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Abstract

This is a survey on convergence theorems for the differential quo-
tient difference with shifts (dqds) algorithm, which is one of the most
efficient methods for computing matrix singular values. Emphasis is
laid on the relationship and comparison between the global convergence
theorem obtained recently by the present authors and Rutishauser’s
convergence theorem for the Cholesky LR method with shifts for the
positive-definite eigenvalue problem. Theorems on convergence rate of
the dqds algorithm with different shift strategies are also reviewed.

1 Introduction

Matrix singular values play important roles in many applications such as the
method of least squares, and accordingly numerical methods for computing
them are of great practical importance. The singular values of a matrix
A are equal to the square roots of the eigenvalues of ATA and hence an
iterative computation is inevitable. Usually, in order to reduce the overall
computational cost, the given matrix A is first transformed to a bidiagonal
matrix with suitable orthogonal transformations, and then a certain iterative
method is applied to the bidiagonal matrix.

Most of the standard methods for bidiagonal matrices had been based on
the QR algorithm [7], until in 1994 Fernando–Parlett discovered a beautiful
algorithm, which is now called the differential quotient difference with shifts
(dqds) algorithm [8]. The dqds algorithm has then drawn strong interest
of researchers due to its high accuracy, speed, and numerical stability often
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observed in actual computations. The algorithm is now available and widely
used as DLASQ routine in LAPACK [12, 14].

In spite of this practical success, it is rather recently that the theoretical
aspects of the dqds algorithm have been revealed in rigorous manners. To the
authors’ best knowledge, the global convergence theorem, i.e., a theoretical
guarantee of convergence from arbitrary initial matrices, due to the present
authors [3, 4] is the first result given in an explicit form.

In this context, however, we may recall two known facts:

(i) the dqds algorithm is mathematically equivalent to the Cholesky LR
method with shifts, applied to tridiagonal symmetric matrices, and

(ii) as a classical result in eigenvalue computation we have the global
convergence theorem of the Cholesky LR method by Rutishauser in
1960 [16].

One may be tempted to conclude that the above two facts immediately
imply the global convergence property of the dqds algorithm. But this is not
the case. The situation is not simple but very subtle. Rutishauser’s theorem
refers to a kind of regularity condition or assumption that a pathological
phenomenon called “disorder of latent roots” does not occur. It is one
of the major objectives of this paper1 to give a detailed explanation to this
subtle point in convergence argument. Furthermore we show that a complete
global convergence result for the dqds algorithm can be obtained from the
above two facts if we take in account another classical result on irreducible
tridiagonal matrices.

In these two proofs—one by the present authors [3, 4] and the other
by combining the known classical results—the former has several desirable
features: it is simpler, direct, self-contained, and most importantly, it gives
explicit estimates for all the elements of the matrices in iteration. This en-
ables us to precisely investigate the asymptotic convergence rates, once a
concrete shift strategy is specified. Taking advantage of this feature, the
authors have considered the case of the Johnson bound [9], which is a Ger-
shgorin type bound, to find the asymptotic convergence rate of 1.5 [3, 4].
Soon after this, several other authors have considered a variety of shift strate-
gies [1, 2, 6, 22, 23]. These results are reviewed in Section 4 of this paper.

1This is an augmented English version of [5] included in a workshop proceedings in
Japanese.
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2 The dqds algorithm

We assume that the given real matrix A has already been transformed to a
bidiagonal matrix

B =


b1 b2

b3
. . .
. . . b2m−2

b2m−1

 ,

to which the dqds algorithm is applied. Furthermore, following [8], we as-
sume without loss of generality that the matrix has been normalized so that
it satisfies the following assumption:

Assumption (A) The bidiagonal elements of B are positive:
bk > 0 for k = 1, 2, . . . , 2m − 1.

This assumption guarantees that the singular values of B are all distinct:
σ1 > · · · > σm > 0 (see [13]).

The dqds algorithm in computer program form reads as follows.

Algorithm 1 The dqds algorithm

Require: q
(0)
k := (b2k−1)2 (k = 1, 2, . . . ,m); e

(0)
k := (b2k)2 (k =

1, 2, . . . ,m − 1); t(0) := 0
1: for n := 0, 1, · · · do
2: choose shift s(n)(≥ 0)
3: d

(n+1)
1 := q

(n)
1 − s(n)

4: for k := 1, · · · ,m − 1 do
5: q

(n+1)
k := d

(n+1)
k + e

(n)
k

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: d
(n+1)
k+1 := d

(n+1)
k q

(n)
k+1/q

(n+1)
k − s(n)

8: end for
9: q

(n+1)
m := d

(n+1)
m

10: t(n+1) := t(n) + s(n)

11: end for

The outer loop is terminated when some suitable convergence criterion,
say |e(n)

m−1| ≤ ϵ for some prescribed constant ϵ > 0, is satisfied. At the
termination we have

σm
2 ≈ q(n)

m + t(n)

(
= q(n)

m +
n−1∑
l=0

s(l)

)

and hence σm can be approximated by
√

q
(n)
m + t(n). Then by the deflation

process the problem is shrunk to an (m − 1) × (m − 1) problem, and the
same procedure is repeated until σm−1, . . . , σ1 are obtained in turn.
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It is convenient to define a bidiagonal matrix

B(n) =



√
q
(n)
1

√
e
(n)
1√

q
(n)
2

. . .

. . .
√

e
(n)
m−1√
q
(n)
m

 (1)

to simplify the description of Algorithm 1. With this notation, Algorithm 1
can be rewritten in terms of the Cholesky decomposition (with shifts):

(B(n+1))TB(n+1) = B(n)(B(n))T − s(n)I. (2)

It is also convenient to introduce additional notations:

e
(n)
0 = 0, e(n)

m = 0 (n = 0, 1, . . .). (3)

3 Global convergence theorems of the dqds algo-
rithm

In this section we review the global convergence theorems of the dqds al-
gorithm for arbitrary initial matrices satisfying Assumption (A). We also
discuss the relation of the theorem of the present authors [3, 4] and
Rutishauser’s theorem [16] for the global convergence of the shifted Cholesky
LR method for symmetric positive definite matrices.

3.1 Global convergence theorem of the dqds algorithm by
Aishima et al.

Here the global convergence theorem of the dqds algorithm recently es-
tablished by the present authors is shown. The theorem states that, if
0 ≤ s(n) < (σ(n)

min)
2 in each iteration step n, where σ

(n)
min denotes the smallest

singular value of B(n), then the variables in the dqds algorithm converge for
any initial matrix B that satisfies Assumption (A). The proof [3, 4], consist-
ing of a sequence of elementary calculations, is reproduced in Appendix A.

Theorem 1 (Global convergence of the dqds algorithm (Aishima et al. [3,
4])). Suppose the initial matrix B satisfies Assumption (A), and the shifts
in the dqds algorithm satisfy

0 ≤ s(n) < (σ(n)
min)

2 (n = 0, 1, 2, . . .). (4)

Then

lim
n→∞

e
(n)
k = 0 (k = 1, 2, . . . ,m − 1),

lim
n→∞

q
(n)
k + t(n) = σk

2 (k = 1, 2, . . . ,m).
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The condition (4) is necessary for the Cholesky decomposition of
B(n)(B(n))T − s(n)I in (2) to be well-defined. Conversely, this condition
guarantees that the dqds algorithm does not break down, as is seen from (2).
Hence Theorem 1 above states that the convergence is always guaranteed as
far as the dqds algorithm runs without breakdown.

3.2 Relation to Rutishauser’s classical result

The dqds algorithm is mathematically equivalent to the shifted Cholesky LR
method applied to symmetric positive-definite irreducible tridiagonal matri-
ces, where a tridiagonal matrix is said to be irreducible if all the subdiago-
nal elements are nonzero. This might ring a bell of some readers, since for
general symmetric positive-definite matrices, we know Rutishauser’s global
convergence theorem on the shifted Cholesky LR method [16]. In what fol-
lows, however, we point out that Theorem 1 cannot be derived directly from
Rutishauser’s theorem. Furthermore, we point out that Rutishauser’s theo-
rem does imply a global convergence result, though weaker than Theorem 1,
for the dqds algorithm, when it is combined with another observation about
tridiagonal matrices. To the best of the authors’ knowledge, there is no
reference in the literature where this point is explicitly noted. The proof of
Rutishauser’s theorem, written in German, can be found in [16]; for readers’
convenience, we give a brief English summary in Appendix B.

3.2.1 The shifted Cholesky LR method

The shifted Cholesky LR method for an m × m positive definite symmetric
matrix A reads as follows.

Algorithm 2 The shifted Cholesky LR method
Require: A(0) := A, t(0) := 0
1: for n := 0, 1, · · · do
2: choose shift s(n)(≥ 0)
3: Cholesky decomposition:

(R(n+1))TR(n+1) = A(n) − s(n)I
(R(n+1) is upper triangular)

4: A(n+1) := R(n+1)(R(n+1))T

5: t(n+1) := t(n) + s(n)

6: end for

Let us write the matrix A(n) as

A(n) =

 U (n) v(n)

(v(n))T w(n)

 , (5)
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where U (n) is the leading principal (m−1)× (m−1) submatrix of A(n), v(n)

is a vector of length (m−1) and w(n) is the diagonal element at the position
(m, m). Let λ1 ≥ λ2 ≥ · · · ≥ λm denote the eigenvalues of A and λ

(n)
min the

smallest eigenvalue of A(n).
Suppose the Cholesky LR method is applied with suitable shifts. Then

practically for almost all initial matrices A, ∥v(n)∥ in (5) tends to 0, and
w(n) + t(n) converges to λm. Hence an approximation of one eigenvalue can
be obtained by setting λm ≈ w(n) + t(n), when ∥v(n)∥ becomes sufficiently
small. Deflation is then carried out to obtain λm−1, λm−2, . . . , λ1 in turn.

3.2.2 Reformulation of Theorem 1 for the shifted Cholesky LR

Comparing the matrix form of the dqds algorithm (2) and the algorithm of
the shifted Cholesky LR method, we easily see that “the dqds algorithm for
the bidiagonal matrices satisfying Assumption (A)” is mathematically equiv-
alent to “the shifted Cholesky LR method for symmetric positive-definite
irreducible tridiagonal matrices.” In order to discuss the relationship be-
tween the convergence theorem of the dqds algorithm (Theorem 1) and that
of the shifted Cholesky LR method for general positive-definite matrices, it
is convenient to reformulate Theorem 1 for the shifted Cholesky LR method.

Theorem 2 (Global convergence of the shifted Cholesky LR method for
irreducible tridiagonal matrices (Aishima et al. [5])). Suppose A is an irre-
ducible symmetric positive-definite tridiagonal matrix, and the shifts in the
Cholesky LR method satisfy

0 ≤ s(n) < λ
(n)
min (n = 0, 1, 2, . . .).

Then
lim

n→∞
(A(n) + t(n)I) = diag(λ1, . . . , λm).

3.2.3 Rutishauser’s theorems

This section gives an overview of the global convergence theorems by
Rutishauser on the unshifted and shifted Cholesky LR methods. We be-
gin with the unshifted case [15]. The proof is simple and elementary, where
the key is to fully utilize the positive-definiteness (see [15, 17, 18]).

Theorem 3 (Global convergence of the unshifted Cholesky LR method
(Rutishauser [15])). If the unshifted Cholesky LR method is applied to a
symmetric positive-definite matrix A, A(n) converges to a diagonal matrix
whose diagonal elements are the eigenvalues of A.

In most cases the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm appear in descending
order on the diagonal of A(n), but there exist exceptional cases. Rutishauser
called this exceptional phenomenon “disorder of latent roots,” and gave a
concrete example as follows.
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Example 1 (“disorder of latent roots” [15]). Let A be the positive-definite
matrix:

A =


5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4


whose eigenvalues are 10, 5, 2, 1. If the unshifted Cholesky LR method is
applied to A, A(n) converges to

10 0 0 0
0 1 0 0
0 0 5 0
0 0 0 2

 .

Next we proceed to the shifted case. In this case the proof is no longer
elementary and many technical tools are involved. The proof of [16], in
German, is outlined in Appendix B.

Theorem 4 (Global convergence of the shifted Cholesky LR method
(Rutishauser [16])). Suppose A is a symmetric positive-definite matrix for
which “disorder of latent roots” does not occur, and whose smallest eigen-
value λm is simple: λm < λk (k = 1, . . . ,m−1). Suppose also that the shifts
in the Cholesky LR method satisfy

0 ≤ s(n) < λ
(n)
min.

For the variables in (5) we have

lim
n→∞

(w(n) + t(n)) = λm,

lim
n→∞

∥v(n)∥ = 0.

Obviously, Theorem 2, which is the Cholesky LR counterpart of the dqds
global convergence theorem, cannot be derived immediately from Theorem 4
above. Theorem 4 states the convergence only for the case where “disorder
of latent roots” is absent. We would like to find a missing link that connects
these two theorems.

Actually the link is provided by the following known result: if the un-
shifted Cholesky LR method is applied to an irreducible symmetric positive-
definite tridiagonal matrix, A(n) converges to a diagonal matrix, and eigen-
values appear properly in descending order (i.e., “disorder” does not occur).
This seems to be a classical known fact, but as far as the authors know,
there is no explicit statement in the literature. There seems to have been no
explicit proof either, although it is not difficult to deduce it from the known
result for the dqd algorithm [8] or for the qd algorithm [17, 18]. Thus we
see the following fact.
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Lemma 1. The “disorder of latent roots” does not occur in irreducible sym-
metric positive-definite tridiagonal matrices.

Combining this and another known fact: “eigenvalues of irreducible tridi-
agonal matrix are distinct,” we finally obtain from Theorem 4 the global
convergence theorem below.

Theorem 5 (Global convergence of the shifted Cholesky LR method
(Rutishauser)). Suppose A is an irreducible symmetric positive-definite tridi-
agonal matrix, and the shifts in the Cholesky LR method satisfy

0 ≤ s(n) < λ
(n)
min (n = 0, 1, 2, . . .).

For the variables in (5) we have

lim
n→∞

(w(n) + t(n)) = λm,

lim
n→∞

∥v(n)∥ = 0.

Translated for the dqds algorithm, the theorem reads as follows.

Theorem 6 (Global convergence of the dqds algorithm (Rutishauser)). Sup-
pose the initial matrix B satisfies Assumption (A), and the shifts in the dqds
algorithm satisfy

0 ≤ s(n) < (σ(n)
min)

2 (n = 0, 1, 2, . . .).

Then

lim
n→∞

e
(n)
m−1 = 0,

lim
n→∞

(q(n)
m + t(n)) = σm

2.

Thus a global convergence theorem of the dqds algorithm is obtained
through the complicated discussion presented above, which is based on
Rutishauser’s convergence analysis of the shifted Cholesky LR method.
Some experts in this area might have been aware of this proof scenario
but, to the best of the authors’ knowledge, it has not been explicitly given
in the literature. One of the contributions of this paper is, as the authors
believe, to give a complete description of this proof scenario for the first
time in the literature.

Before concluding this section, we would like to emphasize the differ-
ences between Theorem 1 by the present authors and Theorem 6 based on
Rutishauser’s theorem. First, while the derivation of Theorem 6 is rather
complicated, the proof of Theorem 1 is simple and direct. Second and more
importantly, Theorem 6 considers the convergence of lower right elements
e
(n)
m−1, q

(n)
m only. Although this is enough in actual computation which incor-

porates deflation, we will need to know the behaviors of all of the diagonal
and subdiagonal elements in order to reveal the theoretical asymptotic con-
vergence rates. To this end, the proof of Theorem 1 is indispensable, where
concrete estimates of all the elements are given.
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4 Shift strategies and their convergence rates

In the previous section, we have seen that the condition (4) is essential for the
global convergence (Theorem 1). This condition can be satisfied by various
shift strategies. For some shift strategies, precise theoretical asymptotic
convergence rates have been revealed in recent years, which we review in
this section. In what follows, by “convergence rate of the dqds algorithm”
we mean that of the bottom subdiagonal element e

(n)
m−1; this motivated by

the stopping criterion |e(n)
m−1| ≈ 0.

4.1 Johnson shift

In order to find a shift satisfying the condition (4): 0 ≤ s(n) < (σ(n)
min)

2 in
Theorem 1, let us look for a lower bound of (σ(n)

min)
2. A possible choice would

be the Johnson bound [9], which gives a lower bound of the smallest singular
value of a given matrix. The Johnson bound reads

τ
(n)
J = min

k=1,...,m

{√
q
(n)
k − 1

2

(√
e
(n)
k−1 +

√
e
(n)
k

)}
. (6)

This satisfies τ
(n)
J < σ

(n)
min, but since it can be negative as well, the shift

should be chosen as
s(n) =

(
max{τ (n)

J , 0}
)2

, (7)

which we call the Johnson shift. With this shift, the global convergence of
the dqds algorithm is guaranteed by Theorem 1. Furthermore, the conver-
gence rate turns out to be 1.5 as follows.

Theorem 7 (Convergence rate with the Johnson shift (Aishima et al. [3,
4])). For the dqds algorithm with the Johnson shift (7) we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)3/2

=
1√

σm−1
2 − σm

2
.

Therefore the asymptotic convergence rate is 1.5.

4.2 Ostrowski shift

Yamamoto et al. proposes to use an Ostrowski-type lower bound [10], which
is tighter [21] than the Johnson bound. The Ostrowski-type lower bound is
given by

τ
(n)
O = min

k=1,...,m
(X(n)

k − Y
(n)
k ), (8)
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where

X
(n)
k =

√
q
(n)
k +

1
4

(√
e
(n)
k−1 −

√
e
(n)
k

)2

,

Y
(n)
k =

1
2

(√
e
(n)
k−1 +

√
e
(n)
k

)
.

This bound satisfies2 τ
(n)
O < σ

(n)
min, but it can be negative. Hence, the

shift is determined by

s(n) =
(
max{τ (n)

O , 0}
)2

(9)

to assure 0 ≤ s(n) < (σ(n)
min)

2. Then the global convergence of the dqds
algorithm is guaranteed by Theorem 1. Furthermore, the convergence rate
turns out to be 1.5 as follows.

Theorem 8 (Convergence rate with the Ostrowski shift (Yamamoto et
al. [23])). For the dqds algorithm with the Ostrowski shift (9) we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)3/2

=
1√

σm−1
2 − σm

2
.

Therefore the asymptotic convergence rate is 1.5.

4.3 Brauer shift

In Yamamoto et al. [21], it is also proposed to utilize a Brauer-type lower
bound [10]. The bound is given by

τ
(n)
B = min

1≤j≤k≤m

1
2

(
X

(n)
jk −

√
Y

(n)
jk + Z

(n)
jk

)
, (10)

where

X
(n)
jk =

√
q
(n)
j +

√
q
(n)
k ,

Y
(n)
jk = (q(n)

j − q
(n)
k )2,

Z
(n)
jk = (

√
e
(n)
j−1 +

√
e
(n)
j )(

√
e
(n)
k−1 +

√
e
(n)
k ).

This bound satisfies τ
(n)
B < σ

(n)
min, but since it can be negative as before,

the shift is determined by

s(n) =
(
max{τ (n)

B , 0}
)2

(11)
2Strictly speaking, we should say σ

(n)
min ≤ τ

(n)
O . The equality, however, holds rarely in

practice (the exceptional cases are discussed in detail in [21, 23]). Furthermore, when the
equality holds, the exact singular value is readily obtained. For these reasons we assume
τ

(n)
O < σ

(n)
min here.
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to meet the condition 0 ≤ s(n) < (σ(n)
min)

2. Then the dqds algorithm is con-
vergent by Theorem 1. Furthermore, it can be shown that the convergence
rate is “super-1.5” as follows.

Theorem 9 (Convergence rate with the Brauer shift (Yamamoto et
al. [23])). For the dqds algorithm with the Brauer shift (11) we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)3/2

= 0.

Therefore the asymptotic convergence rate is “super-1.5”.

4.4 A shift strategy for superquadratic convergence

A shift strategy for superquadratic convergence has been proposed in [2].
Set

τ
(n)
Q =

1
2

(
X(n) −

√
(X(n))2 − Y (n)

)
,

where

X(n) = q
(n)
m−1 + q(n)

m − e
(n)
m−2 + e

(n)
m−1,

Y (n) = 4q(n)
m (q(n)

m−1 − e
(n)
m−2).

Then the shift is determined as follows.
Shift strategy (Q)

s(n) =

{
τ

(n)
Q (0 < τ

(n)
Q < (σ(n)

min)
2),

0 (otherwise).

In view of Theorem 1, we immediately see that the dqds algorithm with
the shift strategy (Q) is convergent. It might seem difficult to check whether
the condition τ

(n)
Q < (σ(n)

min)
2 is satisfied or not, since σ

(n)
min is the unknown

value to be determined. However, it can be done in the following way:
suppose we are at the beginning of the n-th step. Then we execute ten-
tatively one iteration of the dqds algorithm with s(n) = τ

(n)
Q , and check if

q
(n+1)
k > 0 (k = 1, . . . ,m) or not. The last condition is mathematically

equivalent to τ
(n)
Q < (σ(n)

min)
2 [8]. Hence the shift strategy (Q) can be imple-

mented as follows.

1. Execute one iteration of the dqds algorithm with the tentative shift
s(n) = τ

(n)
Q .

2. If q
(n+1)
k > 0 (k = 1, . . . ,m), then accept this iteration and proceed to

the next iteration. Otherwise reject this one iteration, and execute it
again with s(n) = 0.
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In [2], it has been shown that in the dqds algorithm with the shift strat-
egy (Q), τ

(n)
Q is accepted as s(n) for all sufficiently large n. Then, by scruti-

nizing the asymptotic behaviour of the algorithm with s(n) = τ
(n)
Q < (σ(n)

min)
2,

we see the next superquadratic convergence theorem.

Theorem 10 (Superquadratic convergence by the shift strategy (Q)
(Aishima et al. [2])). For the dqds algorithm with the shift strategy (Q),
we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)2

= 0.

Therefore the convergence is asymptotically superquadratic.

4.5 Cubic convergence shift strategy based on Rutishauser’s
shift

Rutishauser proposed to use the following shift strategy at “the final stage
of iterations” [16] in the second step of Algorithm 1 (strictly speaking, he
proposed it in the context of the shifted Cholesky LR method).

Shift strategy (R)

1: e
(n)
0 := 0, d̂

(n)
0 := 1

2: for k := 1, . . . ,m − 1 do
3: d̂

(n+1)
k := d̂

(n+1)
k−1 q

(n)
k /(d̂(n+1)

k−1 + e
(n)
k−1) − q

(n)
m

4: end for
5: choose shift s(n) := d̂

(n+1)
m−1 q

(n)
m (d̂(n+1)

m−1 + e
(n)
m−1)

6: return

Furthermore, he showed that if “a certain condition” regarding a con-
stant ϵ with 0 < ϵ < σm−1

2 − σm
2 (which is a condition that is likely to

be satisfied in “the final stage of iterations”) is fulfilled at n, then after
one iteration of the dqds with the above shift, the subdiagonal element of
B(n)(B(n))T evolves in such a way that

|e(n+1)
m−1 q(n+1)

m | ≤ 1
(σm−1

2 − σm
2 − ϵ)4

|e(n)
m−1q

(n)
m |3. (12)

In this sense, the convergence is locally cubic.
Although the study is quite inspiring, the analysis is unfortunately not

rigorous enough to justify the “asymptotic” cubic convergence in the strict
sense of the word. It is needed to prove that the above condition on ϵ
is satisfied consecutively for all sufficiently large n. It must be also made
clear when “the final stage of iterations” is reached before the strategy can
actually be implemented.
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As an answer to these questions, the present authors have designed a
concrete shift strategy that guarantees asymptotic cubic convergence based
on the shift strategy (R) of Rutishauser.

Shift strategy (C)

1: e
(n)
0 := 0, d̂

(n)
0 := 1

2: for k := 1, . . . ,m − 1 do
3: d̂

(n+1)
k := d̂

(n+1)
k−1 q

(n)
k (d̂(n+1)

k−1 + e
(n)
k−1) − q

(n)
m

4: if d̂
(n+1)
k ≤ 0 then

5: choose shift s(n) := 0
6: return
7: end if
8: end for
9: choose shift s(n) := d̂

(n+1)
m−1 q

(n)
m (d̂(n+1)

m−1 + e
(n)
m−1)

10: return

The shift strategy (C) satisfies the condition (4) in the global convergence
theorem (Theorem 1). Moreover, it is possible to prove that Rutishauser’s
shift is chosen for all sufficiently large n, and as a consequence, we arrive at
the following result.

Theorem 11 (Cubic convergence with shift strategy (C) (Aishima et
al. [1])). For the dqds algorithm with the shift strategy (C), we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)3

=
1

(σm−1
2 − σm

2)2
.

Therefore the convergence is asymptotically cubic.

4.6 Generalized Newton shifts

Recently, Kimura et al. have generalized the Newton shift for symmet-
ric tridiagonal matrices [13, 19] and proposed to use it in the dqds algo-
rithm [11].

The original Newton shift, in the context of the dqds algorithm of matrix
form (2), is defined by τ

(n)
N = −φ(0)/φ′(0), where φ(λ) = det(B(n)(B(n))T−

λI) is the characteristic polynomial of B(n)(B(n))T. Clearly −φ(0)/φ′(0) =
[Tr (B(n)(B(n))T)−1]−1 holds, and thus we immediately see that the Newton
shift satisfies the convergence condition (4). The computational cost for τ

(n)
N

is O(m) [19].
Kimura et al. have generalized the Newton shift to

τ
(n)
p,N = [Tr (B(n)(B(n))T)−p]−1/p,

13



where p is any positive integer. This is called the generalized Newton shift
of order p.

Obviously
0 < τ

(n)
N = τ

(n)
1,N < τ

(n)
2,N < · · · < (σ(n)

min)
2,

lim
p→∞

τ
(n)
p,N = (σ(n)

min)
2.

Thus the generalized Newton shifts satisfy the convergence condition (4),
and are expected to be effective. Although at a first glance it seems expen-
sive, an algorithm of complexity O(pm) has been found to compute τ

(n)
p,N [24].

The next theorem reveals the convergence rate of the dqds algorithm
with the generalized Newton shifts τ

(n)
p,N.

Theorem 12 (Convergence rate with the generalized Newton shifts (Ya-
mamoto et al. [22])). For the dqds algorithm with the generalized Newton
shifts τ

(n)
p,N, we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)p+1−ϵ

= 0,

where ϵ is an arbitrary positive number.

4.7 Superquadratic convergence of the DLASQ routine

The dqds algorithm is now implemented as the DLASQ routine in LAPACK.
DLASQ incorporates an extremely sophisticated shift strategy for the best
efficiency [14]. In spite of the apparent complications it is possible to show
that the shifts always satisfy (4) (hence DLASQ is convergent), and the
ultimate convergence rate is superquadratic.

Theorem 13 (Superquadratic convergence of the DLASQ routine
(Aishima et al. [6])). For the DLASQ, we have

lim
n→∞

e
(n+1)
m−1

(e(n)
m−1)2

= 0.

Therefore the convergence is asymptotically superquadratic.

5 Conclusion

In this paper, we surveyed known theoretical results on global convergence
and convergence rate of the dqds algorithm for computing singular values.
Despite their mathematical importance, the theorems have a practical draw-
back that they deal only with the asymptotic behavior in n → ∞, and do
not provide any information about how things go for finite n. Quantitative
estimates for finite n, like the Kantorovich theorem for the Newton method
[20], remain to be investigated.
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Appendix

A. Proof of Theorem 1 by Aishima et al. [3, 4]

First, we show the following lemma that states that, if s(n) < (σ(n)
min)

2 in each
iteration n, then the variables remain positive. Recall that σ

(n)
min denotes the

smallest singular value of B(n).

Lemma 2. Suppose the dqds algorithm is applied to the matrix B satisfying
Assumption (A). If s(n) < (σ(n)

min)
2 (n = 0, 1, 2, . . .), then (B(n))TB(n) are

positive definite, and hence q
(n)
k > 0 (k = 1, . . . ,m) and e

(n)
k > 0 (k =

1, . . . ,m − 1) for n = 0, 1, 2, . . ..

Proof. We prove by induction on n. Under Assumption (A), we have q
(0)
k >

0, e
(0)
k > 0, and (B(0))TB(0) is positive definite. Suppose that (B(n))TB(n)

is positive definite and q
(n)
k > 0, e

(n)
k > 0. By (2), if s(n) < (σ(n)

min)
2, then

(B(n+1))TB(n+1) is positive definite, because B(n)(B(n))T − s(n)I is positive
definite. Therefore all the diagonal elements of B(n+1) are nonzero (b(n+1)

2k−1 ̸=
0) and hence q

(n+1)
k > 0 due to (2). By line 6 of Algorithm 1, we have

e
(n+1)
k > 0.

Now, we prove limn→∞ e
(n)
k = 0. By Lemma 2, we have e

(n)
k > 0. There-

fore it is sufficient to prove
∑∞

n=0 e
(n)
k < +∞. From Algorithm 1, we see

q
(n+1)
k = d

(n+1)
k−1

q
(n)
k

q
(n+1)
k−1

− s(n) + e
(n)
k

= (q(n+1)
k−1 − e

(n)
k−1)

q
(n)
k

q
(n+1)
k−1

− s(n) + e
(n)
k

= q
(n)
k − e

(n+1)
k−1 + e

(n)
k − s(n),

where the first equality is due to line 5 and line 7, the second equality to
line 5, and the last equality to line 6. The equality

q
(n+1)
k = q

(n)
k − e

(n+1)
k−1 + e

(n)
k − s(n) (13)
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appearing above is crucial for the proof of the convergence. Adding both
sides of (13) for n, we obtain

q
(n+1)
k = q

(0)
k +

n∑
l=0

e
(l)
k −

n∑
l=0

e
(l+1)
k−1 −

n∑
l=0

s(l) (14)

for k = 1, 2, . . . ,m. Since q
(n+1)
k > 0 by Lemma 2, it follows that

n∑
l=0

e
(l+1)
k−1 < q

(0)
k +

n∑
l=0

e
(l)
k −

n∑
l=0

s(l) ≤ q
(0)
k +

n∑
l=0

e
(l)
k (15)

for k = 1, 2, . . . ,m. Setting k = m in (15), we obtain
∑∞

l=0 e
(l+1)
m−1 ≤ q

(0)
m ,

with the aid of (3). Similarly, setting k = m − 1, m − 2, . . . , 2 in (15), we
obtain

∞∑
l=0

e
(l+1)
k < +∞ (k = m − 1,m − 2, . . . , 1),

which completes the proof for e
(n)
k .

Next, we prove limn→∞ q
(n)
k + t(n) = σk

2. From (2) and line 10 of Algo-
rithm 1 we see

(B(n))TB(n)

= W (n)
(
(B(0))TB(0) − t(n)I

)
(W (n))−1, (16)

where W (n) = (B(n−1) · · ·B(0))−T is a nonsingular matrix by Lemma 2.
Therefore the eigenvalues of (B(n))TB(n) are the same as those of
(B(0))TB(0) − t(n)I. By the assumption and Lemma 2, (B(n))TB(n) is a
symmetric positive-definite matrix. It then follows from (16) that

t(n) < σm
2 (17)

holds for any n. From line 10 of Algorithm 1, we see {t(n)} is a monotonically
increasing sequence, and thus there exists t(∞) such that

t(∞) ≤ σm
2. (18)

Hence, the right-hand side of (14) converges as n → ∞, and we see q
(∞)
k =

limn→∞ q
(n)
k exists and satisfies

q
(∞)
k = q

(0)
k +

∞∑
n=0

e
(n)
k −

∞∑
n=0

e
(n+1)
k−1 − t(∞).
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Because limn→∞ e
(n)
k = 0, from (16) we have

lim
n→∞

W (n)
(
(B(0))TB(0) − t(n)I

)
(W (n))−1

= lim
n→∞

(B(n))TB(n) = diag(q(∞)
1 , · · · , q(∞)

m ),

which shows the convergence of the form

q
(∞)
k = σp(k)

2 − t(∞) (k = 1, . . . ,m),

where p(k) denotes a permutation of indices k (k = 1, . . . ,m). It remains to
show that q

(∞)
k + t(∞) line up in descending order. From line 6 of Algorithm

1, we have

e
(n)
k = e

(0)
k

n−1∏
l=0

q
(l)
k+1

q
(l+1)
k

(k = 1, . . . ,m − 1).

Because by assumption all the singular values are distinct, i.e., σ1 > · · · >

σm, the limits q
(∞)
1 , . . . , q

(∞)
m are also distinct. Since limn→∞ e

(n)
k = 0, we

have

q
(∞)
k > q

(∞)
k+1 (k = 1, 2, . . . ,m − 1).

This completes the proof of Theorem 1.

B. Proof of Theorem 4 by Rutishauser [16]

From Algorithm 2 we see

A(n) = R(n)(R(n))TR(n)(R(n))−1

= R(n)(A(n−1) − s(n−1)I)(R(n))−1,

where the first equality is due to line 4 and the second equality to line 3.
Combining this with line 5 of Algorithm 2, we have3

A(n) = Γ(n)(A − t(n)I)(Γ(n))−1 (n = 0, 1, . . .), (19)

where Γ(n) = R(n)R(n−1) · · ·R(1). Since A(n) is a symmetric positive-definite
matrix and t(n) is nonnegative from Algorithm 2, we have

0 ≤ t(n) < λm (n = 0, 1, . . .). (20)

Recall that λ1 ≥ · · · ≥ λm denote the eigenvalues of A. Let z1, . . . , zm

denote the corresponding normalized eigenvectors (zi
Tzi = 1), and ci denote

the mth element of zi (i = 1, . . . ,m). Z = [z1, . . . , zm] is an orthogonal
matrix, whose mth row is (c1, . . . , cm). Here we also utilize the expression
of A(n) given in (5).

We first prepare the following lemmas.
3We define Γ(0) = I for convenience.
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Lemma 3. For n ≥ 1,

(A − t(1)I) · · · (A − t(n)I) = (Γ(n))TΓ(n). (21)

Proof. We see

(R(n))T R(n)

= A(n−1) − s(n−1)I

= Γ(n−1)(A − t(n−1)I)(Γ(n−1))−1 − s(n−1)I

= Γ(n−1)(A − t(n)I)(Γ(n−1))−1,

where the first equality is due to line 3 of Algorithm 2, the second to (19),
and the last to line 5 of Algorithm 2. Since R(n) = Γ(n)(Γ(n−1))−1 we have

A − t(n)I = ((Γ(n−1))T Γ(n−1))−1((Γ(n))T Γ(n)),

which implies (21).

Lemma 4. For n ≥ 1,

1
w(1) · · ·w(n)

=
m∑

k=1

ck
2 1
(λk − t(1)) · · · (λk − t(n))

. (22)

Proof. From Lemma 3 we have

(Γ(n))−1(Γ(n))−T = [(A − t(1)I) · · · (A − t(n)I)]−1. (23)

We will compute the (m,m) elements of both sides.
First we consider the left-hand side. From line 4 of Algorithm 2 we

see w(n) = (r(n)
mm)2, where r

(n)
mm is the (m,m) element of R(n). On the

other hand (R(n))−1 is an upper triangular matrix and its (m, m) element is
1/r

(n)
mm. Hence, (Γ(n))−1 is an upper triangular matrix whose (m,m) element

is 1/
∏n

l=1 r
(l)
mm. Therefore, the (m,m) element of the left-hand side of (23)

is
1∏n

l=1(r
(l)
mm)2

=
1∏n

l=1 w(l)
. (24)

Next, we consider the right-hand side of (23). Let us introduce a diagonal
matrix

D(n) = diag(1/(λ1 − t(n)), . . . , 1/(λm − t(n))).

Then we see (A − t(n)I)−1 = ZD(n)ZT. Recall that Z = [z1, . . . , zm] is
orthogonal, and the mth row of Z is (c1, . . . , cm). Therefore, the right-hand
side of (23) is expressed as a matrix product

[(A − t(1)I) · · · (A − t(n)I)]−1 = Z(D(n) · · ·D(1))ZT,
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the (m,m) element of which is equal to
m∑

k=1

ck
2 1
(λk − t(1)) · · · (λk − t(n))

.

This completes the proof.

We are now in the position to prove Theorem 4. From Lemma 4 we see

w(n) =

m∑
k=1

ck
2 1
(λk − t(1))(λk − t(2)) · · · (λk − t(n−1))

m∑
k=1

ck
2 1
(λk − t(1))(λk − t(2)) · · · (λk − t(n))

.

It then follows that

w(n) + t(n) − λm

=

m∑
k=1

ck
2 λk − λm

(λk − t(1))(λk − t(2)) · · · (λk − t(n))
m∑

k=1

ck
2 1
(λk − t(1))(λk − t(2)) · · · (λk − t(n))

=

m−1∑
k=1

ck
2(λk − λm)

(λm − t(1)) · · · (λm − t(n))
(λk − t(1)) · · · (λk − t(n))

cm
2 +

m−1∑
k=1

ck
2 (λm − t(1)) · · · (λm − t(n))

(λk − t(1)) · · · (λk − t(n))

. (25)

Since the smallest eigenvalue is simple by assumption, there exists a constant
ϵ > 0 such that λk > λm + ϵ (k = 1, . . . ,m − 1). This implies, in view of
(20), that

(λm − t(1))(λm − t(2)) · · · (λm − t(n))
(λk − t(1))(λk − t(2)) · · · (λk − t(n))

<

(
λm

λm + ϵ

)n

for k = 1, 2, . . . ,m − 1, which then yields

lim
n→∞

(λm − t(1))(λm − t(2)) · · · (λm − t(n))
(λk − t(1))(λk − t(2)) · · · (λk − t(n))

= 0.

It then follows from (25) that limn→∞ w(n)+t(n) = λm, provided that cm ̸= 0.
The condition cm ̸= 0 is in fact true under the assumption that “disorder

of latent root” does not occur. We show this by contradiction4, i.e., that if
cm = 0 then “disorder of latent root” occurs. Put

m̂ = max{k | ck ̸= 0}.
4The proof of cm ̸= 0 is not given in [16]. The proof here is by the present authors.
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If cm = 0, then necessarily m̂ < m with cm̂+j = 0 (j = 1, . . . ,m − m̂).
Similarly to (25) we have

w(n) + t(n) − λm̂

=

m̂−1∑
k=1

ck
2(λk − λm̂)

(λm̂ − t(1)) · · · (λm̂ − t(n))
(λk − t(1)) · · · (λk − t(n))

cm̂
2 +

m̂−1∑
k=1

ck
2 (λm̂ − t(1)) · · · (λm̂ − t(n))

(λk − t(1)) · · · (λk − t(n))

.

Let us consider in particular the unshifted case with t(n) = 0 (n = 0, 1, . . .).
Then the (m,m) element of A(n) converges to λm̂ by the same argument as
for (25). Since λm̂ is not the smallest eigenvalue, this means the “disorder
of latent root” does occur in the unshifted Cholesky LR method. This
completes the proof of limn→∞ w(n) + t(n) = λm.

Next, we prove limn→∞ ∥v(n)∥ = 0. Let µ
(n)
1 ≥ · · · ≥ µ

(n)
m−1 denote the

eigenvalues of U (n) + t(n)I, which is the (m− 1)× (m− 1) leading principal
submatrix of A(n) + t(n)I. Obviously,

µ
(n)
k ≤ λk (k = 1, . . . ,m − 1). (26)

Moreover, we see

Tr(A(n) + t(n)I) =
m∑

k=1

λk =
m−1∑
k=1

µ
(n)
k + w(n) + t(n).

It follows that
m−1∑
k=1

(λk − µ
(n)
k ) = w(n) + t(n) − λm. (27)

From the convergence of the diagonal element:

lim
n→∞

w(n) + t(n) = λm,

we have
lim

n→∞
(λk − µ

(n)
k ) = 0 (k = 1, . . . ,m − 1). (28)

Hence, there exist two constants f < g such that

w(n) + t(n) < f, (29)

µ
(n)
k > g (k = 1, . . . ,m − 1) (30)

for all sufficiently large n.
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Let us write R(n) as

R(n) =

 P (n) q(n)

0 r(n)

 , (31)

similarly to (5). From line 3 of Algorithm 2, we see

(P (n+1))TP (n+1) = U (n) − s(n)I,

q(n+1) = (P (n+1))−Tv(n),

(r(n+1))2 = w(n) − s(n) − (q(n+1))Tq(n+1),

and from line 4 we see

v(n+1) = r(n+1)q(n+1),

w(n+1) = (r(n+1))2.

Therefore, we see

∥v(n+1)∥2

= (r(n+1))2(q(n+1))Tq(n+1)

= w(n+1)(v(n))T(P (n+1))−1(P (n+1))−Tv(n)

= w(n+1)(v(n))T(U (n) − s(n)I)−1v(n).

The eigenvalues of U (n) − s(n)I are µ
(n)
k − t(n+1) (k = 1, . . . ,m− 1) because

those of U (n) + t(n)I are µ
(n)
k (k = 1, . . . ,m− 1). Hence, by using (29), (30),

together with the equality above, we see

∥v(n+1)∥2 <
f − t(n+1)

g − t(n+1)
∥v(n)∥2.

From the condition (20), we finally obtain

∥v(n+1)∥2 <
f − t(n+1)

g − t(n+1)
∥v(n)∥2 ≤ f

g
∥v(n)∥2. (32)

This means that ∥v(n)∥ converges to 0. This completes the proof of Theo-
rem 4.

Remark 1. In the original article [16], the accumulated shift is assumed to
satisfy

−M < t(n) < λm (n = 0, 1, . . .) (33)

for some prescribed constant M > 0. The condition (33) is weaker than (20)
employed in the proof presented above. We employed the latter condition
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since we see no practical advantage in choosing negative shifts (which neces-
sarily slows down the convergence). It is noted, however, that the proof goes
almost the same way for (33). We also note that the inequality (15) in [16]:

|vs+1|2 <
f − zs+1

g − zs+1
|vs|2 <

M + λn

M + λn + g − f
|vs|2

is incorrect. The correct inequality is

|vs+1|2 <
f − zs+1

g − zs+1
|vs|2 <

f + M

g + M
|vs|2.

The inequality (32) above is rectified along this line.
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