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Abstract

We propose a sequential optimizing betting strategy in the multi-dimensional
bounded forecasting game in the framework of game-theoretic probability of Shafer
and Vovk (2001). By studying the asymptotic behavior of its capital process, we
prove a generalization of the strong law of large numbers, where the convergence
rate of the sample mean vector depends on the growth rate of the quadratic variation
process. The growth rate of the quadratic variation process may be slower than the
number of rounds or may even be zero. We also introduce an information criterion
for selecting efficient betting items. These results are then applied to multiple
asset trading strategies in discrete-time and continuous-time games. In the case of
continuous-time game we present a measure of the jaggedness of a vector-valued
continuous process. Our results are examined by several numerical examples.

Keywords and phrases: game-theoretic probability, Hölder exponent, information crite-
rion, Kullback-Leibler divergence, quadratic variation, strong law of large numbers, uni-
versal portfolio.

1 Introduction

Since the advent of the game-theoretic probability and finance by Shafer and Vovk [10],
the field has been expanding rapidly. The present authors have been contributing to
this emerging field by showing the essential role of the Kullback-Leibler divergence for
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the strong law of large numbers (SLLN) [8, 9] and by proposing a new approach to
continuous-time games [12, 13]. Our approach to continuous-time games has been further
developed by V. Vovk [14, 15, 16].

In this paper we propose a sequential optimizing betting strategy for the multi-
dimensional bounded forecasting game in discrete time and apply it as a high-frequency
limit order type betting strategy for vector-valued continuous price processes.

Our strategy is very flexible and the analysis of its asymptotic behavior allows us to
generalize game-theoretic statements of SLLN to a wide variety of cases. SLLN for the
bounded forecasting game is already established in Chapter 3 of [10]. In [8] we gave a
simple strategy forcing SLLN with the rate of O(

√
log n/n), where n is the number of

rounds. However the convergence rate of SLLN should depend on the growth rate of the
quadratic variation process. For example, in view of Kolmogorov’s three series theorem
(e.g. Section IV.2 of [11]), the sum sn = x1 + · · · + xn ∈ R1 of centered independent
measure-theoretic random variables converges a.s. if the sum of their variances converges
(i.e.

∑
n Var(xn) < ∞). Therefore in this case the sample average x̄n = sn/n is of order

O(1/n). By our sequential optimizing betting strategy, we can give a unified game-
theoretic treatment on the asymptotic behavior of sn, which depends on the asymptotic
behavior of

∑n
i=1 x2

i as n → ∞.
The strength of our results can be seen when we interpret our results in the standard

measure-theoretic framework. Let sn = x1 + · · · + xn be a one-dimensional measure-
theoretic martingale w.r.t. a filtration {Fn} with uniformly bounded differences ‖xn‖ ≤ 1,
a.e. Let Vn = x2

1+· · ·+x2
n. Then with probability one the sequence ‖sn‖/

√
max(0, Vn log Vn),

n = 1, 2, . . . , is bounded. See Proposition 2.1 below. Note that in this statement no as-
sumption is made on the growth rate of Vn. The rate itself may be random.

From more practical viewpoint, our sequential betting strategy is very simple to imple-
ment even for high dimensions and shows a very competitive performance when applied
to various price processes. In Section 6 we compare the performance of our strategy with
the well-known universal portfolio strategy developed by Thomas Cover and collaborators
([3, 4, 5, 6]). The performance of our sequential betting strategy is competitive against
the universal portfolio. Note that the numerical integration needed for implementing
universal portfolio is computationally heavy for high dimensions.

When we can bet on a large number of price processes, it is not always best to form
a portfolio comprising all price processes, because estimating the best weight vector for
the price processes might take a long time. By approximating the capital process of our
sequential optimizing strategy, we will introduce an information criterion for selecting
price processes in a portfolio.

The organization of this paper is as follows. In Section 2 we formulate the multi-
dimensional bounded forecasting game, introduce our sequential optimizing strategy and
state our main theoretical result. In Section 3 we give a proof of our result by analyzing
asymptotic behavior of its capital process. We also introduce an information criterion for
selecting efficient betting items. These results are then applied to multiple asset trading
games in Section 4. In Section 4 we formulate the multiple asset trading game in con-
tinuous time and based on high-frequency limit order type betting strategies we present
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a measure for the jaggedness of a path of a vector-valued continuous process. In Section
5, as indicating the generality of our results, we provide a multiple type of Girsanov’s
theorem for geometric Brownian motion and an argument concerning the mutual infor-
mation quantity between betting games. In Section 6 we give numerical results for several
Japanese stock price processes. We conclude the paper with some remarks in Section 7.

2 A sequential optimizing strategy and its implica-

tion to strong law of large numbers

We treat the following type of discrete time bounded forecasting game between Skeptic
and Reality. K0 is the initial capital of Skeptic, D is a compact region in Rd such that
its convex hull co D contains the origin in its interior, and · denotes the standard inner
product of Rd.

Discrete Time Bounded Forecasting Game
Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Skeptic announces Mn ∈ Rd.
Reality announces xn ∈ D.
Kn = Kn−1 + Mn · xn.

END FOR

In this paper we regard d-dimensional vectors such as xn = (x1
n, . . . , xd

n)t as column
vectors with t denoting the transpose. ‖x‖ =

√
xtx =

√
x · x denotes the Euclidean norm

of x. Letting αn = Mn/Kn−1, we can rewrite Skeptic’s capital as Kn = Kn−1(1 + αn ·
xn), αn ∈ Rd. In the protocol, we require that Skeptic observes his collateral duty, in the
sense that Kn ≥ 0 for all n irrespective of Reality’s moves x1, x2, . . . .

For constructing a strategy of Skeptic, consider that Skeptic himself generates ‘training
data’ {x−n0+1, x−n0+2, . . . , x0} of size n0 ≥ d+1. This operation is similar to a construction
of a prior distribution in Bayesian statistics, where a prior distribution can be specified
by a set of prior observations. Throughout this paper we fix an arbitrarily ε0 ∈ (0, 1) and
choose the training data {x−n0+1, . . . , x0} in such a way that

1 + α · xn ≥ 0, n = −n0 + 1, . . . , 0, ⇒ 1 + α · x ≥ ε0, ∀x ∈ D. (1)

Let P d
n0,ε0

= {α | 1 + α · xn ≥ 0, n = −n0 + 1, . . . , 0}. Then (1) is equivalent to

P d
n0,ε0

⊂ −(1 − ε0)(co D)⊥,

where (co D)⊥ denotes the convex dual of co D. For example, for d = 1 and D = [−1, 1],
we can take x−1 = 1/(1 − ε0) and x0 = −1/(1 − ε0). Then α has to satisfy |α| ≤ 1 − ε0
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and the right-hand side of (1) holds. For general D ⊂ Rd let δ̄ = maxx∈D ‖x‖ and let
c = δ̄

√
d/(1 − ε0). Then we can take n0 = 2d training vectors as

(0, . . . , 0,±c, 0, . . . , 0)t,

where c is in the i-th coordinate (1 ≤ i ≤ d). Then each element αi, 1 ≤ i ≤ d, of
α = (α1, . . . , αd)t has to satisfy |αi| ≤ 1/c and ‖α‖ ≤ (1 − ε0)/δ̄. Hence the right-hand
side of (1) holds by Cauchy-Schwarz inequality. It should also be noted that (1) implies
that the training vectors span the whole Rd.

The strategy with a constant vector αn ≡ α ∈ Rd is called a constant proportional
betting strategy. For N ≥ 0 we define

Φ0,N(α) =
N∑

n=−n0+1

log(1 + α · xn), (2)

which is the log capital at round N under the constant proportional betting strategy,
including the training data. We add ‘0’ to the subscript to indicate that the training data
are included in a summation. Since the game starts at time 1, actually the log capital of
the constant proportional betting strategy is Φ0,N(α) − Φ0,0(α) =

∑N
n=1 log(1 + α · xn).

Let us consider the maximization of Φ0,N(α) with respect to α ∈ Rd. The maximum
corresponds to the log capital at time N of a ‘hindsight’ constant proportional betting
strategy. Note that Φ0,N(α) is a strictly concave function of α. The condition (1) ensures
that the maximum of Φ0,N(α) is attained at the unique point α = α∗

N in the interior of
P d

n0,ε0
so that

∂Φ0,N

∂α

∣∣∣
α=α∗

N

=
N∑

n=−n0+1

xn

1 + α∗
N · xn

= 0. (3)

From numerical viewpoint we note that the numerical maximization of Φ0,N(α) is straight-
forward even in high dimensions.

We now define sequential optimizing strategy (SOS) of Skeptic, which is a realizable
strategy unlike the hindsight strategy. It is given by

αn = α∗
n−1, n ≥ 1. (4)

The idea of SOS is very simple. We employ the empirically best constant proportion until
the previous round for betting at the current round. Note that SOS depends on the choice
of the training data. Skeptic’s log capital logK∗

1,N at round N under SOS is written as

logK∗
1,N =

N∑
n=1

log(1 + α∗
n−1 · xn).

Let ξ = x1x2 · · · ∈ D∞ denote a path, which is an infinite sequence of Reality’s moves.
The set Ω = D∞ of paths is called the sample space and any subset E of Ω is called an
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event. ξn = x1 . . . xn denotes a partial path of Reality until the round n. A strategy P
specifies αn in terms of ξn−1, i.e. αn = P(ξn−1). The capital process under P is given as
KP

1,N =
∏N

n=1(1+P(ξn−1) ·xn). P is called prudent, if Skeptic observes his collateral duty
by P , i.e. KP

1,N ≥ 0, ∀N ≥ 0, irrespective of Reality’s moves x1, x2, . . . . In this paper
we only consider prudent strategies of Skeptic. We say that Skeptic can weakly force an
event E ⊂ Ω by a strategy P if lim supN KP

1,N = ∞ for every ξ 6∈ E. As in Section 1 we
write

sN = x1 + · · · + xN ∈ Rd, VN = x1x
t
1 + · · · + xNxt

N (: d × d). (5)

Then tr VN =
∑N

n=1 ‖xn‖2. We are now ready to state our main theorem.

Theorem 2.1. By the sequential optimizing strategy Skeptic can weakly force

E : lim sup
N

‖sN‖√
max(1, tr VN log(tr VN))

< ∞. (6)

The maximum in the denominator is needed only for the case that supN tr VN ≤ 1,
such as 0 ∈ D and Reality always chooses xn ≡ 0. It is important to emphasize that
E in (6) is weakly forced irrespective of the rate of growth of tr VN , including the zero-
growth case, i.e. the case that tr VN converges to a finite value. A measure-theoretic
interpretation of our result shows the flexibility of our result. When xn’s are measure-
theoretic martingale differences, then the capital process under SOS is a non-negative
measure-theoretic martingale, which converges to a finite value almost surely. Therefore
as in Chapter 8 of [10] we have the following proposition. We use the same notation as
above.

Proposition 2.1. Let sn = x1 + · · ·+xn be a d-dimensional measure-theoretic martingale
w.r.t. a filtration {Fn}. Assume that the differences xn ∈ D are uniformly bounded a.e..
Then with probability one the sequence ‖sn‖/

√
max(1, tr Vn log(tr Vn)), n = 1, 2, . . . , is

bounded.

Let λmax,N and λmin,N denote the maximum and the minimum eigenvalues of VN .
Consider the event

E ′ : lim
N

log λmax,N

λmin,N

= 0. (7)

Theorem 2.1 gives only the order of sN . If we condition the paths on the event E ′, then
we can derive a more accurate numerical bound as follows.

Theorem 2.2. By the sequential optimizing strategy Skeptic can weakly force

E ′ ⇒ lim sup
N

st
NV −1

N sN

log |VN |
≤ 1.

This theorem follows from the fact that on E ′ Skeptic can weakly force α∗
N → 0, as

shown in the proof of this theorem in Section 3.4.
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Note that λmin,N → ∞ on E ′. Note also that E in (6) holds if and only if lim supN ‖sN‖/√
max(1, λmax,N log λmax,N) < ∞, because λmax,N ≤ tr VN ≤ dλmax,N . Hence on E ′ we

have

1 ≥ lim sup
N

st
NV −1

N sN

log |VN |
≥ lim sup

N

‖sN‖2

dλmax,N log λmax,N

.

Therefore, although we only have a conditional statement in Theorem 2.2, it gives a more
accurate numerical bound than Theorem 2.1.

3 Proof of the theorem and some other results on

sequential optimizing strategy

In this section we provide proofs of the above theorems and present other results on
the sequential optimizing strategy. For readability, we divide the section into several
subsections.

3.1 Properties of α∗
N and the empirical risk neutral distribution

Let δx denote a unit point mass at x ∈ Rd and let gN =
∑N

n=−n0+1 δxn/(N + n0) denote
the empirical distribution of the training data and Reality’s moves x1, . . . , xN up to round
N . In view of (3) we define the empirical risk neutral distribution g∗

N up to round N by

g∗
N =

1

N + n0

N∑
n=−n0+1

δxn

1 + α∗
N · xn

.

For notational simplicity we omit ‘0’ from the subscript of gN and g∗
N , although they

involve the training data. g∗
N is indeed a probability measure, because by (3) we have

∑
xn

gN({xn}) =
1

N + n0

N∑
n=−n0+1

1

1 + α∗
N · xn

=
1

N + n0

N∑
n=−n0+1

1 + α∗
N · xn

1 + α∗
N · xn

= 1,

where the summation on the left-hand side is over distinct values of xn, n = −n0+1, . . . , N .
By Eg∗N

[·] we denote the expected value under g∗
N . Then (3) is written as Eg∗N

[x] = 0.
The log capital log K̄∗

0,N = Φ0,N(α∗
N) of the constant hindsight strategy α∗

N up to round
N including the training data is expressed as

log K̄∗
0,N = Φ0,N(α∗

N) = (N + n0)
∑
xn

gN({xn}) log
gN({xn})
g∗

N({xn})
= (N + n0)D(gN‖g∗

N), (8)

where D(gN‖g∗
N) denotes the Kullback-Leibler divergence between two probability distri-

butions gN and g∗
N .
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Now note that log(1+α∗
n−1 ·xn) = Φn(α∗

n−1)−Φn−1(α
∗
n−1). By summation by parts, the

difference log K̄∗
0,N − logK∗

1,N between the hindsight strategy and SOS can be expressed
as

log K̄∗
0,N − logK∗

1,N =
N∑

n=1

∆Φn + Φ0,0(α
∗
0), (9)

where ∆Φn = Φn(α∗
n) − Φn(α∗

n−1) ≥ 0 and Φ0,0(α
∗
0) is a constant depending only on the

training data. We will analyze the behavior the log capital logK∗
1,N of SOS by analyzing

log K̄∗
0,N and

∑N
n=0 ∆Φn.

We call

V̄ ∗
N =

1

N + n0

V ∗
0,N = Eg∗N

[xxt] =
1

N + n0

N∑
n=−n0+1

xnxt
n

1 + α∗
N · xn

the empirical risk neutral covariance matrix for Reality’s moves up to round N . Write

s0,N =
N∑

n=−n0+1

xn, x̄0,N =
1

N + n0

s0,N .

Noting gN({xn}) = (1 + α∗
N · xn)g∗

N({xn}), we have

x̄0,N = EgN
[x] = Eg∗N

[(1 + α∗
N · x)x] = Eg∗N

[x] + Eg∗N
[xxt]α∗

N = Eg∗N
[xxt]α∗

N .

Therefore α∗
N is expressed as

α∗
N = V̄ ∗−1

N x̄0,N = V ∗−1
0,N s0,N . (10)

Since V̄ ∗
N itself contains α∗

N , (10) does not give an explicit expression of α∗
N . However it

is a very useful exact relation for our analysis.
We now consider ∆α∗

n = α∗
n − α∗

n−1. In the following we use the notation

xn(α) =
xn

1 + α · xn

.

Taking the difference of the following two equalities

0 =
n∑

i=−n0+1

xi(α
∗
n), 0 =

n−1∑
i=−n0+1

xi(α
∗
n−1)

we obtain

0 =
n−1∑

i=−n0+1

xi

(α∗
n−1 − α∗

n) · xi

(1 + α∗
n−1 · xi)(1 + α∗

n · xi)
+ xn(α∗

n).
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Therefore ( n−1∑
i=−n0+1

xix
t
i

(1 + α∗
n−1 · xi)(1 + α∗

n · xi)

)
(α∗

n − α∗
n−1) = xn(α∗

n).

Note that the denominator on the left-hand side is a scalar and the matrix on the left-hand
side is positive definite. Then

∆α∗
n = V0,n−1(α

∗
n−1, α

∗
n)−1xn(α∗

n), (11)

where V0,n−1(α, β) =
∑n−1

i=−n0+1 xi(α)xi(β)t.
Concerning the behavior of ∆α∗

n we state the following lemma, which will be used in
Section 3.4.

Lemma 3.1. limn ∆α∗
n = 0 for every ξ ∈ D∞.

We give a proof of this lemma in Appendix.

3.2 Bounding the difference between the hindsight strategy and
SOS from above

We now give a detailed analysis of
∑N

n=1 ∆Φn on the right-hand side of (9) and bound it
from above. We note the following simple fact on ∆Φn:

∆Φn = Φn(α∗
n) − Φn(α∗

n−1) = Φn−1(α
∗
n) − Φn−1(α

∗
n−1) + log

1 + α∗
n · xn

1 + α∗
n−1 · xn

≤ log
1 + α∗

n · xn

1 + α∗
n−1 · xn

= log
(
1 +

∆α∗
n · xn

1 + α∗
n−1 · xn

)
, (12)

where the inequality holds since α∗
n−1 maximizes Φn−1(α). Substituting (11) into the

right-hand side we obtain

∆Φn ≤ log
(
1 + xn(α∗

n)tV0,n−1(α
∗
n−1, α

∗
n)−1xn(α∗

n−1)
)
. (13)

Note that we can also rewrite

1 + xn(α∗
n)tV0,n−1(α

∗
n−1, α

∗
n)−1xn(α∗

n−1) =
|V0,n(α∗

n−1, α
∗
n)|

|V0,n−1(α∗
n−1, α

∗
n)|

, (14)

where we used a well-known relation between determinants (e.g. Corollary A.3.1 of [1]).
Let

C1 = max
(

sup
α∈−(co D)⊥, x∈D

(1 + α · x), sup
−n0+1≤n≤0

α∈Pd
n0,ε0

(1 + α · xn)
)
, (15)

which is a constant depending only on the training data. The first argument C1,0 =
supα∈−(co D)⊥, x∈D(1 + α · x) on the right-hand side of (15) corresponds to the maximum
one-step growth rate of Skeptic’s capital under the collateral duty and C1,0 equals 2 if
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D is symmetric w.r.t. the origin. C1,0 may be large if D is highly asymmetric w.r.t. the
origin. For example, for d = 1 and D = [−0.1, 1], we have C1,0 = 11.

For two symmetric matrices A,B, let A ≥ B mean that A−B is non-negative definite.
Then

V0,n−1(α
∗
n−1, α

∗
n) ≥ 1

C2
1

V0,n−1,

where V0,n−1 = V0,n−1(0, 0) =
∑n

i=−n0+1 xix
t
i. Note that V0,n−1 is positive definite because

of the training data, although Vn−1 in (5) may be singular. Note also that 1+α∗
m ·xn ≥ ε0

for m, n ≥ 1. Therefore

xn(α∗
n)tV0,n−1(α

∗
n−1, α

∗
n)−1xn(α∗

n−1) ≤ C2x
t
nV

−1
0,n−1xn, C2 =

C2
1

ε2
0

.

Hence we can bound
N∑

n=1

∆Φn ≤
N∑

n=1

log(1 + C2x
t
nV −1

0,n−1xn).

Write an = xt
nV −1

0,n−1xn ≥ 0. Note that 1 + an = |V0,n|/|V0,n−1|. Also for c ≥ 1 and a ≥ 0
we have 1 + ac ≤ (1 + a)c and hence

log(1 + ac) ≤ c log(1 + a).

Therefore
N∑

n=1

log(1 + C2an) ≤ C2

N∑
n=1

log(1 + an) = C2 log
|V0,N |
|V0,0|

.

Now we have proved the following lemma.

Lemma 3.2. The difference
∑N

n=1 ∆Φn on the right-hand side of (9) is bounded from
above as

N∑
n=1

∆Φn ≤ C2(log |V0,N | − log |V0,0|).

Since |V0,N | involves the training data, for simplicity in our statement we further bound
it as follows. By the inequality between the geometric mean and arithmetic mean we have
|V0,N |1/d ≤ tr V0,N/d. Hence

log |V0,N | ≤ d log tr V0,N − d log d = d log(tr VN + tr V0,0) − d log d

≤ d log(tr VN + tr V0,0).

If tr VN ≤ 1, then log(tr VN + tr V0,0) ≤ log(1 + tr V0,0) ≤ tr V0,0. On the other hand if
tr VN > 1, then

log(tr VN + tr V0,0) = log tr VN + log(1 +
tr V0,0

tr VN

) ≤ log tr VN +
tr V0,0

tr VN

≤ log tr VN + tr V0,0.

Therefore for both cases log |V0,N | ≤ d max(0, log tr VN)+d tr V0,0. Let C3 = C2(d tr V0,0−
log |V0,0|). In summary we have the following bound.
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Lemma 3.3. The difference
∑N

n=1 ∆Φn on the right-hand side of (9) is bounded from
above as

N∑
n=1

∆Φn ≤ dC2 max(0, log tr VN) + C3, (16)

where C2, C3 depend only on the training data.

Note that (16) is true even for the case that limN tr VN < ∞. Note also that log tr VN

is of order O(log N) even for VN = O(Nγ), 0 < γ < 1. However for tr VN = log N we
have log tr VN = log log N .

3.3 Bounding the hindsight strategy from below

In this subsection we bound the hindsight strategy from below and thus finish the proof
of Theorem 2.1.

Consider the function (1 + t) log(1 + t), t > −1. By Taylor expansion we have

(1 + t) log(1 + t) = t +
1

2

t2

1 + θt
, 0 < θ < 1.

By the definition of C1 in (15) we have

(1 + α∗
N · xn) log(1 + α∗

N · xn) ≥ α∗
N · xn +

(α∗
N · xn)2

2C1

, ∀N ≥ 1, −n0 + 1 ≤ ∀n ≤ N,

and

Φ0,N(α∗
N) =

N∑
n=−n0+1

(1 + α∗
N · xn) log(1 + α∗

N · xn)
1

1 + α∗
N · xn

≥
N∑

n=−n0+1

α∗
N · xn

1 + α∗
N · xn

+
1

2C1

N∑
n=−n0+1

(α∗
N · xn)2

1 + α∗
N · xn

=
1

2C1

N∑
n=−n0+1

(α∗
N · xn)2

1 + α∗
N · xn

, (17)

where we have used the fact Eg∗N
[x] = 0. By (10) the summation on the right-hand side

can be written as

N∑
n=−n0+1

(α∗
N · xn)2

1 + α∗
N · xn

= α∗ t
N V ∗

0,Nα∗
N = α∗ t

N s0,N = st
0,NV ∗−1

0,N s0,N . (18)

In analyzing the behavior of (18) we need to be careful about the following fact:
1 + α∗

N · xn, n ≤ 0, may be arbitrarily close to zero for the training data x−n0+1, . . . , x0.

10



In particular we might have different behavior between eigenvalues of V ∗
0,N and and those

of VN . To assess the effect of training data let

AN =
0∑

n=−n0+1

1

1 + α∗
N · xn

and define the following event

E1 : lim sup
N

AN

max(0, log tr VN)
< ∞.

Again max is needed only for the case that tr VN ≤ 1 for all N . We now show that Skeptic
can weakly force E1. Fix an arbitrary ξ ∈ Ec

1, where Ec
1 denotes the complement of E1.

Then lim supN AN/ max(0, log tr VN) = ∞ and hence there exists some n1 ≤ 0 such that

lim sup
N

1/(1 + α∗
N · xn1)

max(0, log tr VN)
= ∞.

Then there exits a subsequence of rounds N1 < N2 < · · · such that

lim
k

1/(1 + α∗
Nk

· xn1)

max(0, log tr VNk
)

= ∞.

Because α∗
Nk

· xn1 → −1 we have

lim sup
N

(α∗
N ·xn1 )2

1+α∗
N ·xn1

max(0, log tr VN)
= ∞.

If we compare this with the left-hand side of (18), we see that a single term xn1 of the
training data contributes arbitrary large gain to Skeptic in comparison to the right-hand
side of (16). This implies that lim supN logK∗

1,N = ∞. We have proved that by SOS
Skeptic can weakly force E1. Therefore from now we only consider ξ ∈ E1.

At this point we distinguish two cases 1) E2 : limN tr VN < ∞ or 2) Ec
2 : limN tr VN =

∞. Consider the first case and fix an arbitrary ξ ∈ E2 ∩ E1. For such a ξ there exists
δ(ξ) > 0 such that lim infN(1 + α∗

N · xn) ≥ δ(ξ) for all n < 0. Then

V ∗
0,N ≤ 1

max(ε0, δ(ξ))

N∑
n=−n0+1

xnxt
n

and hence the maximum eigenvalue λmax,0,N of V ∗
0,N is bounded. Then

st
0,NV ∗−1

0,N s0,N ≥ ‖s0,N‖2

λmax,0,N

and lim supN logK∗
1,N = ∞ if lim supN ‖s0,N‖2 = ∞. Noting that lim supN ‖s0,N‖2 = ∞

if and only if lim supN ‖sN‖2 = ∞, we have shown that by SOS skeptic can weakly force

lim
N

tr VN < ∞ ⇒ lim sup
N

‖sN‖2 < ∞.

11



Now consider the second case Ec
2 ∩ E1. On Ec

2 ∩ E1

lim
N

log tr VN

tr VN

= 0

always holds. Also on Ec
2 ∩ E1

lim sup
N

tr V0,0(α
∗
N)

log tr VN

< ∞ where V0,0(α
∗
N) =

0∑
n=−n0+1

xnxt
n

1 + α∗
N · xn

.

Therefore on Ec
2 ∩ E1

lim
N

tr V0,0(α
∗
N)

tr VN

= 0.

Also

tr(V ∗
0,N − V0,0(α

∗
N)) ≤ 1

ε0

tr VN ,

and hence on Ec
2 ∩ E1

lim sup
N

tr V ∗
0,N

tr VN

= lim sup
N

tr V0,0(α
∗
N) + tr(V ∗

0,N − V0,0(α
∗
N))

tr VN

≤ 1

ε0

.

Now on the right-hand side of (18), for every ξ ∈ Ec
2 ∩ E1 there exists N0 = N0(ξ)

such that for all n ≥ N0

Φ0,N(α∗
N) ≥ 1

2C1

‖s0,N‖2

tr V ∗
0,N

≥ ε0

4C1

‖s0,N‖2

tr VN

.

Hence if for this ξ

lim sup
N

‖s0,N‖2

tr VN log tr VN

= ∞

then lim sup logK∗
1,N = ∞ in view of Lemma 3.3. However on Ec

2 the following two events
are equivalent:

lim sup
N

‖s0,N‖2

tr VN log tr VN

= ∞ ⇔ lim sup
N

‖sN‖2

tr VN log tr VN

= ∞.

This completes the proof of Theorem 2.1.

3.4 Better approximation to the capital process of SOS

Note that (13) is convenient because it gives an upper bound which always holds. However
bounding by Φn(α∗

n)−Φn(α∗
n−1) ≤ 0 in (12) is not very accurate. By expanding Φn(α∗

n−1)
at α = α∗

n and by noting ∂Φn(α∗
n) = 0, we have

∆Φn =
1

2
∆α∗t

n In(ᾱ∗
n)∆α∗

n, ᾱ∗
n = θα∗

n−1 + (1 − θ)α∗
n, 0 < θ < 1, (19)

12



where In(α) = V0,n(α, α) is a d × d positive-definite matrix given by

In(α) = −∂∂tΦn(α) =
n∑

i=−n0+1

xi(α)xi(α)t.

Comparing (19) with the right-hand side of (12), we see that the upper bound in (12) is
about twice the actual value of ∆Φn. Now by Lemma 3.1 and (14), we can approximate
∆Φn as

∆Φn ∼ 1

2
log

|In(α∗
n)|

|In−1(α∗
n)|

.

Then accumulated these sum is approximated as

N∑
n=1

∆Φn ∼ 1

2

N∑
n=1

log
|In(α∗

n)|
|In−1(α∗

n)|
=

1

2
log [IN ], [IN ] =

N∏
n=1

|In(α∗
n)|

|In−1(α∗
n)|

. (20)

Hence from (8), (9) and (20) we obtain

logK∗
1,N = log K̄∗

N −
N∑

n=1

∆Φn − Φ0,0(α
∗
0) ∼ ND(gN‖g∗

N) − 1

2
log [IN ].

The above result is summarized in the following theorem.

Theorem 3.1. The log capital of the sequential optimizing strategy logK∗
1,N is approxi-

mated as

logK∗
1,N ∼ ND(gN‖g∗

N) − 1

2
log [IN ], [IN ] =

N∏
n=1

|In(α∗
n)|

|In−1(α∗
n)|

. (21)

Here we note that the quantity |In(α∗
n)| also appeared in the evaluation of Cover’s

universal portfolio [3] in the name of sensitivity (curvature, volatility) index. Differently
from the form [IN ] in SOS, only the last term |IN(α∗

N)| enters in the sensitivity index.
This difference reflects the fact that SOS depends on the intermediate moves of Reality’s
path ξN = x1 · · · xN , whereas the universal portfolio is independent of them.

We found that the approximation (21) is extremely accurate in practice (cf. Section
6). Thus we propose to use this approximation as an information criterion for selecting
betting items. Let us denote the betting game with d items by Game(d), and suppose
that there is a sequence of nested betting games such that

Game(1) ⊂ Game(2) ⊂ · · · ⊂ Game(d̄).

We also write the main terms of (21) in Game(d) as

logK∗
1,N(d) ∼ NDd(gN‖g∗

N) − 1

2
log [IN ]d.

13



As functions of d, Dd(gN‖g∗
N) increases monotonically and log [IN ]d is also expected to

increase monotonically (cf. Section 6). Hence due to the trade-off between Dd(gN‖g∗
N)

and log [IN ]d with respect to d, we can expect that max1≤d≤d̄ logK∗
1,N(d) provides the

optimal number d∗ of betting items. Including this subject, we will examine the obtained
results by numerical examples in Section 6.

Finally we give a brief proof of Theorem 2.2. The point of the proof is to show that
α∗

N → 0 on E ′.

Proof of Theorem 2.2. E ′ in (7) holds only if λmin,N → ∞. Then by (17) and (18) we
have

Φ0,N(α∗
N) ≥ 1

C2
1

‖α∗
N‖2λmin,N .

Note that log |VN | ≤ d log λmax,N . Therefore if lim sup ‖α∗
N‖ > 0 then lim supN K∗

1,N = ∞.
This shows that conditional on E ′ Skeptic can weakly force the event α∗

N → 0.
However when α∗

N → 0, for all sufficiently large N we can approximate

Φ(α∗
N) ∼ 1

2
st

NV −1
N sN ,

N∑
n=1

∆Φn ∼ 1

2
log |VN |.

Since log |VN | → ∞ on E ′, if lim supN st
NV −1

N sN/ log |VN | > 1 then lim supN log K∗
1,N = ∞.

Therefore conditional on E ′, by SOS Skeptic can weakly force lim supN st
NV −1

N sN/ log |VN | ≤
1.

4 High frequency limit order SOS in multiple asset

trading games in continuous time

In this section we generalize the results of [12] to the multi-dimensional case and apply
SOS as a high-frequency limit order type investing strategy to multiple asset trading games
in continuous time. We follow the notation and the definitions in [12]. For simplicity of
statements we make convenient assumptions and only present salient aspects of SOS.

Let Ωd denote the set of d-dimensional (component-wise) positive continuous functions
on [0,∞). Market (Reality) chooses an element S(·) ∈ Ωd. Investor (Skeptic) enters the
market at time t = t0 = 0 with the initial capital of K(0) = 1 and he will buy or sell any
amount of the assets S(t) = (S1(t), . . . , Sd(t))t at discrete time points 0 = t0 < t1 < t2 <
· · · , provided that his capital always remains non-negative. His repeated tradings up to
time ti determine Mi = (M1

i , . . . ,Md
i )t ∈ Rd, where M j

i denotes the amount of the asset
Sj(t) he holds for the time interval [ti, ti+1). Let K(t) denote the capital of Investor at
time t, which is written as

K(t) = K(ti) + Mi · (S(t) − S(ti)) for ti ≤ t < ti+1, (22)

with K(0) = 1. By defining

αi = (α1
i , . . . , α

d
i )

t, αj
i =

M j
i S

j(ti)

K(ti)
,
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we rewrite (22) as

K(t) = K(ti)

(
1 + αi ·

S(t) − S(ti)

S(ti)

)
for ti ≤ t < ti+1

in terms of the returns of the assets given by

S(t) − S(ti)

S(ti)
=

(
S1(t) − S1(ti)

S1(ti)
, . . . ,

Sd(t) − Sd(ti)

Sd(ti)

)t

.

Investor takes some constant δ > 0 and decides the trading times t1, t2, . . . by the
“limit order” type strategy as follows. After ti is determined, let ti+1 be the first time
after ti when ∥∥∥∥S(ti+1) − S(ti)

S(ti)

∥∥∥∥ = δ (23)

happens. This process leads to a discrete time bounded forecasting game embedded into
the asset trading game in the following manner. Let

xn = (x1
n, . . . , x

d
n)t ∈ Cδ, xj

n =
Sj(tn+1) − Sj(tn)

Sj(tn)
,

where Cδ denotes the sphere of radius δ in Rd given by (23), and also write Kn = K(tn+1).
Then we have the protocol of an embedded discrete time bounded forecasting game.

Embedded Discrete Time Bounded Forecasting Game
Protocol:

K0 := 1, δ > 0.
FOR n = 1, 2, . . . :

Investor announces αn ∈ Rd.
Market announces xn ∈ Cδ.
Kn = Kn−1(1 + αn · xn).

END FOR

We now fix T > 0, and Investor trades in the time interval [0, T ] by SOS in (4). For
A > 0 let

EA,0,T = {S ∈ Ωd | | log Sj(x) − log Sj(y)| ≤ A, ∃j ∈ {1, . . . , d}, 0 ≤ ∀x < ∀y ≤ T}.

Market is assumed to choose S(·) ∈ Ec
A,0,T , which means that all d items are active in

some time interval in [0, T ]. We define N = N(T, δ, S(·)) by tN < T ≤ tN+1. Note that
by taking δ sufficiently small,

N(T, δ, S(·)) ≥ A

δ

15



for every S(·) ∈ Ec
A,0,T , so that N → ∞ as δ → 0. Investor’s capital Kδ(T ) at t = T is

written as

Kδ(T ) = K∗
1,N

(
1 + α∗

N−1 ·
S(T ) − S(tN)

S(tN)

)
.

Since
∥∥∥S(T )−S(tN )

S(tN )

∥∥∥ ≤ δ, we have from (21)

logKδ(T ) = logK∗
1,N + O(1) ∼ ND(gN‖g∗

N) − 1

2
log [IN ]. (24)

The strategy (10) is written as α∗
N = α∗

N(T, δ, S(·)) = V ∗−1
0,N s0,N . We now assume (cf.

Theorem 2.2) that δα∗
N → 0 as δ → 0, i.e., Market chooses a path S(·) ∈ E ′

T , where

E ′
T = {S(·) ∈ Ωd | lim

δ→0
δα∗

N(T, δ, S(·)) = 0}.

Then

α∗
N =

( N∑
n=−n0+1

xnxt
n

)−1
N∑

n=−n0+1

xn (1 + O(δ)) = V −1
0,N

(
L(T ) +

1

2
v0,N

)
(1 + O(δ)),

where

V0,N =
N∑

n=−n0+1

xnxt
n, v0,N =

( N∑
n=−n0+1

(x1
n)2, . . . ,

N∑
n=−n0+1

(xd
n)2

)t

,

L(T ) = log S(T ) − log S(0).

We consider the first term ND(gN‖g∗
N) in (24). As was indicated by (18),

ND(gN‖g∗
N) =

1

2
α∗t

NV ∗
0,Nα∗

N(1 + O(δ)) =
1

2
α∗t

NV0,Nα∗
N(1 + O(δ))

=
1

2

[
L(T )tV −1

0,NL(T ) +
1

2

(
L(T )tV −1

0,Nv0,N + vt
0,NV −1

0,NL(T )
)

+
1

4
vt

0,NV −1
0,Nv0,N

]
(1 + O(δ)). (25)

The middle term is dominated by the first term and the third term by Cauchy-Schwarz:

|L(T )tV −1
0,Nv0,N + vt

0,NV −1
0,NL(T )| ≤ 2

√
L(T )tV −1

0,NL(T )
√

vt
0,NV −1

0,Nv0,N .

Thus we consider the behavior of the first term and the third term. Because Cδ is the
sphere of radius δ we have

trVN = trDN = Nδ2,

where

VN =
N∑

n=1

xnx
t
n, DN = diag

( N∑
n=1

(x1
n)2, . . . ,

N∑
n=1

(xd
n)2

)
.
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Also the training data are of order δ. Hence trV0,N − trVN = trD0,N − trDN = O(δ2).
Let us decompose V0,N and v0,N as

V0,N = D
1/2
0,NR0,ND

1/2
0,N , v0,N = D0,N1d, 1d = (1, . . . , 1)t,

D0,N = diag
( N∑

n=−n0+1

(x1
n)2, . . . ,

N∑
n=−n0+1

(xd
n)2

)
,

where R0,N is the correlation matrix in {x1
n, . . . , x

d
n}, n = −n0 + 1, . . . , N . Then

vt
0,NV −1

0,Nv0,N = 1t
dD

1/2
0,NR−1

0,ND
1/2
0,N1d ≥ 1

d
trD0,N ,

because the maximum eigenvalue of R0,N is less than or equal to d.
Suppose that the Hölder exponent of S(·) is 0 < H < 1 in the sense that

S(·) ∈ EH,T = {S(·) | 0 < lim inf
δ→0

trVN

δ(2− 1
H

)
≤ lim sup

δ→0

trVN

δ(2− 1
H

)
< ∞}.

By combining the arguments so far, if S(·) ∈ Ec
A,0,T ∩ E ′

T ∩ EH,T then the following
implications hold:

H > 0.5 ⇒ trDN → 0 ⇒ L(T )tV −1
0,NL(T ) → ∞,

H < 0.5 ⇒ trDN → ∞ ⇒ vt
0,NV −1

0,Nv0,N → ∞.

Also it is easily shown that the second term 1
2
log[IN ] in (24) is of smaller order than

ND(gN‖g∗
N). We summarize our result as a theorem, which is a multi-dimensional gen-

eralization of Theorem 3.1 in [12].

Theorem 4.1. By a high frequency (δ → 0) limit order type sequential optimizing strategy
in multiple asset trading games in continuous time, Investor can essentially force H = 0.5
for S(·) ∈ Ec

A,0,T in the sense

S(·) ∈ Ec
A,0,T ∩ E ′

T ∩ EH,T and H 6= 0.5 ⇒ Kδ(T ) → ∞ as δ → 0.

5 Generality of high frequency limit order SOS

In this section we show a generality of the high-frequency limit order SOS developed in the
previous section, which implies that when the asset price S(t) follows the vector-valued
geometric Brownian motion, our strategy automatically incorporates the well-known con-
stant proportional betting strategy originated with Kelly ([7]) and yields the likelihood
ratio in the Girsanov’s theorem for geometric Brownian motion. The convergence results
in this section are of measure-theoretic almost everywhere convergence.
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When S(t) is subject to the d-dimensional geometric Brownian motion with drift vector
µ and non-singular volatility matrix σ,

L(T ) =

(
µ − 1

2
σ2

)
T + σW (T ),

where W (·) denotes the d-dimensional standard Brownian motion, and σ2 denotes the
d-dimensional vector with the diagonal elements of σσt. In this section we let T → ∞
and also let δ = δT → 0 in such a way that | log δT | = o(

√
T ). We have

V0,N = (σσt)T (1 + O(δT )),

and hence we can evaluate

α∗
N =

[
(σσt)−1µ +

(σ−1)tW (T )

T

]
(1 + O(δT )). (26)

The first term in the right-hand side of (26) is the constant vector, which is derived also
from the so-called Kelly criterion of maximizing E[logK(T )].

Next consider ND(gN‖g∗
N) in (24), which was also indicated by (25),

ND(gN‖g∗
N) =

1

2
α∗t

NV0,Nα∗
N(1 + O(δT ))

=
[T

2
µt(σσt)−1µ +

1

2

(
(σ−1µ)tW (T ) + W (T )t(σ−1µ)

)]
(1 + O(δT )).

The log capital (24) is then expressed as

logKδT
(T ) =

[1

2

(
(σ−1µ)tW (T ) + W (T )t(σ−1µ)

)
+

T

2
µt(σσt)−1µ

− 1

2
log T + log δT

]
(1 + O(δT )) + O(1).

Hence the main terms on the right-hand side

− logK(T ) = −1

2

(
(σ−1µ)tW (T ) + W (T )t(σ−1µ)

)
− T

2
µt(σσt)−1µ + o(

√
T )

provide the likelihood ratio of the unique martingale measure known as the Girsanov’s
theorem in multiple assets case, and we obtain

lim
T→∞

logK(T )

T
=

1

2
µt(σσt)−1µ. (27)

Finally we discuss mutual information quantities among subgames of the multi-dimensional
bounded forecasting game. Let us denote the quadratic form in the right-hand side of
(27) by

Q(S) = Q(S1, . . . , Sd) =
1

2
µt(σσt)−1µ, (28)
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which designates the optimal exponential growth rate of Investor’s capital process with d
joint betting items S = (S1, . . . , Sd). We partition S into the following form

S[1] = (Sj1 , . . . , Sjk1 ), S[2] = (Sjk1+1 , . . . , Sjk2 ), . . . , S[m] = (Sjkm−1+1 , . . . , Sjkm ),

and assume that Investor is allowed to trade the above m groups of joint sub-betting
items successively during the one period of the d joint trading. Then the corresponding
optimal exponential growth rate of Investor’s capital process becomes

Q(S[1]) + Q(S[2]) + · · · + Q(S[m]). (29)

Note that among (28) and (29) for all possible partitions there is no general dominance
relations and this argument leads to the notion of mutual information quantity between
betting games, which will be treated in a forthcoming paper.

6 Numerical examples

In this section we give some numerical examples on the stock price data from the Tokyo
Stock Exchange. The data are daily closing prices from January 4th in 2000 to March
31st in 2006 for several Japanese companies listed on the first section of the TSE. There
are T = 1536 daily closing prices.

From this data we construct the bounded forecasting game in the following manner.
At first the daily returns sj

t = (Sj
t+1 − Sj

t )/S
j
t , t = 1, . . . , T − 1, j = 1, . . . , d of d items

are transformed to [−1, 1] by

zj
t =

2sj
t − s̄j

t − sj
t

s̄j
t − sj

t

∈ [−1, 1], s̄j
t = max

1≤t≤T−1
sj

t , sj
t = min

1≤t≤T−1
sj

t .

Next 2d training data z̃t = (±1, . . . ,±1)t, t = 1, . . . 2d, and a forecasting time F = cT, 0 <
c < 1 are prepared, and forecasting value for the j-th component is

ρj =
1

2d + F

( 2d∑
t=1

z̃j
t +

F∑
t=1

zj
t

)
, j = 1, . . . , d.

Then the bounded variables xn = (x1
n, . . . , xd

n)t in the protocol are introduced as

xj
n =

{
z̃j

n − ρj, 1 ≤ n ≤ 2d

zj
n−2d+F

− ρj, 2d < n ≤ N = 2d + T − 1 − F.

Figures 1-5 and Figures 6-10 exhibit the cases of three items Takeda, Toyota, Kirin
with F = 0.17T and F = 0.25T , respectively. The notations in the figures are as follows
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and their final values at the end of round N are indicated in the figures.

K0
n = K̄∗

n = exp(nD(gn‖g∗
n)), K1

n = K∗
n, K2

n =
K̄∗

n√
[In]

,

LK0
n = log K̄∗

n = nD(gn‖g∗
n), LK1

n = logK∗
n, LK2

n = nD(gn‖g∗
n) − 1

2
log [In],

LD1
n = log K̄∗

n − logK∗
n, LD2

n =
1

2
log [In], LD3

n =
3

2
log n,

GRn = D(gn‖g∗
n), QRn =

1

2
x̄t

nV̄
∗−1
n x̄n, DRn =

log [In]

2n
.

As suggested in Section 3.4, K1
n and K2

n, LK1
n and LK2

n, LD1
n and LD2

n are almost
overlapped in the figures. We can also see that the actual log deficiency LD1

n or LD2
n is

far less than LD3 which is the typical log deficiency in the case of finite items such as
in the horse race game. Furthermore Figures 5,10 show that the deficiency rate process
DRn gives the precise convergence border rate for the growth rate process GRn or its
approximated quadratic rate process QRn.

Figures 11-16 illustrate the cases of composite games

Game(1) ⊂ Game(2) ⊂ Game(3) ⊂ Game(4) ⊂ Game(5)

with five items 1. Takeda, 2. Toyota, 3. Kirin, 4. Tepco, 5. NNK in this order. As expected
the following trade-off can be seen in the figures.

LK0
n : G(1) < G(2) < G(3) < G(4) < G(5) ,

LD2
n : G(1) < G(2) < G(3) < G(4) < G(5) ,

LK1
n : G(1) < G(5) < G(2) < G(4) < G(3) .

Hence the choice of the three items 1. Takeda, 2. Toyota, 3. Kirin is the most profitable
one in the above composite games.

Figures 17-20 compare the sequential optimizing strategy with the universal portfo-
lio for one item Takeda, Toyota, Kirin, an imaginary data, respectively. The universal
portfolio in its simplest form with one item can be performed in the following way.

Divide the closed interval A = {α ∈ R | 1+αx ≥ 0,∀x ∈ D} of prudent strategies into
disjoint subintervals A1, . . . , AM . Then for the m-th account Am with the initial capital
K(m)

0 = 1/M , Skeptic continues the game with constant betting ratio αm ∈ Am, m =

1, . . . ,M . His capital at the end of round n is expressed as KU
n =

∑M
m=1 K

(m)
n . The figures

are the cases with M = 100 and the notations are

KU0
n = KU

n without the training data {−1, 1},
KU1

n = KU
n with the training data {−1, 1}.

Figures 20-22 show the case of an imaginary data given by

x−1 = −1, x0 = 1, xn =
1

n + 1
, n = 1, . . . , 2000.
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In this case LK1
n ∼ a log n − c, 0 < a < 1, c > 0, which contrasts with the case of

coin-tossing game LK1
n ∼ nD(x̄n‖ρ) − 1

2
log n.

Figures 17-20 suggest that there is no general superiority between the sequential op-
timizing strategy and the universal portfolio.

7 Some discussions

In this paper we proposed a sequential optimizing strategy in multi-dimensional bounded
forecasting game and showed that it is a very flexible strategy. From a theoretical view-
point it allowed us to prove a generalized form of the strong law of large numbers. From
a practical viewpoint the strategy is easy to implement even in high dimensions and its
performance is competitive against universal portfolio.

Theoretical comparison of our strategy with universal portfolio needs more detailed
asymptotic investigation of the capital processes of these strategies. This is left to our
future research.

In Section 4 as a limit order type strategy we considered successive stopping times
defined by a sphere of radius δ for the vector of returns (cf. (23)), which is based on the
standard Euclidean norm in Rd. We note that other boundaries based on other norms
which are equivalent to the standard one provide the same result stated in Theorem 4.1.

Theorem 2.1 for the case of supN VN < ∞ does not provide a game-theoretic version of
Kolmogorov’s three series theorem. It only implies that SN , N = 1, 2, . . . , are bounded.
However we expect that a game-theoretic version of Kolmogorov’s three series theorem
can be established by appropriate modification of our strategy. This topic is also left to
our future research.

A A convergence lemma

Let u1, u2, . . . be a sequence of points in Rd. We assume that they are bounded: ‖un‖ ≤ 1,
∀n, and that u1, . . . , ud are linearly independent. Define

yn = (u1u
t
1 + u2u

t
2 + · · · + un−1u

t
n−1)

−1un ∈ Rd.

Then we have the following lemma. It is trivial for d = 1, but for d > 1 we need a careful
argument.

Lemma A.1.
yn → 0, (n → ∞).

Proof. We first show that yn is bounded. Let λmin,d > 0 denote the minimum eigenvalue
of u1u

t
1 + · · · + udu

t
d. Then all the eigenvalues of u1u

t
1 + · · · + unut

n, n ≥ d, are greater
then equal to λmin,d. Then all the eigenvalues of (u1u

t
1 + · · · + unut

n)−2 are less than or
equal to λ−2

min,d. Hence

‖yn‖2 ≤ λ−2
min,d‖un‖2 (30)
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Figure 1 : Closing prices of Takeda, Toyota,
Kirin F = 0.17T
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Figure 6 : Closing prices of Takeda, Toyota,
Kirin F = 0.25T
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and yn, n = 1, 2, . . . , are bounded.
Now we argue by contradiction. Suppose that yn, n = 1, 2, . . . , do not converge to

zero. Then there exists a subsequence nk, k = 1, 2, . . . such that ynk
→ a 6= 0, (k → ∞).

In view of (30), if unk
→ 0 then ynk

→ 0, which is a contradiction. Therefore unk
,

k = 1, 2, . . . , do not converge to 0. Then there exists a further subsequence {ñk} ⊂ {nk}
such that uñk

→ b 6= 0. Then yñk
→ a, uñk

→ b. Consider

(u1u
t
1 + · · · + uñk−1u

t
ñk−1)yñk

= uñk
.

Then
(u1u

t
1 + · · · + uñk−1u

t
ñk−1)yñk

→ b.

Multiplying by yt
ñk

from the left we have

yt
ñk

(u1u
t
1 + · · · + uñk−1u

t
ñk−1)yñk

= yt
ñk

uñk
→ atb.

Now the left-hand side is written as

(yt
ñk

u1)
2 + · · · + (yt

ñk
uñk−1)

2.

Note that for sufficiently large k, k′, (yt
ñk

uñk′ )
2 are all close to (bta)2. Since we have

infinitely many such terms, the left-hand side diverges to ∞ if bta 6= 0. This contradicts
the fact that the right-hand side converges to a finite value. Therefore bta = 0. But then

lim inf(yt
ñk

u1)
2 + · · · + (yt

ñk
uñk−1)

2 ≥ (yt
ñk

u1)
2 + · · · + (yt

ñk
ud)

2

→ (atu1)
2 + · · · + (atud)

2 > 0,

which is again a contradiction.

We also present the following corollary of the above lemma.

Corollary A.1. With the same notation and conditions as in Lemma 3.1

ỹn = (u1u
t
1 + u2u

t
2 + · · · + un−1u

t
n−1)

−1/2un → 0, (n → ∞).

This corollary follows easily from the fact that ‖ỹn‖2 = ut
nyn and un is bounded.

Based on the above corollary we give a proof of Lemma 3.1. Before going into the
proof, we summarize some facts on matrix inequalities. For a symmetric matrix A, let
A > 0 mean that A is positive definite. If A ≥ B > 0, then B−1 ≥ A−1 > 0 (Lemma 4.2
of [2]). Note that A ≥ B ≥ 0 does not imply A2 ≥ B2 (e.g. Chapter 1 of [17]), which
complicates our proof.

Proof of Lemma 3.1. By the definition of C1 in (15) we have

V0,n−1(α
∗
n−1, α

∗
n) ≥ 1

C2
1

V0,n−1(0, 0),
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where V0,n−1(0, 0) =
∑n

i=−n0+1 xix
t
i is positive definite because of the training data. Write

∆α∗
n = V0,n−1(α

∗
n−1, α

∗
n)−1/2V0,n−1(α

∗
n−1, α

∗
n)−1/2xn(α∗

n−1).

Then

‖∆α∗
n‖2 ≤

xn(α∗
n)tV0,n−1(α

∗
n−1, α

∗
n)−1xn(α∗

n)

λmin,0,n−1(α∗
n−1, α

∗
n)

,

where λmin,0,n−1(α
∗
n−1, α

∗
n) is the minimum eigenvalue of V0,n−1(α

∗
n−1, α

∗
n). Let λmin,0,0

denote the minimum eigenvalue of V0,0. Then λmin,0,n−1(α
∗
n−1, α

∗
n) ≥ λmin,0,0/C

2
1 for all

n ≥ 1 and

‖∆α∗
n‖2 ≤ C2

1

λmin,0,0

xn(α∗
n)tV0,n−1(α

∗
n−1, α

∗
n)−1xn(α∗

n).

For n ≥ 1, 1 + α∗
n · xn ≥ ε0. Hence

‖∆α∗
n‖2 ≤ C2

1

ε2
0λmin,0,0

xt
nV0,n−1(α

∗
n−1, α

∗
n)−1xn ≤ C4

1

ε2
0λmin,0,0

xt
nV0,n−1(0, 0)−1xn.

The right-hand side converges to 0 by Corollary A.1.
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