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Abstract

A mixed matrix pencil is a matrix pencil which has two kinds of nonzero coefficients:

fixed constants that account for conservation laws and independent parameters that repre-

sent physical characteristics. In this paper, we characterize the indices of nilpotency of the

Kronecker canonical form for a mixed matrix pencil in terms of matroids. As a byproduct,

we provide an algorithm for computing the rank of a power product of a square mixed

matrix.

1 Introduction

A matrix pencil is a polynomial matrix in which the degree of each entry is at most one. We

express a matrix pencil as D(s) = sX + Y by a pair of constant matrices X and Y . A matrix

pencil D(s) can be brought into the Kronecker canonical form by equivalence transformations

with constant nonsingular matrices. The Kronecker canonical form plays an important role in

many applications such as control theory [3, 24] and differential-algebraic equations [13, 22].

Several numerical algorithms for computing it are available [1, 4, 5, 11, 25].

Matrix pencils arising in practice are often very sparse, and it is tempting to exploit the

combinatorial structures. The Kronecker canonical form is a block diagonal matrix which

consists of nilpotent blocks, rectangular blocks, and a residual square block. Among them,

nilpotent blocks admit two combinatorial characterizations. The first one utilizes the highest

degree of subdeterminants, which can be computed by combinatorial relaxation algorithms [9,

16]. The second characterization is based on the ranks of larger constant matrices, called

expanded matrices. Under the genericity assumption that the set of nonzero coefficients is

algebraically independent, it is shown in [10] that the rank of the expanded matrix coincides

with the maximum weight of a matching in a bipartite graph, which can be computed efficiently

by combinatorial algorithms.
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The genericity assumption is justified by the fact that physical characteristics in engineering

systems are not precise in values because of noises. However, it is not always valid in practical

situations. In fact, exact numbers do arise in dynamical systems such as in Kirchhoff’s con-

servation laws in electric circuits, or in the law of conservation of mass, energy, or momentum

and the principle of action and reaction in mechanical systems. This observation led Murota

and Iri [21] to introduce the notion of a mixed matrix.

A mixed matrix is a constant matrix that consists of two kinds of numbers as follows.

Accurate Numbers (Fixed Constants) Numbers that account for conservation laws are

precise in values. These numbers should be treated numerically.

Inaccurate Numbers (Independent Parameters) Numbers that represent physical char-

acteristics are not precise in values. These numbers should be treated combinatorially as

nonzero parameters without reference to their nominal values. Since each such nonzero

entry often comes from a single physical device, the parameters are assumed to be inde-

pendent.

In order to deal with dynamical systems, it is natural to consider the polynomial matrix version,

which is called a mixed polynomial matrix [20]. In particular, the matrix pencil version is called

a mixed matrix pencil.

For mixed polynomial matrices, Murota [19] showed that the computation of the highest

degree of subdeterminants reduces to solving a valuated independent assignment problem [17,

18]. This enables us to determine nilpotent blocks for a mixed matrix pencil. Murota also

investigated the Smith normal form [14, 15] and the Smith-McMillan form at infinity [19] of a

mixed polynomial matrix in terms of the degree of subdeterminants. However, this approach

based on the valuated matroid intersection has a drawback that it requires to deal with rational

function matrices.

In this paper, we analyze the Kronecker canonical form of a mixed matrix pencil in terms of

the ranks of expanded matrices. Extending the results in [10], we prove that the computation

of the ranks of expanded matrices for mixed matrix pencils reduces to solving independent

matching problems. This leads to an algorithm for determining nilpotent blocks of a mixed ma-

trix pencil. An independent matching problem is equivalent to a matroid intersection problem,

and in particular, a linear matroid intersection problem in this case, which has been studied in

[2, 7, 8].

As a byproduct, we provide an algorithm for computing the rank of a power product Ak of

a square mixed matrix A. In general, Ak is not a mixed matrix, because Ak has an independent

parameter appearing multiple times. Therefore, we can not apply directly an algorithm for the

rank of a mixed matrix [21]. Instead, we reduce the computation of the rank of Ak to solving

an independent matching problem via the expanded matrix.

The preceding paper [10] provided combinatorial characterizations on the sizes of rectan-

gular blocks under the genericity assumption. It remains open to extend this result to mixed

matrix pencils.

The organization of this paper is as follows. In Section 2, we recapitulate the Kronecker

canonical form and its relation to the ranks of expanded matrices. We provide some key

lemmas concerning the rank of an expanded matrix in Section 3. Section 4 explains mixed
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matrix pencils. Section 5 describes independent matching problems and valuated independent

assignment problems, which are useful in the proof of our main theorem. In Section 6, we prove

that the rank of an expanded matrix for a mixed matrix pencil can be computed by solving

an independent matching problem. In Section 7, we apply our approach to the computation of

the rank of a power product of a square mixed matrix.

2 Kronecker Canonical Form of Matrix Pencils

Let D(s) = sX + Y be an m × n matrix pencil with row set R and column set C. A matrix

pencil D(s) is said to be regular if D(s) is square and detD(s) ̸= 0 as a polynomial in s. The

rank of D(s) is the maximum size of its submatrix that is a regular matrix pencil. A matrix

pencil D̄(s) is said to be strictly equivalent to D(s) if there exists a pair of nonsingular constant

matrices F and H such that D̄(s) = FD(s)H.

For a positive integer µ, we consider a µ× µ matrix pencil Nµ defined by

Nµ =



1 s 0 · · · 0

0 1 s
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 s

0 · · · · · · 0 1


.

For a positive integer ϵ, we further denote by Lϵ an ϵ× (ϵ+ 1) matrix pencil

Lϵ =


s 1 0 · · · 0

0 s 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 s 1

 .

We also denote by L⊤
η the transpose matrix of Lη.

Let us denote by block-diag(D1, . . . , Db) the block-diagonal matrix pencil with diagonal

blocks D1, . . . , Db. A matrix pencil is known to be strictly equivalent to its Kronecker canonical

form as follows.

Theorem 2.1. By a strict equivalence transformation, a matrix pencil D(s) can be brought

into its Kronecker canonical form D̄(s) with

D̄(s) = block-diag(sIν + Jν , Nµ1 , . . . , Nµd
, Lϵ1 , . . . , Lϵp , L

⊤
η1 , . . . , L

⊤
ηq , O),

where

µ1 ≥ · · · ≥ µd > 0, ϵ1 ≥ · · · ≥ ϵp > 0, η1 ≥ · · · ≥ ηq > 0,

Iν is a ν × ν identity matrix, and Jν is a ν × ν constant matrix. The numbers ν, d, p, q,

µ1, . . . , µd, ϵ1, . . . , ϵp, η1, . . . , ηq are uniquely determined.
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The matrices Nµ1 , . . . , Nµd
are called the nilpotent blocks, and the numbers µ1, . . . , µd are

called the indices of nilpotency. The numbers ϵ1, . . . , ϵp and η1, . . . , ηq are the minimal column

indices and minimal row indices, respectively. The numbers (ν, µ1, . . . , µd, ϵ1, . . . , ϵp, η1, . . . , ηq)

are called the structural indices of D(s). For the rank r of D(s), it holds that

r = ν +
d∑

i=1

µi +

p∑
i=1

ϵi +

q∑
i=1

ηi. (1)

For an m×n matrix pencil D(s) = sX+Y , we consider a km×kn matrix Θk(D) defined by

Θk(D) =



X O · · · · · · O

Y X
. . .

...

O Y
. . .

. . .
...

...
. . .

. . . X O

O · · · O Y X


.

We also construct a (k+1)m×kn matrix Ψk(D) and a km× (k+1)n matrix Φk(D) defined by

Ψk(D) =



X O · · · O

Y X
. . .

...

O Y
. . . O

...
. . .

. . . X

O · · · O Y


and Φk(D) =


X Y O · · · O

O X Y
. . .

...
...

. . .
. . .

. . . O

O · · · O X Y

 .

The rank of each expanded matrix is denoted by

θk(D) = rankΘk(D), ψk(D) = rankΨk(D), φk(D) = rankΦk(D).

The following theorem shows a close relationship between the ranks of the expanded matrices

and the structural indices.

Theorem 2.2 ([10, Theorem 2.3]). Let D(s) be a matrix pencil of rank r with the structural

indices (ν, µ1, . . . , µd, ϵ1, . . . , ϵp, η1, . . . , ηq). Then we have

θk(D) = rk −
d∑

i=1

min{k, µi},

ψk(D) = rk +

p∑
i=1

min{k, ϵi},

φk(D) = rk +

q∑
i=1

min{k, ηi}.

By Theorem 2.2, the ranks of the expanded matrices determine the indices. In this paper,

we analyze θk(D) for a mixed matrix pencil D(s) in order to obtain the indices of nilpotency

µ1, . . . , µd.
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3 Maximum Degree of Subdeterminants

In this section, we provide two key lemmas which are useful for the proof of our results. For a

polynomial matrix Z(s), let δ(Z) denote the highest degree of subdeterminants, i.e.,

δ(Z) = max{deg detZ[I, J ] | |I| = |J |}.

The first key lemma is as follows.

Lemma 3.1. Let D(s) = sX + Y be a matrix pencil. Then θk(D) = δ(sk−1D) holds.

Proof. Since θk(D) and δ(sk−1D) are invariant under strict equivalence transformations for

D(s), we may assume that D(s) is in a Kronecker canonical form with the structural indices

(ν, µ1, . . . , µd, ϵ1, . . . , ϵp, η1, . . . , ηq). Then it holds that

δ(sk−1D) = δ(skIν + sk−1Jν) +
d∑

i=1

δ(sk−1Nµi) +

p∑
i=1

δ(sk−1Lϵi) +

q∑
i=1

δ(sk−1L⊤
ηi).

Since δ(skIν+s
k−1Jν) = kν, δ(sk−1Nµ) = kµ−min{k, µ}, δ(sk−1Lϵ) = kϵ, and δ(sk−1L⊤

η ) = kη,

we obtain

δ(sk−1D) = kν + k

d∑
i=1

µi −
d∑

i=1

min{k, µi}+ k

p∑
i=1

ϵi + k

q∑
i=1

ηi = kr −
d∑

i=1

min{k, µi},

where r denotes the rank of D(s) and the last step is due to (1). This coincides with θk(D) by

Theorem 2.2.

Let Z(s) be a polynomial matrix with column set C and p : C → Z a nonnegative function.

For any subset J , we denote p(J) =
∑

j∈J p(j). We now define δ(Z; p) by

δ(Z; p) = max{deg detZ[I, J ]− p(J) | |I| = |J |}.

Then, the second key lemma is as follows.

Lemma 3.2. Let D(s) = sX + Y be a matrix pencil with column set C and p : C → Z a

nonnegative function. We denote by R̄ and C̄ the row set and the column set of Θk(D). For the

subset W of C̄ obtained by deleting the first p(j) columns corresponding to j for each j ∈ C,

it holds that

rankΘk(D)[R̄,W ] ≤ δ(sk−1D; p).

If p(j) = 0 for all j ∈ C, Lemma 3.2 implies that θk(D) ≤ δ(sk−1D), which follows from

Lemma 3.1.

Before entering the proof of Lemma 3.2, we recall some terminologies. For a rational

function f(s) = g(s)/h(s) with polynomials g(s) and h(s), its degree is defined by deg f(s) =

deg g(s)−deg h(s). A rational function f(s) is called proper if deg f(s) ≤ 0, and strictly proper

if deg f(s) < 0. We call a rational function matrix (strictly) proper if its entries are (strictly)

proper rational functions. A square proper rational function matrix is called biproper if it
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is invertible and its inverse is a proper rational function matrix. A proper rational function

matrix is biproper if and only if its determinant is a nonzero constant.

A rational function matrix Z(s) is called a Laurent polynomial matrix if sNZ(s) is a poly-

nomial matrix for some integer N . For a Laurent polynomial matrix Z(s), we denote by Zl the

coefficient matrix of sl. If Z(s) is a proper Laurent polynomial matrix, then it is expressed as

Z(s) = Z0 + s−1Z−1 + s−2Z−2 + s−3Z−3 + · · · .

For a Laurent polynomial matrix Z(s), we define δ(Z) and δ(Z; p) in a similar way to the defi-

nitions for a polynomial matrix. It is known that δ(Z) is invariant under biproper equivalence

transformations.

For a Laurent polynomial matrix Z(s) =
∑

i s
iZi, we define an expanded matrix Ξk(Z) by

Ξk(Z) =


Zk O · · · O

Zk−1 Zk
. . .

...
...

. . .
. . . O

Z1 · · · Zk−1 Zk

 .

Note that Ξk(s
kX + sk−1Y ) coincides with Θk(sX + Y ).

For a Laurent polynomial matrix Z(s) = (Zij(s)) with row set R and column set C, we

construct a bipartite graph G(Z) = (R,C;E(Z)) with

E(Z) = {(i, j) | i ∈ R, j ∈ C,Zij(s) ̸= 0}.

The maximum size of a matching in G(Z) is called the term-rank of Z(s).

The weight c(e) of an edge e = (i, j) is given by

c(e) = cij = degZij(s).

We remark that c(e) is integer for any e ∈ E(Z) if Z(s) is a Laurent polynomial matrix. The

maximum weight of a matching in G(Z) is denoted by δ̂(Z).

Consider the following linear program (PLP(Z)):

maximize
∑
e∈E

c(e)ξ(e)

subject to
∑
∂e∋i

ξ(e) ≤ 1 (∀i ∈ R ∪ C),

ξ(e) ≥ 0 (∀e ∈ E(Z)).

Then PLP(Z) has an integral optimal solution with ξ(e) ∈ {0, 1} for any e ∈ E(Z). This

optimal solution corresponds to the maximum weight matching in G(Z), and its optimal value

is equal to δ̂(Z). The dual program (DLP(Z)) is expressed as follows:

minimize p(R ∪ C)
subject to p(i) + p(j) ≥ c(e) (∀e = (i, j) ∈ E(Z)),

p(i) ≥ 0 (∀i ∈ R ∪ C).
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Since c(e) is integer for any e ∈ E(Z), DLP(Z) has an integral optimal solution by the total

unimodularity of the coefficient matrix.

In order to prove Lemma 3.2, we first provide the following lemma, which can be derived

in a similar way to [16]. A proof is given in Appendix A.

Lemma 3.3. Let Z(s) be a Laurent polynomial matrix. Then, there exists a biproper Laurent

polynomial matrix F (s) = F0 + F−1s
−1 + · · · such that δ̂(FZ) = δ(FZ) = δ(Z) and F0 is

nonsingular.

For H(s) = (Hij(s)) with Hij(s) = s−p(j)Zij(s), it follows from the definition of δ(Z; p)

that δ(H) = δ(Z; p). By Lemma 3.3, there exists a biproper Laurent polynomial matrix

F (s) = F0 + F−1s
−1 + · · · such that δ̂(FH) = δ(FH) = δ(H) and F0 is nonsingular. Consider

the linear program PLP(FH) and its dual program DLP(FH). Let p∗ be an integral optimal

dual solution. Since δ̂(FH) = p∗(R ∪ C) holds, we obtain

δ(Z; p) = δ(H) = δ̂(FH) = p∗(R ∪ C). (2)

Consider the expanded matrix Ξk(FZ) with row set R̄ and column set C̄. For Z(s) =

skX + sk−1Y , the rank of Ξk(FZ) has the following property.

Lemma 3.4. Let D(s) = sX + Y be a matrix pencil and F (s) = F0 + F−1s
−1 + · · · a

biproper Laurent polynomial matrix such that F0 is nonsingular. Then, the polynomial ma-

trix Z(s) = sk−1D satisfies rankΞk(FZ) = rankΘk(D). Moreover, rankΞk(FZ)[R̄,W ] =

rankΘk(D)[R̄,W ] holds for any subset W of C̄, where C̄ denotes the column set of Ξk(FZ).

Proof. For a constant matrix F̃ defined by

F̃ =



F0 O · · · · · · O

F−1 F0
. . .

...

F−2 F−1
. . .

. . .
...

...
. . .

. . . F0 O

F−k+1 · · · F−2 F−1 F0


,

we have Ξk(FZ) = F̃Ξk(Z) = F̃Θk(D). Since F0 is nonsingular, F̃ is also nonsingular. Thus,

we obtain rankΞk(FZ) = rankΘk(D) and rankΞk(FZ)[R̄,W ] = rankΘk(D)[R̄,W ].

The rest of this section is devoted to the proof of Lemma 3.2.

Proof of Lemma 3.2. We now prove

rankΞk(FZ)[R̄,W ] ≤ p∗(R ∪ C),

which completes the proof of Lemma 3.2 by (2) and Lemma 3.4.

For the expanded matrix Ξk(FZ), let us define the ith row set of Ξk(FZ) by Ri and the

jth column set by Cj . This means that R̄ = R1 ∪ · · · ∪Rk and C̄ = C1 ∪ · · · ∪ Ck. For

Sl = {i | i ∈ Rl, p
∗(i) ≥ k − l + 1} and Th = {j | j ∈ Ch, p

∗(j) ≥ h− p(j) > 0},
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we show that (S1 ∪ · · · ∪ Sk, T1 ∪ · · · ∪ Tk) is a cover of the bipartite graph G(Ξk(FZ)[R̄,W ]),

namely, i ∈ S1 ∪ · · · ∪Sk or j ∈ T1 ∪ · · · ∪ Tk holds for any edge (i, j) in G(Ξk(FZ)[R̄,W ]). Let

(i, j) be an edge with i ∈ Rl and j ∈ Ch. Then, the degree of the (i, j)-entry in F (s)Z(s) is

equal to k − (l − h). Since p∗ is feasible for DLP(FH), we have

p∗(i) + p∗(j) ≥ k − (l − h)− p(j) = (k − l) + (h− p(j)).

This implies that p∗(j) ≥ h− p(j) holds if p∗(i) ≤ k − l. Hence, i ∈ Sl or j ∈ Th holds, which

means that (S1 ∪ · · · ∪ Sk, T1 ∪ · · · ∪ Tk) is a cover of G(Ξk(FZ)[R̄,W ]).

Now it holds that∣∣∣∣∣
k∪

l=1

Sl

∣∣∣∣∣ =
k∑

l=1

|{i | i ∈ Rl, p
∗(i) ≥ k − l + 1}| = p∗(R),

because 0 ≤ p∗(i) ≤ k for any i ∈ R. Similarly, we obtain
∣∣∣∪k

h=1 Th

∣∣∣ = p∗(C). Thus, the

size of the cover (S1 ∪ · · · ∪ Sk, T1 ∪ · · · ∪ Tk) is equal to p∗(R ∪ C), which implies that

rankΞk(FZ)[R̄,W ] ≤ term-rankΞk(FZ)[R̄,W ] ≤ p∗(R ∪ C).

4 Mixed Matrix Pencil

In this section, we first describe the definition of mixed matrix pencils. Secondly, for a mixed

matrix pencil DM(s), we reduce the computation of θk(DM) to the computation of θk(D) for

an associated special mixed matrix pencil D(s).

A generic matrix is a matrix in which each nonzero entry is an independent parameter. A

matrix D is called a mixed matrix if D is given by D = Q+ T with a constant matrix Q and

a generic matrix T . A layered mixed matrix (or an LM-matrix for short) is defined to be a

mixed matrix such that Q and T have disjoint nonzero rows. An LM-matrix D is expressed by

D =
(
Q
T

)
.

A mixed matrix pencil is a matrix pencil version of mixed matrices. A matrix pencil D(s)

is called a mixed matrix pencil if D(s) is given by D(s) = Q(s) + T (s) with a pair of matrix

pencils Q(s) = sXQ + YQ and T (s) = sXT + YT that satisfy the following two conditions.

(MP-Q) XQ and YQ are constant matrices.

(MP-T) XT and YT are generic matrices.

Note that each independent parameter inXT and YT appears only once. A layered mixed matrix

pencil (or an LM-matrix pencil for short) is defined to be a mixed matrix pencil such that Q(s)

and T (s) satisfying (MP-Q) and (MP-T) have disjoint nonzero rows. An LM-matrix pencil

D(s) is expressed by D(s) =
(Q(s)
T (s)

)
. The polynomial matrix version of a mixed matrix is called

a mixed polynomial matrix. We define a layered mixed polynomial matrix (or an LM-polynomial

matrix for short) in a similar way.

Let DM(s) = s(XQ +XT ) + (YQ + YT ) be an m× n mixed matrix pencil. We construct an

LM-matrix pencil

D(s) = s

(
I XQ

−DT XT

)
+

(
O YQ
O YT

)
, (3)

8



where DT is a diagonal matrix with the (i, i)-entry being a new independent parameter ti. We

transform D(s) into its strictly equivalent matrix(
I O

O D−1
T

)
D(s) = s

(
I XQ

−I D−1
T XT

)
+

(
O YQ
O D−1

T YT

)
.

Since DT is a diagonal generic matrix, we can regard D−1
T XT and D−1

T YT as new generic

matrices X̃T and ỸT , respectively. Hence, D(s) and s

(
I XQ

−I X̃T

)
+

(
O YQ
O ỸT

)
, as well as

D̄(s) = s

(
I XQ

−I XT

)
+

(
O YQ
O YT

)
, have the same Kronecker canonical form. This observation

leads to the following lemma concerning the relation between DM(s) and D(s).

Lemma 4.1. Let DM(s) = s(XQ + XT ) + (YQ + YT ) be an m × n mixed matrix pencil and

D(s) its associated LM-matrix pencil defined by (3). Then we have

θk(DM) + km = θk(D). (4)

Proof. As noted above, D(s) has the same Kronecker canonical form as

D̄(s) = s

(
I XQ

−I XT

)
+

(
O YQ
O YT

)
.

Moreover, since D̄(s) is strictly equivalent to

D̄M(s) =

(
I O

I I

)
D̄(s) = s

(
I XQ

O XQ +XT

)
+

(
O YQ
O YQ + YT

)
,

we have

θk(D) = θk(D̄) = θk(D̄M). (5)

Now we can transform Θk(D̄M) as follows:

Θk(D̄M) =



Im XQ O O O O O O

O XQ +XT O O O O O O

O YQ Im XQ O O O O

O YQ + YT O XQ +XT O O O O

O O
. . .

. . . O O

O O
. . .

. . . O O

O O O O O YQ Im XQ

O O O O O YQ + YT O XQ +XT


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permutations−−−−−−−−→



Im O O O XQ O O O

O Im O O YQ XQ O O

O O
. . . O O

. . .
. . . O

O O O Im O O YQ XQ

O O O O XQ +XT O O O

O O O O YQ + YT XQ +XT O O

O O O O O
. . .

. . . O

O O O O O O YQ + YT XQ +XT


=

(
Ikm ∗
O Θk(DM)

)
.

Hence it holds that

θk(D̄M) = θk(DM) + km.

Thus we obtain (4) by (5).

By Lemma 4.1, we hereafter focus on an LM-matrix pencil.

Remark 4.2. Let DM(s) = s(XQ + XT ) + (YQ + YT ) be a mixed matrix pencil and D(s)

its associated LM-matrix pencil defined by (3). Then we can not reduce the computation of

ψk(DM) to ψk(D) and φk(DM) to φk(D) in a similar way to the proof of Lemma 4.1. This is

one of major differences between θk(DM) and ψk(DM), φk(DM).

5 Independent Matching and Valuated Independent Assign-

ment

This section is devoted to preliminaries on matroids and valuated matroids, which are combi-

natorial abstractions of matrices and polynomial matrices. After recapitulating matroids and

valuated matroids in Section 5.1, we explain the independent matching problem in Section 5.2,

and the valuated independent assignment problem in Section 5.3.

5.1 Matroids and Valuated Matroids

A matroid is a pair M = (V, I) of finite set V and a collection I of subsets of V such that

(I-1) ∅ ∈ I,

(I-2) I ⊆ J ∈ I ⇒ I ∈ I,

(I-3) I, J ∈ I, |I| < |J | ⇒ I ∪ {v} ∈ I for some v ∈ J \ I.

The set V is called the ground set, I ∈ I is an independent set, and I is the family of independent

sets. The rank function ρ of M = (V, I) is defined by

ρ(W ) = max{|I| | I ⊆W, I ∈ I} (W ⊆ V ).

10



Hereafter, we denote a matroid by M = (V, I, ρ) together with the rank function ρ. Let B be

the family of inclusion-wise maximal members of I. A member of B is called a base, and B is

the base family.

Matroids are a combinatorial abstraction of matrices with respect to linear independence.

As a generalization of matroids, Dress and Wenzel [6] introduced valuated matroids, which

originate from a combinatorial structure of polynomial matrices with respect to the degree of

determinants.

A valuated matroid is a triple M = (V,B, ω) of a ground set V , a base family B ⊆ 2V , and

a function ω : B → R that satisfy the following axiom (VM).

(VM) For any B,B′ ∈ B and u ∈ B \B′, there exists v ∈ B′ \B such that B \ {u} ∪ {v} ∈ B,
B′ ∪ {u} \ {v} ∈ B, and ω(B) + ω(B′) ≤ ω(B \ {u} ∪ {v}) + ω(B′ ∪ {u} \ {v}).

The function ω is called a valuation. The local optimality for the valuation implies the global

optimality as follows.

Theorem 5.1 ([20, Theorem 5.2.7]). A base B ∈ B satisfies ω(B) ≥ ω(B′) for any B′ ∈ B if

and only if ω(B \ {u} ∪ {v}) ≤ ω(B) holds for any u ∈ B and v ∈ V \B.

Note that a valuated matroid M = (V,B, ω) such that ω(B) = 0 for all B ∈ B coincides with

a matroid. For a polynomial b(s), we denote the degree of b(s) by deg b, where deg 0 = −∞ by

convention. For a matrix pencil D(s), D[I, J ] denotes the submatrix of D(s) with row set I

and column set J . A typical example of a valuated matroid is as follows.

Example 5.2. For an m× n matrix pencil D(s) of rank m with row set R and column set C,

let us define

B = {B ⊆ C | detD[R,B] ̸= 0} and ω(B) = deg detD[R,B].

Then (C,B, ω) is a valuated matroid.

5.2 Independent Matching Problem

The following problem is an extension of the matching problem.

[Independent Matching Problem (IMP)]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set

E, and a pair of matroids M+ = (V +, I+, ρ+) and M− = (V −, I−, ρ−), find a

matching M ⊆ E that maximizes |M | subject to

∂+M ∈ I+, ∂−M ∈ I−, (6)

where ∂+M and ∂−M denote the set of vertices in V + and V − incident to M ,

respectively.

A matching M ⊆ E satisfying (6) is called an independent matching. A pair (U+, U−) is called

a cover if U+ ⊆ V +, U− ⊆ V −, and ∂+e ∈ U+ or ∂−e ∈ U− for each e ∈ E, where ∂+e and

∂−e denote the vertex in V + and V − incident to e.
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[Dual Problem for IMP]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set E,

and a pair of matroids M+ = (V +, I+, ρ+) and M− = (V −, I−, ρ−), find a cover

(U+, U−) that minimizes ρ+(U+) + ρ−(U−).

The following min-max theorem is well-known.

Theorem 5.3 ([26]). It holds that

max{|M | |M : independent matching} = min{ρ+(U+) + ρ−(U−) | (U+, U−) : cover}.

The computation of the rank of an LM-matrix pencil D(s) can be reduced to solving an

independent matching problem [21].

5.3 Valuated Independent Assignment Problem

Murota [17, 18] introduced the valuated independent assignment problem as a generalization

of the independent matching problem. We generalize Theorem 5.3 to valuated independent

assignment problem.

[Valuated Independent Assignment Problem (VIAP)]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set

E, a pair of valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), a

weight function w : E → R, and subsets V +
0 ⊆ V + and V −

0 ⊆ V −, find a triple

(M,B+, B−) that maximizes

Ω(M,B+, B−) := w(M) + ω+(B+) + ω−(B−),

where w(M) =
∑

{w(e) | e ∈ M}, subject to the constraint that M ⊆ E is a

matching and

∂+M ⊆ B+ ∈ B+, ∂+M ∩ V +
0 = B+ ∩ V +

0 , (7)

∂−M ⊆ B− ∈ B−, ∂−M ∩ V −
0 = B− ∩ V −

0 . (8)

Consider the following dual problem for the VIAP.

[Dual Problem for VIAP]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set E,

a pair of valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), a weight

function w : E → R, and subsets V +
0 ⊆ V + and V −

0 ⊆ V −, find potential functions

p+ and p− that minimizes

ζ+(p+) + ζ−(p−),

where

ζ+(p+) := max
B+∈B+

{ω+(B+)+p+(B+)} and ζ−(p−) := max
B−∈B−

{ω−(B−)+p−(B−)},
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subject to the constraint that

p+(i) + p−(j) ≥ w(e) (∀e = (i, j) ∈ E), (9)

p+(i) ≥ 0 (∀i ∈ V + \ V +
0 ), (10)

p−(j) ≥ 0 (∀j ∈ V − \ V −
0 ). (11)

These problems are an extension of the problems introduced in [17, 18], where V +
0 = V +

and V −
0 = V −. The following is a min-max theorem for the VIAP.

Theorem 5.4 (Duality Theorem for VIAP). It holds that

max{Ω(M,B+, B−) | (M,B+, B−) satisfies (7)–(8)}
= min{ζ+(p+) + ζ−(p−) | (p+, p−) satisfies (9)–(11)}. (12)

A proof is given in Appendix B.

6 Analysis of θk(D)

Let D(s) =

(
Q(s)

T (s)

)
be an LM-matrix pencil with Q(s) = sXQ+YQ and T (s) = sXT +YT . In

this section, we prove that θk(D) coincides with the optimal value of an IMP. We give a main

theorem in Section 6.1. Sections 6.2 and 6.3 are devoted to the proof. The main theorem leads

to an algorithm for computing the indices of nilpotency µ1, . . . , µd. In Section 6.4, we discuss

the time complexity of our algorithm.

6.1 IMP for Θk(D)

For an LM-matrix pencil D(s) =

(
Q(s)

T (s)

)
, we denote the row sets of Q(s) and T (s) by RQ

and RT , respectively. Moreover, we denote the column set of D(s) by C, and its copy by

CQ = {jQ | j ∈ C}.
The expanded matrix Θk(D) is expressed as

Θk(D) =



XQ O · · · · · · O

YQ XQ
. . .

...

O YQ
. . .

. . .
...

...
. . .

. . . XQ O

O · · · O YQ XQ

XT O · · · · · · O

YT XT
. . .

...

O YT
. . .

. . .
...

...
. . .

. . . XT O

O · · · O YT XT


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C1

XQ

YQ XQ

YQ XQ

XT

YT XT

YT XT

C2 C3

RT
1

RT
2

RT
3

R̄Q

R̄T

Θ3(D) =

(
Q̄

T̄

)
=D(s) =

sXQ + YQ

sXT + YT

RQ

RT

C

Figure 1: An LM-matrix pencil D(s) and an expanded matrix Θ3(D).

by permutations. Although Θk(D) looks like an LM-matrix, it is not. This is because indepen-

dent parameters in XT and YT appear multiple times. Let us denote the upper half of Θk(D)

by Q̄, and the lower half by T̄ . Note that Q̄ = Θk(sXQ + YQ) holds and T̄ = Θk(sXT + YT ) is

not a generic matrix.

Let us denote the hth column set of Θk(D) by Ch, and the hth row set of T̄ by RT
h for

h = 1, . . . , k. Then Ch = {jh | j ∈ C} is the copy of C, and RT
h = {ih | i ∈ RT } is the copy

of RT . Moreover, let CQ
h = {iQh | iQ ∈ CQ} denote the hth copy of CQ for h = 1, . . . , k. For

the sake of simplicity, we use R̄T =
∪k

h=1R
T
h and C̄Q =

∪k
h=1C

Q
h . The row set of Q̄ is denoted

by R̄Q. These notations are summarized in Figure 1.

We define a bipartite graph G(Θk(D)) = (V̄ +, V̄ −; Ē) with

V̄ + =
k∪

h=1

CQ
h ∪

k∪
h=1

RT
h , V̄ − =

k∪
h=1

Ch, Ē =
k∪

h=1

EQ
h ∪

k∪
h=1

EX
h ∪

k−1∪
h=1

EY
h ,

where

EQ
h = {(iQh , ih) | i

Q
h ∈ CQ

h , ih ∈ Ch},
EX

h = {(ih, jh) | i ∈ RT , j ∈ C, the (i, j)-entry of XT is nonzero},
EY

h = {(ih, jh+1) | j ∈ RT , i ∈ C, the (j, i)-entry of YT is nonzero}.

The edge set
∪k

h=1E
X
h ∪

∪k−1
h=1E

Y
h corresponds to the set of nonzero entries in T̄ .

Example 6.1. Consider an LM-matrix pencil

D(s) =


s 0 0 1

0 1 s s

t1s 0 0 t2s

t3 t4 0 0

0 0 t5s t6

 ,

where t1, . . . , t6 are independent parameters. Figure 2 illustrates G(Θ3(D)).
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V +
1 V −

1

C1

CQ
1

RT
1

V +
2 V −

2 V +
3 V −

3

CQ
2

RT
2

CQ
3

RT
3

C2 C3

Figure 2: A graph G(Θ3(D)) with EQ
h (solid line), EX

h (heavy line), and EY
h (dotted line) of

Example 6.1.

We define the following IMP on G(Θk(D)). The matroids M+ = (V̄ +, I+, ρ+) and M− =

(V̄ −, I−, ρ−) attached to V̄ + and V̄ − are defined by

I+ = {I+ | I+ ⊆ V̄ +, rank Q̄[R̄Q, I+ ∩ C̄Q] = |I+ ∩ C̄Q|},
ρ+(W+) = rank Q̄[R̄Q,W+ ∩ C̄Q] + |W+ ∩ R̄T |,

and

I− = {I− | I− ⊆ V̄ −}, ρ−(W−) = |W−|.

The IMP is summarized as follows.

[IMP(Θk(D))]

Given a bipartite graphG(Θk(D)) = (V̄ +, V̄ −; Ē) and a matroidM+ = (V̄ +, I+, ρ+),

find a matching M ⊆ E that maximizes |M | subject to ∂+M ∈ I+.

The main theorem of this paper is as follows.

Theorem 6.2. Let D(s) =

(
sXQ + YQ
sXT + YT

)
be an LM-matrix pencil. Then θk(D) coincides with

the optimal value of IMP(Θk(D)).

Theorem 6.2 is known for the special case that T̄ is a generic matrix [20]. The key point

here is that T̄ is not a generic matrix.

The following is the dual problem of IMP(Θk(D)).

[DIMP(Θk(D))]

Given a bipartite graphG(Θk(D)) = (V̄ +, V̄ −; Ē) and a matroidM+ = (V̄ +, I+, ρ+),

find a cover (U+, U−) that minimizes

rank Q̄[R̄Q, U+ ∩ C̄Q] + |U+ ∩ R̄T |+ |U−|.

Theorem 5.3 implies that the optimal value of IMP(Θk(D)) coincides with the optimal value

of DIMP(Θk(D)).
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6.2 VIAP for θk(D)

Here, we introduce a VIAP and its dual problem for an LM-matrix pencilD(s) =

(
sXQ + YQ
sXT + YT

)
.

These problems are useful for the proof of Theorem 6.2.

With respect to D(s), we consider an LM-polynomial matrix

Z̃(s) =

(
I skXQ + sk−1YQ
O skXT + sk−1YT

)
. (13)

By applying Lemma 3.1 to D(s), we obtain the following corollary.

Corollary 6.3. LetD(s) =

(
sXQ + YQ
sXT + YT

)
be an LM-matrix pencil and Z̃(s) an LM-polynomial

matrix defined by (13). Then we have θk(D) = δ(Z̃).

Proof. It follows from Lemma 3.1 that θk(D) = δ(sk−1D). Hence we obtain θk(D) = δ(Z̃) by

δ(sk−1D) = δ(Z̃).

By virtue of Corollary 6.3, we focus on δ(Z̃) instead of θk(D). Note that δ(Z̃) is the highest

degree of a submatrix with row set containing RQ. For an LM-polynomial matrix, Murota [19]

showed that the computation of the highest degree of subdeterminants with row set containing

RQ reduces to a VIAP. We now derive a VIAP for δ(Z̃) in the same way as [19].

The row set and the column set of Z̃(s) are denoted by RQ ∪ RT and R ∪ C, where we

use the same notation RQ, RT , and C as the corresponding row/column set of D(s). We

denote the upper half of Z̃(s) by Q̃(s), and the lower half by T̃ (s). Consider a bipartite graph

G = (V +, V −;E) with V + = RQ ∪ CQ ∪RT , V − = R ∪ C, and E = EQ ∪ EX ∪ EY , where

EQ = {(jQ, j) | j ∈ R ∪ C},
EX = {(i, j) | i ∈ RT , j ∈ C, the (i, j)-entry of XT is nonzero},
EY = {(i, j) | i ∈ RT , j ∈ C, the (i, j)-entry of YT is nonzero}.

The weight w(e) of an edge e ∈ E is given by

w(e) =


0 (e ∈ EQ),

k (e ∈ EX),

k − 1 (e ∈ EY ).

Let us define a valuated matroid M̃ = (RQ ∪ CQ, B̃, ω̃) by

B̃ = {B ⊆ RQ ∪ CQ | det Z̃[RQ, B] ̸= 0} and ω̃(B) = deg det Z̃[RQ, B] (B ∈ B̃). (14)

Figure 3 illustrates G in Example 6.1.

We define the following VIAP on G, where V +
0 = RQ ∪ CQ and V −

0 = ∅. The valuated

matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−) attached to V + and V − are defined by

B+ = {RT ∪B | B ∈ B̃}, ω+(B+) = ω̃(B+ \RT ) (B+ ∈ B+),
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V + V −

C

CQ

RT

R

RQ

Figure 3: A graph G = (V +, V −;EQ ∪ EX ∪ EY ) with EQ (solid line), EX (heavy line), and

EY (dotted line) of Example 6.1.

and

B− = {R ∪ C}, ω−(R ∪ C) = 0.

Consider the dual problem for this VIAP. The constraints are given by

p+(i) + p−(j) ≥ 0 (∀(i, j) ∈ EQ), (15)

p+(i) + p−(j) ≥ k (∀(i, j) ∈ EX), (16)

p+(i) + p−(j) ≥ k − 1 (∀(i, j) ∈ EY ), (17)

p+(i) ≥ 0 (∀i ∈ RT ), (18)

p−(j) ≥ 0 (∀j ∈ R ∪ C). (19)

By (15), (19), and the definition of G, we may assume that

p+(i) = 0 (∀i ∈ RQ) and p−(j) = 0 (∀j ∈ R). (20)

Moreover, we may assume that

p+(jQ) = −p−(j) (∀j ∈ C). (21)

Thus, the objective function is expressed by

ζ+(p+) + ζ−(p−) = max
B∈B̃

{ω̃(B) + p+(B)}+ p+(RT ) + p−(C),

because it holds that

ζ+(p+) = max
B∈B̃

{ω̃(B) + p+(B)}+ p+(RT ),

ζ−(p−) = ω−(R ∪ C) + p−(R ∪ C) = p−(C).

Let us summarize the VIAP and its dual problem.
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[VIAP(D)]

Given a bipartite graph G = (V +, V −;E), a valuated matroid M̃ = (RQ∪CQ, B̃, ω̃),
and a weight function w : E → R, find a pair (M,B) of a matching M ⊆ E and a

base B ∈ B̃ that maximizes

Ω(M,B) := w(M) + ω̃(B),

subject to ∂+M ∩ (RQ ∪ CQ) = B.

[DVIAP(D)]

Given a bipartite graph G = (V +, V −;E), a valuated matroid M̃ = (RQ∪CQ, B̃, ω̃),
and a weight function w : E → R, find potential functions p+ and p− that minimize

max
B∈B̃

{ω̃(B) + p+(B)}+ p+(RT ) + p−(C),

subject to the constraints (15)–(19).

By Theorem 5.4, the optimal value of VIAP(D) coincides with that of DVIAP(D).

6.3 Proof of Theorem 6.2

In this section, we prove that

θk(D) = (optimal value of IMP(Θk(D))). (22)

The problems introduced in Sections 6.1 and 6.2 have the following relations.� �
θk(D)

Corollary 6.3 =

VIAP(D)
Theorem 5.4

=
DVIAP(D)

Lemma 6.4 ≥ ≤ Lemma 6.5

IMP(Θk(D))
=

Theorem 5.3
DIMP(Θk(D))

� �
The equality

θk(D) = (optimal value of VIAP(D)) (23)

is derived from Corollary 6.3, because δ(Z̃) coincides with the optimal value of VIAP(D) by

the results in [19].

We now give the proofs of the above two inequalities.

Lemma 6.4. For any LM-matrix pencil D(s), we have

(optimal value of IMP(Θk(D))) ≥ (optimal value of VIAP(D)).
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skX̂Q
I IskXQ + sk−1YQ

+sk−1ŶQ

B∗ B∗

Z̃(s) =

R R

RQ

CQ

Z̃[RQ, R ∪B∗] =

Figure 4: The polynomial matrix Z̃(s) and its submatrix Z̃[RQ, R ∪B∗].

Proof. Let (M∗, B∗) be an optimal solution of VIAP(D). We define MQ =M∗ ∩ EQ, MX =

M∗ ∩ EX , and MY =M∗ ∩ EY . Then we have

w(M∗) + ω̃(B∗) = k|MX |+ (k − 1)|MY |+ ω̃(B∗). (24)

It holds that

ω̃(B∗) = deg det Z̃[RQ, B∗] ≤ max{deg det Z̃[RQ, B] | B ⊆ R ∪B∗}. (25)

By applying Corollary 6.3 to Z̃[RQ, R ∪B∗], we obtain

max{deg det Z̃[RQ, B] | B ⊆ R ∪B∗} = θk(sX̂Q + ŶQ), (26)

where X̂Q = XQ[R
Q, B∗∩CQ] and ŶQ = YQ[R

Q, B∗∩CQ]. Figure 4 shows Z̃(s) and Z̃[RQ, R∪
B∗]. Thus it follows from (24)–(26) that

w(M∗) + ω̃(B∗) ≤ k|MX |+ (k − 1)|MY |+ θk(sX̂Q + ŶQ).

We make a copy MX
h of MX on edge set EX

h in G(Θk(D)) for h = 1, . . . , k. Similarly, MY
h

and MQ
h denote copies of MY and MQ. In G(Θk(D)), consider an independent matching

M̃ = (MX
1 ∪ · · · ∪MX

k ) ∪ (MY
1 ∪ · · · ∪MY

k−1) ∪M ′,

where M ′ satisfies M ′ ⊆MQ
1 ∪ · · · ∪MQ

k and |M ′| = θk(sX̂Q+ ŶQ). Then M̃ is an independent

matching with |M̃ | = k|MX |+ (k − 1)|MY |+ θk(sX̂Q + ŶQ). Thus we have

w(M∗) + ω̃(B∗) ≤ |M̃ | ≤ (optimal value of IMP(Θk(D))).

Lemma 6.5. For any LM-matrix pencil D(s), we have

(optimal value of DVIAP(D)) ≥ (optimal value of DIMP(Θk(D))).
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Proof. Let (p+, p−) be an integral optimal solution of DVIAP(D). We can obtain such

(p+, p−) by the construction rule given in Appendix B. In G(Θk(D)), we construct (U+, U−)

by taking

• p−(j) copies of j ∈ C from left to right,

• jQ ∈ C̄Q if U− does not contain j ∈ C̄,

• p+(i) copies of i ∈ RT from right to left.

The constraints (16)–(19) ensure that (U+, U−) is a cover. Moreover, we have

(optimal value of DIMP(Θk(D))) ≤ rank Q̄[R̄Q, U+ ∩ C̄Q] + |U+ ∩ R̄T |+ |U−|.

The construction rule of (U+, U−) implies that |U+ ∩ R̄T | = p+(RT ) and |U−| = p−(C). In

addition, it follows from Lemma 3.2 that rank Q̄[R̄Q, U+ ∩ C̄Q] ≤ δ(ZQ; p
−), where ZQ(s) =

sk−1(sXQ + YQ). Thus we obtain

(optimal value of DIMP(Θk(D))) ≤ δ(ZQ; p
−) + p+(RT ) + p−(C).

Since we have

deg detZQ[I, J ] = deg det Z̃[RQ, (R \ I) ∪ J ],

it holds that

δ(ZQ; p
−) = max{deg detZQ[I, J ]− p−(J) | |I| = |J |}

= max{deg det Z̃[RQ, (R \ I) ∪ J ]− p−(J) | |I| = |J |}
= max

B∈B̃
{ω̃(B) + p+(B)}

by (20) and (21). Thus we obtain

(optimal value of DIMP(Θk(D))) ≤ max
B∈B̃

{ω̃(B) + p+(B)}+ p+(RT ) + p−(C)

= (optimal value of DVIAP(D)).

Example 6.6. For an LM-matrix pencil given in Example 6.1, we denote the row set and the

column set by R = {r1, r2, r3} and C = {c1, c2, c3, c4}. Consider the case of k = 3. Then there

exists a feasible solution of DVIAP(D) such that

p−(c1) = 1, p−(c2) = p−(c4) = 2, p−(c3) = 3,

p+(r1) = 2, p+(r2) = 1, p+(r3) = 0, p+(jQ) = −p−(j) (∀j ∈ C),

p+(i) = 0 (∀i ∈ RQ), p−(j) = 0 (∀j ∈ R).

With these p+ and p−, we construct a cover (U+, U−) for G(Θ3(D)) depicted in Figure 5.
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Figure 5: A graph G(Θ3(D)) and a cover (U+, U−) (squares) of Example 6.6.

By Theorems 5.3 and 5.4 and Lemmas 6.4 and 6.5, we obtain

(optimal value of VIAP(D)) = (optimal value of IMP(Θk(D))). (27)

Hence (22) follows from (23). This completes the proof of Theorem 6.2.

The equality (27) implies that the independent matching M̃ constructed from an optimal

solution (M∗, B∗) of VIAP(D) in the proof of Lemma 6.4 is in fact an optimal solution of

IMP(Θk(D)). Thus, IMP(Θk(D)) has an optimal solution with periodic structure such that

each edge in
∪k

h=1E
X
h has k copies and each edge in

∪k−1
h=1E

Y
h has k−1 copies. We now exploit

this optimal solution M̃ to give an alternative proof of Theorem 6.2.

Consider the submatrix of Θk(D)[∂+M̃, ∂−M̃ ], where ∂+M̃ and ∂−M̃ denote the set of

vertices in V̄ + and V̄ − incident to M̃ , respectively. The expansion of detΘk(D)[∂+M̃, ∂−M̃ ]

contains a nonzero term ∏
(i,j)∈MX

(XT )ij
k

∏
(i,j)∈MY

(YT )ij
k−1,

where (XT )ij and (YT )ij denote the (i, j)-entries of XT and YT . Each (XT )ij appears ex-

actly k times and each (YT )ij appears exactly k − 1 times in G(Θk(D)). Hence no other

independent matching cancels this term in the expansion of detΘk(D)[∂+M̃, ∂−M̃ ]. Thus

Θk(D)[∂+M̃, ∂−M̃ ] is nonsingular, which implies (22). This completes the second proof of

Theorem 6.2.

The first proof makes use of (23), which is obtained by the results in [19]. In contrast,

the second proof does not rely on (23) but an optimal solution with a periodic structure of

IMP(Θk(D)).

6.4 Time Complexity

Let DM(s) be an m × n matrix pencil with rank r and D(s) an associated LM-matrix pencil

defined by (3). In order to compute the indices of nilpotency µ1, . . . , µd, we have to solve r

independent matching problems IMP(Θ1(D)), . . . , IMP(Θr(D)).

Murota’s algorithm [19] for computing µ1, . . . , µd solves a valuated independent assignment

problem, which needs to deal with rational function matrices. In contrast, our algorithm
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requires only constant matrix computation, because it solves independent matching problems

for linear matroids. Moreover, our algorithm has benefits in that the independent matching

problem admits a variety of efficient algorithms in comparison with a valuated independent

assignment problem.

In fact, an independent matching problem is known to be equivalent to a matroid intersec-

tion problem, and in particular, a linear matroid intersection problem in this case. For a linear

matroid intersection problem, several algorithms have been developed in [2, 7, 8]. Let n denote

the number of vertices of a linear matroid. Cunningham’s algorithm [2] runs in O(n3 log n)

time, and Gabow and Xu’s algorithm [7] runs in O(n2+
1

4−ω ) time, where ω < 2.38 is the matrix

multiplication exponent. The current fastest one is Harvey’s randomized algorithm [8], which

runs in O(nω) time.

Since D(s) is a 2m× (m+n) LM-matrix pencil, a graph G(Θk(D)) has O(kn) vertices and

O(kn2) edges under the assumption that m ≤ n holds. Therefore, we can solve IMP(Θk(D))

for k = 1, . . . , r in O(r3+
1

4−ωn2+
1

4−ω ) time by Gabow and Xu’s algorithm [7], and in O(r1+ωnω)

time by Harvey’s algorithm [8].

7 Application to Power Product of Mixed Matrices

We now consider the problem of computing the rank of Ak for an n × n mixed matrix A and

a positive integer k. An algorithm for computing the rank of mixed matrices was described

by Murota and Iri [21]. However, since Ak has an independent parameter appearing multiple

times, Ak itself is not a mixed matrix. This prevents us from applying that algorithm directly

to Ak.

Instead, we compute rankAk via the expanded matrix. For an expanded matrix

Θk(sA+ I) =



A O · · · · · · O

I A
. . .

...

O I
. . .

. . .
...

...
. . .

. . . A O

O · · · O I A


,

we can transform Θk(sA+ I) into

O O · · · O (−1)k+1Ak

I O
. . .

... (−1)kAk−1

O I
. . . O

...
...

. . .
. . . O −A2

O · · · O I A


by row operations. Hence we obtain

rankAk = θk(sA+ I)− (k − 1)n.

Therefore, rankAk is determined by θk(sA + I), which can be computed by solving an inde-

pendent matching problem.
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A Proof of Lemma 3.3

Consider PLP(Z) and DLP(Z) for a Laurent polynomial matrix Z(s) = (Zij(s)) with row

set R and column set C. By the complementary slackness condition, we have

p(i) + p(j)− c(e) > 0 ⇒ ξ(e) = 0, (28)∑
∂e∋i

ξ(e) < 1 ⇒ p(i) = 0. (29)

For a dual feasible solution p, we define a bipartite graph G∗(p) = (R,C;E∗(p)) with the set

of tight edges

E∗(p) = {e ∈ E | p(i) + p(j)− c(e) = 0}.

The tight coefficient matrix Z∗ = (Z∗
ij) is defined by

Z∗
ij =

{
the coefficient of sp(i)+p(j) in Zij(s) if e = (i, j) ∈ E∗

0 otherwise.

The set of nonzero entries of Z∗ corresponds to the edge set E∗(p). Let us define pR = (p(i) |
i ∈ R) and pC = (p(j) | j ∈ C). By the definition of Z∗, we have

Z(s) = diag(s; pR)(Z
∗ + Z∞) diag(s; pC), (30)

where Z∞ denotes a strictly proper Laurent polynomial matrix, and diag(s; r) is a diagonal

matrix with diagonal entries sr1 , sr2 , . . . with r = (r1, r2, . . . ).

The active rows and columns are defined by

I∗ = {i ∈ R | p(i) > 0} and J∗ = {j ∈ C | p(j) > 0}.

We now prove the following lemmas in a similar way to [16].

Lemma A.1. Let Z(s) be a Laurent polynomial matrix and p a dual feasible solution of

DLP(Z). Then p is optimal if and only if

term-rankZ∗[I∗, C] = |I∗| and term-rankZ∗[R, J∗] = |J∗|.

Lemma A.2. Let Z(s) be a Laurent polynomial matrix and p an optimal dual solution of

DLP(Z). Then δ(Z) = δ̂(Z) holds if and only if

rankZ∗[I∗, C] = |I∗| and rankZ∗[R, J∗] = |J∗|.

In the proof of these lemmas, we make use of a property of linking functions. A linking

function is a function λ : 2R × 2C → Z which satisfies the following conditions [12, 23].

(B-1) 0 ≤ λ(I, J) ≤ min{|I|, |J |} for I ⊆ R and J ⊆ C.
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(B-2) λ(I ′, J ′) ≤ λ(I, J) for I ′ ⊆ I ⊆ R and J ′ ⊆ J ⊆ C.

(B-3) λ(I, J) + λ(I ′, J ′) ≤ λ(I ∪ I ′, J ∩ J ′) + λ(I ∩ I ′, J ∪ J ′) for I, I ′ ⊆ R and J, J ′ ⊆ C.

In particular, the condition (B-3) is called the bisubmodularity . The rank and term-rank are

two principal examples of linking functions [20]. A linking function has the following property.

Lemma A.3. Let λ : 2R×2C → Z be a linking function, and let I∗ ⊆ R and J∗ ⊆ C be given.

Then, there exist I ⊇ I∗ and J ⊇ J∗ such that λ(I, J) = |I| = |J | if and only if

λ(I∗, C) = |I∗| and λ(R, J∗) = |J∗|.

Proof. The conditions λ(I∗, C) = |I∗| and λ(R, J∗) = |J∗| are obviously necessary. We show

the sufficiency below. Let us denote λ(I∗, J∗) by r∗. Then, there exist I1 ⊆ I∗ and J1 ⊆ J∗ such

that λ(I1, J1) = |I1| = |J1| = r∗. Hence λ(I∗, J1) = |J1| holds. Since we have λ(I∗, C) = |I∗|
by the assumption, there exists J2 ⊆ C \ J∗ such that

λ(I∗, J1 ∪ J2) = |I∗| = |J1|+ |J2|. (31)

By the bisubmodularity (B-3) of λ, it holds that

λ(R, J∗ ∪ J2) + λ(I∗, J∗) ≥ λ(R, J∗) + λ(I∗, J∗ ∪ J2)
= |J∗|+ |J1|+ |J2|,

where the last step is due to the assumption and (31). By λ(I∗, J∗) = |J1|, we have λ(R, J∗ ∪
J2) ≥ |J∗|+ |J2|, and hence

λ(R, J∗ ∪ J2) = |J∗|+ |J2|. (32)

On the other hand, it holds that

|I∗| ≥ λ(I∗, J∗ ∪ J2) ≥ λ(I∗, J1 ∪ J2) = |I∗|,

where the last step is due to (31). Hence we obtain λ(I∗, J∗ ∪ J2) = |I∗|. This implies that

there exists I2 ⊆ R \ I∗ such that

|I∗|+ |I2| = λ(I∗ ∪ I2, J∗ ∪ J2) = λ(R, J∗ ∪ J2) = |J∗|+ |J2|,

where the last step is due to (32). This completes the proof by setting I = I∗ ∪ I2 and

J = J∗ ∪ J2.

We first prove Lemma A.1 by using Lemma A.3.

Proof of Lemma A.1. By rewriting the conditions (28) and (29) with I∗ and J∗, we obtain the

following claim.

Claim A.4. Let G(Z) be a bipartite graph defined in Section 3. A matching M in G(Z) and

a dual feasible solution p of DLP(Z) are optimal if and only if ∂M ∩ R ⊇ I∗, ∂M ∩ C ⊇ J∗,

and M ⊆ E(p).
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We now rephrase Claim A.4 in terms of matrices.

Claim A.5. Let p be a dual feasible solution. Then p is optimal if and only if there exist

I ⊇ I∗, J ⊇ J∗, and term-rankZ∗[I, J ] = |I| = |J |.

This claim together with Lemma A.3 applied to the linking function term-rankZ∗[·, ·] com-

pletes the proof of Lemma A.1.

Next, we give a proof of Lemma A.2.

Proof of Lemma A.2. By (30), we have Zij(s) = sp(i)+p(j)(Z∗
ij + Z∞

ij ), where Z∞ = (Z∞
ij )

denotes a strictly proper Laurent polynomial matrix. Thus, for I ⊆ R and J ⊆ C with

|I| = |J |, we obtain

detZ[I, J ] = sp(I∪J) det(Z∗[I, J ] + Z∞[I, J ]).

If p is optimal and if I ⊇ I∗ and J ⊇ J∗, it holds that p(I ∪ J) = p(R ∪ C) = δ̂(Z), which

implies that

detZ[I, J ] = sδ̂(Z) det(Z∗[I, J ] + Z∞[I, J ]).

This yields the following claim.

Claim A.6. Let p be an optimal dual solution. Then δ(Z) = δ̂(Z) holds if and only if there

exist I ⊇ I∗ and J ⊇ J∗ such that rankZ∗[I, J ] = |I| = |J |.

This claim together with Lemma A.3 applied to the linking function rankZ∗[·, ·] completes

the proof of Lemma A.2.

In order to prove Lemma 3.3, we show the following lemma.

Lemma A.7. Let Z(s) be a Laurent polynomial matrix with δ(Z) < δ̂(Z). Then there exists

a biproper Laurent polynomial matrix F (s) such that δ̂(Z ′) ≤ δ̂(Z)−1 with Z ′(s) = F (s)Z(s).

Proof. Let p be an optimal dual solution of DLP(Z) and Z∗ the tight coefficient matrix. It

follows from δ(Z) < δ̂(Z) that

rankZ∗[I∗, C] < |I∗| or rankZ∗[R, J∗] < |J∗| (33)

by Lemma A.2.

Consider the former case, where we have rankZ∗[I∗, C] < |I∗| = term-rankZ∗[I∗, C]. Then

we have the following claim.

Claim A.8. There exists a nonsingular constant matrix F ∗ = (F ∗
ih) which satisfies

term-rank(F ∗Z∗)[I∗, C] ≤ |I∗| − 1, (34)

F ∗
ih ̸= 0 ⇒ p(i) ≤ p(h) (∀i, h ∈ R) and F ∗

ii = 1 (∀i ∈ R). (35)
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Proof. For the sake of simplicity, we may assume that p(i) ≥ p(h) holds for any i, h ∈ I∗ with

i ≤ h and that j > |I∗| holds for any j /∈ I∗. Let z∗
i denote the ith row vector of Z∗[I∗, C].

We construct the basis {z∗
i | i ∈ B} by picking up the independent vectors from the sequence

z∗
1 , z

∗
2 , . . . , z

∗
|I∗| in this order. Let z∗

l (l ≤ |I∗|) be the first row vector in this sequence that does

not belong to the basis. We define the lth row vector of the matrix F ∗ by

−z∗
l =

∑
h<l

F ∗
lhz

∗
h, F ∗

ll = 1, F ∗
lh = 0 (h > l).

For any i ̸= l, the ith row vector of F ∗ is defined to be the ith unit vector. Then the lth row

vector of (F ∗Z∗)[I∗, C] is zero, and hence (34) holds. The construction of F ∗ indicates that F ∗

satisfies (35).

With F ∗ in Claim A.8, we define F (s) by

F (s) = diag(s; pR)F
∗ diag(s;−pR), (36)

and put Z ′(s) = F (s)Z(s). Then F (s) has the following property.

Claim A.9. The matrix F (s) is a biproper Laurent polynomial matrix which satisfies δ̂(Z ′) ≤
δ̂(Z)− 1.

Proof. First, we show that F (s) is a biproper Laurent polynomial matrix. The matrix F (s) is

a Laurent polynomial matrix by (36). Moreover, it follows from (35) that F (s) is proper and

detF (s) is constant. Thus, F (s) is a biproper Laurent polynomial matrix.

Next, we prove δ̂(Z ′) ≤ δ̂(Z)− 1. By the definition of Z ′(s), (30), and (36), we have

diag(s;−pR)Z ′(s) diag(s;−pC) =diag(s;−pR)F (s)Z(s) diag(s;−pC)
=F ∗ diag(s;−pR)Z(s) diag(s;−pC)
=F ∗(Z∗ + Z∞) = F ∗Z∗ + F ∗Z∞,

where Z∞ designates a strictly proper Laurent polynomial matrix. This implies that c′(e) −
p(i) − p(j) ≤ 0 for c′(e) = degZ ′

ij(s). Hence p is feasible for DLP(Z ′), but not optimal by

Lemma A.1 and (34). Thus we have

δ̂(Z ′) < p(R ∪ C) = δ̂(Z),

because p is optimal for DLP(Z).

By Claims A.8 and A.9, we complete the proof of the former case in (33). We can show

the latter case similarly by replacing Z∗[I∗, C] by Z∗[R, J∗]. This completes the proof of

Lemma A.7.

We now complete the proof of Lemma 3.3. Let Z(s) be a Laurent polynomial matrix with

δ(Z) < δ̂(Z). By Lemma A.7, there exists a biproper Laurent polynomial matrix F1(s) such

that δ̂(Z1) ≤ δ̂(Z)− 1 with Z1(s) = F1(s)Z(s). Since F1(s) is biproper, δ(Z1) = δ(Z) holds.

If δ(Z1) = δ̂(Z1) holds, then F1(s) serves as F (s) in Lemma 3.3. Otherwise, there exists a

biproper Laurent polynomial matrix F2(s) such that δ̂(Z2) ≤ δ̂(Z1)−1 with Z2(s) = F2(s)Z1(s)

by Lemma A.7.
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Thus, by applying Lemma A.7 repeatedly, we obtain biproper Laurent polynomial matrices

F1(s), F2(s), . . . , Fh(s) such that δ̂(Zi+1) ≤ δ̂(Zi) − 1 holds for i = 1, . . . , h − 1 and δ̂(Zh) =

δ(Zh) holds, where Zi+1(s) = Fi+1(s)Zi(s). By setting F (s) = Fh(s)Fh−1(s) · · ·F1(s), we have

δ(Z) = δ(FZ) = δ̂(FZ), and F (s) = F0 + F−1s
−1 + · · · is a biproper Laurent matrix with

nonsingular matrix F0. This completes the proof of Lemma 3.3.

B Proof of Theorem 5.4

Let (M,B+, B−) be a feasible solution for VIAP and (p+, p−) a feasible solution for Dual

Problem for VIAP. It follows from (9) that

Ω(M,B+, B−) = w(M) + ω+(B+) + ω−(B−)

≤ p+(∂+M) + p−(∂−M) + ω+(B+) + ω−(B−).

By (7), (8), (10) and (11), it holds that p+(∂+M) ≤ p+(B+) and p−(∂−M) ≤ p−(B−). Hence

we have

p+(∂+M) + p−(∂−M) + ω+(B+) + ω−(B−) ≤ {p+(B+) + ω+(B+)}+ {p−(B−) + ω−(B−)}
≤ ζ+(p+) + ζ−(p−).

Thus we obtain

Ω(M,B+, B−) ≤ ζ+(p+) + ζ−(p−). (37)

Let (M∗, B
+
∗ , B

−
∗ ) be an optimal solution for VIAP. We prove that there exists (p+, p−)

such that

Ω(M∗, B
+
∗ , B

−
∗ ) = ζ+(p+) + ζ−(p−), (38)

which completes the proof by (37).

Let us denote the reorientation of a ∈ E by a◦. In order to find (p+, p−) satisfying (38), we

construct an auxiliary graph G̃ = (Ṽ , A) with

Ṽ = V + ∪ V − ∪ {s} and A = Ẽ ∪ E+ ∪ E− ∪M◦ ∪ S,

where s is a new vertex and

Ẽ = {(i, j) | (i, j) ∈ E} (copy of E),

E+ = {(i, j) | i ∈ B+
∗ , j ∈ V + \B+

∗ , B
+
∗ \ {i} ∪ {j} ∈ B+},

E− = {(j, i) | i ∈ B−
∗ , j ∈ V − \B−

∗ , B
−
∗ \ {i} ∪ {j} ∈ B−},

M◦ = {a◦ | a ∈M∗},
S = {(s, i) | i ∈ (B+

∗ \ ∂+M∗) ∪ (V − \ V −
0 )}.

We define the arc length γ : A→ Z by

γ(a) =



−w(a) (a ∈ Ẽ),

−ω+(B+
∗ \ {i} ∪ {j}) + ω+(B∗) (a = (i, j) ∈ E+),

−ω−(B−
∗ \ {i} ∪ {j}) + ω−(B∗) (a = (j, i) ∈ E−),

w(a◦) (a ∈M◦
∗ ),

0 (a = (s, i) ∈ S).

(39)
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s

w(a◦)

−w(a)

0

: (V + \B+
∗ ) ∪ (V − \B−

∗ )

: (B+
∗ \ ∂+M∗) ∪ (B−

∗ \ ∂−M∗)

: ∂+M∗ ∪ ∂−M∗

V + V −
V +
0

V −
0

Figure 6: An auxiliary graph G̃ = (Ṽ , A), where heavy lines show edges in a matching.

Figure 6 illustrates G̃ = (Ṽ , A).

Let d(i) be a shortest distance from s to i ∈ V +∪V − with respect to the arc length γ in G̃.

If there exists no path from s to i, then we put d(i) = ∞. Since all arcs entering i ∈ B+
∗ \∂+M∗

start from s, we have

d(i) = 0 (∀i ∈ B+
∗ \ ∂+M∗). (40)

Let us assume that there exists a shortest path P from s to i ∈ (∂+M∗ \V +
0 )∪ (V + \B+

∗ ) with

negative distance. Then, the triple (M̂, B̂+, B̂−) obtained by

M̂ =M∗ \ {a ∈M∗ | a◦ ∈ P ∩M◦
∗ } ∪ (P ∩ Ẽ),

B̂+ = B+
∗ \ {i | (i, j) ∈ P ∩ E+} ∪ {j | (i, j) ∈ P ∩ E+},

B̂− = B−
∗ \ {i | (j, i) ∈ P ∩ E−} ∪ {j | (j, i) ∈ P ∩ E−},

satisfies Ω(M̂, B̂+, B̂−) > Ω(M∗, B
+
∗ , B

−
∗ ), which contradicts the optimality of (M∗, B

+
∗ , B

−
∗ ).

Hence we have

d(i) ≥ 0 (∀i ∈ (∂+M∗ \ V +
0 ) ∪ (V + \B+

∗ )).

Similarly, it holds that d(j) ≥ 0 for j ∈ B−
∗ \ ∂−M∗. Since there exists an arc (s, j) for each

j ∈ V − \ V −
0 , we have

d(j) = 0 (∀j ∈ B−
∗ \ ∂−M∗), (41)

d(j) ≤ 0 (∀j ∈ (∂−M∗ \ V −
0 ) ∪ (V − \B−

∗ )). (42)

By p+(i) = d(i) for i ∈ V + and p−(j) = −d(j) for j ∈ V −, we obtain (p+, p−) satisfying

(9)–(11).

For (i, j) ∈ E+, it holds that

p+(i)− ω+(B+
∗ \ {i} ∪ {j}) + ω+(B+

∗ ) ≥ p+(j),
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which implies

ω+(B+
∗ ) + p+(B+

∗ ) ≥ ω+(B+
∗ \ {i} ∪ {j}) + p+(B+

∗ \ {i} ∪ {j}).

Hence B+
∗ is a maximizer of ω++p+ by Theorem 5.1. Similarly B−

∗ is a maximizer of ω−+p−.

Therefore, we have

ζ+(p+) + ζ−(p−) = max
B+∈B+

{ω+(B+) + p+(B+)}+ max
B−∈B−

{ω−(B−) + p−(B−)}

= ω+(B+
∗ ) + p+(B+

∗ ) + ω−(B−
∗ ) + p−(B−

∗ ). (43)

It follows from (40) and (41) that

p+(B+
∗ \ ∂+M∗) = 0 and p−(B−

∗ \ ∂−M∗) = 0.

Since p+(∂+M∗) + p−(∂−M∗) = w(M∗) holds, we have

ω+(B+
∗ ) + p+(B+

∗ ) + ω−(B−
∗ ) + p−(B−

∗ ) = ω+(B+
∗ ) + p+(∂+M∗) + ω−(B−

∗ ) + p−(∂−M∗)

= ω+(B+
∗ ) + ω−(B−

∗ ) + w(M∗)

= Ω(M∗, B
+
∗ , B

−
∗ ). (44)

Thus we obtain (p+, p−) satisfying (38) by (43) and (44).
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