
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Algorithm for Error-Controlled Simultaneous
Block-Diagonalization of Matrices

Takanori MAEHARA and Kazuo MUROTA

METR 2009–53 December 2009

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Algorithm for Error-Controlled Simultaneous

Block-Diagonalization of Matrices

Takanori Maehara∗ and Kazuo Murota∗

December 2009

Abstract

An algorithm is given for the problem of finding the finest simul-
taneous block-diagonalization of a given set of square matrices. This
problem has been studied independently in the area of semidefinite
programming and independent component analysis. The proposed al-
gorithm considers the commutant algebra of the matrix ∗-algebra gen-
erated by the given matrices. It is simpler than other existing methods,
and has the capability of controlling numerical errors. Some numerical
examples are presented to demonstrate its merits.

Keywords: block-diagonalization, matrix ∗-algebra, commutant alge-
bra, semidefinite programming, independent component analysis

∗Department of Mathematical Informatics, Graduate School of Informa-
tion Science and Technology, University of Tokyo, Tokyo 113-8656, Japan.
maehara@misojiro.t.u-tokyo.ac.jp, murota@mist.i.u-tokyo.ac.jp

1

1 Introduction

In this paper, we consider the following problems:

Problem [R]: Given a set of n×n real matrices A1, . . . , AN , find
an n × n orthogonal matrix P such that P⊤A1P, . . . , P

⊤ANP
are in a common block-diagonal form.

Problem [C]: Given a set of n×n complex matrices A1, . . . , AN ,
find an n × n unitary matrix P such that P ∗A1P, . . . , P

∗ANP
are in a common block-diagonal form.

Recently, these problems have independently been studied in the area of
mathematical programming, semidefinite programming (SDP) in particular,
and in the area of signal processing, independent component analysis (ICA)
in particular.

SDP is an optimization problem of the form:

minimize tr(A0X)
subject to tr(AkX) = bk (k = 1, . . . , N),

X ≽ O

where X is the decision variable of an n × n symmetric matrix, and the
problem data are the N + 1 symmetric matrices A0, A1, . . . , AN and N
real numbers b1, . . . , bN . When the problem is endowed with geometrical
or combinatorial symmetry, the data matrices A0, A1, . . . , AN can often be
simultaneously block-diagonalized and the associated SDP can be solved
efficiently [2, 7, 8, 9].

In the literature of SDP, two numerical algorithms for simultaneous
block-diagonalization are proposed. One is by Murota, Kanno, Kojima,
and Kojima [12] and Maehara and Murota [11], to be called MKKKM algo-
rithm in this paper, and the other is by de Klerk, Dobre, and Pasechnik [6].
The main idea of these algorithm is the following. Consider the matrix
∗-algebra generated by the given matrices and use the Artin-Wedderburn
type structure theorem for matrix ∗-algebra (cf. Theorem 2.1). In theory,
these algorithms always find the finest decomposition. In practice, however,
the algorithms sometimes fail because of the numerical errors contained in
the given matrices, such as observation errors and truncation errors as well
as those incurred in the numerical computation. Other types of algorithms
based primarily on symbolic methods are also proposed [3, 9].

ICA is an effective method for signal processing proposed independently
by Ans, Hérault, and Jutten and by Barness, Carlin, and Steinberger in the
early 1980’s. Here we consider an extended framework of ICA, the multidi-
mensional ICA proposed by Cardoso [4]. Let X be a (given) d-dimensional

2

signal. The multidimensional ICA is to decompose X into mutually inde-
pendent signals by finding an invertible (constant) matrix W and mutu-
ally independent (possibly multidimensional) signals Y1, . . . , Ym such that
W−1X = (Y1, . . . , Ym). For this purpose, Cardoso [4] proposed the follow-
ing method: First, normalize X to have zero mean and unit-matrix variance.
Second, build the fourth order cumulant matrices Cij (i, j = 1, . . . , d) of X,
where each Cij is a d× d matrix whose (k, l) entry is defined as

(Cij)kl = ⟨XiXjXkXl⟩ − ⟨XiXj⟩ ⟨XkXl⟩ − ⟨XiXk⟩ ⟨XjXl⟩ − ⟨XiXl⟩ ⟨XjXk⟩
(1.1)

for k, l = 1, . . . , d. Here ⟨ · ⟩ means the expected value. If these matrices are
brought to a common block-diagonal form with m diagonal blocks, then it
is understood that X is decomposed into m independent components.

It should be mentioned in this context that there is another method
that reduces the ICA problem to simultaneous block-diagonalization using
the cross covariance matrices of given (temporally correlated) signals. A
detailed discussion is found in Amari [1], where the estimating function
theory for semiparametric statistical models is applied to the ICA problem.

In the area of ICA, JADE of Cardoso and Souloumiac [5] is accepted as a
standard algorithm to perform ICA via simultaneous block-diagonalization.
The simultaneous block-diagonalization part of this algorithm is an exten-
sion of the Jacobi algorithm for eigenvalue decomposition. It applies succes-
sive Givens rotations to the given matrices until some diagonality criterion,
such as the sum of square of off-diagonals, becomes minimal. This method
is proposed originally for simultaneous diagonalization but it also works for
simultaneous block-diagonalization, as pointed out recently by Theis [13].
This algorithm is not guaranteed to find the finest decomposition but it is
robust against numerical errors.

The objective of this paper is to propose an algorithm for simultane-
ous error-controlled finest block-diagonalization. The algorithm is robust
against numerical errors, and consequently suitable for a wide range of ap-
plications such as SDP and ICA.

Our algorithm, like the previous algorithms in the area of SDP, uses the
algebraic structure of the matrix ∗-algebra T generated by the given matri-
ces. The main difference is that our algorithm works with the commutant
algebra of T , whereas the algorithm of [11, 12] works with T itself and the
algorithm of [6] uses the center of T . More specifically, our algorithm applies
the simple component decomposition procedure of the MKKKM algorithm
to the commutant algebra of T . This provides the algorithm with simplicity
(see Section 3) and a remarkable capability of controlling numerical errors in
terms of error-control parameter ϵ (see Section 4). Note that the MKKKM
algorithm also has a parameter ϵ for coping with numerical round-off errors
but this parameter is essentially different from the error-control parameter
ϵ in the present paper. See Remark 1.1 below. Computational results show

3

that the proposed algorithm outperforms the MKKKM algorithm.
Compared with JADE our algorithm has the advantage that it always

finds the finest decomposition. Computational results against some practical
example problems from SDP and ICA show that the proposed algorithm
competes favorably with JADE.

In this paper, we deal mainly with Problem [C] because the theory of
matrix ∗-algebras over C is simpler than that over R and hence the main
features of the proposed algorithm can be explained more clearly in this
case. The proposed algorithms can be adapted readily to Problem [R], as
will be explained in Remark 3.10.

This paper is organized as follows. Section 2 describes the theory of
matrix ∗-algebras which our algorithm is based on. The basic idea of the
algorithm is given in Section 3 and the robust version equipped with an
error-controlling mechanism is in Section 4. Numerical examples are shown
in Section 5.

Remark 1.1. Both the proposed algorithm and the MKKKM algorithm have
a parameter ϵ but they are essentially different. To explain this difference,
we describe here the role of the parameter ϵ of the MKKKM algorithm,
whereas the role of the parameter ϵ of the proposed algorithm is to be de-
scribed in Section 4. If the input matrices and the subsequent computations
were free from numerical errors, the MKKKM algorithm would not need any
parameter ϵ and would find the finest decomposition with probability one
(note that the MKKKM algorithm is a randomized algorithm). However, to
implement the MKKKM algorithm, we have to introduce an ad-hoc param-
eter ϵ that is used as a threshold between zero and non-zero. This makes
the MKKKM algorithm behave differently from what is expected in theory,
as is pointed out by de Klerk et al. [6].

2 Matrix ∗-algebras
Let Mn = Mn(C) be the set of n×n complex matrices. A subset T of Mn

is said to be a ∗-subalgebra (or a matrix ∗-algebra) over C if In ∈ T and
[A,B ∈ T ;α, β ∈ C =⇒ αA + βB,AB,A∗ ∈ T]. We say that a matrix
∗-algebra T is simple if T has no ideal other than {O} and T itself, where
an ideal of T means a submodule I of T such that [A ∈ T , B ∈ I =⇒
AB,BA ∈ I]. We say that T is irreducible if no T -invariant subspace other
than {0} and Cn exists, where a linear subspace W of Cn is said to be
T -invariant if AW ⊆ W for every A ∈ T .

The following is a standard result in ∗-algebra (e.g., [14, Chapter X]).
Note that for a matrix ∗-algebra T and a unitary matrix P , the set P ∗T P :=
{P ∗AP : A ∈ T } is another matrix ∗-algebra isomorphic to T .

Theorem 2.1. Let T be a ∗-subalgebra of Mn(C).

4

(A) There exist a unitary matrix Q and simple ∗-subalgebras Tj of Mn̂j

for some n̂j (j = 1, 2, . . . , ℓ) such that

Q∗T Q =

ℓ⊕
j=1

Tj .

(B) If T is simple, there exist a unitary matrix P and an irreducible
∗-subalgebra T ◦ of Mn̄ for some n̄ such that

P ∗T P = T ◦ ⊗ Iµ,

where n = n̄µ.
(C) If T is irreducible, T = Mn.

Let T ′ denote the commutant algebra of a matrix ∗-subalgebra T of Mn.
This means that T ′ is the set of all matrices X that commute with every
member of T , i.e.,

T ′ = {X ∈ Mn : [A,X] = O (A ∈ T)},

where [A,X] := AX − XA. The set T ′ also forms a ∗-subalgebra of Mn.
The commutant operation (′) is compatible with unitary transformation,
direct sum, and tensor product, i.e.,

(P ∗T P)′ = P ∗T ′P,

(T1 ⊕ T2)′ = T ′
1 ⊕ T ′

2 ,

(T1 ⊗ T2)′ = T ′
1 ⊗ T ′

2 .

We also have

Mn(C)′ = CIn,
(CIn)′ = Mn(C).

Using these identities, we can see T ′′ = T as follows. By the structure
theorem (Theorem 2.1), any matrix ∗-algebra T can be decomposed into
the following form:

P ∗T P =

ℓ⊕
j=1

(Mnj ⊗ Iµj) (2.1)

with some unitary matrix P . Taking the commutant and using the above-
mentioned properties of the commutant operation, we obtain

P ∗T ′P =
ℓ⊕

j=1

(Inj ⊗Mµj). (2.2)

5

Taking again the commutant of this expression, we obtain

P ∗T ′′P =
ℓ⊕

j=1

(Mnj ⊗ Iµj). (2.3)

Comparing (2.1) and (2.3), we see T ′′ = T .

Remark 2.2. The relationship T ′′ = T is called “double commutant prop-
erty,” which plays a fundamental and important role in the theory of algebra
and operator theory.

3 Basic algorithm via the commutant

If a unitary matrix P simultaneously block-diagonalizes A1, . . . , AN , then it
also simultaneously block-diagonalizes all members A of T , where T is the
matrix ∗-algebra generated by A1, . . . , AN . The structure theorem (The-
orem 2.1) describes the structure of the finest block-diagonalization of a
matrix ∗-algebra. Therefore, for the simultaneous block-diagonalization of
A1, . . . , AN , it is necessary and sufficient to find a unitary matrix P in the
structure theorem.

Our algorithm is based on the following proposition for simple component
decompositions, which is an immediate consequence of (2.2).

Proposition 3.1. If a unitary matrix P decomposes a matrix ∗-algebra T
into the simple components, then P also decomposes the commutant algebra
T ′ into the simple components. The converse is also true.

The converse part of this proposition implies that it is possible to con-
struct an algorithm that decomposes T ′ to obtain the decomposition of T .
We will construct such an algorithm.

The simple component decomposition procedure of the MKKKM algo-
rithm is based on the following propositions. Let us say that A ∈ T is generic
if A does not have the same eigenvalue in distinct simple components of T
and does not have repeated eigenvalues in any irreducible component of T .
To be more concrete, decompose A as P ∗AP =

⊕ℓ
j=1Bj ⊗ Iµj compatibly

with (2.1), and call A generic if Bi and Bj with i ̸= j do not have a common
eigenvalue and each Bi is free from multiple eigenvalues.

Proposition 3.2 (Proposition 3 of [12]). If we sample a Hermitian matrix
A ∈ T randomly, then A is generic with probability one.

Proposition 3.3 (Proposition 4 of [12]). Let A ∈ T be a generic Hermitian
matrix. Then a unitary matrix that diagonalizes A decomposes T into
simple components.

6

Remark 3.4. The notion of genericity is defined in [12] and it is refined in
[11] for Problem [R]. However, since we now consider Problem [C], we only
need the original version of the definition introduced above.

These propositions imply that we can decompose T into simple compo-
nents, once we know how to sample a generic Hermitian matrix in T .

Our strategy here is to apply the above procedure not to T but to the
commutant algebra T ′. Then the unitary matrix P constructed for T ′ is also
good for T by Proposition 3.1. Thus our problem is reduced to sampling a
generic Hermitian matrix, say X, in T ′.

Assume that T is generated by A1, . . . , AN . Then a Hermitian matrix
X belongs to T ′ if and only if X satisfies

[Ak, X] = O (k = 1, . . . , N). (3.1)

This is a system of linear equations in X, and a random solution to it serves
as the X above.

We may summarize our ideas to the following algorithm.

Algorithm 3.5 (Basic form).

1: Sample a generic Hermitian matrix X as a random solution of (3.1).
2: Output a unitary matrix P that diagonalizes X.

Remark 3.6. A concrete procedure for a random solution of (3.1) will be
given in Section 4 for the robust version of this algorithm.

By Propositions 3.1 and 3.2, and the converse part of Proposition 3.3, a
unitary matrix P computed by this algorithm obviously decomposes T into
simple components. Furthermore, it turns out that this matrix P decom-
poses T into irreducible components. To prove this claim, we need the next
lemma.

Lemma 3.7. Let A be an n×n complex matrix andX be an n×n Hermitian
matrix. If [A,X] = O then, for any unitary matrix P that diagonalizes X
as P ∗XP = diag(λ1, . . . , λn), we have

(P ∗AP)ij = 0 if λi ̸= λj . (3.2)

Proof. If [A,X] = O, then [P ∗AP,P ∗XP] = O. The (i, j) component of
this identity reads

(P ∗AP)ij(λi − λj) = 0.

Hence (P ∗AP)ij = 0 if λi ̸= λj .

This lemma implies that if a Hermitian matrix X satisfies (3.1) and a
unitary matrix P diagonalizes X, then P is a matrix that block-diagonalizes
A1, . . . , AN . Moreover, this gives the finest decomposition, as stated below.

7

Proposition 3.8. Algorithm 3.5 gives the finest block-diagonal decompo-
sition of A1, . . . , AN .

Proof. Let X be a random Hermitian solution of (3.1) and P be a unitary
matrix that diagonalizes X. Then X is generic in T ′ by Proposition 3.2.

Let us count the multiplicity of an eigenvalue of X. By equation (2.2)
and genericity of X, the multiplicity of an eigenvalue of X is nj for some
j = 1, . . . , ℓ. Therefore, the diagonal blocks of P ∗AkP (k = 1, . . . , N) are
of size nj (j = 1, . . . , ℓ), which are fine as in the decomposition in Theorem
2.1. This shows that the obtained decomposition P ∗AkP (k = 1, . . . , N) is
the finest decomposition.

We now give an example to illustrate how the proposed algorithm works.

Example 3.1. Let

A1 =


2 1 0 0
1 2 0 0
0 0 1 2
0 0 2 1

 , A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

The matrix

X =


0.2057 0.1525 −0.3036 −0.3036
0.1525 0.2057 −0.3036 −0.3036

−0.3036 −0.3036 0.2057 0.1525
−0.3036 −0.3036 0.1525 0.2057


is a generic Hermitian solution of (3.1), which we can obtain by the method
to be described in Section 4. The eigenvalue decomposition of X is

P ∗XP = diag(−0.2491, 0.9655, 0.0533, 0.0533),

where

P =


−0.5000 −0.5000 −0.4330 −0.5590
−0.5000 −0.5000 0.4330 0.5590
−0.5000 0.5000 −0.5590 0.4330
−0.5000 0.5000 0.5590 −0.4330

 .

Since X has three distinct eigenvalues with multiplicities 1, 1, and 2, the
given matrices A1, A2, and A3 can be decomposed into three diagonal blocks

8

with sizes 1, 1, and 2. Indeed, we have

P ∗A1P =


3.0000 0.0000 0.0000 0.0000

0.0000 3.0000 0.0000 0.0000

0.0000 0.0000 0.2499 −0.9683
0.0000 0.0000 −0.9683 −0.2499

 ,

P ∗A2P =


1.0000 0.0000 0.0000 0.0000

0.0000 −1.0000 0.0000 0.0000

0.0000 0.0000 0.9683 0.2499
0.0000 0.0000 0.2499 −0.9683

 ,

P ∗A3P =


1.0000 0.0000 0.0000 0.0000

0.0000 −1.0000 0.0000 0.0000

0.0000 0.0000 −0.9683 −0.2499
0.0000 0.0000 −0.2499 0.9683

 .

Remark 3.9. Note that there is a slight difference between the decompo-
sition given by Algorithm 3.5 and the decomposition described in Theo-
rem 2.1. Theorem 2.1 says that if T is simple then T can be decomposed
into the form with identical diagonal blocks, i.e., T = {diag(B, . . . , B) :
B ∈ T ◦}. However, Algorithm 3.5 decomposes T into the form T =
{diag(Q∗

1BQ1, . . . , Q
∗
µBQµ) : B ∈ T ◦} for some (unknown) unitary matrices

Q1, . . . , Qµ.

Remark 3.10. The proposed algorithm can be adapted to a matrix ∗-algebra
over R: Replace complex conjugate “∗” by transpose “⊤” and “unitary” by
“orthogonal.” The correctness (the R-variant of Proposition 3.8) can also be
proved in the same way. The only complication is that there are three types
of irreducible components in a matrix ∗-algebra over R (cf., e.g., [12, 14]).
But the eigenvalue counting argument in the proof of Proposition 3.8 still
works for all types of irreducible components.

4 Algorithm for error-controlled decomposition

In many applications, the input matrices A1, . . . , AN are subject to numer-
ical noises, such as observation errors or truncation errors. In such cases,
it is not likely that the given matrices can be decomposed in a nontrivial
way in the strict algebraic sense. In practice, however, some reasonable or
plausible decomposition is wanted.

In this section, we consider an error-controlled simultaneous block-diagonalization,
in which the entries in off-diagonal blocks are controlled by a parameter
ϵ, and we propose an algorithm to find such a decomposition. The algo-
rithm can be seen as a parametrized version of Algorithm 3.5. If the error-
control parameter ϵ is zero, the algorithm is reduced to Algorithm 3.5. If

9

the parameter ϵ > 0, the algorithm outputs a unitary matrix P such that
P ∗A1P, . . . , P

∗ANP are close to a block-diagonal form in the sense that the
entries in the off-diagonal blocks are of the order of ϵ.

A key observation is the following lemma, which is a parametrized ex-
tension of Lemma 3.7. Let ∥A∥ denote the Frobenius norm of A, i.e.,
∥A∥ :=

√
tr(A∗A).

Lemma 4.1. Let A be an n×n complex matrix andX be an n×n Hermitian
matrix. If ∥[A,X]∥ ≤ ϵ, then, for any unitary matrix P that diagonalizes X
as P ∗XP = diag(λ1, . . . , λn), we have

|(P ∗AP)ij | · |λi − λj | ≤ ϵ.

Proof. The proof is a straightforward extension of the proof of Lemma 3.7.
If ∥[A,X]∥ ≤ ϵ then ∥[P ∗AP,P ∗XP]∥ ≤ ϵ. Therefore∑

i,j

|(P ∗AP)ij(λi − λj)|2 ≤ ϵ2.

This implies the desired inequality.

This lemma implies that if a Hermitian matrix X satisfies

∥[Ak, X]∥ ≤ ϵ (k = 1, . . . , N), (4.1)

then the (i, j) component of P ∗AkP is of the order of ϵ, as long as λi and λj

are not too close. Hence, by replacing the equation (3.1) by (4.1) in Step 1
in Algorithm 3.5, we obtain a parametrized version of the algorithm that is
equipped with an error-control mechanism.

Algorithm 4.2 (Error-controlling version of the algorithm).

1: Sample a generic Hermitian matrix X as a random solution of (4.1).
2: Output a unitary matrix P that diagonalizes X.

In the rest of this section, we describe how to obtain a random Hermitian
solution of (4.1) needed in Step 1 of Algorithm 4.2.

If we have a (non-Hermitian) X that satisfies

∥[Ak, X]∥ ≤ ϵ, ∥[A∗
k, X]∥ ≤ ϵ (k = 1, . . . , N), (4.2)

then (X +X∗)/2 is a Hermitian solution of (4.1). Therefore we only have
to consider how to obtain a random (non-Hermitian) solution of (4.2).

Let vec(X) := (x11, . . . , xnn) be the n2-dimensional vector associated
with an n × n matrix X = (xij). Since [A,X] is linear in xij , there exists
an n2 × n2 matrix T , depending on A, such that

vec([A,X]) = T (vec(X)). (4.3)

10

Note that
∥[A,X]∥ = ∥vec([A,X])∥ = ∥Tvec(X)∥. (4.4)

Let T1, . . . , TN and T̂1, . . . , T̂N be the matrices that correspond toA1, . . . , AN

and A∗
1, . . . , A

∗
N . Then finding a matrix X in (4.2) is equivalent to finding

an n2-dimensional vector u such that

∥Tku∥ ≤ ϵ, ∥T̂ku∥ ≤ ϵ (k = 1, . . . , N). (4.5)

To find such u, we consider the n2 × n2 Hermitian matrix S defined as

S =
N∑
k=1

(
T ∗
kTk + T̂ ∗

k T̂k

)
. (4.6)

Let v1, . . . , vr be the normalized (mutually orthogonal) eigenvectors of S
with the corresponding eigenvalues smaller than ϵ2. Then any vector u =
c1v1 + · · ·+ crvr with |c1|2 + · · ·+ |cr|2 = 1 satisfies (4.5).

Summarizing the above argument, we obtain the following algorithm to
sample a random Hermitian matrix X of T ′.

Algorithm 4.3 (Generating a random HermitianX).

1: Construct the matrix S in (4.6) from A1, . . . , AN .
2: Find normalized eigenvectors, say, v1, . . . , vr of S such that correspond-

ing eigenvalues are smaller than ϵ2.
3: Sample c1, . . . , cr randomly with |c1|2 + · · ·+ |cr|2 = 1.
4: Put u = c1v1+· · ·+crvr and output the matrix X such that vec(X) = u.

Remark 4.4. In some cases a suitable value of parameter ϵ must be deter-
mined from the input matrices A1, . . . , AN alone. Since the algorithm com-
putes the eigenvalues of S explicitly, it is reasonable to set ϵ to a value that
separates relatively small eigenvalues of S. See Example 5.1 in Section 5.

In other cases we may have a priori knowledge about the order of mag-
nitude of numerical errors in the input and computation. Let A1, . . . , AN be
the nominal values of the input matrices, and Ã1, . . . , ÃN the actual inputs
containing noises and errors. Let Nk = Ãk −Ak (k = 1, . . . , N) and assume
that we know a number δ such that δ ≥ max1≤k≤N ∥Nk∥. If X satisfies

[Ak, X] = O, (4.7)

then
∥[Ãk, X]∥ = ∥[Ak, X] + [Nk, X]∥ ≤ 2∥Nk∥∥X∥ ≤ 2δ∥X∥.

Therefore we can reasonably set ϵ = 2δ∥X∥ to make the solution X of (4.7)
feasible to (4.1). Conversely, if δ is sufficiently small, any feasible solution
of (4.1) is close to some solution of (4.7) by continuity.

11

5 Numerical examples

Here we compare three algorithms by four numerical examples.
The algorithms compared here are the following: (1) the proposed algo-

rithm (R version of Algorithm 4.3), (2) the algorithm due to Murota–Kanno–
Kojima–Kojima–Maehara [12, 11] (MKKKM in short), and (3) simultaneous
block-diagonalization part of JADE algorithm [5] (JADE in short). We have
implemented the proposed algorithm and MKKKM, and used the implemen-
tation of JADE by Cardoso1.

Example problems considered here are the following: Examples 5.1 and
5.2 are illustrative examples and Examples 5.3 and 5.4 are practical examples
from SDP and ICA. Note that all examples contain small numerical noises.
For all numerical examples, the proposed algorithm competes favorably with
MKKKM and JADE.

Remark 5.1. We have excluded the algorithm by de Klerk–Dobre–Pasechnik [6]
from our comparison. This is because their algorithm needs a basis of ∗-
algebra but it is hard to generate a basis from a set of matrices that are
contaminated with numerical noises.

Example 5.1 (Noisy version of Example 3.1). Let

A1 =


2 1 0 0
1 2 0 0
0 0 1 2
0 0 2 1

 , A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


be the same matrices as in Example 3.1. Let Ã1, Ã2, and Ã3 be input
matrices such that Ãk = Ak + N(0, 10−2), where N(0, 10−2) is a matrix
whose entries independently follow the normal distribution of mean zero
and variance 10−2.

The eigenvalues of the matrix S in Algorithm 4.3 are

{0.000, 0.002, 0.004; 8.007;

15.782, 15.955, 15.976, 16.014, 16.094, 16.123, 16.170;

23.927; 39.976, 39.978, 40.054, 40.056}.

We can see that there are three relatively small eigenvalues, which serve as a
clue to an appropriate value of the control-parameter ϵ. Note that if A1, A2,
and A2 were input to Algorithm 4.3, the corresponding S would have the
following eigenvalues:

{0.000, 0.000, 0.000; 8.000;

16.000, 16.000, 16.000, 16.000, 16.000, 16.000, 16.000;

24.000; 40.000, 40.000, 40.000, 40.000},
1http://www.tsi.enst.fr/∼cardoso/Algo/Joint Diag/joint diag r.m

12

which are very close to the eigenvalues for Ã1, Ã2 and Ã3. In particular,
the three small eigenvalues of S for Ã1, Ã2 and Ã3 correspond to the zero
eigenvalues of S for A1, A2 and A3.

We set ϵ = 0.070 to separate the three small eigenvalues and then we
obtain

P =


−0.4968 0.4998 0.6101 −0.3623
−0.5005 0.5028 −0.6038 0.3634
0.5006 0.4950 0.3642 0.6097
0.5020 0.5023 −0.3615 −0.6041

 ,

P⊤XP = diag(−0.0013, 0.2246, 0.6890, 0.6891).

Since X has four distinct eigenvalues with one pair close enough to be iden-
tified. The matrices Ã1, Ã2, and Ã3 can be decomposed into three diagonal
blocks with small off-diagonal errors of magnitude of O(ϵ) as follows:

P⊤Ã1P =


2.9974 0.0095 −0.0011 −0.0000

−0.0053 2.9919 0.0047 −0.0073

0.0043 −0.0074 −0.4822 0.8684
0.0142 0.0112 0.8907 0.4710

 ,

P⊤Ã2P =


−0.9942 −0.0062 0.0131 −0.0042

0.0049 1.0049 −0.0036 −0.0065

−0.0083 0.0032 0.8759 0.4638
−0.0025 −0.0015 0.4662 −0.8762

 ,

P⊤Ã3P =


−0.9960 0.0072 −0.0152 0.0124

−0.0065 1.0157 0.0085 0.0121

−0.0214 −0.0072 −0.8841 −0.4556
−0.0047 0.0032 −0.4778 0.8921

 .

In this example, MKKKM and JADE also output the same block-diagonal
structure but there are differences in off-diagonal values. The mean and the
variance of the maximum absolute value of off-diagonals for 100 samples are
shown in Table 1. This shows that the proposed algorithm and JADE are
superior to MKKKM in this example.

Table 1: Mean and variance of the maximum absolute value of off-diagonals
of 100 samples.

Algorithm Proposed MKKKM JADE

Mean 0.0218 0.0373 0.0206
Variance 2.4482× 10−5 1.5218× 10−4 1.876× 10−5

13

Example 5.2 (High-multiplicity version of Example 5.1). Let A1, A2, and
A3 be the same matrices as in Example 5.1. Let B1, B2, and B3 be matrices
such that Bk = diag(Ak, Ak, Ak) +N(0, 10−2), which are used as the input
to the algorithms.

In this example, MKKKM and JADE never find the finest block-diagonalization;
the outputs of MKKKM have large off-block-diagonal values and the out-
puts of JADE have non-finest block-diagonal structure. In contrast, the
proposed algorithm successfully finds the finest block-diagonalization for all
problem instances.

(1)

(2)

(3)

(4)

Figure 1: A cubic truss [12].

Example 5.3 (Example from semidefinite programming). Here we work
with a problem of SDP in [12]. Consider the cubic truss in Figure 1 (Fig. 1 in
[12]), where the dotted members should be ignored here. The truss consists
of 30 members and 8 free nodes (therefore the degree of freedom is 24). The
members can be divided into three classes, so that we obtain three 24× 24
matrices A1, A2, A3.

Remark 5.2. The truss including the dotted members and the truss excluding
the dotted members have the same geometrical symmetry (Td symmetry)
but the truss excluding dotted members has additional algebraic symmetry
due to sparsity. Therefore the matrices of the truss excluding dotted mem-
bers has finer decomposition than the matrices of the truss including dotted
members. See [12] for more details.

The matrix S in the proposed algorithm is of size 576× 576 and have 32
eigenvalues of order 10−7, 18 eigenvalues of order 10−1, and 526 eigenvalues
greater than 107. Set ϵ to separate the eigenvalues of order 10−7, and then
we obtain the finest block-diagonal decomposition. (It may be noted that
when we set ϵ to separate the eigenvalues smaller than 10−1, we also obtain
the finest block-diagonal decomposition).

14

In this example, the MKKKM algorithm sometimes finds the finest de-
composition and sometimes not. (Recall that MKKKM is a randomized
algorithm, see Remark 1.1). More precisely, among the 20 runs, we have
obtained the finest decomposition 14 times. JADE algorithm never finds
the finest decomposition.

Example 5.4 (Example from independent component analysis). Here we
work with a problem of ICA, which is a standard setting in the area of
ICA. Let Y1 and Y2 be 2-dimensional signals of length T = 10000 shown
in Figure 2(a), representing a sequence of (x, y)-coordinates of T = 10000
points. Note that Y1 corresponds to the character “J” and Y2 corresponds to
the character “A”. Let Y3 and Y4 be 1-dimensional Gaussian noises of length
T = 10000. It is assumed that Y1, Y2, Y3, and Y4 are mutually independent.
Let W be a fixed random matrix and put X = W (Y1, Y2, Y3, Y4), which is
6-dimensional signal of length 10000. The ICA problem is to obtain Y1 and
Y2 from X using the numerical information of X. An accepted method for
this is to find a unitary matrix P that simultaneously block-diagonalizes the
fourth order cumulant matrices A1, . . . , AN defined as (1.1). Here each Ak is
of size 36× 36 and N = 36. We use Cardoso’s implementation2 for building
these matrices.

In this example, the proposed algorithm and JADE always found a source
signals Y1 and Y2 successfully, but MKKKM sometimes failed. Typical out-
puts are shown in Figure 2 (b)–(d). The outputs of the proposed algorithm
and JADE algorithm are sharper than the outputs of the MKKKM algo-
rithm. Note that it is legitimate that the obtained signals are rotated or
reflected.

For this example, the proposed algorithm is more useful than MKKKM.
JADE is comparable with the proposed algorithm, but the proposed al-
gorithm is recommend for practical use since it has theoretical guarantees
for finest-ness of the block-diagonal decomposition and boundness of the
off-diagonal errors.

Acknowledgments

The authors thank Yoshihiro Kanno for the data of Example 5.3. This work
is supported by a Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of Japan and by the
Global COE “The Research and Training Center for New Development in
Mathematics.”

2http://www.tsi.enst.fr/∼cardoso/Algo/Jade/jadeR.m

15

0 50 100 150 200 250 300 350 400
-400

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250
-400

-350

-300

-250

-200

-150

-100

-50

0

(a) Sources S1 and S2.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) Proposed Algorithm

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) MKKKM Algorithm

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) JADE Algorithm

Figure 2: The scatter plots of the signals for the example from ICA.

References

[1] S. Amari: Estimating functions of independent component analysis for
temporally correlated signals, Neural Computation, Vol. 12, pp. 2083-
2107, 2000.

[2] Y. Bai, E. de Klerk, D. V. Pasechnik and R. Sotirov: Exploiting group
symmetry in truss topology optimization, Optimization and Engineer-
ing, Vol. 10, No. 3, 2009.

[3] S. Boyd, P. Diaconis, P. Parrilo, L. Xiao: Fastest mixing Markov chain
on graphs with symmetries, SIAM Journal on Optimization, Vol. 20,
No. 2 (2009), pp. 792–819.

[4] J.-F. Cardoso: Multidimensional independent component analysis, In
Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing 1998, Seattle. pp. 1941–1944.

[5] J.-F. Cardoso and A. Souloumiac: Blind beamforming for non Gaussian
signals, In IEE Proceedings-F, Vol. 140 (1993), pp. 362–370.

[6] E. de Klerk, C. Dobre, and D. V. Pasechnik: Numerical block diagonal-
ization of matrix ∗-algebras with application to semidefinite program-
ming, Optimization Online, 2009. (E-Print ID : 2009-02-2244) http:

//www.optimization-online.org/DB HTML/2009/02/2244.html

16

[7] E. de Klerk, D.V. Pasechnik and A. Schrijver: Reduction of symmetric
semidefinite programs using the regular ∗-representation, Mathematical
Programming, Series B, Vol. 109 (2007), pp. 613–624.

[8] E. de Klerk and R. Sotirov: Exploiting group symmetry in semidefinite
programming relaxations of the quadratic assignment, Mathematical
Programming, Series A, 2008.

[9] K. Gatermann and P.A. Parrilo: Symmetry groups, semidefinite pro-
grams, and sums of squares, Journal of Pure and Applied Algebra,
Vol. 192 (2004), pp. 95–128.

[10] M. Kojima, S. Kojima and S. Hara: Linear algebra for semidefinite
programming, Research Report B-290, Tokyo Institute of Technology,
October 1994; also in RIMS Kokyuroku 1004, Kyoto University, pp. 1–
23, 1997.

[11] T. Maehara and K. Murota: A numerical algorithm for block-diagonal
decomposition of matrix ∗-algebras with general irreducible compo-
nents, Japan Journal of Industrial and Applied Mathematics, to ap-
pear.

[12] K. Murota, Y. Kanno, M. Kojima and S. Kojima: A numerical algo-
rithm for block-diagonal decomposition of matrix ∗-algebras with ap-
plication to semidefinite programming, Japan Journal of Industrial and
Applied Mathematics, to appear.

[13] F.J. Theis: Toward a general independent subspace analysis, In Pro-
ceedings of Neural Information Processing Systems 2006. pp. 1361–
1368.

[14] J.H.M. Wedderburn: Lectures on Matrices, American Mathematical
Society, New York, 1934; Dover, Mineola, N.Y., 2005.

17

