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Abstract

We investigate a problem of estimating distributions that are aligned on a manifold
Θ embedded in Euclidean space. To estimate the distributions, we utilize local data
aggregation that aggregates samples around a target point on the manifold Θ. We
investigate a weighted maximal likelihood estimator on a locally aggregated data where
the weight is given by a kernel function defined by the distance of the Euclidean
space where Θ is embedded. We show that the asymptotic risk of the estimator is
characterized by geometric quantities such as Laplacian and Riemannian metric. We
also give the optimal kernel width that balances bias and variance trade off induced
by the kernel width.

1 Introduction

In this article we consider a problem of estimating probability distributions equipped on
each point of a manifold Θ. Here Θ is embedded in higher dimensional Euclidean space
Rm as an ℓ-dimensional compact smooth regular submanifold with boundary (possibly
∂Θ = ∅ where ∂Θ is the boundary of Θ). Instead of considering an abstract manifold
Θ, it might be helpful to consider a setting where Θ = [0, 1]ℓ and there exists a smooth
embedding map ϖ : Θ → Rm, and identify ϖ(Θ) as Θ. We equip Θ with a metric
g̃ = (g̃ij) which is induced from the Euclidean metric on Rm so that Θ has a structure
of Riemannian manifold with boundary. g̃ij denotes the (i, j)-component of the inverse
matrix of (g̃ij).

At each θ ∈ Θ, a probability density qθ(X) = q(X|θ) is equipped with. The task we
consider here is to estimate qθ from the sample observations DN = {(θ1, x1), . . . , (θN , xN )}
where (θn, xn) ∈ Θ ×X is distributed independent identically from the following model:

θn ∼ π(θ)
xn ∼ qθn(X).

Here π(θ) is a probability density on Θ with respect to the volume element
√

|g̃|dθ, i.e.,∫
Θ π(θ)

√
|g̃|dθ = 1. We suppose both π(θ) and qθ are unknown. A key geometric quantity
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is the Laplacian operator on (Θ, g̃) defined by

∆Θf(θ) :=
1√
|g̃|

∂i

(√
|g̃|g̃ij∂jf(θ)

)
where ∂i is a partial derivative with respect to θi a local coordinate of Θ. As seen later, the
Laplacian operator gives a geometric interpretation of the asymptotic risk of estimators
on locally aggregated data.

We assume all qθ (θ ∈ Θ) are contained in a parametric model M:

M = {pµ(X) = p(X|µ) | µ ∈ U},

where U is a d-dimensional C∞ manifold. We use the same notation for the local coordinate
of U with U itself, thus we will deal with U as if Rd. We also write a partial derivative
with respect to µi as ∂

∂µi
= ∂̄i. We assume there exists a smooth mapping ι : Θ → U such

that
qθ(X) = pι(θ)(X) = p(X|ι(θ)) ∈ M. (1)

From now on we fix θ which is an interior point of Θ and consider to estimate qθ by
local data aggregation. Corresponding to θ we define µ as

µ = µ(θ) := ι(θ), θ ∈ int(Θ).

Thus (1) is equivalent to
qθ(X) = pµ(X) = p(X|µ).

We consider an estimator which maximizes weighted log-likelihood on aggregated data
around θ. To do this, we introduce window width hN ∈ R+, which depends on the sample
size N , and a weight kernel K : R+ → R+*1. Define a scaled weight kernel as

Kh(∥y∥) =
1
hℓ

K

(
∥y∥2

h2

)
.

To estimate qθ we employ maximum likelihood estimator µ̂ for weighted log-likelihood:

µ̂ = µ̂(θ) := arg max
µ′∈U

1
N

N∑
n=1

KhN
(∥θn − θ∥) log p(xn|µ′), (2)

where ∥θ′ − θ∥ is Euclidean distance between θ′ and θ in Rm. We consider a class of
weight kernels KhN

(x) that decay exponentially as x → ∞ (Assumption 1). Therefore
only information around θ contributes to the estimation of q(x|θ). In other words, the
weighted maximum likelihood is performed on samples locally aggregated around θ. We
say aggregating samples around the target point θ as local data aggregation.

The main purpose of this paper is to investigate properties of µ̂ under a condition that
the window width goes to 0 (hN ↘ 0), and give geometric interpretations to the results.
We employ the KL-divergence as a risk measure. An important point is that the prediction
performance is controlled by the window width hN , so the main result will be presented
in the context of the optimal hN that balances bias and variance trade off induced by the
window width hN .

*1R+ := [0,∞)
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Our analysis is closely related to the work of Eguchi, Kim, and Park (2003) which
investigated a local regression problem on exponential families, i.e., a problem to estimate
µ = µ(θ) where Θ = Rm and M is an exponential family in our terminology. Our set-
ting is more general than that of Eguchi et al. (2003) in the sense that Θ is generalized
to a manifold, the model M is not restricted to an exponential family and a geometric
interpretation will be given. On the other hand, they also (locally) model the “regression
function” µ(θ) by a parametric model while our analysis deals with the pointwise estima-
tion of µ(θ), thus their analysis is more general than ours in that aspect. In that direction,
Tibshirani and Hastie (1987) also considered local regression on some exponential families,
and Yu and Jones (2004) dealt with a regression problem where M is a class of normal
distributions.

Estimation by local data aggregation is closely related to local likelihood density es-
timation which has been studied by many authors (Copas, 1995; Hjort & Jones, 1996;
Loader, 1996; Eguchi & Copas, 1998; Park, Kim, & Jones, 2002). Local likelihood density
estimation is a semiparametric estimation method that combines nonparametric approach
and parametric one to density estimation in such a way that it fits a parametric model to
the sample density locally around a certain target point. If the parametric model offers a
good representation of the underlying distribution, it is efficient with large window width,
otherwise, it flexibly fit the density with small window width as usual nonparametric
density estimation method does.

In Section 2, we present some assumptions for our analysis and prepare basic lemmas
that are needed for the main result. In Section 3, we show the main results concerning
the optimal window width and the asymptotic risk under the optimal window width, and
give their geometric interpretation. In Section 4, we derive an asymptotic expansion of
geometric quantities that appear in the asymptotic risk of the estimator.

2 Preliminaries

To analyze the behavior of µ̂, we put some assumptions on K and show a key theorem
that is useful for our analysis. We impose the following assumptions on the kernel function
K that corresponds to Assumption 20 and 21 of Hein, Audibert, and Luxburg (2007).

The assumption for the kernel K is as follows.

Assumption 1

1. K : R+ → R+ is measurable, non-negative and non-increasing on R+,

2. supp(K), the support of K, has its interior, and K is twice continuously differen-
tiable on the interior of the support, that is in particular

∫ ∞
0 K(x)dx > 0 and dK

dx

and d2K
dx2 exist and are bounded on supp(K).

3. K, |dK
dx | and |d2K

dx2 | have exponential decay: there exist α, c > 0 such that for any
t ≥ 0 in the interior of supp(K), max{K(t), |dK

dx (t)|, |d2K
dx2 (t)|} ≤ ce−αt.

Because of Assumption 1, the following two integrals converge:

C1 :=
∫
Rℓ

K(∥y∥2)dy < ∞, C2 :=
∫
Rℓ

K(∥y∥2)y2
1dy < ∞,
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where y1 is the first element of y ∈ Rℓ. We also impose the following differentiability
assumptions on π(θ) and qθ.

Assumption 2

1. π ∈ C2(Θ)*2 and π(θ′) > 0 for all θ′ ∈ Θ,

2. For all x ∈ X , qθ′(x) ∈ C2(Θ) as a function of θ′.

We define an “averaged” probability density

q̄θ(X) :=

∫
Θ KhN

(∥θ − θ′∥)qθ′(X)π(θ′)
√

|g̃|dθ′∫
Θ KhN

(∥θ − θ′∥)π(θ′)
√

|g̃|dθ′
.

The maximum weighted log-likelihood estimator corresponds to estimating q̄θ because
the weighted log-likelihood gives an estimator of KL-divergence from q̄θ except constant
multiplication and addition. Actually as N → ∞, µ̂ converges to the “closest” point of U
from q̄θ in probability (see Section 4).

q̄θ can be approximated by qθ plus higher order terms as the following theorem.

Theorem 1 Under Assumption 1 and 2, the density of the distribution of aggregated
data is expressed by

q̄θ = qθ +
C2hN

2

2C1

[
∆Θ(qθ) + 2g̃ij(∂i log π(θ))(∂jqθ)

]
+ o(hN

2).

¤

Proof The proof utilizes Proposition 22 of Hein et al. (2007). Proposition 22 of Hein et
al. (2007) and its proof indicate that the weighted average of probability density qθ′ can
be expressed as follows:

r̄θ :=
∫

Θ
KhN

(∥θ − θ′∥)qθ′π(θ′)
√

|g̃|dθ′

= C1qθπ(θ) +
hN

2

2
C2 (∆Θ(π(θ)qθ) + π(θ)qθS(θ)) + o(hN

2), (3)

where S(θ) is a function of θ defined by

S(θ) =
1
2

−R|θ +
1
2

∥∥∥∥∥∑
i

Π(∂i, ∂i)

∥∥∥∥∥
2
 ,

where R is the scalar curvature and Π is the second fundamental from of Θ. We omit
detailed explanations of S(θ) because it is not related to the later discussions. See Hein
et al. (2007) for details. This is proven by substituting π(θ), qθ, and g̃ to p, f , and g in
Proposition 22 of Hein et al. (2007) respectively. It should be noted that Assumption 19
of Hein et al. (2007) is satisfied because Θ is a smooth compact submanifold (see, remarks
following after Assumption 19 of Hein et al. (2007)). In particular, self-approaching does
not occur, namely there is no two distinct points which are far away in Θ with respect

*2Ck(X ) denotes the set of functions with k continuous partial derivatives on X .
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to the geodesic distance defined by g̃ but too close in Rm with respect to the Euclidean
distance. Assumption 20 of Hein et al. (2007) assumes stronger condition of K than
Assumption 1 of this article, namely K is twice continuously differentiable on whole R+.
However that difference does not induce any difficulty to derive the required consequence.
Therefore the result of Proposition 22 of Hein et al. (2007) is still valid under our setting.
In addition, Proposition 22 of Hein et al. (2007) assumes qθ, π(θ) ∈ C3(Θ) as a function
of θ and the direct consequence under the stronger condition indicates that the residual
term appears in the asymptotic expansion (3) can be O(hN

3) instead of o(hN
2). However

it is easy to check that by relaxing their assumption to qθ, π(θ) ∈ C2(Θ) a similar (but a
little bit weak) result with the residual term o(hN

2) is obtained.
Since r̄θ may not be a probability density, normalization is needed to obtain q̄θ. Note

that

1∫
r̄θdx

=
1

C1π(θ) +
∫

hN
2

2 C2 (∆Θ(π(θ)qθ) + π(θ)qθS(θ)) dx + o(hN
2)

=
1

C1π(θ)
− hN

2

2(C1π(θ))2
C2

∫
∆Θ(π(θ)qθ) + π(θ)qθS(θ)dx + o(hN

2).

Thus dividing r̄θ by normalizing constant, we have

q̄θ =
r̄θ∫
r̄θdx

=
[
C1qθπ(θ) +

hN
2

2
C2 (∆Θ(π(θ)qθ) + π(θ)qθS(θ)) + o(hN

2)
]
×[

1
C1π(θ)

− hN
2

2(C1π(θ))2
C2

∫
∆Θ(π(θ)qθ) + π(θ)qθS(θ)dx + o(hN

2)
]

= qθ −
hN

2qθ

2C1π(θ)
C2

∫
∆Θ(π(θ)qθ) + π(θ)qθS(θ)dx

+
hN

2

2C1π(θ)
C2 (∆Θ(π(θ)qθ) + π(θ)qθS(θ)) + o(hN

2)

= qθ −
hN

2qθ

2C1π(θ)
C2∆Θ(π(θ)) +

hN
2

2C1π(θ)
C2∆Θ(π(θ)qθ) + o(hN

2). (4)

Here noticing

∆Θ(π(θ)qθ) =
1√
|g̃|

∂i

(√
|g̃|g̃ij∂j(π(θ)qθ)

)
=

1√
|g̃|

∂i

(√
|g̃|g̃ij ((∂jπ(θ))qθ + π(θ)(∂jqθ))

)
= ∆Θ(π(θ))qθ + π(θ)∆Θ(qθ) + 2g̃ij(∂iπ(θ))(∂jqθ),

we see that the RHS of (4) is equivalent to

qθ +
C2hN

2

2C1π(θ)
[
π(θ)∆Θ(qθ) + 2g̃ij(∂iπ(θ))(∂jqθ)

]
+ o(hN

2)

=qθ +
C2hN

2

2C1

[
∆Θ(qθ) + 2g̃ij(∂i log π(θ))(∂jqθ)

]
+ o(hN

2).
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Figure 1: Relation between q̄θ and qθ.

¤

We define

Q :=
C2

C1

[
∆Θ(qθ) + 2g̃ij(∂i log π(θ))(∂jqθ)

]
,

T := q̄θ − pµ − hN
2

2
Q.

Then by Theorem 1, T = o(hN
2). Moreover note that

∫
Qdx = 0, thus

∫
q̄θdx =

∫
pµdx =

1 gives
∫

Tdx = 0.

Remark 1 Q can be characterized by the weighted Laplace-Beltrami operator. The t-th
weighted Laplace-Beltrami operator with respect to density π(θ) is defined by

∆t := ∆Θ +
t

π(θ)
g̃ij∂i(π(θ))∂j =

1
π(θ)t

div
(
π(θ)tgrad

)
,

where div and grad are divergence and gradient respectively corresponding to the metric
g̃, thus Q is obtained by operating the 2nd weighted Laplace-Beltrami operator to qθ except
constant multiplication because

∆Θ(qθ) + 2g̃ij(∂i log π(θ))(∂jqθ) =
1

π(θ)2
1√
|g̃|

∂i

(√
|g̃|g̃ijπ(θ)2∂j(qθ)

)
=

1
π(θ)2

div
(
π(θ)2grad(qθ)

)
= ∆2(qθ).

Details of the weighted Laplacian can be found in (Grigor’yan, 2006; Hein et al., 2007).

It should be noted that the Laplacian has an interpretation that it expresses the
difference between the value of an argument function at a given point (say θ) and the
average value taken over the neighborhood of θ. This interpretation matches the statement
of Theorem 1 because Theorem 1 says the difference between the density at θ and the
averaged density around θ is expressed by the weighted Laplacian (Figure 1).

Before stating the main results of this article, we define some notations. Let µ̄ be
the “closest” point in U to q̄θ, the distribution of locally aggregated data, and v be the
difference between µ̄ and µ:

µ̄ := arg min
µ′

D(q̄θ||pµ′),
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v := µ̄ − µ.

The Fisher metric g on the tangent space TµU at µ is defined by

gij := −
∫

pµ∂̄i∂̄j log pµdx =
∫

pµ∂̄i log pµ∂̄j log pµdx.

gij denotes the (i, j)-component of the inverse matrix of (gij) (not gij = gklg̃
ikg̃lj). We

define sij , a variant of Fisher metric, as

sij =
∫

−q̄θ∂̄i∂̄j log pµ̄dx.

Also we denote by sij the (i, j)-component of the inverse matrix of (sij).

3 Optimal window width and asymptotic risk

In this section, we state the main result of this article. The result gives the asymptotic
behavior of KL-divergence between the true qθ and the estimated one pµ̂. The asymptotic
risk is expressed by sum of risks induced by bias and variance. The optimal window width
that balances the bias and variance trade off will be given. To state the main theorem we
prepare two lemmas (Lemma 1, 2). The first one is about the bias v = µ̄− µ and the risk
difference induced by the bias. The second lemma gives an asymptotic expansion of the
risk of the estimator µ̂. The proofs of the lemmas are given in Appendix A.

Lemma 1 Under Assumption 1 and 2, the bias v has the following asymptotic expansion:

vi =
hN

2

2
gik

∫
Q∂̄k log pµdx + o(hN

2).

The KL-divergence between q̄θ and pµ̄ can be expanded as

D(q̄θ||pµ̄) = −hN
4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

hN
4

8

∫
Q2

pµ
dx + o(hN

4).

Remark 2 We can show that

−gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

∫
Q2

pµ
dx ≥ 0.

The proof is as follows. Decompose Q
pµ

into the part parallel to {∂̄l log pµ}d
l=1 and the one

perpendicular to those:
Q

pµ
=

d∑
l=1

cl∂̄l log pµ + r,

where
∫

r(∂̄l log pµ)pµdx = 0 for all 1 ≤ l ≤ d. Then

gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx = gijckgkic

k′
gk′j = cicjgij

=
∫ (

Q

pµ
− r

)2

pµdx =
∫

Q2

pµ
− 2Qr + r2pµdx =

∫
Q2

pµ
− r2pµdx ≤

∫
Q2

pµ
dx.
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Lemma 1 says that the primary term of the bias vi is expressed by Q and the inner product
of the basis vectors of the tangent space at µ. Thus if Q is orthogonal to the tangent space,
the order of the bias vi becomes smaller than hN

2.
The following lemma concerns an asymptotic expansion of the risk of the estimator µ̂.

Lemma 2 Under Assumption 1 and 2, the risk of µ̂ is decomposed as follows:

D(pµ||pµ̂)

= D(q̄θ||pµ̄) +
1
2
(µ̂ − µ̄)i(µ̂ − µ̄)jsij −

hN
2

2

∫
Q (log q̄θ − log pµ̂) dx

+
hN

4

8

∫
Q2

q̄θ
dx −

∫
T log

q̄θ

pµ̂
dx + o(hN

4) + op(∥µ̂ − µ̄∥2). (5)

Combining the two lemmas (Lemma 1, 2) we obtain the following theorem.

Theorem 2 The KL-divergence between pµ and pµ̂ has the following asymptotic property:

EDN [D(pµ||pµ̂)]

=
hN

4

8

(∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx

)
gij +

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij

+ o
(
hN

4 + EDN [∥µ̂ − µ̄∥2] + ∥EDN [µ̂ − µ̄]∥
)
.

Proof
Taking expectation of (5) with respect to sample data DN , we obtain

EDN [D(qθ||pµ̂)]

= D(q̄θ||pµ̄) +
1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij −

hN
2

2
EDN

[∫
Q (log q̄θ − log pµ̂) dx

]
+

hN
4

8

∫
Q2

q̄θ
dx − EDN

[∫
T log

q̄θ

pµ̂
dx

]
+ o(hN

4) + o(E[∥µ̂ − µ̄∥2]).

First we evaluate the third term of the RHS of the above equation. Since∫
Q (log q̄θ − log pµ̂) dx

=
∫

Q

[
log qθ +

hN
2Q

2qθ
−

(
log pµ̄ + (µ̂ − µ̄)i∂̄i log pµ̄ + Op(∥µ̂ − µ̄∥2

)]
dx + o(hN

2)

=
∫

Q

[
log pµ +

hN
2Q

2qθ
−

(
log pµ + vi∂̄i log pµ) − (µ̂ − µ̄)i∂̄i log pµ̄ + Op(∥µ̂ − µ̄∥2

)]
dx

+ o(hN
2)

=
∫

hN
2Q2

2qθ
dx − [vi + (µ̂ − µ̄)i]

∫
Q∂̄i log pµdx + op(hN

2) + Op(∥µ̂ − µ̄∥2),

we have

hN
2

2
EDN

[∫
Q (log q̄θ − log pµ̂) dx

]

8



=
hN

4

4

∫
Q2

qθ
dx − hN

2vi

2

∫
Q∂̄i log qθdx − hN

2EDN [(µ̂ − µ̄)i]
2

∫
Q∂̄i log qθdx

+ o(hN
4 + E[∥µ̂ − µ̄∥2])

=
hN

4

4

∫
Q2

qθ
dx − hN

4

4
gij

∫
Q∂̄i log qθdx

∫
Q∂̄j log qθdx

+ o(hN
4 + ∥EDN [µ̂ − µ̄]∥ + EDN [∥µ̂ − µ̄∥2]).

Moreover by Theorem 1 we have

EDN

[∫
T log

q̄θ

pµ̂
dx

]
= EDN

[
(µ − µ̂)i

] ∫
T ∂̄i log pµdx + o(hN

4)

= EDN

[
(µ − µ̄ + µ̄ − µ̂)i

] ∫
T ∂̄i log pµdx + o(hN

4)

= o(hN
4 + ∥EDN

[µ̂ − µ̄] ∥).

Therefore applying Theorem 1 to expand D(q̄θ||pµ̄), we have

EDN [D(qθ||pµ̂)]

= − hN
4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

hN
4

8

∫
Q2

pµ
dx +

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij

− hN
4

4

∫
Q2

pµ
dx +

hN
4

4
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

hN
4

8

∫
Q2

q̄θ
dx

+ o(hN
4 + ∥EDN

[µ̂ − µ̄] ∥ + EDN [∥µ̂ − µ̄∥2])

=
hN

4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij

+
hN

4

8

∫
Q2

(
1
q̄θ

− 1
pµ

)
dx + o(hN

4 + ∥EDN
[µ̂ − µ̄] ∥ + EDN [∥µ̂ − µ̄∥2]).

Now noticing the relation

hN
4

8

∫
Q2

(
1
q̄θ

− 1
pµ

)
dx =

hN
4

8

∫
Q2

(
1

pµ + QhN
2

2 + O(hN
4)

− 1
pµ

)
dx

=
hN

4

8

∫
Q2

(
1
pµ

− QhN
2

2
+ O(hN

4) − 1
pµ

)
dx

= o(hN
4),

we obtain

EDN [D(qθ||pµ̂)]

=
hN

4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij

+ o
(
hN

4 + ∥EDN [µ̂ − µ̄] ∥ + EDN [∥µ̂ − µ̄∥2]
)
.

This yields the desired formula. ¤
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Figure 2: Geometric relation between pµ, pµ̄ and pµ̂, and the bias and variance.

It can be shown that there exists a constant B depending only on the kernel K such
that, for

N(h) = BNhℓπ(θ),

the maximum likelihood estimator µ̂ on locally aggregated data behaves as if it is estimated
from N(hN ) samples distributed from q̄θ:

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij =

d

2N(hN )
+ o(N(hN )−1), (6)

(see next section for details). Thus the (asymptotic) optimal window width is obtained by
minimizing over hN the primary term of the asymptotic risk expressed by the following
quantity:

(asymptotic risk) ≃ hN
4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

d

2N(hN )
.

This expression explicitly illustrates the bias and variance trade off. If we take too small
hN , the substantial sample size for estimation becomes too small and the second term,
variance term, becomes large. On the other hand too large hN induces large bias, i.e., the
first term, bias term, becomes large. Thus we should choose the optimal window size that
balances the bias-variance trade off. It should be noted again the bias term is controlled
by the geometric quantity Q characterized by the weighted Laplace-Beltrami operator.
Figure 2 illustrates how the bias and variance are induced by geometric relations between
pµ, pµ̄ and pµ̂.

If ∃i,
∫

Q∂̄i log pµdx ̸= 0, the minimum of the asymptotic risk is achieved at

h∗
N =

(
dℓ

NBπ(θ)γijgij

)1/(ℓ+4)

,

where
γij =

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx.

Thus under the optimal window width the risk can be expanded as

EDN [D(qθ||pµ̂)] = EDN [D(pµ||pµ̂)]

10



= (gijγij)
ℓ

4+ℓ

(
d

Bπ(θ)

) 4
4+ℓ

(
ℓ−

ℓ
ℓ+4

2
+ ℓ

4
ℓ+4

)
N− 4

4+ℓ + o(N− 4
ℓ+4 ).

On the other hand if ∀i,
∫

Q∂̄i log pµdx = 0, i.e., Q is perpendicular to the tangent space
spanned by {∂̄i log pµ}d

i=1, the optimal asymptotic risk is

EDN [D(qθ||pµ̂)] = EDN [D(pµ||pµ̂)] = o(N− 4
4+ℓ ).

Remark 3 In the context of nonparametric regression, the convergence rate N− 4
4+ℓ is

known as mini-max rate (Györfi, Kohler, Kryżak, & Walk, 2002). Namely, if the true
regression function is taken from a class of twice-differentiable functions as in our setting
(Assumption 2), estimation accuracy of any estimator is at most Op(N

− 4
4+ℓ ) for a certain

choice of regression function. The problem setting in this article includes regression with
Gaussian noise that corresponds to a situation where {pµ | µ ∈ U} is a set of Gaussian
distributions with different mean and fixed variance. Therefore the local data aggregation
achieves the optimal rate in a sense of mini-maxity.

What is remaining is to prove (6). In the next section we give the proof of (6).

4 Asymptotic behavior of maximum weighted log-likelihood
estimator

In this section we prove (6). Instead of considering µ̂ defined in (2), we consider a simpler
formulation defined as follows:

µ̂ := arg max
µ′∈U

1
N

N∑
n=1

w(zn) log p(xn|µ′), (7)

where {zn}N
n=1 = {(θn, xn)}N

n=1 are i.i.d. samples from a probability density q(z), and
w(z) is a non-negative weight function depending on z. If we set q(z) ← π(θ)qθ(x), and
w(zn) ← KhN

(∥θn − θ∥), then the estimator µ̂ defined by (7) is reduced to that of (2).
We denote by µ̄ the “closest” point of U to q(Z) with respect to the expectation of the

weighted log-likelihood:

µ̄ := arg max
µ′∈U

∫
q(Z)w(Z) log p(X|µ′)dZ.

We write DN = {z1, . . . , zN}. Let ϱ and ς be matrices the (i, j)-th elements of which are
defined by

ϱij = Eq[w(Z)2∂̄i log p(Z|µ̄)∂̄j log p(Z|µ̄)],
ςij = −Eq[w(Z)∂̄i∂̄j log p(Z|µ̄)],

where ∂̄i is partial derivative with respect to µi. We denote by ς ij the (i, j)-th element of
ς−1 (inverse of ς).

11



4.1 Fixed weight w(Z) against N

First we consider a situation where w(Z) is independent of the sample size N . Although
KhN

(∥θn − θ∥) depends on the sample size, to state asymptotic property of the estimator
under w(Z) independent of N is instructive and helpful to consider the weight kernel
depending on the sample size N .

Proposition 1 The expectations of the first and second moment of µ̂ − µ̄ are given by

EDN [(µ̂ − µ̄)i] = O

(
1
N

)
, (8)

and

EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ] =
ς ikϱklς

lj

N
+ O

(
1

N
√

N

)
. (9)

Moreover
√

N(µ̂ − µ̄) Ã N (0, ς−1ϱς−1),

where N (µ,Σ) is normal distribution with mean µ and covariance Σ.
Proof Since µ̂ is an M-estimator (Huber, 1964) with respect to a risk function ρ(Z|µ) =
w(Z) log p(X|µ), the proof is given by standard asymptotic analysis of M -Estimators, see
for example (van der Vaart, 1998). We only give brief proofs of assertions (8) and (9).
Since µ̂ is the maximizer of the weighted log-likelihood, we have

1
N

N∑
n=1

w(zn)∂̄i log p(xn|µ̂) = 0 (∀i).

Thus we have

0 =
1
N

N∑
n=1

w(zn)
(
∂̄i log p(xn|µ̄) + (µ̂ − µ̄)j ∂̄i∂̄j log p(xn|µ̂)

)
+ Op(∥µ̂ − µ̄∥2).

This yields

ςij(µ̂ − µ̄)j =
1
N

N∑
n=1

w(zn)∂̄i log p(xn|µ̄) + Op

(
∥µ̂ − µ̄∥2

)
. (10)

Since µ̄ maximizes the expectation of the weighted log-likelihood, we have

Eq[w(Z)∂̄i log p(X|µ̄)] = 0.

Therefore taking expectation of (10), we obtain the assertion (8). (9) is also proven from
(10). ¤
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4.2 Varying weight w(Z) against N

Here we fix θ ∈ Θ which is an interior point of Θ. If w depends on the sample size N as
in the case of w(zn) = KhN

(∥θn − θ∥), the above proposition should be modified because
g and h are not constants and ς−1ϱς−1 may converge to 0 or diverge to ∞. However for
the settings

SettingA :
q(z) ← π(θ′)qθ′(x), w(z) ← KhN

(∥θ′ − θ∥) (z = (θ′, x))

(we call this setting Setting A), we have a proposition which is analogous to Proposition
1. Before stating the proposition we remark the following lemma.

Lemma 3 Let C3 be

C3 :=
∫
Rℓ

K(∥y∥2)2dy,

which is finite because of Assumption 3. Then for all continuous function f : Θ → R, we
have

lim
hN→0

∫
Θ

KhN
(∥θ′ − θ∥)f(θ′)

√
|g̃|dθ′ → C1f(θ), (11)

and
lim

hN→0

∫
Θ

hN
ℓKhN

(∥θ′ − θ∥)2f(θ′)
√
|g̃|dθ′ → C3f(θ). (12)

The proof is given in A. Then we obtain the following proposition.

Proposition 2 Under Setting A and Assumption 1 and 2, we have

ςij − C1π(θ)sij → 0,

with hN → 0. Moreover, if NhN
ℓ → ∞, the first and second moment of µ̂ − µ̄ are given

by

EDN [(µ̂ − µ̄)i] = O

(
1

NhN
ℓ

)
, (13)

and

EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ] =
sij

Bπ(θ)NhN
ℓ

+ o

(
1

NhN
ℓ

)
, (14)

where B = C2
1

C3
. Moreover √

Bπ(θ)NhN
ℓ(µ̂ − µ̄) Ã N (0, s−1). (15)

Proof
By (11) we have

ςij = −Eq[KhN
(∥θ′ − θ∥)∂̄i∂̄j log p(X|µ̄)]

13



=
∫

−KhN
(∥θ′ − θ∥)π(θ′)

(∫
∂̄i∂̄j log p(X|µ̄)qθ′(X)dX

)√
|g̃|dθ′

→ C1π(θ)
∫

−∂̄i∂̄j log p(X|µ)qθ(X)dX.

Also by (12) we have

hN
ℓϱij = Eq[hN

ℓKhN
(∥θ′ − θ∥)2∂̄i log p(X|µ̄)∂̄j log p(X|µ̄)]

=
∫

hN
ℓKhN

(∥θ′ − θ∥)2π(θ′)
(∫

∂̄i log p(X|µ̄)∂̄j log p(X|µ̄)qθ′(X)dX

) √
|g̃|dθ′

→ C3π(θ)
∫

∂̄i log p(X|µ)∂̄j log p(X|µ)qθ(X)dX

where we used µ̄ → µ in the last line. Since it is easy to prove sij →
∫
−∂̄i∂̄j log p(X|µ)qθ(X)dX,

we obtain the first assertion.
By definition, qθ(X) = p(X|µ). This gives the relation∫

−∂̄i∂̄j log p(X|µ)qθ(X)dX =
∫

∂̄i log p(X|µ)∂̄j log p(X|µ)qθ(X)dX

so that we obtain

ς ikϱklς
lj

N
=

ς ijC3

NhN
ℓC1

+ o(1/NhN
ℓ)

=
sijC3

NhN
ℓC2

1π(θ)
+ o(1/NhN

ℓ). (16)

Here noticing that (10) gives

(µ̂ − µ̄)i = ς ij 1
N

N∑
n=1

KhN
(∥θn − θ∥)∂̄j log p(xn|µ̄) + Op

(
∥µ̂ − µ̄∥2

)
, (17)

(16) yields

EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ] =
sij

BNhN
ℓπ(θ)

+ o

(
1

NhN
ℓ

)
.

Hence (14) is shown. Also taking the expectation of (17), we have the assertion (13)
because

EDN ∥µ̂ − µ̄∥2 = O

(
1

NhN
ℓ

)
.

Finally (15) is proven by the central limit theorem and Slutsky’s lemma. ¤
Proposition 2 indicates that

1
2
EDN [(µ̂ − µ̄)i(µ̂ − µ̄)j ]sij =

sijsij

2N(hN )
+ o(N(hN )−1)

=
d

2N(hN )
+ o(N(hN )−1),

14



with N(hN ) = NBhN
ℓπ(θ). This gives (6).

We remark that the substantial sample size BNhN
ℓπ(θ) of local aggregated data is

proportional to π(θ). This implies that for θ with small π(θ), the substantial sample size
around θ is small. This is intuitively appealing because the number of samples observed
around θ is approximately proportional to π(θ).

Finally we show two examples which satisfy Assumption 1.

Example 1 K(∥θ′ − θ∥) = exp(−∥θ′ − θ∥2).
The first relation (11) of Lemma 3 holds with C1 =

√
πℓ. The second relation (12) of

Lemma 3 is given by C3 =
√

(π/2)ℓ because∫
Rℓ

1
h2ℓ

exp
(
−2

∥θ′∥2

h2

)
dθ′ =

1
h2ℓ

(√
2π

h2

4

)ℓ

=
1
hℓ

(√
π

2

)ℓ

.

Example 2 K(∥θ′ − θ∥) = 111{∥θ′ − θ∥ ≤ 1}.
In this example, Lemma 3 holds with C1 = C3 = Leb({θ′ ∈ Rℓ | ∥θ′∥ ≤ 1}), where Leb

is the Lebesgue measure.

5 Conclusion and discussion

We investigated the maximum weighted log-likelihood estimator on locally aggregated
data. Asymptotic properties including its asymptotic risk were shown. We observed there
appears the bias-variance trade off induced by the window width. In particular, it was seen
that the bias term is characterized by a geometric quantity, weighted Laplacian, which
gives an intuitive explanation that the bias v is determined by the “parallel” component
of Q (the difference between locally averaged distribution and the true one) to the model.
Optimal window width that minimizes the asymptotic risk of the estimator was also given.

As stated in the introduction, the maximum weighted log-likelihood estimator of our
settings is a simple “pointwise” estimator for µ(θ) while Eguchi et al. (2003) locally mod-
eled the regression function µ(θ) in a exponential family. The (local) modelling of the
regression function exploits some smoothness property of the regression function so that
faster convergence of the generalization performance will be expected under a regression
function with enough smoothness. That direction of extension of our analysis might be in-
teresting. However the geometric interpretation would be lost in higher order convergence
analysis.

Another interesting (and even challenging) future work is to construct a window width
selection protocol to select the optimal window width h∗

N . Ideally AIC-type information
criterion is preferable. However a problem is that the primary term of the asymptotic risk
contains gijγij which might be hard to be known beforehand. In practice, cross validation
or bootstrap might be helpful for the determination of hN , and they would achieve the
optimal window width asymptotically.
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A Proof of Lemmas

Proof of Lemma 1
By Theorem 1 and definitions following the theorem, q̄θ is expressed by

q̄θ = pµ +
hN

2

2
Q + T

where T = o(hN
2) and

∫
Tdx = 0. Since

log
(

pµ +
hN

2

2
Q + T

)
= log pµ +

QhN
2

2pµ
+

T

pµ
− hN

4Q2

8p2
µ

+ o(hN
4),

we observe

D(q̄θ||pµ̄) =
∫ (

pµ +
hN

2

2
Q + T

)(
log pµ +

hN
2

2pµ
Q +

T

pµ
− hN

4Q2

8p2
µ

− log pµ̄

)
dx + o(hN

4)

=
∫

pµ log
pµ

pµ̄
dx +

hN
2

2

[∫
Qdx +

∫
Q log

pµ

pµ̄
dx

]
+

∫
Tdx

− hN
4

8

∫
Q2

pµ
dx +

hN
4

4

∫
Q2

pµ
dx +

∫
T log

pµ

pµ̄
dx + o(hN

4). (18)

Now noticing that∫
pµ log

pµ

pµ̄
dx =

∫
pµ

[
log pµ −

(
log pµ + vi∂̄i log pµ +

vivj

2
∂̄i∂̄j log pµ

)]
dx + O(∥v∥3)

=
vivj

2
gij + O(∥v∥3),

∫
Qdx = 0,

∫
Tdx = 0,

and ∫
Q log

pµ

pµ̄
dx =

∫
Q

(
−vi∂̄i log pµ − vivj

2
∂̄i∂̄j log pµ

)
dx + O(∥v∥3),

the terms with orders not higher than hN
2 is expressed as∫

pµ log
pµ

pµ̄
+

hN
2

2

[∫
Qdx +

∫
Q log

pµ

pµ̄
dx

]
=

vivj

2
gij −

hN
2

2
vi

∫
Q∂̄i log pµdx − hN

2

4
vivj

∫
Q∂̄i∂̄j log pµdx + O(∥v∥3)

=
gij

2

(
vi − hN

2

2

∫
Q∂̄k log pµdxgki

)(
vj − hN

2

2

∫
Q∂̄k log pµdxgkj

)
− hN

4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx − hN

2

4
vivj

∫
Q∂̄i∂̄j log pµdx + O(∥v∥3).
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Thus vi which minimizes the above equation is

vi =
hN

2

2
gik

∫
Q∂̄k log pµdx + o(hN

2).

This gives
∫

T log pµ

pµ̄
dx = o(hN

4). Therefore returning to (18), we obtain

D(q̄θ||pµ̄) = −hN
4

8
gij

∫
Q∂̄i log pµdx

∫
Q∂̄j log pµdx +

hN
4

8

∫
Q2

pµ
dx + o(hN

4).

¤
Proof of Lemma 2

By Theorem 1 we have the following expansion:

D(pµ||pµ̂) =
∫ (

q̄θ −
hN

2Q

2
− T

)
log

(
q̄θ − hN

2Q
2 − T

pµ̂

)
dx

=
∫ (

q̄θ −
hN

2

2
Q − T

)(
log q̄θ −

hN
2Q

2q̄θ
− T

q̄θ
− hN

4Q2

8q̄2
θ

− log pµ̂

)
dx + o(hN

4)

=
∫

q̄θ

(
log q̄θ −

hN
2Q

2q̄θ
− T

q̄θ
− hN

4Q2

8q̄2
θ

− log pµ̂

)
dx

−
∫

hN
2

2
Q

(
log q̄θ −

hN
2Q

2q̄θ
− log pµ̂

)
dx −

∫
T log

q̄θ

pµ̂
dx + o(hN

4)

= D(q̄θ||pµ̂) −
∫

hN
4Q2

8q̄θ
dx −

∫
hN

2

2
Q (log q̄θ − log pµ̂) dx +

hN
4

4

∫
Q2

q̄θ
dx

−
∫

T log
q̄θ

pµ̂
dx + o(hN

4). (19)

Now D(q̄θ||pµ̂) is expanded as

D(q̄θ||pµ̂)

=
∫

q̄θ log
(

q̄θ

pµ̄

)
dx +

∫
q̄θ log

(
pµ̄

pµ̂

)
dx

= D(q̄θ||pµ̄) −
∫

q̄θ

[
(µ̂ − µ̄)i∂̄i log pµ̄ +

(µ̂ − µ̄)i(µ̂ − µ̄)j

2
∂̄i∂̄j log pµ̄

]
dx + op(∥µ̂ − µ̄∥2).

Here
∫

q̄θ∂̄i log pµ̄dx = 0 because µ̄ is the minimizer of D(q̄θ||pµ′) over µ′ ∈ M. Therefore
we have

D(q̄θ||pµ̂) = D(q̄θ||pµ̄) +
1
2
(µ̂ − µ̄)i(µ̂ − µ̄)jsij + op(∥µ̂ − µ̄∥2).

This and (19) yields the assertion. ¤
Proof of Lemma 3

Let BΘ(θ, ϵ) be a ball around θ of radius ϵ in Θ with respect to the geodesic distance.
Since Θ is compact, it is not self-approaching. Thus for all ϵ > 0 there exists δ > 0 such
that ∀θ′ ∈ Θ \ BΘ(θ, ϵ) satisfies ∥θ′ − θ∥ > δ. We decompose the integral of (11) to∫

Θ
KhN

(∥θ′ − θ∥)f(θ′)
√

|g̃|dθ′ =
∫

Θ\BΘ(θ,ϵ)
+

∫
BΘ(θ,ϵ)

KhN
(∥θ′ − θ∥)f(θ′)

√
|g̃|dθ′.
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The first term decays exponentially because of Assumption 1. The second term is evaluated
as ∫

BΘ(θ,ϵ) KhN
(∥θ′ − θ∥)f(θ′)

√
|g̃|dθ′∫

BΘ(θ,ϵ) KhN
(∥θ′ − θ∥)

√
|g̃|dθ′

∫
BΘ(θ,ϵ)

KhN
(∥θ′ − θ∥)

√
|g̃|dθ′

Since f(θ′) is continuous, taking ϵ small enough the term∫
BΘ(θ,ϵ) KhN

(∥θ′ − θ∥)f(θ′)
√

|g̃|dθ′∫
BΘ(θ,ϵ) KhN

(∥θ′ − θ∥)
√

|g̃|dθ′

becomes arbitrary close to f(θ) because the above display is an average of f(θ′) taken over
ϵ-neighborhood of θ. Since g̃ is induced by Euclidean metric and K has an exponential
tail decay, then we obtain∫

BΘ(θ,ϵ)
KhN

(∥θ′ − θ∥)
√

|g̃|dθ′ →
∫
Rℓ

K(∥y∥2)dy (as hN → 0).

This concludes the proof of (11). (12) is also proven in a similar way. ¤

References

Copas, J. B. (1995). Local likelihood based on kernel censoring. Journal of the Royal
Statistical Society B 57:221–235.

Eguchi, S., & Copas, J. (1998). A class of local likelihood methods and near-parametric
asymptotics. Journal of the Royal Statistical Society B 60:709–724.

Eguchi, S., Kim, T. Y., & Park, B. U. (2003). Local likelihood method: A bridge over
parametric and nonparametric regression. Nonparametric Statistics 15(6):665–683.

Grigor’yan, A. (2006). Heat kernels on weighted manifolds and applications. Contemporary
Mathematics 398:93–191.
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