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Abstract

Many of practical design specifications are provided by finite frequency proper-
ties described by inequalities over restricted finite frequency intervals. A quadratic
differential form (QDF) is a useful algebraic tool when we consider dissipation
theory based on the behavioral approach. In this paper, we investigate time do-
main characterizations of the finite frequency domain inequalities (FFDIs) using
QDFs. Based on QDFs, we derive a characterization of the FFDIs using quadratic
differential forms as a main result. This condition leads to a physical interpretation
in terms of the compensating rate, which guarantees dissipativity of some behavior
with some rate constraints. Such interpretation has not been clarified by the pre-
vious studies of finite frequency properties. The aforementioned characterization
yields an LMI condition whose solvability is equivalent to the FFDIs. This can be
regarded as the finite frequency KYP lemma in the behavioral framework.

1 Introduction

Many of practical design specifications are provided by sets of finite frequency prop-
erties which are expressed as inequalities over restricted finite frequency intervals.
Hence, the properties play an important role for dynamical system design including
plant and controller design integration.

The previous works on characterizations of finite frequency properties are as fol-
lows. Iwasaki et.al [3][6] derived a linear matrix inequality (LMI) characterization for
the finite frequency properties, which is called generalized Kalman-Yakubovič-Popov
(KYP) lemma. Based on the lemma, a time domain characterization was derived in
terms of an integral of the supply rate, called matrix valued integral quadratic constraint
(IQC), for asymptotically stable state-space systems [5]. However, their physical inter-
pretation was not fully satisfactory, when we consider the interaction between supplied
power and internal energy of a system. In addition, their characterization was not es-
sential from the view point of dissipation theory, since the characterization was derived
through the generalized KYP lemma. For such reasons, it has been desired that we
characterize the finite frequency properties from the dissipativity viewpoints directly.
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Dissipativity is one of the most important properties when we analyze a dynami-
cal system from the energy and power interaction with its outside environment. This
interaction is expressed by an inequality called dissipation inequality. It may be im-
portant that we consider a dissipativity analysis in frequency domains. This can be
verified by the following facts. It is well-known that dissipativity can be equivalently
transformed to the inequality over the imaginary axis [14]. Moreover, a stability condi-
tion for a feedback system is given in terms of integrals over entire frequencies, called
IQC [10]. This paper clarifies how the constraint on the frequency variable appears in
the dissipation inequality.

A quadratic differential form (QDF) is a useful algebraic tool in dissipation the-
ory based on the behavioral approach [15], because it has a one-to-one correspondence
to a two-variable polynomial matrix. Since the behavioral approach is the theoretic
framework which does not assume an input-output relationship in advance, we can nat-
urally analyze and design a system described by a nonproper transfer function. Based
on QDFs, Willems and Trentelman [16] has proved that dissipativity of a behavior
is equivalent to a certain frequency domain inequalities on the entire frequency range.
This also leads to an equivalent LMI characterization of the inequalities [13]. However,
neither time domain characterization nor LMI characterization of the finite frequency
properties has not been derived in the behavioral framework.

In this paper, we consider a characterization of finite frequency properties in the
framework of dissipation theory. As a main result, we derive a characterization of the
FFDIs in terms of the dissipation inequality described by QDFs. This characteriza-
tion allows us to understand the significance of the properties directly and yields an
equivalent LMI characterization as a natural result of the characterization using the
inequality.

The organization of the paper is as follows. In Subsection 2.1, we review some
basic definitions and results about the behavioral system theory. We introduce QDFs in
Subsection 2.2 and explain dissipation theory based on QDFs in Subsection 2.3. The
problem formulation is provided in Section 3. In Section 4, we derive a characterization
of the finite frequency properties based on dissipation inequality as a main result. In
this result, we characterize the dissipativity properties in terms of some behaviors. We
restrict our attention to input-output setting in Section 5 and strengthen the characteri-
zation to the finite frequency bounded- and positive-realness with a typical mechanical
example. Based on the characterization, we give a finite frequency KYP lemma for a
numerical checking of the finite frequency properties in Section 6. Figure 1 explains a
series of these results comparing with the previous works [3][5][6].

Finite Frequency
Properties

[3]⇐⇒
Generalized

(Finite Frequency)
KYP Lemma

m Theorem 1
in Section 4

⇐⇒ m [5]
Theorem 2
in Section 6

Dissipation Inequality ⇐⇒
Theorem 1
in Section 4

Integral of
Supply Rate

Figure 1: This figure shows the relationship between the series of our conditions and
the previous works.
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We use the following notations throughout this paper.
The set ofp× q real and complex matrices are denoted byRp×q andCp×q, respec-

tively. We also denoteSq×q andHq×q as the set ofq × q real symmetric and Hermite
matrices, respectively.

We denoteRp×q[ξ] andRp×q[ζ, η] as the set ofp×q one- and two-variable polyno-
mial matrices, respectively. The set ofp× q complex coefficient one- and two-variable
polynomial matrices are denoted byCp×q[ξ] andCp×q[ζ, η], respectively. We denote
the set ofq × q Hermite two-variable polynomial matrices in the indeterminatesζ and
η byHq×q[ζ, η].

We denoteWT as the set of maps fromT to W. DefineC∞(R,V) as the set of
infinitely differentiable functions fromR to the vector spaceV. We also define

D∞(R,V) := {` ∈ C∞(R,V) | ` has a compact support} .

LetL2(C,V) denote the set ofL2 functions fromC toV.
Finally, the row dimension of the matrixA is denoted byrowdim(A). We de-

fine the rank of polynomial matrixR(ξ) and constant matrixR(λ) are denoted by

rankR and rankR(λ), respectively. We denote the matrix
[
A>1 A>2 · · · A>n

]>
by col (A1, A2, · · · , An). We definediag(A1, A2, · · · , An) as theq × q (block) di-
agonal matrix with (block) diagonal elements{A1, A2, · · · , An}. We also define
He (A) = 1

2 (A + A∗).

2 Preliminaries

In this section, we will review the basic definitions and results from the behavioral
system theory, which are taken from the references [11][15][16].

2.1 Linear Continuous-time Systems

In the behavioral system theory, a dynamical system is defined as a tripleΣ =
(T,W,B), whereT is the time axis, andW is the signal space in which the trajec-
tories take their values on. The behaviorB ⊆WT is the set of all possible trajectories.

In this paper, we will consider alinear time-invariantcontinuous-time systemwith
T = R andW = Cq. Such aΣ is represented by a system of linear differential-
algebraic equation as

R0w + R1
d

dt
w + · · ·+ RL

dL

dtL
w = 0, (1)

whereRi ∈ Cp×q (i = 0, 1, · · · , L) andL ≥ 0. The variablew ∈ C∞(R,Cq) is called
themanifest variable. We call the representation (1) akernel representationof B. A
short hand notation for (1) is

R

(
d

dt

)
w = 0, (2)

whereR ∈ Cp×q[ξ] is given by

R(ξ) := R0 + R1ξ + · · ·+ RLξL. (3)
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Then, the behavior is is defined as

B :=
{

w ∈ C∞(R,Cq)
∣∣∣∣ R

(
d

dt

)
w = 0

}
. (4)

The representation (2) is said to be aminimal representation ofB if rowdimR ≤
rowdimR′ holds for any otherR′ ∈ C•×q[ξ] which induces a kernel representation of
B.

For ease of later discussion, we define thecoefficient matrix ofR(ξ) in (3) as

R̃ :=
[
R0 R1 · · · RL

] ∈ Cp×(L+1)q.

The polynomial matrixR(ξ) is expressed asR(ξ) = R̃ZL(ξ) in terms ofR̃, where
Zi ∈ R(i+1)q×q[ξ] (i = 0, 1, · · · ) is the polynomial matrix constructed by stacking the
polynomial matrices

{
Iq, ξIq, · · · , ξiIq

}
, i.e.

Zi(ξ) =




Iq

ξIq

...
ξiIq


 . (5)

The behaviorB is calledcontrollable, if for any trajectoriesw1, w2 ∈ B, there
exists a timeT ≥ 0 and a trajectoryw ∈ B such that

w(t) =
{

w1(t) (t ≤ 0),
w2(t− T ) (t ≥ T ).

The behaviorB is controllable if and only ifrankR(λ) is constant for allλ ∈ C [15].
WheneverB is controllable, it can be described by animage representation

w = M

(
d

dt

)
`, M ∈ Cq×m[ξ], (6)

where the variablè ∈ C∞(R,Cm) is called thelatent variable. Then,B is given as
the image of the differential operatorM

(
d
dt

)
by

B = {w ∈ C∞ (R,Cq) | ∃ ` ∈ C∞ (R,Cm) s.t. (6)} .

An image representation in (6) is a special case of the representation ofB. The
system of differential equations

R

(
d

dt

)
w = M

(
d

dt

)
` (7)

is said to be alatent variable representationof B. In terms of the latent variable
representation,B can be rewritten as

B = {w ∈ C∞(R,Cq) | ∃ ` ∈ C∞(R,Cm) s.t. (7) holds} .

An image representation ofB is calledobservableif w = M
(

d
dt

)
` = 0 implies

` = 0. The representation (6) is observable if and only if the constant matrixM(λ) is
of full column rank for allλ ∈ C [15].
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If (6) is an observable image representation, there exists a nonsingular permutation
matrixΠ ∈ Cq×q satisfying

ΠM(ξ) =
[
Y (ξ)
U(ξ)

]
, Y ∈ Cp×m[ξ], U ∈ Cm×m[ξ], p + m = q (8)

with U(ξ) nonsingular [15]. Such a partition is called aninput-output partition of
M(ξ). We can regard

u := U

(
d

dt

)
` and y := Y

(
d

dt

)
`

as input and output, respectively. In this case, corresponding to the above partition, the
transfer functionG ∈ Cp×m(ξ) from u to y is defined by

G(ξ) := Y (ξ)U−1(ξ). (9)

2.2 Quadratic Differential Forms

We review the definition of a quadratic differential form (QDFs) [16] which plays a
central role in this paper. We also give some basic results with respect to QDFs and
dissipativity.

We first consider a two-variable polynomial matrix inCq1×q2 [ζ, η] described by

Φ(ζ, η) =
∑

i≥0

∑

j≥0

Φi,jζ
iηj ,

whereΦi,j ∈ Cq1×q2 . The above summation ranges over the non-negative integers and
is assumed to be finite. The degrees ofΦ(ζ, η) with respect toζ andη are defined as

degζ Φ = max
(i,j)∈I

i and degη Φ = max
(i,j)∈I

j,

whereI ⊂ Z2 is defined by

I :=
{
(i, j) ∈ Z2 | Φi,j 6= 0q1×q2

}
.

Thebilinear differential form (BDF)LΦ(`1, `2) is a bilinear form of the variables
`k ∈ C∞(R,Cqk) (k = 1, 2) and their derivatives, namely

LΦ : C∞(R,Cq1)× C∞(R,Cq2) → C∞(R,R),

with form

LΦ(`1, `2) :=
K1∑

i=0

K2∑

j=0

(
di`1
dti

)∗
Φi,j

dj`2
dtj

,

whereK1 := degζ Φ andK2 := degη Φ. There is a one-to-one correspondence be-
tween the BDF and the two-variable polynomial matrix

Φ(ζ, η) =
K1∑

i=0

K2∑

j=0

Φi,jζ
iηj . (10)
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This means thatζ andη correspond to the differentiations on`∗1 and`2, respectively.
ForΦ(ζ, η) in (10), we define the mappings

∂ : Cq1×q2 [ζ, η] → Cq1×q2 [ξ], ∂Φ(ξ) := Φ(−ξ, ξ),

? : Cq1×q2 [ζ, η] → Cq2×q1 [ζ, η], Φ?(ζ, η) := Φ∗(η̄, ζ̄).

With every Φ ∈ Cq1×q2 [ζ, η] in (10), we define itscoefficient matrixΦ̃ ∈
C(K1+1)q1×(K2+1)q2

∼: Cq1×q2 [ζ, η] → C(K1+1)q1×(K2+1)q2 ,

Φ̃ :=




Φ0,0 Φ0,1 · · · Φ0,K2

Φ1,0 Φ1,1 · · · Φ1,K2

...
...

...
...

ΦK1,0 ΦK1,1 · · · ΦK1,K2


 .

Then,Φ(ζ, η) is expressedΦ(ζ, η) = Z>K1
(ξ)Φ̃ZK2(η) usingΦ̃ andZi(ξ) in (5).

For Φ ∈ Cq1×q2 [ζ, η] in (10), there exist̃Mk ∈ CrankeΦ×(Nk+1)qk (k = 1, 2)
satisfyingΦ̃ = M̃∗

1 ΣΦM̃2, whereΣΦ ∈ SrankeΦ×rankeΦ, M̃1, M̃2 are of full row rank,
anddetΣΦ 6= 0. This can be proved by using the inertia theorem. In this case, we get
rankΣΦ = rankΦ̃. With such a factorization of̃Φ, we obtain acanonical factorization
of Φ(ζ, η) as

Φ(ζ, η) = F ?
1 (ζ)ΣΦF2(η), (11)

whereFk ∈ CrankeΦ×qk [ξ] (k = 1, 2) is defined byFk(ξ) := F̃kZNk
(ξ).

We callΦ(ζ, η) Hermitianif Φ(ζ̄, η̄)∗ = Φ(η, ζ) holds (implyingq1 = q2 =: q and
K1 = K2 =: K). Then,Φ(ζ, η) is expressed as

Φ(ζ, η) =
K∑

i=0

K∑

j=0

Φi,jζ
iηj . (12)

In this case,Φ(ζ, η) induces aquadratic differential form (QDF)represented by

QΦ : C∞(R,Cq) → C∞(R,R),
QΦ(`) := LΦ(`, `).

Thederivativeof the VQDFQΨ(`) is defined byd
dtQΨ(`). This is also a QDF. Let

∇Ψ ∈ Hq×q[ζ, η] induce d
dtQΨ(`), i.e.Q∇Ψ(`) = d

dtQΨ(`). Then, it is given by

∇Ψ(ζ, η) = (ζ + η)Ψ(ζ, η).

The nonnegativity of a QDF is characterized by its coefficient matrix as seen in the
following lemma.

Lemma 1 [16][1] Let Φ ∈ Hq×q[ζ, η] be given. Then, we haveQΦ(`) ≥ 0 for all
` ∈ C∞(R,Cq) if and only if

Φ̃ ≥ 0 (13)

holds.
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2.3 Dissipation Theory

We assume thatB in (4) is controllable in this section. Then,B has an observable
image representation (6). LetΦ ∈ Hq×q[ζ, η] be given.

We give the definition of dissipativity of a behavior.

Definition 1 [16] Assume thatB is controllable. LetΦ ∈ Hq×q[ζ, η] be given. Then,
a behaviorB is calleddissipative with respect to the supply rateQΦ(w) if

∫ +∞

−∞
QΦ(w)dt ≥ 0, ∀ w ∈ B ∩ D∞(R,Cq)

holds.

We may think ofQΦ(w) as the power delivered to the behaviorB. The dissipativity
implies that the net flow of energy into the system is non-negative. This shows the
system dissipates energy. Hence, due to this dissipation, the rate of increase of the
energy stored inside of the system does not exceed the power supplied to it. This
interaction between supply, storage, and dissipation is now formalized in Definition 2
and Proposition 1 below.

We give the definition of a storage function and dissipation rate.

Definition 2 [16] Assume thatB is controllable. LetΦ ∈ Hq×q[ζ, η] be given.

(i) The QDFQΨ(w) induced byΨ ∈ Hq×q[ζ, η] is called astorage function forB
with respect to the supply rateQΦ(w) if

d

dt
QΨ(w) ≤ QΦ(w), ∀ w ∈ B (14)

holds. We call (14) thedissipation inequality.

(ii) The QDFQ∆(w) induced by∆ ∈ Hq×q[ζ, η] is called adissipation rate for
QΦ(w) if

Q∆(w) ≥ 0, ∀ w ∈ B (15)

and
∫ +∞

−∞
QΦ(w)dt =

∫ +∞

−∞
Q∆(w)dt, ∀ w ∈ B ∩ D∞(R,Cq)

hold.

There is a one-to-one relation between a storage functionQΨ(w) and a dissipation rate
Q∆(w) defined by

d

dt
QΨ(w) = QΦ(w)− Q∆(w). (16)

The equation (16) is called thedissipation equality.
The next proposition gives a characterization of the dissipativity in terms of a stor-

age function and a dissipation rate.

Proposition 1 [16] LetΦ ∈ Hq×q[ζ, η] be given. The following statements (i), (ii) and
(iii) are equivalent.

(i) The behaviorB is dissipative with respect to the supply rateQΦ(w).
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(ii) There existsΨ ∈ Hq×q[ζ, η] satisfying the dissipation inequality(14).

(iii) There existΨ ∈ Hq×q[ζ, η] and∆ ∈ Hq×q[ζ, η] satisfying(15) and the dissipa-
tion equality(16).

Consider the frequency domain inequality (FDI) expressed as

M(jω)∗∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ R. (17)

The FDI (17) is a necessary and sufficient condition for the dissipativity ofB from
Proposition 5.2 in [16].

Proposition 2 [16] Assume thatB is controllable. Let(6) be an observable image
representation ofB andΦ ∈ Hq×q[ζ, η] induce the supply rate forB. Then, FDI(17)
holds if and only if the behaviorB is dissipative with respect to the supply rateQΦ(w).

The above proposition shows that (17) is an inequality which interprets the dissipativity
in the frequency domain.

3 Problem Formulation

In this paper, we consider a characterization of finite frequency properties in the frame-
work of dissipation theory. We give the problem formulation in this section.

We consider a controllable linear time-invariant systemΣ = (R,Cq,B) in this
paper. Assume thatB is controllable. The behaviorB is typically represented by the
kernel representation (2), wherew ∈ C∞(R,Cq) is the manifest variable andR ∈
Cp×q[ξ]. Then, the behavior is given by (4). Assume that (2) is minimal throughout
paper and suppose that an observable image representation ofB is described by (6) for
M ∈ Cq×m[ξ].

Let Φ ∈ Hq×q[ζ, η] in (12) be given. Suppose that thisΦ(ζ, η) induces the supply
rate forB. Define the frequency domainΩ in the finite interval by

Ω := {ω ∈ R | τ(ω −$1)(ω −$2) ≤ 0} , (18)

where$1, $2 ∈ R, $1 ≤ $2 andτ ∈ Z is either+1 or −1. Our goal is to find
a characterization of the finite frequency property described by the followingfinite
frequency domain inequality (FFDI)using QDFs:

M∗(jω)∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ Ω. (19)

The setΩ for τ = +1 represents the middle frequency interval[$1, $2], while Ω
expresses the high frequency domain(−∞, $1] and[$2,+∞) in the case ofτ = −1.
Moreover,Ω becomes the entire real numbers, i.e.Ω = R, if we choose$1 = $2 := 0
with τ = −1.

An interpretation of the FFDI (19) from the behavioral approach is the following.
Consider the QDFQΦ(w) induced byΦ ∈ Hq×q[ζ, η] in (12). The Fourier transform
of QΦ(w) is computed as

ŵ(jω)∗∂Φ(jω)ŵ(jω) = ˆ̀(jω)∗M(jω)∗∂Φ(jω)M(jω)ˆ̀(jω),

where ŵ ∈ L2(C,Cq) and ˆ̀ ∈ L2(C,Cm) are Fourier transform ofw ∈ B ∩
D∞(R,Cm) and` ∈ D∞(R,Cm), respectively. Sincè(t) can be taken an arbitrarily
trajectory inD∞(R,Cm), the inequality

ŵ(jω)∗∂Φ(jω)ŵ(jω) ≥ 0, ∀ w ∈ B ∩ D∞(R,Cm), ω ∈ Ω

8



is equivalent to FFDI (19). We can regard the above inequality imposes a weighted
frequency constraint onw ∈ B over the restricted frequency domainΩ. Hence, it
expresses the weighted rate limitation on the trajectories contained inB, although the
FFDI (19) is described by usingM(ξ).

Remark 1 In the state-space setting [3][5][6], Iwasaki et.al considered the FFDI1

[
(jωIn −A)−1

B
Im

]∗
Φ0

[
(jωIn −A)−1

B
Im

]
≤ 0, ∀ ω ∈ Ω, (20)

whereΦ0 ∈ H(n+m)×(n+m), A ∈ Cn×n, B ∈ Cn×m and(A,B) is a controllable pair.
We can regard the FFDI (19) as a generalization of the FFDI (20) to the behavioral
approach. It is explained as follows. LetY ∈ Cp×m[ξ] andU ∈ Cm×m[ξ] be defined
by a right coprime factorization(ξIn −A)−1

B = Y (ξ)U−1(ξ). If we defineM(ξ) :=
col (Y (ξ), U(ξ)) andΦ(ζ, η) := −Φ0 ∈ Hq×q, then (19) is rewritten by the FFDI (20).
In addition, defineΦ0 as

Φ0 :=
1
2
Π∗

[
0m×m Im

Im 0m×m

]
Π,

then the FFDI (20) falls to the finite frequency positive realness [6]. Thus, the
FFDI (19) can be considered as a generalization of the FFDI (20) to the behavioral
approach.

4 Characterization of Finite Frequency Properties

This section derives a characterization of finite frequency properties in terms of a dis-
sipation inequality and an integral of the supply rate using QDFs as a main result.

4.1 Main Theorem

We define$− ∈ R and$+ ∈ R by

$− :=
$2 −$1

2
and $+ :=

$1 + $2

2
(21)

and the setG by

G :=





Γ ∈ Hq×q[ζ, η]

∣∣∣∣∣∣∣∣

Γ(ζ, η) :=
[
1
ζ

]∗ [−$1$2 −j$+

j$+ −1

] [
1
η

]
Υ(ζ, η)

for someΥ ∈ Hq×q[ζ, η] such that
τQΥ(w) ≥ 0, ∀ w ∈ C∞(R,Cq)





. (22)

We see that

∂Γ(jω) = −τ (ω −$1) (ω −$2) · τ∂Υ(jω)
≥ 0 (23)

holds for allω ∈ Ω.

1Iwasaki and Hara [3] considered a unified FFDI which can describe the FFDIs in both continuous- and
discrete-time systems. The FFDI (20) is the continuous-time version of the FFDI in [3]
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We have seen from Proposition 1 that the FDI (17) is equivalent to the dissipation
inequality (14). As we consider the FDI (17) restricted toΩ, we can imagine that there
holds an analogous relationship to Proposition 1. This is explained as follows.

Assume that there exist two-variable polynomial matricesΨ ∈ Hq×q[ζ, η] and
Γ ∈ G satisfying

d

dt
QΨ(w) ≤ QΦ(w)− QΓ(w), ∀ w ∈ B. (24)

The above inequality corresponds to the dissipation inequality (14). Inequality (24)
is equivalent to the existence of∆ ∈ Hq×q[ζ, η] satisfying a two-variable polynomial
matrix equation

(ζ + η)M?(ζ)Ψ(ζ, η)M(η)
= M?(ζ)Φ(ζ, η)M(η)−M?(ζ)Γ(ζ, η)M(η)−M?(ζ)∆(ζ, η)M(η) (25)

andQ∆(w) ≥ 0, ∀ w ∈ B. Substitutingζ = −jω andη = jω into (25), we obtain the
FFDI

M(jω)∗∂Φ(jω)M(jω) = M(jω)∗∂Γ(jω)M(jω) + M(jω)∗∂∆(jω)M(jω)
≥ 0, ∀ ω ∈ Ω

from (23). The above inequality guarantees the FFDI (19).
Inequality (24) also gives a necessary condition for the finite frequency property.

Thus, we obtain the following main result which provides a necessary and sufficient
condition for the property.

Theorem 1 Assume thatB in (4) is controllable and thatB is represented by an ob-
servable image representation(6). LetΦ ∈ Hq×q[ζ, η] be given. DefineΩ by (18) and
G by (22). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) FFDI (19)holds for allω ∈ Ω.

(ii) There existΨ ∈ Hq×q[ζ, η] andΓ ∈ G satisfying inequality(24).

(iii) Inequality ∫ +∞

−∞
QΦ(w)dt ≥ 0 (26)

holds for allw ∈ B satisfying

τHe
(
(ż − j$1z) (ż − j$2z)∗

) ≤ 0, (27)

wherez ∈ D∞(R,C(N+1)q) is defined by

z := ZN

(
d

dt

)
w (28)

with some nonnegative integerN ∈ Z.

Proof See Appendix B.1 for the proof. ¤

We call the QDFQΓ(w) satisfying (24) acompensation rate forB with respect to
the frequency domainΩ. Namely,QΓ(w) guarantees the dissipativity of some behavior
related toB andΩ. The detail of this claim is explained in Subsection 4.2.
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Remark 2 It should be noted that the characterization in Theorem 1 is representation-
free. Namely, it does not suppose any particular representation ofB. In this sense, this
theorem gives a more general result than the previous works done by Iwasaki et.al [5].

Remark 3 The equivalence of (i) and (iii) corresponds to the result if we restrict The-
orem 3 in [5] to continuous-time systems. The statement (iii) shows that the integral of
the power supplied to the system is nonnegative for the manifest variable which varies
in the frequency contained inΩ.

Remark 4 The two-variable polynomial
[
1
ζ

]∗ [−$1$2 −j$+

j$+ −1

] [
1
η

]

is a real coefficient polynomial ifΩ is symmetric about the origin, i.e. low frequency
domain

Ωlow := {ω ∈ R | |ω| ≤ $} (29)

and high frequency domain

Ωhigh := {ω ∈ R | |ω| ≥ $} (30)

for example, where$ ∈ R is a given scalar satisfying$ ≥ 0. If M(ξ) andΦ(ζ, η) are
all real polynomial matrices, we can restrictΨ(ζ, η) andΓ(ζ, η) in Theorem 1 to real
symmetric two-variable polynomial matrices without loss of generality.

4.2 Physical Interpretation

In this subsection, we clarify the physical interpretation of Theorem 1 from the view-
point of dissipation theory.

Define the subbehaviorBΩ ⊂ B by

BΩ :=
{
w ∈ B

∣∣ w satisfies (27) forz ∈ D∞(R,C(N+1)q) in (28)
}

. (31)

SinceQΓ(w) can be rewritten by

QΓ(w) = −ż∗Υ̃ż + j$+

(
ż∗Υ̃z − z∗Υ̃ż

)
−$1$2z

∗Υ̃z,

we have

QΓ(w) = tr
[
Υ̃ {−żż∗ + j$+ (żz∗ − zż∗)−$1$2zz∗}

]

= tr
[
τΥ̃ · {−τHe

(
(ż − j$1z) (ż − j$2z)∗

)}]
. (32)

It follows from τΥ̃ ≥ 0 thatQΓ(w) ≥ 0, ∀w ∈ BΩ holds if and only ifz satisfies (27).
Hence, we can regardBΩ as the set of all trajectories inB which vary in the frequency
contained inΩ. Namely,BΩ has a rate constraint determined byΦ(ζ, η) andΩ.

We can obtain the following corollary, which shows the physical interpretation of
Theorem 1 in terms of the dissipation inequality.

Corollary 1 Assume thatB in (4) and thatB is represented by an observable image
representation(6). LetΦ ∈ Hq×q[ζ, η] be given. DefineΩ by (18), G by (22) andBΩ

by (31). Then, the following statements (i), (ii) and (iii) are equivalent.

11



(i) FFDI (19)holds for allω ∈ Ω.

(ii) There existsΨ ∈ Hq×q[ζ, η] satisfying the dissipation inequality

d

dt
QΨ(w) ≤ QΦ(w), ∀ w ∈ BΩ.

(iii) There existΨ ∈ Hq×q[ζ, η], ∆ ∈ Hq×q[ζ, η] andΓ ∈ G satisfying the dissipation
equality

d

dt
QΨ(w) = QΦ(w)− Q∆+Γ(w), ∀ w ∈ BΩ (33)

and

Q∆+Γ(w) ≥ 0, ∀ w ∈ BΩ. (34)

This implies that the QDFQ∆+Γ(w) is a dissipation rate forBΩ.

(iv) The behaviorBΩ is dissipative with respect to the supply rateQΦ(w).

Proof See Appendix B.2 for the proof. ¤

Corollary 1 provides us a physical interpretation of the compensating rate as ex-
plained below.

It is not difficult to see thatB is not necessarily dissipative with respect to the
supply rateQΦ(w) from Proposition 1. However, Corollary 1 (iv) states that, if we
concentrate ourselves to the trajectories to those varying in the frequency contained
in Ω, thenBΩ becomes dissipative. Namely, the compensating rate guarantees the
dissipativity of the subbehavior which has a constraint on the rate of change. We de-
scribe this interpretation after an intuitive example. Such an observation has not been
considered in the previous works by Iwasaki et.al [5].

Consider the latent variablèω ∈ C∞(R,Cm) by `ω(t) := ejωtv, v ∈ Cm for a
givenω ∈ Ω. We easily get

w(t) = M

(
d

dt

)
ejωtv = ejωtM(jω)v, (35)

which impliesw ∈ BΩ. SinceτQΥ(w) ≥ 0 holds for allw ∈ B, we have

QΓ(w) = −τ(ω −$1)(ω −$2) · τQΥ(w) ≥ 0, ∀ w ∈ BΩ s.t. (35).

From (24) and the above inequality, the inequality

QΦ(w) ≥ QΓ(w) +
d

dt
QΨ(w) ≥ d

dt
QΨ(w) (36)

holds for allw ∈ BΩ such that (35). On the other hand, we haveQΓ(w) ≤ 0 for all
w ∈ BΩ such that (35) ifω /∈ Ω. Hence, (36) does not always hold, which concludes
the intuitive explanation.

We generalize the above intuitive explanation to a physical interpretation in the
dissipativity theory. We can see from Corollary 1 that QDFQΓ(w) satisfies the equality

∫ +∞

−∞
Q∆+Γ(w)dt =

∫ +∞

−∞
QΦ(w)dt, ∀ w ∈ BΩ ∩ D∞(R,Cq).

12



Also, we observe that

Q∆+Γ(w) = Q∆(w) + QΓ(w)

= tr
[
∆̃ · zz∗

]
+ tr

[
τΥ̃ · {−τHe

(
(ż − j$1z) (ż − j$2z)∗

]})

= tr
[
∆̃ · zz∗ + τΥ̃ · {−τHe

(
(ż − j$1z) (ż − j$2z)∗

)}]

= tr

[[
∆̃ 0
0 τΥ̃

] [
zz∗ 0
0 −τHe

(
(ż − j$1z) (ż − j$2z)∗

)
]]

holds. This implies thatQ∆+Γ(w) satisfies

Q∆+Γ(w) ≥ 0, ∀ w ∈ BΩ

and
Q∆+Γ(w) � 0, ∀ w ∈ B \BΩ.

If we regard QDFsQΦ(w) andQΨ(w) as the supply rate and the storage function in
(33) along the line of Definition 2, the above observation shows that QDFQ∆+Γ(w)
becomes the dissipation rate ofBΩ for supply rateQΦ(w) from Definition 2 (ii). There-
fore, QΓ(w) can be regarded as a compensating power which guarantees the dissipa-
tivity of BΩ.

Corollary 1 (iii) also gives a time domain characterization of sum-of-squares (SoS)
decomposition by similar discussion made by Hara and Iwasaki [2]. This is explained
as follows.

Since (6) is an observable image representation ofB, (33) can be equivalently
rewritten by a two-variable polynomial matrix equation

Φ′(ζ, η) =M?(ζ)∆(ζ, η)M(η) + M?(ζ)Γ(ζ, η)M(η)
+ (ζ + η)M?(ζ)Ψ(ζ, η)M(η),

whereΦ′ ∈ Hm×m[ζ, η] is defined by

Φ′(ζ, η) := M?(ζ)Φ(ζ, η)M(η). (37)

From (22), we obtain

Φ′(ζ, η) =M?(ζ)∆(ζ, η)M(η)
+ τ {−ζη + j$+(ζ − η)−$1$2} · τM?(ζ)Υ(ζ, η)M(η)
+ (ζ + η)M?(ζ)Ψ(ζ, η)M(η).

By substitutingζ = −jω, η = jω, $1 = $2 =: $ and τ = −1 into the above
equation, it follows from (34) that

∂Φ′(jω) = M(jω)∗∂∆(jω)M(jω) + (ω −$)2 {−M(jω)∗∂Υ(jω)M(jω)}
≥ 0, ∀ ω ∈ Ω (38)

holds. SinceM(jω)∗∂∆(jω)M(jω) ≥ 0 and−M(jω)∗∂Υ(jω)M(jω) ≥ 0 hold
for all ω ∈ R, we see that (38) gives an SoS decomposition of the polynomial matrix
∂Φ′(jω) in the indeterminateω. Hence, statement (iii) gives a time domain interpreta-
tion of the SoS factorization derived in [2] for continuous-time systems.
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4.3 Numerical Example

In this subsection, we demonstrate a simple numerical example to show how FFDI (19)
is characterized in terms of QDFs based on Theorem 1 and Corollary 1.

Consider the behaviorB given by a kernel representation
[

d2

dt2 + 2
0

]
w1 +

[
d
dt
1

]
w2 +

[−1
d2

dt2

]
w3 = 0,

wherew := col (w1, w2, w3) is the manifest variable. This representation is is induced
by a polynomial matrix

R(ξ) =
[
ξ2 + 2 ξ −1

0 1 ξ2

]
. (39)

We see thatB has an observable image representation

w = M

(
d

dt

)
`, M(ξ) =




ξ3 + 1
−ξ2(ξ2 + 2)

ξ2 + 2


 , ` ∈ C∞(R,R).

We introduce a two-variable polynomial matrixΦ ∈ H3×3[ζ, η] defined by

Φ(ζ, η) :=




1− ζη ζη + η2 0
ζη + ζ2 2ζ + 2η + 1 0

0 0 1


 ,

which induces the the supply rate forB given by

QΦ(w) = w2
1 − ẇ2

1 + 2ẇ1ẇ2 + 2w1ẇ2 + 2w2ẇ2 + 2ẇ2
2 + w2

2 + w2
3.

We analyze a finite frequency property based on the aboveM(ξ) andΦ(ζ, η), where
we set the (low) frequency domainΩ := [−1, 1]. We have the following FFDI

M(jω)∗∂Φ(jω)M(jω) = −3ω6 + 5ω4 − 5ω2 + 5
≥ 0, ∀ ω ∈ Ω,

sinceM(λ) has full column rank for allλ ∈ C and

∂Φ(jω) =




1− ω2 0 0
0 1 0
0 0 1


 ≥ 0, ∀ ω ∈ Ω.

Define two-variable polynomial matricesΨ,∆,Γ ∈ H3×3[ζ, η] by

Ψ(ζ, η) :=




0 η 0
ζ 2 0
0 0 0


 , ∆(ζ, η) :=




0 0 0
0 1 0
0 0 ζη


 ,

Γ(ζ, η) := (1− ζη)Υ(ζ, η), Υ(ζ, η) :=




1 0 0
0 0 0
0 0 1


 .

Then, QDFsQΨ(w) andQΓ(w) are computed as

QΨ(w) = 2w1ẇ2 + 2w2
2,

QΓ(w) = ẇ2
1 − w2

1 + ẇ2
3 − w2

3,
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respectively, and hence we have

QΦ(w)− d

dt
QΨ(w) = Q∆(w) + QΓ(w) = w2

1 − ẇ2
1 + w2

2 + w2
3.

We easily see that

d

dt
QΨ(w) � QΦ(w), ∀ w ∈ B

holds. In addition, if we addQΓ(w) to the left-hand side of the above inequality, we
get

QΓ(w) +
d

dt
QΨ(w) ≤ QΦ(w) ∀ w ∈ B,

becauseQ∆(w) = w2
2 + ẇ2

3 ≥ 0 holds for allw ∈ B. Hence, we can see from
Theorem 1 (ii) that FFDI (19) holds.

Moreover, focusing on inequality

Q∆(w) + QΓ(w) = w2
1 − ẇ2

1 + w2
2 + w2

3 ≥ 0, ∀ w ∈ BΩ.

yields the dissipation inequality

d

dt
QΨ(w) ≤ QΦ(w), ∀ w ∈ BΩ.

This shows thatBΩ is dissipative with respect to the supply rateQΦ(w) from Corol-
lary 1 (ii). This is guaranteed by the existence of the compensation rateQΓ(w).

5 Finite Frequency Bounded- and Positive-Realness

In Section 5, we consider the case where the results of the previous section is applied to
the finite frequency bounded- and positive- realness [6] under the input-output setting.

We also consider a controllable linear time-invariant systemΣ = (R,Cq,B) as
in Section 4. Assume thatB is controllable. Let (6) be an observable image repre-
sentation ofB. Let (8) be an input-output partition ofM(ξ), whereY ∈ Rp×m[ξ]
andU ∈ Rm×m[ξ] is nonsingular. Then,w is partitioned asw = col (y, u), where
u := U

(
d
dt

)
` andy := Y

(
d
dt

)
` are an input and output, respectively. Such a parti-

tion always exists by the observability assumption of (6). Then, the transfer function
G ∈ Cp×m(ξ) from u to y is given by (9). Define the low frequency domain by

Ω′low := {ω ∈ R | |ω| ≤ $ and det (U(jω)) 6= 0} (40)

for a given$ ∈ R, $ ≥ 0.

5.1 Finite Frequency Bounded Realness

We characterize the finite frequency bounded realness ofG(ξ) in this subsection.
We give the definition of the finite frequency bounded realness.
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Definition 3 Assume thatB in (4) and thatB is represented by an observable image
representation (6). Let (8) be an input-output partition ofM(ξ), whereY ∈ Rp×m[ξ]
andU ∈ Rm×m[ξ] is nonsingular. LetG ∈ Cp×m(ξ) in (9) be given. DefineΩ′low by
(40). Then,G(ξ) is calledfinite frequency bounded real (FFBR) with bandwidth$ if

G(jω)∗G(jω) ≤ γ2I (41)

holds for allω ∈ Ω′low, whereγ ∈ R is a given positive number.

DefineΦ ∈ Hq×q by

Φ := Π∗
[ −Ip 0p×m

0m×p γ2Im

]
Π, (42)

whereΠ ∈ Cq×q is a nonsingular permutation matrix in (8). Then, we immediately
obtain the following corollary from Theorem 1.

Corollary 2 Assume thatB in (4) and thatB is represented by an observable image
representation(6). Let (8) be an input-output partition ofM(ξ), whereY ∈ Rp×m[ξ]
andU ∈ Rm×m[ξ] is nonsingular. DefineG ∈ Cp×m(ξ) by (9). Let Φ ∈ Hq×q be
given by(42). DefineΩ′low by (40). Then, the following statements (i), (ii), (iii) and (iv)
are equivalent.

(i) The transfer functionG(ξ) is FFBR with bandwidth$.

(ii) FFDI (20)holds for allω ∈ Ω′low.

(iii) There existΨ ∈ Hq×q[ζ, η] andΓ ∈ G satisfying

QΓ(w) +
d

dt
QΨ(w) ≤ γ2 ‖u‖2 − ‖y‖2 , ∀ w ∈ B.

(iv) Inequality

γ2

∫ +∞

−∞
‖u‖2 dt ≥

∫ +∞

−∞
‖y‖2 dt

holds for allu ∈ D∞(R,Cm) andy ∈ D∞(R,Cp) satisfying

żż∗ ≤ $2zz∗, (43)

wherez ∈ D∞(R,C(N+1)q) is defined by(28) with w = col (y, u) and some
nonnegative integerN ∈ Z.

Proof See Appendix B.3 for the proof. ¤

5.2 Finite Frequency Positive Realness

In the following, we characterize the finite frequency positive realness ofG(ξ) in the
case whereG(ξ) is square, i.e.p = m. This property is one of the key properties for
the integrated design [6].
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Definition 4 Assume thatB in (4) and thatB is represented by an observable image
representation (6). Let (8) be an input-output partition ofM(ξ), whereY ∈ Rm×m[ξ]
andU ∈ Rm×m[ξ] is nonsingular. LetG ∈ Cm×m(ξ) in (9) be given. DefineΩ′low by
(40). Then,G(ξ) is calledfinite frequency positive real (FFPR) with bandwidth$ if

G(jω) + G(jω)∗ ≥ 0, ∀ ω ∈ Ω′low (44)

holds.

Suppose thatΦ ∈ Hq×q[ζ, η] is described by

Φ :=
1
2
Π

[
0m×m Im

Im 0m×m

]
Π, (45)

whereΠ ∈ Cq×q is a nonsingular permutation matrix in (8). Then, we obtain the
following corollary which characterizes the FFPR property.

Corollary 3 Assume thatB in (4) and thatB is represented by an observable image
representation(6). Let Φ ∈ H2m×2m be given by(45). Let (8) be an input-output
partition of M(ξ), whereY ∈ Rp×m[ξ] and U ∈ Rm×m[ξ] is nonsingular. Define
G ∈ Cm×m(ξ) by (9). LetΦ ∈ Hq×q be given by(45). DefineΩ′low by (40). Then, the
following statements (i), (ii), (iii) and (iv) are equivalent.

(i) The transfer functionG(ξ) is FFPR with bandwidth$.

(ii) FFDI (20)holds for allω ∈ Ω′low.

(iii) There existΨ ∈ H2m×2m[ζ, η] andΓ ∈ G satisfying

QΓ(w) +
d

dt
QΨ(w) ≤ u∗y ∀w ∈ B.

(iv) Inequality ∫ +∞

−∞
u∗ydt ≥ 0

holds for allu, y ∈ D∞(R,Cm) satisfying(43), wherez ∈ C∞(R,C(N+1)q) is
defined by(28)with w = col (y, u) some nonnegative integerN ∈ Z.

Proof See Appendix B.4 for the proof. ¤

5.3 Numerical Example: Mechanical System

In this subsection, we apply Corollary 3 to a typical mechanical system and confirm
the efficiency of the result.

Consider a mass-spring-damper mechanism depicted in Fig. 2. The mechanism
consists of two carts with massm ∈ R linked with a springk ∈ R and a damperc ∈ R.
We apply a forceF ∈ C∞(R,R) to cart 1 and measure the velocity of cart 2. In this
setting, we examine that the system has the FFPR property.

Let w := col(ż2, F ) and` := z1 be the manifest and latent variable, respectively.
We can regardF andż2 as an input and output variable, respectively. Then, the behav-
ior is given by

B =
{
w ∈ C∞(R,R2) | ∃ ` ∈ C∞(R,R) s.t. (46)

}
,
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Figure 2: mass-spring-damper system

which has a latent variable representation

[
k d

dt

m d2

dt2 + c d
dt + k 0

]
w =

[
m d2

dt2 + c d
dt + k

k

]
˙̀. (46)

By eliminating`, the kernel representation ofB is induced by

R(ξ) =
[(

mξ2 + cξ + k
)2 − k2 −kξ

]
.

Hence,B is represented by the image representation

w = M

(
d

dt

)
`, M(ξ) =

[
k

m2ξ3 + 2mcξ2 +
(
2mk + c2

)
ξ + 2kc

]
∈ R2×1[ξ].

Let G ∈ R(ξ) be the transfer function fromF to ż2. Then,G(ξ) can be computed as

G(ξ) =
k

m2ξ3 + 2mcξ2 + (2mk + c2) ξ + 2kc
.

In order to check the FFPR property, defineΦ ∈ S2×2 in (45) by

Φ :=
1
2

[
0 1
1 0

]
.

Then, the supply rate forB is given byQΦ(w) = F ż2. We see that

M∗(jω)∂Φ(jω)M(jω) =
2mc

k

(
−ω2 +

k

m

)

holds. Then,G(ξ) is FFPR in the frequency domain (40) for

$ := α

√
k

m
, α ∈ [0, 1] and U(ξ) := m2ξ3 + 2mcξ2 +

(
2mk + c2

)
ξ + 2kc.

DefineΨ,Γ ∈ H2×2[ζ, η] in Corollary 3 by

Ψ(ζ, η) :=
m2

(
ζ2 + η2 − ζη

)
+ 2mc (ζ + η) + 2km + c2

2k

[
1 0
0 0

]
,

Γ(ζ, η) := ($2 − ζη)Υ(ζ, η), Υ(ζ, η) :=
2mc

k

[
1 0
0 0

]
∈ H2×2[ζ, η].
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Then,QΨ(w) andQΓ(w) are computed as

QΨ(w) = mż1ż2 − c (z1 − z2) ż2 +
c2
2

2k
ż2

2,

QΓ(w) =
2mc

k

(
−z̈2

2 + α2 k

m
ż2

2

)
,

respectively. Thus, we obtain the equality

QΦ(w)− d

dt
QΨ(w) = 2c(1− α)z2

1 + QΓ(w).

Hence, we see that

d

dt
QΨ(w) � QΦ(w), ∀ w ∈ B

holds. However, if we add the QDFQΓ(w) to the left-hand side of the above inequality,
we get

QΓ(w) +
d

dt
QΨ(w) ≤ QΦ(w), ∀ w ∈ B,

because2c(1 − α)z2
1 ≥ 0 holds for allz1 from α ∈ [0, 1]. This shows that inequal-

ity (24) is satisfied for allw ∈ B.

6 Finite Frequency KYP Lemma

In this section, we give an LMI characterization of FFDI (19) or the finite frequency
KYP lemma for a numerical checking of the finite frequency properties. We first de-
rive a finite frequency property characterization in terms ofB-canonical polynomial
matrices as a preliminary result. This yields the finite frequency KYP lemma in the
behavioral framework. See Appendix A.1 for the definition and basic properties of
B-canonical polynomial matrices.

6.1 Finite Frequency KYP Lemma

We here assume thatR ∈ Cp×q[ξ] in (2) is row reduced [7]. This assumption does
not lose the generality, because there always exists a unimodular polynomial matrix
U ∈ Cp×p[ξ] satisfying

Rred(ξ) = U(ξ)R(ξ),

whereRred ∈ Cq×q[ξ] is row reduced. It should be noted thatRred(ξ) may be obtained
by the commandrowred of Polynomial Toolbox [12] for MATLAB. In addition, we
set the following degree constraint

deg R ≥ degζ Φ = degη Φ. (47)

This constraint does not lose the generality. If (47) does not hold, i.e.deg R <
degζ Φ = degη Φ, we can reduce it to (47) by takingRL+1 = RL+2 = · · · = RK =
0p×q. Hence, it is sufficient to prove under the assumption (47).

From Theorem 1 and Lemma A.2, we obtain a characterization for the finite fre-
quency property usingB-canonical polynomial matrices.
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Proposition 3 Assume thatB in (4) is controllable and thatR ∈ Cp×q[ξ] is row-
reduced. Suppose thatB is represented by an observable image representation(6).
LetΦ ∈ Hq×q[ζ, η] be given by(12) and satisfy(47). DefineΩ by (18) andG by (22).
Then, the following statements (i), (ii) and (iii) are equivalent.

(i) FFDI (19)holds for allω ∈ Ω.

(ii) There exist uniqueB-canonicalΨ ∈ Hq×q[ζ, η] andΓ ∈ G with B-canonical
Υ ∈ Hq×q[ζ, η] satisfying

d

dt
QΨ(w) ≤ QΦ(w)− QΓ(w), ∀ w ∈ B. (48)

(iii) Inequality(26)holds for allw ∈ B satisfying(27), wherez ∈ D∞(R,C(N+1)q)
is defined by(28) for nonnegative integer such thatN ≤ deg R− 1.

Proof See Appendix B.5 for the proof. ¤
In Theorem 1 and Corollary 1, we do not know the degree ofΨ(ζ, η) andΓ(ζ, η) in
advance. Although Proposition 3 is a preliminary result for the finite frequency KYP
lemma, it shows that the upper bounds of the degree are determined by that ofR(ξ).

As we have established the preliminary result, we give the finite frequency KYP
lemma. In the following, we transform the kernel representation (2) into a latent vari-
able representation with a first-order differential-algebraic equation (A.2) along the
same line in [13]. Letri ∈ C1×q[ξ] (i = 1, · · · , p) denote theith row ofR(ξ), i.e.

R(ξ) =




r1(ξ)
r2(ξ)

...
rp(ξ)


 .

For theseri’s, defineRe ∈ C
Pp

i=1(L+1−ρi)×q[ξ] by

Re(ξ) :=




R1
e(ξ)

R2
e(ξ)
...

Rp
e(ξ)


 , Ri

e(ξ) :=




ri(ξ)
ξri(ξ)

...
ξL−ρiri(ξ)


 , (49)

whereρi ∈ Z (i = 1, 2, · · · , p) denotes the maximal degree of the elements of
ri(ξ). We easily see thatRe(ξ) satisfiesdeg Re = L. Define the variablev ∈
C∞(R,C(L+1)q) by stackingw and its derivatives as

v := ZL

(
d

dt

)
w,

whereZL ∈ R(L+1)q×q[ξ] is defined by (5). Then, the kernel representation (2) can be
rewritten by a first-order differential-algebraic equation expressed as

[
ILq 0Lq×q

] d

dt
v =

[
0Lq×q ILq

]
v,

R̃ev = 0,

w =
[
Iq 0q×Lq

]
v,
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whereR̃e ∈ C
Pp

i=1(L+1−ρi)×(L+1)q denotes the coefficient matrix ofRe(ξ). We can
see from this expression that̃Rev = 0 holds if and only if

v = R̃⊥e k, k ∈ C∞(R,Cd), d := (L + 1)q −
p∑

i=1

(L + 1− ρi) (50)

holds, wherẽR⊥e ∈ C(L+1)q×d is the constant matrix satisfying

im
(
R̃⊥e

)
= ker

(
R̃e

)
. (51)

This implies thatR̃e can define the first-order latent variable representation with man-
ifest variablew and the latent variablek as

w =
[
Iq 0q×Lq

]
R̃⊥e k, (52)

E
d

dt
k = Fk, (53)

where

E :=
[
ILq 0Lq×q

]
R̃⊥e ∈ CLq×d, (54)

F :=
[
0Lq×q ILq

]
R̃⊥e ∈ CLq×d. (55)

Using (50) and (51),B in (4) coincides with the set of trajectories given by (52) and
(53) (see pp. 287 in [13]), i.e.

B =
{
w ∈ C∞(R,Cq)

∣∣ ∃ k ∈ C∞(R,Cd) s.t. (52) and (53)
}

.

UsingR̃⊥e andΦ̃, we defineΦ0 ∈ Hd×d by

Φ0 :=
(
R̃⊥e

)∗ [
Φ̃ 0(L+1)q×(L−K)q

0(L−K)q×(L+1)q 0(L−K)q×(L−K)q

]
R̃⊥e , (56)

whereΦ̃ ∈ H(K+1)q×(K+1)q is the coefficient matrix ofΦ(ζ, η). Consequently, we
obtain the finite frequency KYP lemma in the behavioral framework. This is a natural
result which follows from Lemma 1 and Proposition 3.

Theorem 2 Assume thatB in (4) is controllable and thatR ∈ Cp×q[ξ] is row reduced.
Suppose thatB is represented by an image representation(6). LetΦ ∈ Hq×q[ζ, η] be
given by(12)and satisfy(47). DefineΩ by (18). Then, the following statements (i) and
(ii) are equivalent.

(i) FFDI (19)holds for allω ∈ Ω.

(ii) There exist̃Ψ ∈ HLq×Lq andΥ̃ ∈ HLq×Lq satisfying

τΥ̃ ≥ 0, (57)

E∗Ψ̃F + F ∗Ψ̃E + ($2
− −$+

2)E∗Υ̃E − F ∗Υ̃F

+
{

(j$+F ∗Υ̃E) + (j$+F ∗Υ̃E)∗
}
≤ Φ0, (58)

whereE, F ∈ CLq×d and Φ0 ∈ Hd×d are defined by(54), (55) and (56), re-
spectively, and$−, $+ ∈ R are defined by(21).
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Proof See Appendix B.6 for the proof. ¤

We now explain relationship between Theorem 2 and the previous works [3][13]
associated with KYP lemma.

Theorem 2 is not a new result because this is a special case of the generalized
KYP lemma [3] if we restrict ourselves to continuous-time systems and the curve in
the complex plane toΩ. The lemma was derived based on the input-output setting,
however, Theorem 2 does not assume such a relation in advance.

On the other hand, Theorem 2 includes the KYP lemma derived in [13] in a sense
that we can deal with the LMIs over the restricted frequency domain. This is explained
as follows.

If we choose the parametersτ = −1 and$1 = $2 = 0, Ω coincides with the set
of real numbersR. Hence, Theorem 2 falls to the KYP lemma [13] in the behavioral
framework. Since$ = $+ = 0 holds, the LMI (58) is equivalent to

E∗Ψ̃F + F ∗Ψ̃E + F ∗
(
−Υ̃

)
F ≤ Φ0. (59)

It follows from−Υ̃ ≥ 0 that the above LMI is equivalently rewritten by rewritten by

E∗Ψ̃F + F ∗Ψ̃E ≤ Φ0.

If there existΨ̃ andΥ̃ satisfying (59),Υ̃ = 0 also satisfies (59) from−Υ̃ ≥ 0. Then,
the LMI (59) can be rewritten by the following LMIs

(
R̃e

⊥)∗([
Φ̃ 0(L+1)q×(L−K)q

0(L−K)q×(L+1)q 0(L−K)q×(L−K)q

]

−
[
0Lq×q Ψ̃
0q×q 0q×Lq

]
−

[
0q×Lq 0q×q

Ψ̃ 0Lq×q

])
R̃e

⊥ ≥ 0,

which was proposed in Theorem 4.2 in [13]. Hence, Theorem 2 includes the KYP
lemma in previous works in behavioral approach.

6.2 Numerical Example

In the subsection, we will see how to check the finite frequency property based on the
LMI conditions in Theorem 2.

Consider the behaviorB whose kernel representation is induced byR(ξ) in (39).
We see thatRe(ξ) coincides withR(ξ). This polynomial matrix has the coefficient
matrix R̃e ∈ R2×9 which is given by

R̃e =
[

2 0 −1 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1

]
.

From (51), we compute

R̃⊥e =




0.3780 0 −0.3780 0 −0.3780 0 0
0 0 0 0 0 0 −0.7071

0.9186 0 0.0814 0 0.0814 0 0
0 1.0000 0 0 0 0 0

0.0814 0 0.9186 0 −0.0814 0 0
0 0 0 1.0000 0 0 0

0.0814 0 −0.0814 0 0.9186 0 0
0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0.7071




.
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We can solve the LMIs (57) and (58) by using the solver in Robust Control Tool-
box [9] of MATLAB 2009a. One of the feasible solutions obtained is given by

Ψ̃ =




−0.3105 0.2767 0.1751 −0.8558 0.8161 −0.2541
0.2767 2.0634 −0.1511 0.0649 −0.1580 0.1172
0.1751 −0.1511 −0.1025 0.3220 0.0249 −0.2742

−0.8558 0.0649 0.3220 −0.1485 −0.1451 0.1666
0.8161 −0.1580 0.0249 −0.1451 −0.0705 0.0098

−0.2541 0.1172 −0.2742 0.1666 0.0098 −0.1527




,

Υ̃ =




0.8302 −0.0438 −0.1069 −0.0040 −0.0348 −0.0104
−0.0438 0.7088 −0.0847 0.0499 0.0018 −0.0022
−0.1069 −0.0847 0.5867 0.0077 0.0044 0.0009
−0.0040 0.0499 0.0077 1.1633 0.0154 −0.0792
−0.0348 0.0018 0.0044 0.0154 0.6566 −0.0132
−0.0104 −0.0022 0.0009 −0.0792 −0.0132 0.6100




.

Note that the symmetric matrix̃Υ is nonnegative definite, since the eigenvalues are
located at

{0.5014, 0.5956, 0.6540, 0.7475, 0.8767, 1.1804} .

We can therefore conclude from Theorem 2 that the finite frequency property holds.

7 Conclusions

In this paper, we have characterized the finite frequency properties in terms of the
dissipation inequality and the integral of the supply rate based on QDFs. This leads the
finite frequency KYP lemma which characterizes the FFDI (19) as a natural result.

As a future work, our results should be applied to a synthesis of a controller with
frequency domain specifications in the framework of dissipation theory. Partial solu-
tions for such problems have been derived by Iwasaki and Hara [4] based on state-space
and descriptor system. However, our result may be efficient to solve these problems,
since we can deal with systems described by artless high-order differential algebraic
equations.
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Appendix A Background Materials

In this section, we collect the background materials which are used in the proofs. They
relate LMIs with QDFs and play important roles in Section 6.

Appendix A.1 B-canonical Polynomial Matrices

We introduceB-canonicity of polynomial matrices in this appendix, which are taken
from the reference [7][8].
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We assume thatR ∈ Cq×q[ξ] in (2) is row reduced [7] in this section. The as-
sumption does not lose the generality as we have explained in Section 6. We define the
B-canonicity of polynomial matrices.

Definition A.1 [8] Let B be represented by a kernel representation (2) forR ∈
Cp×q[ξ]. Assume thatR(ξ) is row reduced. LetD ∈ Cp×q[ξ] be given. Let
ri ∈ C1×q[ξ] and di ∈ C1×q[ξ] (i = 1, · · · , p) denote theith rows of R(ξ) and
D(ξ), respectively. A polynomial matrixD(ξ) is calledB-canonicalif

deg di ≤ deg ri − 1, ∀ i = 1, · · · , p

holds.

The next lemma ensures the uniqueness of anR-canonical polynomial matrix up to
B-equivalence.

Lemma A.1 [8] LetB be represented by a kernel representation(2) for R ∈ Cp×q[ξ].
Assume thatR(ξ) is row reduced. For anyD ∈ Cp×q[ξ], there exists a uniqueB-
canonicalD′ ∈ Cp×q[ξ] satisfying

D

(
d

dt

)
w = D′

(
d

dt

)
w, ∀ w ∈ B.

We now define theB-canonicity of two-variable polynomial matrices. LetΦ ∈
Hq×q[ζ, η] be given. Suppose thatΦ(ζ, η) has a (symmetric) canonical factorization

Φ(ζ, η) = F ?(ζ)ΣΦF (η) (A.1)

with ΣΦ ∈ SrankeΦ×rankeΦ, detΣΦ 6= 0 andF ∈ CrankeΦ×m[ξ].

Definition A.2 [8] Let B be represented by a kernel representation (2) forR ∈
Cp×q[ξ]. Assume thatR(ξ) is row reduced. LetΦ ∈ Hq×q[ζ, η] be given. Let

F ∈ CrankeΦ×m[ξ] be defined by the canonical factorization (A.1). Then,Φ(ζ, η) is
calledB-canonicalif F (ξ) is B-canonical.

The following result is an immediate consequence of the uniqueness of the canon-
ical factorization ofΦ(ζ, η) and of Lemma A.1.

Lemma A.2 [8] LetB be represented by a kernel representation(2) for R ∈ Cp×q[ξ].
Assume thatR(ξ) is row reduced. LetΦ ∈ Hq×q[ζ, η] be given. Then, for anyΦ(ζ, η),
there exists a uniqueB-canonicalΦ′ ∈ Hq×q[ζ, η] satisfying

QΦ′(w) = QΦ(w), ∀ w ∈ B.

Appendix A.2 Trimness

We summarize the definition and some basic result of the trimness of first order kernel
representation in this appendix, which are taken from the reference [13].

Definition A.3 [13] Let Bf be the behavior whose kernel representation is described
by a first-order differential-algebraic equation

Eẇ = Fw, E, F ∈ Cp×q. (A.2)

Define theset of consisting pointsof (A.2) by

W0 := {w0 ∈ Cq | ∃ w ∈ Bf s.t.w(0) = w0 } .

The representation given by (A.2) is calledtrim if W0 = Cq holds.

24



The next lemma ensures that the representation given by (52) is trim, which is used
to prove the the finite-frequency KYP Lemma. This lemma was taken from Lemma 4.1
in [13].

Lemma A.3 [13] Let B be represented by a kernel representation(2) for R ∈
Cp×q[ξ]. Assume thatR(ξ) is row reduced. Then, the kernel representation(52) is
trim.

Appendix B Proofs

Appendix B.1 Proof of Theorem 1

The proof consists of three steps. We first show the characterization for the low fre-
quency property in Appendix B.1.1. This leads to the high frequency case in Appendix
B.1.2. Finally, we conclude the proof in Appendix B.1.3 for the general frequency
property. Note that the most part of the proof are devoted to Appendix B.1.1.

Appendix B.1.1 Low Frequency Case

In this appendix, we restrict our attention to the low frequency property and derive a
characterization of the property as preliminary result.

Define the low frequency domainΩlow ⊂ R in the restricted interval by (29). We
remark thatτ in (18) is equal to+1 for the low frequency property. We consider a
characterization of the following FFDI based on QDFs.

M(jω)∗∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ Ωlow (B.1)

For this purpose, define the set of two-variable matrices for the frequency domain given
by

Glow :=



Γ ∈ Hq×q[ζ, η]

∣∣∣∣∣∣

Γ(ζ, η) :=
(
$2 − ζη

)
Υ(ζ, η)

for someΥ ∈ Hq×q[ζ, η] such that
QΥ(w) ≥ 0, ∀ w ∈ C∞(R,Cq)



 . (B.2)

We see that
∂Γ(jω) =

(
$2 − ω2

)
∂Υ(jω) ≥ 0, ∀ ω ∈ Ωlow.

holds for anyΓ ∈ G. We obtain a necessary and sufficient condition for the low
frequency property.

Lemma B.1 Assume thatB in (4) is controllable and thatB is represented by an
observable image representation(6). Let Φ ∈ Hq×q[ζ, η] be given. DefineΩlow by
(29) and defineGlow by (B.2). Then, the following statements (i), (ii) and (iii) are
equivalent.

(i) FFDI (B.1) holds for allω ∈ Ωlow.

(ii) There existΨ ∈ Hq×q[ζ, η] andΓ ∈ Glow satisfying(24).

(iii) Inequality(26)holds for allw ∈ B satisfying

żż∗ ≤ $2zz∗, (B.3)

wherez ∈ D∞(R,C(N+1)q) is defined by(28) with some nonnegative integer
N ∈ Z.
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Proof (i)⇒(ii) Assume that the statement (ii) does not hold. This is the case if and
only if there do not existΨ(ζ, η) andΓ ∈ Glow satisfying

d

dt
QΨ(w)− QΦ(w) + QΓ(w) ≤ ε ‖w‖2 , ∀ w ∈ B

for someε > 0. The above inequality is equivalent to the two-variable polynomial
matrix equation

M?(ζ)Γ(ζ, η)M(η) + (ζ + η)M?(ζ)Ψ(ζ, η)M(η)−M?(ζ)Φ(ζ, η)M(η)
− εM?(ζ)M(η) + M?(ζ)∆(ζ, η)M(η) = 0. (B.4)

for some∆ ∈ Hq×q[ζ, η] such thatQ∆(w) ≥ 0, ∀ w ∈ B. Substitutingζ = −jω and
η = jω into (B.4), we get

M(jω)∗∂Γ(jω)M(jω)−M(jω)∗∂Φ(jω)M(jω)− εM(jω)∗M(jω)
+ ∂∆(jω)M(jω) = 0, ∀ ω ∈ Ωlow.

Since∂∆(jω) ≥ 0 holds for allω ∈ Ωlow, we obtain the matrix inequality

M(jω)∗∂Γ(jω)M(jω)−M(jω)∗∂Φ(jω)M(jω) ≤ εM(jω)∗M(jω), ∀ ω ∈ Ωlow.

This shows that there does not existΓ ∈ Glow satisfying

M(jω)∗∂Γ(jω)M(jω)−M(jω)∗∂Φ(jω)M(jω) ≤ 0, ∀ ω ∈ Ωlow.

From the definition ofΓ(ζ, η), there does not existΥ(ζ, η) satisfyingQΥ(w) ≥ 0,
∀ w ∈ B and

M(jω)∗∂Φ(jω)M(jω) ≥ (
$2 − ω2

)
M(jω)∗∂Υ(jω)M(jω)

≥ 0, ∀ ω ∈ Ωlow.

Hence, the statement (i) does not hold, which completes the proof of the claim.
(ii)⇒(iii) By integrating (24) fromt = −∞ to t = +∞ along w ∈ B ∩

D∞(R,Cq), we get the inequality
∫ +∞

−∞
QΓ(w)dt ≤

∫ +∞

−∞
QΦ(w)dt, ∀ w ∈ B ∩ D∞(R,Cq).

The QDF QΥ(w) is expressed asQΥ(w) = z∗Υ̃z from (28), where Υ̃ ∈
H(N+1)q×(N+1)q is the coefficient matrix ofΥ(ζ, η). Hence,QΓ(w) can be rewrit-
ten as

QΓ(w) = −ż∗Υ̃ż + $2z∗Υ̃z.

By integrating the above equation fromt = −∞ to t = +∞, we obtain
∫ +∞

−∞
QΓ(w)dt =

∫ +∞

−∞

(
−ż∗Υ̃ż + $2z∗Υ̃z

)
dt

=
∫ +∞

−∞

{
−tr

[
Υ̃

(
żż∗ −$2zz∗

)]}
dt

=
∫ +∞

−∞
tr

[
Υ̃

{− (
żż∗ −$2zz∗

)}]
dt.
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SinceτΥ̃ ≥ 0 holds from (B.2) and Lemma 1, we have (26) for allw ∈ B satisfying
(B.3). This concludes the claim.

(iii)⇒(i) We prove the statement (i) by showing a contraposition. DefineΦ′ ∈
Hm×m[ζ, η] by (37).

Assume that there exists anω0 ∈ Ωlow such thatω0 ≥ 0 and∂Φ′(jω0) � 0, i.e.
the minimum eigenvalue of∂Φ′(jω0) is negative. We can assumeω′k > 0 because it
can be proved the case whereω′k = 0 by replacingω′k with ω′k + ε (ε > 0) and taking
the limitationε → 0. Let v ∈ Cm be the eigenvector corresponding to the eigenvalue.
Then, we have

QΦ′(ejω0tv) = v∗∂Φ′(jω0)v < 0. (B.5)

Let `n ∈ D∞(R,Cm) be a latent variable satisfying

`n(t) =





ejω0tv
(
|t| ≤ 2πn

ω0

)

˜̀
n

(
t + 2πn

ω0

) (
t < − 2πn

ω0

)

˜̀
n

(
t− 2πn

ω0

) (
t > 2πn

ω0

)

with some nonnegative integern ∈ Z, where˜̀
n ∈ D∞(R,Cm) is chosen as a function

which does not depend onn and be such that̀n is a smooth function forn. For the
abovè n, definezn ∈ D∞(R,C(N+1)q) by

zn := ZN

(
d

dt

)
wn, wn := M

(
d

dt

)
`n ∈ B.

We can compute

żnż∗n −$2znz∗n =
(
ω2

0 −$2
)
ZN (jω0)M(jω0)vv∗M(jω0)∗ZN (jω0)∗

Since we assumed|ω0| ≤ $, we get

żnż∗n −$2znz∗n ≤ 0.

On the other hand, we observe that

∫ +∞

−∞
QΦ(wn)dt =

∫ +∞

−∞
QΦ′(`n)dt

=
4πn

$0
v∗∂Φ′(jω0)v + A1

holds, whereA1 ∈ R is a constant which does not depend onn. Hence, if we choose
n as a sufficiently large number, from (B.5), we have

∫ +∞

−∞
QΦ(wn)dt < 0.

This implies that the statement (iii) does not hold, which completes the proof.¤
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Appendix B.1.2 High Frequency Case

As we have completed a characterization of the low frequency property, we consider to
characterize the high frequency property in this appendix.

Define the high frequency domainΩhigh ⊂ R in the domain given by (30). Note
thatτ in (18) is equal to−1 for this case. We derive a characterization of the following
FFDI in terms of QDFs.

M(jω)∗∂Φ(jω)M(jω) ≥ 0, ∀ ω ∈ Ωhigh (B.6)

Similarly to the low frequency case, we define the set of two-variable polynomial ma-
trices forΩhigh by

Ghigh :=



Γ ∈ Hq×q[ζ, η]

∣∣∣∣∣∣

Γ(ζ, η) :=
(
$2 − ζη

)
Υ(ζ, η)

for someΥ ∈ Hq×q[ζ, η] such that
QΥ(w) ≥ 0, ∀ w ∈ C∞(R,Cq)



 . (B.7)

We obtain a necessary and sufficient condition for the high frequency domain prop-
erty by using a similar discussion to the low frequency case.

Lemma B.2 Assume thatB in (4) is controllable and thatB is represented by an
observable image representation(6). Let Φ ∈ Hq×q[ζ, η] be given. DefineΩhigh by
(30) and defineGhigh by (B.7). Then, the following statements (i), (ii) and (iii) are
equivalent.

(i) FFDI (B.6) holds for allω ∈ Ωhigh.

(ii) There existΨ ∈ Hq×q[ζ, η] andΓ ∈ Ghigh satisfying(24).

(iii) Inequality(26)holds for allw ∈ B satisfying

żż∗ ≥ $2zz∗,

wherez ∈ D∞(R,C(N+1)q) is defined by(28) with some nonnegative integer
N ∈ Z.

Proof The proof follows immediately by the same discussion to the low frequency
case. ¤

Appendix B.1.3 Proof of Theorem 1

We conclude the proof of Theorem 1 in this appendix.
Defineω′ ∈ R and$ ∈ R by

ω′ := ω + $+ and $ := $−.

Then, we haveω′ ∈ Ω if and only if there holdω ∈ Ωlow (τ = +1) andω ∈ Ωhigh

(τ = −1). Hence, the claim follows immediately forτ = +1 and τ = −1 from
Lemmas B.1 and B.2, respectively. This completes the proof of Theorem 1. ¤
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Appendix B.2 Proof of Corollary 1

(i)⇒(iii) We assume that the statement (i) holds. From Theorem 1, there exist
two-variable polynomial matricesΨ ∈ Hq×q[ζ, η] andΓ ∈ G satisfying the inequality
(24) for allw ∈ B. This is the case if and only if (33) holds for some∆ ∈ Hq×q[ζ, η]
such thatQ∆(w) ≥ 0, ∀ w ∈ B. SinceQΓ(w) satisfiesQΓ(w) ≥ 0 for all w ∈ BΩ

from (32), we get

Q∆+Γ(w) = Q∆(w) + QΓ(w) ≥ 0, ∀ w ∈ BΩ.

Hence, the first part of (iii) follows.
In addition, by integrating (33) fromt = −∞ to t = +∞ alongBΩ∩D∞(R,Cq),

we obtain
∫ +∞

−∞
QΓ+∆(w)dt =

∫ +∞

−∞
QΦ(w)dt, ∀ w ∈ BΩ ∩ D∞(R,Cq). (B.8)

This shows thatQ∆+Γ(w) becomes the dissipation rate forBΩ with respect to the
supply rateQΦ(w) from Definition 2 (ii). This completes the proof.

(iii)⇒(iv) Integrating (33) fromt = −∞ to t = +∞ alongBΩ ∩ D∞(R,Cq)
yields (B.8). SinceQ∆+Γ(w) satisfiesQ∆+Γ(w) ≥ 0, ∀ w ∈ BΩ, we get

∫ +∞

−∞
QΦ(w)dt =

∫ +∞

−∞
QΓ+∆(w)dt ≥ 0, ∀ w ∈ BΩ ∩ D∞(R,Cq).

Hence, the statement (iv) holds.
(iv)⇒(i) Since the statement (iv) is equivalent to the statement (iii) of Theorem 1,

the proof follows immediately from Proposition 1.
(ii)⇔(iii) The proof is straightforward from Proposition 1. ¤

Appendix B.3 Proof of Corollary 2

The equivalence of (ii), (iii) and (iv) follows immediately from Theorem 1 since
QΦ(w) = γ2 ‖u‖2 − ‖y‖2 holds for allw = col(y, u) ∈ B. Hence, we have only
to show the statement (i) is equivalent to (ii).

Assume that (i) holds. Pre- and post-multiplying (41) byU(jω)∗ andU(jω), re-
spectively, we get

Y (jω)∗Y (jω) ≤ γ2U(jω)∗U(jω), ∀ ω ∈ Ω′low.

From the definition ofG(ξ), the above inequality is equivalent to the FFDI (20) forΦ
in (42). ¤

Appendix B.4 Proof of Corollary 3

Assume that the statement (i) holds. Pre- and post-multiplying (44) byU(jω)∗ and
U(jω), respectively, we get

U(jω)∗Y (jω) + Y (jω)∗U(jω) ≥ 0, ∀ ω ∈ Ω′low.

It follows from (45) and the definition ofG(ξ) that the above inequality is equivalent
to (ii). The equivalence of (ii), (iii) and (iv) follows immediately from Theorem 1 since
QΦ(w) = u∗y holds for allw = col(y, u) ∈ B. ¤
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Appendix B.5 Proof of Proposition 3

(i)⇒(ii) Assume that the statement (i) holds. Then, there existΨ ∈ Hq×q[ζ, η]
andΓ ∈ G satisfying (24). We can choose these matrices asB-canonical two-variable
polynomial matrices from Lemma A.2. This concludes the claim.

(ii)⇒(iii) Assume that there existΨ(ζ, η) andΓ(ζ, η) satisfying the statement
(ii). SinceΥ(ζ, η) is B-canonical,QΥ(w) is expressed as

QΥ(w) = z∗Υ̃z, Υ̃ ∈ H(N+1)q×(N+1)q, z := ZN

(
d

dt

)
w

for N ≤ deg R− 1. Then, we obtain

∫ +∞

−∞
QΓ(w)dt = tr

[
τΥ̃

{
−τ

∫ +∞

−∞
He

(
(ż − j$1z) (ż − j$2z)∗

]
dt

})
.

SinceτΥ̃ ≥ 0 holds from (22) and Lemma 1, we have (26) for allw ∈ B satisfying
(B.3). This concludes the claim.

(iii)⇒(i) The proof is straightforward from Theorem 1. ¤

Appendix B.6 Proof of Theorem 2

Assume that the FFDI (19) holds. From Proposition 3, there exist uniqueB-canonical
Ψ ∈ Hq×q[ζ, η] andΥ ∈ Hq×q[ζ, η] satisfying

d

dt
QΨ(w)+

(
$2
− −$+

2
)
QΥ(w)− QΥ (ẇ) + j$+ {LΥ (ẇ, w) + LΥ (w, ẇ)}

≤ QΦ(w), ∀ w ∈ B. (B.9)

It follows from theB-canonicity ofΨ(ζ, η) thatQΨ(w) is expressed as

QΨ(w) =
{

ZL−1

(
d

dt

)
w

}∗
Ψ̃ZL−1

(
d

dt

)
w

=
{

ZL

(
d

dt

)
w

}∗ [
Ψ̃ 0Lq×q

0q×Lq 0q×q

]
ZL

(
d

dt

)
w

=
{

ZL

(
d

dt

)
w

}∗ [
ILq 0Lq×q

]> Ψ̃
[
ILq 0Lq×q

]
ZL

(
d

dt

)
w.

SinceZL

(
d
dt

)
w = R̃⊥e k holds from (50), we get

QΨ(w) = k∗
(
R̃⊥e

)∗ [
ILq 0Lq×q

]> Ψ̃
[
ILq 0Lq×q

]
R̃⊥e k. (B.10)

Substituting (55) into (B.10),QΨ(w) is rewritten by

QΨ(w) = k∗E∗Ψ̃Ek.
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Similarly, from theB-canonicity ofΥ(ζ, η) andΦ(ζ, η), we obtain

QΥ(w) = k∗E∗Υ̃Ek,

QΥ(ẇ) = k̇∗E∗Υ̃Ek̇,

LΥ(ẇ, w) = k̇∗E∗Υ̃Ek,

QΦ(w) = k∗
(
R̃⊥e

)∗ [
Φ̃ 0(L+1)q×(L−K)q

0(L−K)q×(L+1)q 0(L−K)q×(L−K)q

]
R̃⊥e k

= k∗Φ0k.

Hence, (B.9) is equivalently rewritten by

d

dt
k∗E∗Ψ̃Ek+

(
$2
− −$+

2
)
k∗E∗Υ̃Ek − k̇∗E∗Υ̃Ek̇

+ j$+

(
k̇∗E∗Υ̃Ek + w∗E∗Υ̃Ek̇

)
≤ k∗Φ0k

for all k ∈ C∞(R,Cd) such that (53). This is the case if and only if the following
inequality holds from (53) and the product rule.

k∗F ∗Ψ̃Ek + k∗E∗Ψ̃Fk+
(
$2
− −$+

2
)
k∗E∗Υ̃Ek − k̇∗E∗Υ̃Ek̇

+ j$+

(
k∗F ∗Υ̃Ek + w∗E∗Υ̃Fk

)
≤ k∗Φ0k.

Since the kernel representation (53) is trim from Lemma A.3, the above inequality is
equivalent to the LMI (58). This completes the proof. ¤
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