θ-, d- and α-directional dynamics are in-
dependent of one another. Also assume that all agents are asymptotically
stabilized by an identical local diagonal feedback controller C(s) defined as

C(s) := diag(cθ(s), cd(s), cα(s))

as illustrated in Figure 1(b). Then, θ-, d- and α-directional closed-loop
transfer functions of agent Ai are respectively described as

gθ(s) =
pθ(s)cθ(s)

1 + pθ(s)cθ(s)
, (4)

gd(s) =
pd(s)cd(s)

1 + pd(s)cd(s)
, (5)

gα(s) =
pα(s)cα(s)

1 + pα(s)cα(s)
. (6)

It is assumed that the above transfer functions satisfy the following condi-
tions:

Assumption 1 All the closed-loop transfer functions gθ(s), gd(s) and gα(s)
are proper, stable, and have no zero at the origin of the complex plane.

Now, we consider how to form a geometric pattern for the target-enclosing
operation by n dynamic agents. The detailed control objectives are stated
as follows:
(A1) n agents enclose the target object at uniformly spaced angle and main-
tain this angle,
(A2) Each agent approaches to the target object and finally keeps the dis-
tance D,
(A3) The angle αi which corresponds to the altitude of each agent converges
to the desired one Φ,
where D and Φ are given by the designer2.

In the next section, the distributed pursuit formation control scheme [8]
is briefly presented. We then illustrate that the scheme cannot achieve
the control objectives (A1)-(A3) when it is applied to the case where each
agent has a dynamics. Next, it is presented how a large-scale linear system
description with a generalized frequency variable can be derived from our
homogeneous multi-agent dynamical system.

2Note that for the sake of clarity and page limitation, this paper only considers the
equal convergence positions for all dynamic agents; i.e., D1 = D2 = · · · = Dn = D and
Φ1 = Φ2 = · · · = Φn = Φ, while the distinct ones for each agent can be assigned.
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3 Distributed formation control system

It is important from the practical viewpoint to achieve the desired global be-
havior through a relatively simple control law using only local information.
As one of the feasible methods for realizing the required geometric forma-
tion (A1)-(A3) mentioned in Section 2, we first present a design method
of distributed on-line path generator motivated by a cyclic pursuit strategy
[8]. Note that the parameters of this path generator should satisfy some
conditions to guarantee the global convergence property, which is described
in Sections 4 and 5 in detail.

3.1 Design of a distributed on-line path generator

It is assumed that n agents with dynamics are randomly dispersed in 3D
space at the initial time instant as depicted in Figure 1(a), where 0 < |δθi| <
2π for i = 1, 2, · · · , n, and

∑n
i=1 δθi = 2π. Then, the distributed on-line path

planning scheme for the ith agent Ai is described as

ṙθ
i (t) = kθδθi(t), (7)

ṙd
i (t) = kd(D − di(t)), (8)

ṙα
i (t) = kα(Φ − αi(t)), (9)

where kθ, kd, and kα (> 0) are design parameters, and δθi(t) is defined by{
δθi(t) := θi+1(t) − θi(t), i = 1, 2, · · · , n − 1
δθn(t) := θ1(t) − θn(t) + 2π, i = n.

It is important to note that the gains kθ, kd, and kα should satisfy some
conditions to guarantee the achievement of the desired global formation
(A1)-(A3), which will be explained later in detail. Then, the reference po-
sition ri(t) = [rθ

i (t), r
d
i (t), r

α
i (t)]T for the ith agent Ai shown in Figure 1(b)

is designed by (7), (8) and (9).

It should be emphasized that, in the proposed path planning method, each
agent individually decides its reference position based on the local infor-
mation on only one other agent and the target object, which is probably
a minimum of information exchanges between agents. Further, it has ad-
ditional distinctive features as follows: each agent individually obtains the
required information using the sensor systems implemented on its body,
which means that no centralized communication mechanism between agents
is introduced. Also, it is a memoryless controller in the sense that each
agent determines the next behavior based only on the current position of
its prey, independently of the past behavior of its prey. Thus, it is an easily
implementable method from the engineering viewpoint [8].
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Now, the control objectives (A1)-(A3) in Section 2 can be formulated alge-
braically as follows:

(A1′) δθi(t) → 2π/n[rad] as t → ∞,
(A2′) di(t) → D as t → ∞,
(A3′) αi(t) → Φ[rad] as t → ∞,

for i = 1, 2, · · · , n. It has been proved in [8] that path planning schemes
(7)-(9) can achieve the above control objectives (A1′)-(A3′) under the as-
sumption that each agent in the group is supposed to be a point mass.
However, when agents’ dynamics such as (4)-(6) are considered explicitly,
the achievement of the stable global formation (A1′)-(A3′) may not be guar-
anteed only by the condition that kθ, kd and kα in (7)-(9) are positive real
numbers. The following example illustrates this fact clearly.

Example 1 We here investigate only the θ-directional behaviors of n = 9
agents for the sake of clarity. The initial values of θi(t)[rad] are set as θ1 =
0.198, θ2 = 1.269, θ3 = 0.050, θ4 = 1.491, θ5 = 1.175, θ6 = 0.189, θ7 =
2.045, θ8 = 0.793, θ9 = 1.712. Assume that the common θ-directional agent
dynamics is given by pθ(s) = 1/s(s−1) which is stabilized by a PD controller
cθ(s) = 12(1 + 0.25s). The reference position rθ

i (t) for agent Ai is designed
based on (7) with kθ = 0.4. The time responses of δθi(t) (i = 1, 2, · · · , 9)
are illustrated in Figure 2, which clearly shows that no δθi converges to
2π/9[rad]. It demonstrates the formation instability.

One can see from the above observation that three gains kθ, kd and kα

should be set carefully, in order to achieve the global formation (A1′)-(A3′).
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Hence, in the following subsection, it is presented in advance of deriving
these conditions how a large-scale linear system description with a general-
ized frequency variable can be formulated for the homogeneous multi-agent
dynamic system in Figures 1(a)-1(b).

3.2 Large-scale linear system description with a generalized
frequency variable

In order to analyze the formation stability of multi-agent dynamical systems
considered in Section 3.1, we rewrite (7) in the following vector form:

ṙθ(t) = Aθθ(t) + Bθ,
Aθ := circ(−kθ, kθ, 0, 0, · · · , 0) ∈ Rn×n,
Bθ := [0, 0, · · · , 0, 2kθπ]T ∈ Rn,

(10)

where θ := [θ1, θ2, · · · , θn]T ∈ Rn, rθ := [rθ
1, r

θ
2, · · · , rθ

n]T ∈ Rn and ‘circ’
denotes the circulant matrix. Thus, the overall θ-directional control scheme
can be depicted as in Figure 3, where

hθ(s) := gθ(s) ·
1
s

(11)

is strictly proper from Assumption 1. Here, it is important to note that
the eigenvalues {λi}n

i=1 of Aθ can be written in the following complex form,
since it is a circulant matrix:

λi = kθ

[
cos

(
2π(i − 1)

n

)
−1

]
+ jkθ sin

(
2π(i − 1)

n

)
(12)

where j :=
√
−1. Since kθ > 0, Aθ has exactly one zero eigenvalue, λ1,

while the remaining n − 1 eigenvalues λi, i = 2, 3, · · · , n, lie strictly in the
left-half complex plane. In the same manner, (8) and (9) can be rewritten,
respectively, as

ṙd(t) = Add(t) + Bd, (13)
ṙα(t) = Aαα(t) + Bα, (14)

with d := [d1, d2, · · · , dn]T ∈ Rn, α := [α1, α2, · · · , αn]T ∈ Rn, Ad :=
−diag(kd, kd, · · · , kd) ∈ Rn×n, Bd := (kdD)1n ∈ Rn, Aα := −diag(kα, kα, · · · , kα) ∈
Rn×n, Bα := (kαΦ)1n ∈ Rn where 1n := [1, 1, · · · , 1]T ∈ Rn. The block di-
agrams of the d- and α-directional formation controlled systems have the
same form with that in Figure 3.

In Figure 3, the transfer function Hθ(s) from the input “c” to θ is obtained
as

Hθ(s) =
(

1
hθ(s)

In − Aθ

)−1

Bθ. (15)
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By considering the transfer function with a standard form

Lθ(s) = (sIn − Aθ)−1Bθ, (16)

it follows from (15) that

Hθ(s) = Lθ(ϕθ(s)), ϕθ(s) := 1/hθ(s). (17)

Note that ϕθ(0) = 0 from Assumption 1 and (11). The variable ‘s’ in (16)
characterizes the frequency properties of the transfer function Lθ(s) and
Hθ(s) is generated by just replacing ‘s’ by ‘ϕθ(s)’ in Lθ(s). Hence, we say
that the transformed transfer function Hθ(s) = Lθ(ϕθ(s)) of Lθ(s) has a
generalized frequency variable ϕθ(s) (see [3] for details). Similarly, the d-
and α-directional transfer functions Hd(s) and Hα(s) can be derived as:

Hd(s) = Ld(ϕd(s)), ϕd(s) := 1/hd(s) = s/gd(s), (18)
Hα(s)=Lα(ϕα(s)), ϕα(s) := 1/hα(s)=s/gα(s). (19)

It is important to note that as the growth in agent numbers, the size of the
matrix in Hθ(s) becomes very large, which is also the case for Hd(s) and
Hα(s). This fact results in a considerable increase of computational com-
plexity in formation stability analysis. Therefore, in the following sections,
we first develop a very simple Lyapunov stability analysis method which is
independent of a number of dynamic agents. Then, some important results
on the agents’ convergence property in distributed formation control are
presented.
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4 Lyapunov stability analysis scheme for distributed
formation control

The notations which will be used throughout this paper are first introduced:
the domains Ωθ, Ωc

θ, Ωd, Ωc
d, Ωα and Ωc

α in the complex plane are defined as

Ωθ := ϕθ(C+), Ωc
θ := C\Ωθ, (20)

Ωd := ϕd(C+), Ωc
d := C\Ωd, (21)

Ωα := ϕα(C+), Ωc
α := C\Ωα, (22)

where C denotes the set of complex numbers, and C+ = {s ∈ C : Re[s] ≥ 0}.
Since Ω• = {λ ∈ C : ∃s ∈ C+ such that ϕ•(s) = λ} (• = θ, d, α), it follows
that Ωc

• can be alternatively expressed as Ωc
• = {λ ∈ C : ∀s ∈ C+, ϕ•(s) ̸=

λ} (• = θ, d, α).

Before deriving a stability condition for the system Hθ(s) in (17), we first
describe a key result on stability analysis of large-scale linear systems with a
generalized frequency variable developed by [3]. In their paper, the following
asymptotic stability criterion is presented: all poles of Hθ(s) are located in
the left-half complex plane, if and only if all eigenvalues of Aθ in (10) belong
to the domain Ωc

θ. However, the matrix Aθ denoting information exchange
structure among multiple dynamic agents has one zero eigenvalue (λ1 = 0)
as shown in (12), and ϕθ(s) in (17) satisfies ϕθ(0) = 0. It means that for any
positive value of kθ, this zero eigenvalue is always located on the boundary
of Ωθ, and thus cannot belong to the domain Ωc

θ
3. On the other hand, Ad in

(13) and Aα in (14) have n multiple eigenvalues at (−kd + j0) and (−kα +
j0), respectively, and hence their stability analysis can be performed using
the above-mentioned criterion in [3]. Therefore, in the following, a novel
Lyapunov stability analysis scheme for the multi-agent dynamical systems
such as Hθ(s) where Aθ has a zero eigenvalue is developed.

The following proposition describes a range of pole locations of Hθ(s) in
relation to the eigenvalue distribution of Aθ in (10) and the region which
ϕθ(s) in (17) maps the right-half complex plane to.

Proposition 1 Suppose that gθ(s) in (4) satisfies Assumption 1. Then,
the following statements are equivalent:

(i) One of the eigenvalues of Aθ is at the origin of the complex plane,
and the rest belong to the domain Ωc

θ,

(ii) One of the poles of Hθ(s) is at the origin of the complex plane, and
the rest belong to the open left-half complex plane.

3The same problem may happen in consensus problem of multi-agent network systems;
e.g., graph Laplacian matrix which is usually introduced to describe the information flow
among agents in consensus problems has a zero eigenvalue.
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Proof Let n eigenvalues of Aθ be denoted by {λ1 = 0, λ2, λ3, · · · , λn}. The
poles of Hθ(s) are identical, including multiplicity, to the roots of |ϕθ(s)In−
Aθ| = 0 (see Appendix A for details.). It follows from the factorization of
|ϕθ(s)In − Aθ| = 0 that

ϕθ(s)(ϕθ(s) − λ2)(ϕθ(s) − λ3) · · · (ϕθ(s) − λn) = 0. (23)

Then, the necessary and sufficient condition for the existence of all roots of

(ϕθ(s) − λ2)(ϕθ(s) − λ3) · · · (ϕθ(s) − λn) = 0 (24)

in the open left-half complex plane is that {λ2, λ3, · · · , λn} ∈ Ωc
θ. Further,

it follows from Assumption 1 and the definition of ϕθ(s) that one root of
ϕθ(s) = 0 is s = 0, and the rest are located in the open left-half complex
plane. Therefore, we can see from the above observations that one of the
poles of Hθ(s) is at the origin of the complex plane, and the rest are located
in the open left-half complex plane (see Figure 4). ¤
The above proposition means that the Lyapunov stability of Hθ(s) can be
judged diagrammatically by just looking at the locations of eigenvalues of Aθ

which is derived from path generator in relation to a domain Ωc
θ determined

by using ϕθ(s). More precisely, we can see from Proposition 1 that Hθ(s)
has one pole at the origin and n−1 poles in the left-half complex plane (i.e.,
Hθ(s) is Lyapunov stable), if all eigenvalues of Aθ except one zero eigenvalue
belong to the domain Ωc

θ.

5 Global tracking property in distributed pursuit
formation control

This section shows that the required geometric formation (A1′)-(A3′) men-
tioned in Section 3.1 is realized, if both the following two conditions are

11



+

+

δθ θ1(=:c)

Aθ

Bθ

0

0

kθ 0

0

kθ

kθ

^

^ h (s)θ

h (s)θ

h (s)θ

Figure 5: Equivalent form of the block diagram in Figure 3

satisfied:

(I) Hθ(s) is Lyapunov stable,
(II) Hd(s) and Hα(s) are asymptotic stable.

We first show that the control objective (A1′) can be achieved in case that
eigenvalue distributions of Aθ in (10) satisfy the conditions in Proposition 1,
and thus Lyapunov stability of Hθ(s) in (15) is guaranteed. The following
theorem describes a global convergence property of δθi(t) (i = 1, 2, · · · , n)
when all nonzero eigenvalues {λi}n

i=2 of Aθ belong to the domain Ωc
θ.

Theorem 1 Consider the system consisting of n agents with angle dy-
namics gθ(s) which are randomly dispersed in 3D space at the initial time
instant as shown in Figure 1(a), where 0 < |δθi(0)| < 2π (i = 1, 2, · · · , n)
and

∑n
i=1 δθi(0) = 2π. It is assumed that agent’s θ-directional transfer

function gθ(s) in (4) satisfies Assumption 1. Then, if all eigenvalues
of Aθ except one zero eigenvalue belong to the domain Ωc

θ, the following
convergence property of δθi(t) is guaranteed:

lim
t→∞

δθi(t) → 2π/n[rad], i = 1, 2, · · · , n. (25)

Proof In order to examine the convergence value of δθi(t) for i = 1, 2, · · · , n,
we first consider how to obtain a transfer function from the input “c” in
Figure 3 to δθ. Note that the block diagram in Figure 5 is equivalent to
the one in Figure 3 for Hθ(s), where Âθ := circ(−1, 1, · · · , 0) ∈ Rn×n and
B̂θ := [0, 0, · · · , 2π]T ∈ Rn. Then, from Figure 5, the closed-loop transfer
function W(s) from “c” to δθ is obtained as

W(s) =
(
In − kθhθ(s)Âθ

)−1
B̂θ. (26)
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Since Âθ is a circulant matrix, this matrix is diagonalizable by the following
discrete Fourier transform matrix F ∈ Cn×n [1]:

F :=
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 (27)

where ω := e−j2π/n. Note that F−1 = F ∗ holds where F ∗ is the conjugate
transpose of F . Thus, we have

W(s) = F
(
In − kθhθ(s)F−1ÂθF

)−1 (
F−1B̂0

)
= F (In − kθhθ(s)Λ)−1

(
F−1B̂θ

)
(28)

where Λ = diag(∆1, ∆2, · · · ,∆n) with

∆i :=
[
cos

(
2π(i − 1)

n

)
− 1

]
+ j sin

(
2π(i − 1)

n

)
.

Then, (28) can be rewritten as

W(s) = FΓ(s)
(
F−1B̂θ

)
(29)

where Γ(s) := diag(1, s/(s− kθgθ(s)∆2), · · · , s/(s− kθgθ(s)∆n)) ∈ Rn×n. It
follows from gθ(0) ̸= 0 (see Assumption 1) and the final-value theorem of
Laplace transform theory that the final value of the step response of W(s)
is given by

lim
s→0

W(s) = lim
s→0

FΓ(s)F−1B̂θ

=
[
2π

n
,
2π

n
, · · · ,

2π

n

]T

∈ Rn,
(30)

which verifies (25). ¤
The above theorem means that if the Lyapunov stability condition given in
Proposition 1 holds, the control objective (A1′) is achieved.

Remember that the d- and α-directional asymptotic stabilities can be an-
alyzed by using the scheme given in Hara et al. [3]: i.e., the necessary
and sufficient asymptotic stability condition for Hd(s) (Hα(s)) is that all
eigenvalues of Ad (Aα) belong to the domain Ωc

d (Ωc
α). Then, the following

theorem for the convergence values of di(t) and αi(t) (i = 1, 2, · · · , n) is
derived:

13
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Theorem 2 Consider the system consisting of n agents with gθ(s) angle
dynamics which are randomly dispersed in 3D space at the initial time
instant as shown in Figure 1(a). It is assumed that agent’s transfer func-
tions gd(s) in (5) and gα(s) in (6) satisfy Assumption 1, and D in (A2′)
and Φ in (A3′) are given in advance. Then, if all eigenvalues of Ad and
Aα, respectively, belong to the domains Ωc

d and Ωc
α, the following conver-

gence properties of di(t) and αi(t) are guaranteed: for i = 1, 2, · · · , n,

lim
t→∞

di(t) → D, (31)

lim
t→∞

αi(t) → Φ. (32)

Its proof is self-evident and hence is omitted. In Theorems 1 and 2, the
conditions for achieving the designated target-enclosing formation (A1′)-
(A3′) by multiple dynamic agents are derived, where we use the relations
between the eigenvalue locations of Aθ, Ad, Aα and the domains Ωc

θ, Ωc
d,

Ωc
α. These imply how to determine kθ, kd and kα of (7)-(9) in order to

guarantee that all agents assemble into the desired formation around the
target object in 3D space. For example, consider the multi-agent dynamical
system given in Example 1, where kθ was set as kθ = 0.4. In that case, the
pole locations of Lθ(s) and the domain Ωc

θ are as illustrated in Figure 6.
It verifies that two poles of Lθ(s) do not belong to Ωc

θ. Consequently, one
reaches the conclusion that (A1′) cannot be achieved, which is evident from
Figure 2. From the above observation and the details mentioned in Section
4, the following conclusions can be made:

(I’) if Hθ(s) is Lyapunov stable, then the control objective (A1′) for target-
enclosing formation is achieved,
(II’) if Hd(s) and Hα(s) are asymptotic stable, then the control objectives

14



(A2′) and (A3′) are achieved.

In the following sections, we develop an explicit stabilization strategy of
multi-agent dynamical systems for cyclic pursuit behavior based on the
above results.

6 Stabilization strategy in distributed pursuit for-
mation control

Although Proposition 1 in Section 4 and Theorems 1-2 in Section 5 provide
a considerably simple formation stability analysis method and the result-
ing global tracking property, no explicit information about the transient
performance of the designed formation control laws is obtained. For exam-
ple, see the dotted line in Figure 10 which corresponds to the connectivity
gain kθ = 0.2374. In this case, the used kθ satisfies the given stability
condition, but it produces an unsatisfactory convergence behavior of δθi(t)
(i = 1, 2, · · · , 8). Note that, for the sake of page limitation, we mainly
consider hereafter the θ-directional control scheme.

In order to overcome the above problem, we consider the Lypunov D-
stability problem: i.e., placing the poles of linear time-invariant system
Hθ(s) except one zero pole at a predesignated region of the complex plane,
which is formulated as

Problem A: (Lypunov D-stability problem) Derive a Lypunov stability
criterion for global pursuit formation that enables us to judge whether
all nonzero poles of Hθ(s) in (15) belong to the D-stable region, Dφ in
Figure 7(a), which is characterized as

Dφ := {s := κejφ̂ ∈ C : φ < φ̂ < 2π − φ, ∀κ > 0} (33)

where φ (π/2 ≤ φ < π) is given a priori.

To this aim, we first define the domains Ωφ and Ωc
φ in the complex plane,

which are the generalization of the definitions of domains Ωθ and Ωc
θ in (20):

Ωφ := ϕθ(Cφ), Ωc
φ := C\Ωφ, (34)

where Cφ = {s := κejϑ ∈ C : −φ ≤ ϑ ≤ φ, ∀κ ≥ 0}. Note that the domain
Ωc

φ does not include the origin of the complex plane. Then, the key result
which provides the Lyapunov D-stability criterion for Hθ(s) mentioned in
“Problem A” is obtained as follows:

15
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Proposition 2 Suppose that gθ(s) in (4) satisfies Assumption 1. Then,
the following statements are equivalent:

(i) One of the eigenvalues of Aθ is at the origin of the complex plane,
and the rest belong to the domain Ωc

φ,

(ii) One of the poles of Hθ(s) is at the origin of the complex plane, and
the rest belong to the D-stable region Dφ of the complex plane illustrated
in Figure 7(a).

It is proved in the same manner that we proved Proposition 1, and thus
is omitted here. This proposition means that the Lypunov D-stability of
Hθ(s) in “Problem A” can be judged diagrammatically by just looking at
the locations of eigenvalues of Aθ depending on kθ in relation to a domain
Ωc

φ which is determined by using hθ(s). More precisely, we can see from
Proposition 2 that Hθ(s) has one pole at the origin and n − 1 poles in the
predesignated region Dφ (i.e., Hθ(s) is Lyapunov D-stable), if all eigenvalues
of Aθ except one zero eigenvalue belong to the domain Ωφ

θ . Note that the
global tracking property given in Theorem 1 is also guaranteed, when Hθ(s)
is Lypunov D-stable. Its distinctive features will be illustrated in Example
2 of the following subsection.

6.1 Pursuit formation stabilization scheme

In Proposition 2, we obtained a considerably simple diagrammatic Lyapunov
D-stability analysis method. On the other hand, it may be required to
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find a maximum permissible limit of a connectivity gain kθ satisfying the
requirement presented in “Problem A” of the previous section. Therefore,
we consider the following Lyapunov D-stabilization problem in this section:

Problem S1: Find the upper bound kmaxθ
of a connectivity gain kθ in

(10) guaranteeing that all nonzero poles of Hθ(s) in (15) are placed in
the predesignated D-stable region Dφ defined in (33) and illustrated in
Figure 7(a).

It is assumed hereafter in developing the Lyapunov D-stabilization scheme
for Problem S1 that the following condition is satisfied:

Assumption 2 A connectivity gain kθ(> 0) where (−kθ+j0) ∈ Ωc
φ guaran-

tees that the line segment between (−kθ + j0) and the origin in the complex
plane lies in Ωc

φ.

Then, from Proposition 2 and Figures 4 and 7, the condition, which guar-
antees all nonzero eigenvalues of Aθ with kθ satisfying Assumption 2 belong
to the domain Ωc

φ characterized by κe±jφ where φ is given by the designer,
is derived as

(ϕRe
φ (κ) + kθ)2 + (ϕIm

φ (κ))2 > k2
θ , ∀κ > 0, (35)

where ϕRe
φ (κ) and ϕIm

φ (κ) are defined, respectively, as

ϕRe
φ (κ) := Re[ϕθ(κejφ)], ϕIm

φ (κ) := Im[ϕθ(κejφ)].

Then, it follows from (35) that

(ϕφ(κejφ) + kθ)∗(ϕφ(κejφ) + kθ) > k2
θ , (36)

which is equivalent to the the following inequality condition: for ∀κ > 0,[
hθ(κejφ)

1

]∗
Π

[
hθ(κejφ)

1

]
< 0, Π :=

[
0 −kθ

−kθ −1

]
. (37)

Therefore, the optimization problem to find the upper bound of a connec-
tivity gain kθ satisfying the requirement in “Problem S1” can be formulated
as follows:

kmaxθ
:= arg max

kθ,κ
kθ subject to (37) and kθ > 0. (38)

Hence, if one sets kθ in (10) as 0 < kθ ≤ kmaxθ
, then all nonzero poles of

Hθ(s) in (15) are placed in the predesignated D-stable region Dφ. However,
since the constraint condition (37) should be checked for ∀κ > 0, the above
optimization problem may not be easily solved.
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In order to overcome the above difficulty, we then convert the inequality
condition (37) to LMIs by using the GKYP lemma [4, 6]. Note that the LMIs
are numerically tractable and can be solved efficiently. Now, we assume that
the state-space realization of hθ(s) is obtained as

hθ(s) = Chθ
(sI − Ahθ

)−1Bhθ
+ Dhθ

. (39)

We then characterize the restricted range of κ to check the constraint con-
dition (37) within a framework of the GKYP lemma. For example, if
ϕθ(s)(= 1/hθ(s)) and φ are given, ϕθ(κejφ) is readily obtained (see Fig-
ures 7 and 8). Then, κ̄R and κ̄I (0 < κ̄R < κ̄I) satisfying Re[ϕθ(κ̄Rejφ)] = 0
and Im[ϕθ(κ̄Ie

jφ)] = 0, respectively, are found via simple calculations (if
exist). Now one can see from Figure 8(a) that it is sufficient to check the
condition (37) in the range κ̄R ≤ κ ≤ κ̄I . In this case, the set of complex
numbers Λ(Γ, Ψ) corresponding to the above-mentioned range of κ is defined
as

Λ(Γ, Ψ) :=
{

λ ∈ C :
[

λ
1

]∗
Γ

[
λ
1

]
= 0,

[
λ
1

]∗
Ψ

[
λ
1

]
≥ 0

}
(40)

with

Γ :=
[

0 tan φ − j
tanφ + j 0

]
, Ψ :=

[
−1 λc

λ̄c −κ̄Rκ̄I

]
, (41)

and λc = κ̄R+κ̄I
2 ejφ (see Figure 8(b)). For details of choices of Γ and Ψ, refer

to Iwasaki and Hara [6]. Therefore, under the setting (40) with (41), the
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upper bound kmaxθ
of kθ mentioned in “Problem S1” can easily be obtained

by solving the following optimization problem subject to LMI constraint
conditions:

Optimization problem for “Problem S1”: For given hθ(s) ∼
(Ahθ

, Bhθ
, Chθ

, Dhθ
) and φ (π/2 ≤ φ < π), solve

kmaxθ
:= arg max

kθ,P∈Hn,Q∈Hn

kθ (42)

subject to kθ > 0 and

Q > 0, M∗ZM < 0, (43)

where Z = diag(Γ ⊗ P + Ψ ⊗ Q,Π) with Π in (37) and Γ and Ψ in
(40)-(41), and

M :=

 Ahθ
Bhθ

I 0
Chθ

Dhθ

 .

Note that the LMI constraint condition in (43), which is equivalent to (37),
is derived based on the GKYP lemma [4, 6]. If one sets kθ in (10) as
0 < kθ ≤ kmaxθ

, then all nonzero poles of Hθ(s) in (15) are placed in
the predesignated D-stable region (Dφ) in Figure 7(a). Its effectiveness is
illustrated in the following example.
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Example 2 Suppose that n = 8 agents have common dynamics pθ(s) =
1/s(s−0.5) and its stabilizing PD controller is given as cθ(s) = 1+s. In this
case, the images of ϕθ(jω) and ϕθ(κejφ) with φ = 19π/36(rad) are illustrated
in Figure 9(a). Here, kθLHP

= 0.23742 [5], which enables all nonzero poles of
Hθ(s) to be located in the D-stable region, DLHP, as shown in Figure 9(b).
Under the above system setting, we have κ̄R ≈ 0.7490 and κ̄I ≈ 1.1573.
Then, the above optimization (42) with Γ and Ψ in (41) is solved by using
the LMI Control Toolbox in MATLAB, and we obtain kmaxθ

≈ 0.14505.
Then, all pole locations of Hθ(s) with kθLHP

= 0.2374 and kmaxθ
= 0.1450

are depicted in Figure 9(b). From these figures, it can easily be confirmed
that if it is required for all the poles of Hθ(s) in (15) to be assigned to a
predesignated region (the D-stable region denoted by Dφ in Figure 9(b)), the
only thing one should do is to find kmaxθ

and then set kθ as 0 < kθ ≤ kmaxθ
.

The above fact shows that it is an easily implementable pole assignment
technique. The time responses of δθi(t) (i = 1, 2, · · · , 8) for kθ = 0.1450 and
0.2374 are illustrated in Figure 10, which clearly demonstrates an advantage
of the considering D-stability.

In the following section, in order to show clearly the distinctiveness and
effectiveness of the proposed stabilization technique, we derive an explicit
LMI optimization problem for a class of multi-agent systems combined with
a cyclic pursuit based path generator, where each agent is modeled as a class
of second-order systems and is locally stabilized by the PID controller.

7 Pursuit formation stabilization: Maximization
of connectivity gain for PID controller case

In this section, we introduce a class of multi-agent dynamical systems locally
stabilized by PID controllers, and then present how to stabilize this pursuit
formation controlled systems based on the result given in Section 6. In
order to make our idea clear, we set φ = π/2 (i.e., D-stable region is DLHP

in Figure 4), since the extension to the general case π/2 < φ < π is trivial.

7.1 A class of multi-agent dynamical systems locally stabi-
lized by PID controllers

Assume that the homogeneous θ-directional agent dynamics is given as

pθ(s) =
ζ

s(s + ξ)
(44)

where ζ > 0. Then, the PID controller cθ(s) such as

cθ(s) = kp

(
1 +

1
tis

+ tds

)
, (45)
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where kp > 0, ti > 0 and td > 0, is introduced to stabilize (44). Hence, it
follows from pθ(s) and cθ(s) that

gθ(s) =
tdtis

2 + tis + 1
(ti/ζkp)s3 + (ξti/ζkp + tdti)s2 + tis + 1

. (46)

Let s̃ = tis. Then, (46) can be modified as

gθ(s̃) =
as̃2 + s̃ + 1

bs̃3 + (a + c)s̃2 + s̃ + 1
(47)

where a := td/ti(> 0), b := 1/(ζkpt
2
i )(> 0), c := ξ/(ζkpti). Therefore,

without loss of generality, the following form of the generalized frequency
variable ϕθ(s) can be considered hereafter:

ϕθ(s) =
1

hθ(s)
=

s

gθ(s)
=

bs4 + (a + c)s3 + s2 + s

as2 + s + 1
. (48)

Note that gθ(s) is stable, if and only if a + c > b.

Next, we characterize the domains Ωθ and Ωc
θ defined as (20) in the complex

plane. These regions are partitioned by the image of ϕθ(jω) in (48) where
ω ∈ R. Define ϕRe

θ (ω) := Re [ϕθ(jω)] and ϕIm
θ (ω) := Im [ϕθ(jω)] as follows:

ϕRe
θ (ω) =

ω4(−abω2 + b − c)
(1 − aω2)2 + ω2

, (49)

ϕIm
θ (ω) =

(a2 + ac − b)ω5 + (1 − 2a − c)ω3 + ω

(1 − aω2)2 + ω2
. (50)

Then, the image of ϕθ(jω) yields six types of diagrams as shown in Figure
11 where R+ denotes the positive real number. If b > c which is equivalent
to ξ < 1/ti, the image of ϕθ(jω) corresponds to Case B-1, B-2 or B-3;
otherwise, it corresponds to Case A-1, A-2 or A-3. In this figure, C1

Im and
C2

Im are determined as C1,2
Im = ϕIm

θ (ω1,2
I ) where ω1,2

I = ±[(b − c)/ab]
1
2 ∈ R.

On the other hand, C1
Re and C2

Re are determined as C1,2
Re = ϕRe

θ (ω1,2
R ) where

(ω1,2
R )2 =

(2a + c − 1)±[c2 − 2(2a − 2b + c) + 1]1/2

2(a2 + ac − b)
∈ R.

In the following, the θ-directional Lypunov D-stabilization problem for the
above multi-agent dynamical systems is considered.

7.2 GKYP lemma based pursuit formation D-stabilization

In this subsection, the special case of the θ-directional pursuit formation
D-stabilization scheme developed in Section 6.1 is presented to clearly show
its distinctive features. Consider the following θ-directional Lyapunov D-
stabilization problem:
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Figure 11: PID controller case: Six types of ranges of ω and the correspond-
ing Ψ
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Problem S1’: For given pθ(s), cθ(s) (i.e., a, b and c in (48) are given)
and φ = π/2, how to find the upper bound kmaxθ

of a connectivity
gain kθ(> 0), which guarantees nonzero n − 1 eigenvalues of Aθ with
kθ(≤ kmaxθ

) belong to Ωc
θ depicted in Figure 11.

Now, one can easily find from Figure 4 that if a given kθ satisfies that

(ϕθ(jω) + kθ)∗(ϕθ(jω) + kθ) > k2
θ , ∀ω ∈ R\{0}, (51)

then nonzero n − 1 eigenvalues λi (i = 2, 3, · · · , n) of Aθ are placed in the
domain Ωc

θ. Then, similarly to (37), it is equivalent to (51) that[
hθ(jω)

1

]∗
Π

[
hθ(jω)

1

]
< 0, Π :=

[
0 −kθ

−kθ −1

]
(52)

for ∀ω ∈ R\{0}. Note that hθ(s) in (52) is proper as shown in (48), and
thus has the state-space realization given by hθ(s) ∼ (Ahθ

, Bhθ
, Chθ

, Dhθ
)

in (39). For the above problem, the frequency-domain inequality (FDI)
specification (52) can easily be checked by using the GKYP lemma, which
transforms a FDI in a finite (or semi-infinite) frequency range into a set of
LMIs as mentioned in the optimization problem of Section 6.1. It means
that checking the FDI in (52) within a given frequency range specified in
Figure 11 can be converted to searching for matrices P ∈ Hn and Q ∈ Hn

satisfying the LMIs in (43). In this problem setting, Ψ ∈ H2 is set as defined
in Figure 11 where ωϵ and ω∞ denote, respectively, infinitesimally small
positive real number and sufficiently large positive real number (these are
design variables). Also, ωmax

R and ωmin
R denote, respectively, the frequencies

corresponding to Cmax
Re and Cmin

Re . On the other hand, Γ ∈ H2 is set as
Γ :=

[
0 1
1 0

]
since the continuous-time setting is considered in this paper

[4].

Based on the above results, the upper bound kmaxθ
of a connectivity gain

kθ(> 0) is readily obtained by just solving the following constrained opti-
mization:

Optimization problem for Problem S1’: For given pθ(s) and cθ(s),
solve

kmaxθ
:= arg max

kθ,P∈Hn,Q∈Hn

kθ (53)

subject to kθ > 0 and LMI constraints in (43) with Γ :=
[

0 1
1 0

]
and

Ψ ∈ H2 defined in Figure 11.

24



-10 -8 -6 -4 -2

-3

-2

-1

0

1

2

3

Im

Re

φ  (jω)d Ωc
d

φ  (−1+ jω)
d

Ωc
D

: Eigenvalues when k   = 8

: Eigenvalues when k   = 2

d

d

ω = +∞

ω = −∞

(a) The images of ϕd(jω), ϕd(−1 +
jω), and the corresponding do-
mains Ωc

d, Ωc
D.

-5 -4 -3 -2

-15

-10

-5

0

5

10

15

Im

Re

D-stable
region

-1

: Pole location (k   = 8) 

: Pole location (k   = 2)
d

d

−1+ jω

ω = + ∞

ω = − ∞

(b) The pole locations of Hd(s) with two
different values of kd.

Figure 12: Example: The d-directional formation stabilization.

Remark 1 The d- or α-directional stabilization can be easily achieved com-
paring to the θ-directional stabilization problem, since Ad in (13) and Aα in
(14) have n multiple eigenvalues at (−kd + j0) and (−kα + j0), respectively.
For example, if we want to place the poles of Hd(s) with pd(s) = 1/(s(s−1))
and cd(s) = 12 (1 + 1/3s + s/4) at the predesignated D-stable region in Fig-
ure 12(b), then (−kd + j0) should belong to the domain Ωc

D defined as

ΩD := ϕd(CD), Ωc
D := C\ΩD, ϕd(s) =

1
108s4 + 1

18s3 + s2 + s
1
12s2 + s + 1

(54)

where CD = {s ∈ C : Re[s] ≥ −1} (see Figure 12(a)). The pole locations
for kd = 8 and kd = 2 are illustrated in Figure 12(b).

In the following section, we present an optimization-based design method
for dynamic agent’s local controller.

8 Pursuit formation stabilization: Local PD con-
troller design

In this section, it is assumed that only an agent’s dynamics pθ(s) in (44) is
given a priori. Then, we consider how to design the PD controller

cθ(s) = k̂p(1 + t̂ds), k̂p > 0, t̂d > 0, (55)

so that we can get the largest value of a connectivity gain kθ which guaran-
tees the formation stability. In the following, we will show that the above
problem can be reduced to a constrained polynomial optimization problem.

25



Problem S2: For a given pθ(s) in (44), find the PD controller’s gains k̂p

and t̂d in (55), and its corresponding upper bound kmaxθ
of a connectivity

gain which satisfies the following global pursuit formation Lypunov D-
stability condition: all nonzero poles of Hθ(s) belong to the D-stable
region, DLHP, defined in Figure 4.

Before we proceed, the generalized frequency variable ϕθ(s)(= 1/hθ(s) =
s/gθ(s)) is defined from (44) and (55) as

ϕθ(s) =
âs3 + b̂s2 + s

s + 1
, â :=

1

ζk̂pt̂2d
(> 0), b̂ :=

ξ

ζk̂pt̂d
+ 1. (56)

Then, in order to develop an optimization problem for the above problem,
we first consider the following inequality condition which is derived from
(51) and (56):

L(ω) := −2Re[hθ(jω)] =
2(âω2 + b̂ − 1)

â2ω4 + (b̂2 − 2â)ω2 + 1
<

1
kθ

(57)

for ∀ω ∈ R\{0}. The condition (57) implies that if a given k−1
θ is bigger than

the maximum value of L(ω) (except at ω = 0), then nonzero n−1 eigenvalues
λi (i = 2, 3, · · · , n) of Aθ are placed in the domain Ωc

θ defined via (56) as
shown in Figure 14 (refer to [5]). From the above observations, the following
key result that specifies the maximum permissible limit of a gain kθ(> 0) is
obtained, which is an alternative algebraic formation stabilization method.

Theorem 3 Let Lmax0 and Lmax1 be defined, respectively, as

Lmax1(â, b̂) :=
2(âω̂ + b̂ − 1)

â2ω̂2 + (b̂2 − 2â)ω̂ + 1
, Lmax0(b̂) := 2(b̂ − 1),

where

ω̂ :=
1 − b̂

â
+

b̂

â2

√
â(â − b̂ + 1). (58)

Suppose that for given â and b̂, an connectivity gain kθ(> 0) in (10)
satisfies the following condition:

(I) kθ < L−1
max1

(â, b̂), if ω̂ is a positive real number and Lmax1(â, b̂) ≥
Lmax0(b̂),
(II) kθ ≤ L−1

max0
(b̂), otherwise.

Then, nonzero n − 1 eigenvalues λi (i = 2, 3, · · · , n) of Aθ are placed in
the domain Ωc

θ.
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Figure 13: Areas I-II and the plot of L−1
max.

The region where the constraint condition in Theorem 3 (I) is satisfied is
illustrated in Figure 13(a) (Area I). It means that if given â and b̂ of (56)
exist in Area I, then the maximum value of kθ should be determined by
kθ < L−1

max1
. On the other hand, if â and b̂ exist in Area II, then kθ ≤ L−1

max0
.

Figure 13(b) illustrates the plot of L−1
max which is set as L−1

max = L−1
max1

in
Area I and L−1

max = L−1
max0

in Area II.

Based on the results in Theorem 3, the following optimization-based agent
design method can easily be formulated:

Optimization problem for Problem S2: In order to determine the
system parameters â and b̂ of gθ(s) in Area I, solve

min
(â,b̂)∈S

L−1
max1

(â, b̂) (59)

subject to

ŵ is a positive real number (60)
Lmax1(â, b̂) ≥ Lmax0(b̂) (61)

where an agent’s dynamics in the form of (44) is given, and S denotes
a predefined set of â and b̂. Then, the PD controller’s gains k̂p > 0 and
t̂d > 0 in (55) are obtained from â∗ = 1/(ζk̂pt̂

2
d) and b̂∗ = ξ/(ζk̂pt̂d) + 1

where â∗ and b̂∗ denote optimal values. Further, the maximum of a
connectivity gain kθ is obtained as L−1

max1
(â∗, b̂∗).
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Figure 14: PD controller case: Four types of ranges of ω and the corre-
sponding Ψ

On the other hand, once the system parameters â∗ and b̂∗ of hθ(s) which
maximize a connectivity gain are determined via the above optimization
problem, then it is possible to apply the D-stabilization strategy presented
in Section 7 to find a D-stabilizing connectivity gain kθ. In this case, Ψ ∈ H2

is set as defined in Figure 14 where

ω1,2
I = ±

(
1 − b̂

â

)1/2

∈ R, ω1,2
R = ± 1

(â − b̂)1/2
∈ R. (62)

Note that, if we intend to design â and b̂ in Area II, these values can be
easily determined from the condition presented in Theorem 3 (II).

It is also important to note that one can add additional constraint condi-
tion denoted by S in the above optimization problem. For example, in the
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following example, the additional constraint conditions such that
(c1) all the poles of gθ(s) are located in a predesignated region in the complex
plane; i.e., the D-stabilization problem for each agent,
(c2) the predefined ranges of â and b̂, which are set based on the desirable
ranges of k̂p and t̂d,
are considered. In order to derive a numerical formulation for the constraint
condition (c1), we introduce the following notations: let λi(gθ(s)) denote the
ith pole of the system gθ(s), and λmax(gθ(s)) be the pole whose real part is
greater than those of other poles, i.e.,

Re[λmax(gθ(s))] = max
i

{Re[λi(gθ(s))], ∀i}.

The above-mentioned constrained polynomial optimization problem for “Prob-
lem S2” subject to additional constraints (c1) and (c2) can easily be solved
through the constrained particle swarm optimization scheme [12], which will
be verified in the following example.

Example 3 Suppose that agent’s dynamics is given as pθ = 1/s(s+2). We
here consider the following two additional constraints as well as (60)-(61):

Re[λmax(gθ(s))] ≤ −0.25, (63)
3.0 ≤ â ≤ 6.0, 1.1 ≤ b̂ ≤ 2.5. (64)

Then, â and b̂ in (56) can readily be obtained by solving the optimization
problem (59) subject to (60)-(64). The optimization problem is solved via
constrained PSO method [12], and then we obtain the minimum of L−1

max1

as L−1
max1

(â∗, b̂∗) = 0.2167 where â∗ = 5 and b̂∗ = 2.5. Therefore, we have
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k̂p = 8.8889 and t̂d = 0.15. The image of ϕθ(jω) with the above â∗ and b̂∗ is
illustrated in Figure 15, where the radius of circle is 0.2167. From the above
results, we can easily see that if kθ is set as 0 < kθ < L−1∗

max1
= 0.2167, the

global pursuit formation Lypunov D−stability presented in “Problem S2” is
guaranteed.

9 Conclusion

In this paper, we have presented novel formation stability analysis and for-
mation stabilization schemes for a distributed cooperative control based on
a cyclic pursuit strategy. As for the formation stability analysis, we intro-
duced a D-stability problem in multi-agent dynamical systems, and then de-
veloped a simple diagrammatic pursuit formation stability criterion. Then,
as for the formation stabilization problem when agent’s dynamics and its
local controller are given, we developed an optimization problem subject
to LMI constraints to maximize the connectivity gain of a cyclic pursuit
based on-line path generator, which satisfies not only a global formation
stability condition but also a required multi-agent system’s performance
specification. In this case, the LMIs are derived based on the generalized
Kalman-Yakubovich-Popov (GKYP) lemma. Then, in order to clearly show
its distinctive features, we considered the special case of a pursuit formation
stabilization scheme for a class of multi-agent systems where each agent is
modeled as a second-order system and is locally stabilized by the PID con-
troller. Finally, a constrained polynomial optimization problem was devel-
oped in order to design agent’s local PD controller parameters guaranteeing
that a given connectivity gain becomes the maximum one satisfying the
global formation stability condition for a class of dynamic agents given a
priori. The effectiveness of the proposed stabilization schemes was verified
through simulation examples.
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A Lemma for the pole locations of Hθ(s)

The following lemma shows that the pole locations of large-scale system
Hθ(s) can be found by using ϕθ(s) obtained from an agent’s dynamics and
Aθ obtained from a path generation law:

Lemma 1 Consider a large-scale linear system Hθ(s) in (15) and (17).
The poles of Hθ(s) are identical, including multiplicity, to the roots of
|ϕθ(s)In − Aθ| = 0.

Proof From (15) and (17), the transfer function Hθ(s) can be rewritten as

Hθ(s) = (ϕθ(s)In − Aθ)−1Bθ. (65)

Let n(s)/d(s) := hθ(s) which is a irreducible fraction. Then, we have

Hθ(s) = n(s)
adj(d(s)In − n(s)Aθ)
|d(s)In − n(s)Aθ|

Bθ (66)

where adj(·) is a adjugate matrix. Since (Aθ, Bθ) is controllable, the poles
of Hθ(s) are identical, including multiplicity, to the roots of

|d(s)In − n(s)Aθ| = 0. (67)

Also, since d(s) and n(s) are irreducible polynomials, s0 satisfying n(s0) = 0
cannot be a root of (67). Therefore, the roots of (67) are identical to the
roots of the following equation:∣∣∣∣d(s)

n(s)
In − Aθ

∣∣∣∣ = |ϕθ(s)In − Aθ| = 0. (68)
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