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Abstract

Many of practical design specifications are provided by finite frequency proper-
ties described by inequalities over restricted finite frequency intervals. A quadratic
differential form (QDF) is a useful algebraic tool when we consider dissipation
theory based on the behavioral approach. In this paper, we investigate time do-
main characterizations of the finite frequency domain inequalities (FFDIS) using
QDFs. Based on QDFs, we derive a characterization of the FFDIs using quadratic
differential forms as a main result. This condition leads to a physical interpretation
in terms of the compensating rate, which guarantees dissipativity of some behavior
with some rate constraints. Such interpretation has not been clarified by the pre-
vious studies of finite frequency properties. The aforementioned characterization
yields an LMI condition whose solvability is equivalent to the FFDIs. This can be
regarded as the finite frequency KYP lemma in the behavioral framework.

1 Introduction

Many of practical design specifications are provided by sets of finite frequency prop-
erties which are expressed as inequalities over restricted finite frequency intervals.
Hence, the properties play an important role for dynamical system design including
plant and controller design integration.

The previous works on characterizations of finite frequency properties are as fol-
lows. lwasaki et.al [3][6] derived a linear matrix inequality (LMI) characterization for
the finite frequency properties, which is called generalized Kalman-YakétiRnpov
(KYP) lemma. Based on the lemma, a time domain characterization was derived in
terms of an integral of the supply rate, called matrix valued integral quadratic constraint
(IQC), for asymptotically stable state-space systems [5]. However, their physical inter-
pretation was not fully satisfactory, when we consider the interaction between supplied
power and internal energy of a system. In addition, their characterization was not es-
sential from the view point of dissipation theory, since the characterization was derived
through the generalized KYP lemma. For such reasons, it has been desired that we
characterize the finite frequency properties from the dissipativity viewpoints directly.



Dissipativity is one of the most important properties when we analyze a dynami-
cal system from the energy and power interaction with its outside environment. This
interaction is expressed by an inequality called dissipation inequality. It may be im-
portant that we consider a dissipativity analysis in frequency domains. This can be
verified by the following facts. It is well-known that dissipativity can be equivalently
transformed to the inequality over the imaginary axis [14]. Moreover, a stability condi-
tion for a feedback system is given in terms of integrals over entire frequencies, called
IQC [10]. This paper clarifies how the constraint on the frequency variable appears in
the dissipation inequality.

A gquadratic differential form (QDF) is a useful algebraic tool in dissipation the-
ory based on the behavioral approach [15], because it has a one-to-one correspondence
to a two-variable polynomial matrix. Since the behavioral approach is the theoretic
framework which does not assume an input-output relationship in advance, we can nat-
urally analyze and design a system described by a nonproper transfer function. Based
on QDFs, Willems and Trentelman [16] has proved that dissipativity of a behavior
is equivalent to a certain frequency domain inequalities on the entire frequency range.
This also leads to an equivalent LMI characterization of the inequalities [13]. However,
neither time domain characterization nor LMI characterization of the finite frequency
properties has not been derived in the behavioral framework.

In this paper, we consider a characterization of finite frequency properties in the
framework of dissipation theory. As a main result, we derive a characterization of the
FFDIs in terms of the dissipation inequality described by QDFs. This characteriza-
tion allows us to understand the significance of the properties directly and yields an
equivalent LMI characterization as a natural result of the characterization using the
inequality.

The organization of the paper is as follows. In Subsection 2.1, we review some
basic definitions and results about the behavioral system theory. We introduce QDFs in
Subsection 2.2 and explain dissipation theory based on QDFs in Subsection 2.3. The
problem formulation is provided in Section 3. In Section 4, we derive a characterization
of the finite frequency properties based on dissipation inequality as a main result. In
this result, we characterize the dissipativity properties in terms of some behaviors. We
restrict our attention to input-output setting in Section 5 and strengthen the characteri-
zation to the finite frequency bounded- and positive-realness with a typical mechanical
example. Based on the characterization, we give a finite frequency KYP lemma for a
numerical checking of the finite frequency properties in Section 6. Figure 1 explains a
series of these results comparing with the previous works [3][5][6].

. 3 Generalized
Finite Frequency [3] (Finite Frequency)
Properties KYP Lemma
Theorem 1 / II [5]
in Section 4 Theorem 2
in Section 6
’ Dissipation Inequahty‘ Theorem 1 Sllageg;aggte
in Section 4

Figure 1: This figure shows the relationship between the series of our conditions and
the previous works.



We use the following notations throughout this paper.

The set ofp x ¢ real and complex matrices are denoteddfy* ¢ andCP*?, respec-
tively. We also denot&87*¢ andHY*? as the set of x ¢ real symmetric and Hermite
matrices, respectively.

We denotéRP*?[¢] andRP*?[(, 7] as the set op x ¢ one- and two-variable polyno-
mial matrices, respectively. The setpok ¢ complex coefficient one- and two-variable
polynomial matrices are denoted fy*?[¢] andCP*?[¢, )], respectively. We denote
the set ofy x ¢ Hermite two-variable polynomial matrices in the indetermingtasd
1 by H*?[(, n].

We denoteW! as the set of maps froffi to W. DefineC*>(R,V) as the set of
infinitely differentiable functions fronR to the vector spac¥. We also define

D>(R,V) := {¢ € C*(R,V) | £ has a compact suppdrt

Let £5(C, V) denote the set of, functions fromC to V.

Finally, the row dimension of the matrid is denoted byrowdim(A). We de-
fine the rank of polynomial matri2(£) and constant matrix?(\) are denoted by
rankR andrankR()), respectively. We denote the matrid; Aj] --- A,TL]T
by col (41, As, -+, A,,). We definediag(A1, Aa,--- , A,,) as theg x ¢ (block) di-
agonal matrix with (block) diagonal elemenfst;, As,--- , A,}. We also define
He (A) = § (A+ A%).

2 Preliminaries

In this section, we will review the basic definitions and results from the behavioral
system theory, which are taken from the references [11][15][16].

2.1 Linear Continuous-time Systems

In the behavioral system theory, a dynamical system is defined as a X¥ripte

(T, W,%), whereT is the time axis, andV is the signal space in which the trajec-

tories take their values on. The behavidrC W7 is the set of all possible trajectories.
In this paper, we will consider lnear time-invariantcontinuous-time systemvith

T = RandW = C?. Such aX is represented by a system of linear differential-

algebraic equation as

L

d
Row + R; —

S 0, o

whereR; € CP*9 (4 =0,1,---,L)andL > 0. The variablav € C*(R, C?) is called
the manifest variable We call the representation (1)karnel representationf 8. A
short hand notation for (1) is

d

whereR € CP*[¢] is given by

R(€):=Ry+ Ri£+---+ Rpel. ©)



Then, the behavior is is defined as

B = {w € C>(R,CY)

R(jt)w:o}. @)

The representation (2) is said to berdnimal representation of8 if rowdimR <
rowdimR’ holds for any othe?’ € C**?[¢] which induces a kernel representation of
B.

For ease of later discussion, we define¢befficient matrix oR(¢) in (3) as

R:=[Ry Ry - Rg]ecCr<ttha

The polynomial matrixR(¢) is expressed a&(¢) = RZy(¢) in terms of R, where
Z; € RUHDaxa[¢] (5 = 0,1,---) is the polynomial matrix constructed by stacking the
polynomial matrice§ I, €1y, -+ , &1, }, i.e.

Iq

¢l
zi©)=|"" (5)
£1,

The behaviorB is calledcontrollable if for any trajectoriesw;, wy € B, there
exists a timel’ > 0 and a trajectoryw € 8 such that

wy (t) (t<0),
w(t) = {wQ(t ~T) (t>T).

The behaviofB is controllable if and only itank R(\) is constant for alk € C [15].
Whenever) is controllable, it can be described by iamage representation

w=M (i) ¢, M € Co¥mg], (6)

where the variablé € C>(R,C™) is called thelatent variable Then,B is given as
the image of the differential operatdr () by

B ={weC®(R,C% |3IleC®R,C) st (6)}.

An image representation in (6) is a special case of the representatiBn dhe
system of differential equations

d d
R(5)w-r(4): o

is said to be datent variable representationf 8. In terms of the latent variable
representatior can be rewritten as

B = {w e C®(R,CY) |I ¢ e C>(R,C™)s.t. (7) holds} .

An image representation & is calledobservabldf w = M (%) ¢ = 0 implies
¢ = 0. The representation (6) is observable if and only if the constant maf(ix) is
of full column rank for allA € C [15].



If (6) is an observable image representation, there exists a nonsingular permutation
matrix IT € C?*1? satisfying

mig = [[&]. veomg vec g rin=e @

with U (&) nonsingular [15]. Such a partition is called arput-output partition of

M(&). We can regard
d d
u.—U(dt>€andy— <dz‘)€

as input and output, respectively. In this case, corresponding to the above partition, the
transfer functiorG € CP*™ (&) from u to y is defined by

G(&) =Y (U (). ©)

2.2 Quadratic Differential Forms

We review the definition of a quadratic differential form (QDFs) [16] which plays a
central role in this paper. We also give some basic results with respect to QDFs and
dissipativity.

We first consider a two-variable polynomial matrix@4* *%[¢, n] described by

n) = Zz@i,j<inja
i>0j>0

where®,; ; € C1*%2, The above summation ranges over the non-negative integers and
is assumed to be finite. The degree®d(, ) with respect ta; andn are defined as

deg, ® = max i and deg, ® = max j,
BT T e B = &

whereZ C Z? is defined by
1:= {(%J) €z’ | ®; ; # 04y xqs } .

The bilinear differential form (BDF)L4 (41, ¢2) is a bilinear form of the variables
l; € C*(R,C%*) (k = 1,2) and their derivatives, namely

o : C®(R,C) x C®(R,C%) — C(R,R),
with form
N RA di s
61762 gjzo(dtz ) JW7

where K := deg. ® and K> := deg, ®. There is a one-to-one correspondence be-
tween the BDF and the two-variable polynomial matrix

K Ko .
=3 ¢ (10)

i=0 j=0



This means tha andn correspond to the differentiations éh and/s, respectively.
For®(¢, n) in (10), we define the mappings

9: COX®[C, ] — CHX®[e], 0B(E) == B(—E,€),
x 2 COXRIC ) — CEXC ], B*(Cm) = D7 (7, ).

With every ® € C2*2[(,n] in (10), we define itscoefficient matrix® €
CK1+1)q1 x (K2+1)q2

~: CBXe2[¢ ] — CE Do x (K24 1)az

oo  Do1 - Dok,
~ @10 P11 - D1k,
O = . . . .

Pri 0 Pria o Pryk,

Then,®(¢, ) is expresse (¢, n) = Zy, (g)fﬁsz( ) using® and Z; () in (5).
For & e Cu*%[¢,n] in (10), there existM, € Crank®x(NitDar (| = 1,2)

satisfying® = M; XM, whereXe € Srank®xrank® A7 N7 are of full row rank,
anddet ¥ # 0. This can be proved by using the inertia theorem. In this case, we get
rankXe = rank®. With such a factorization ob, we obtain acanonical factorization
of ®(¢,n) as

®(¢,n) = F(O)Za F2(n), (11)

whereF}, € (Cm“k‘f’qu[ €] (k = 1,2) is defined byFy (¢) := FipZn, ().

We call®(¢, n) Hermitianif <I>( 7)* = ®(n, ¢) holds (implyingg; = ¢2 =: g and
K, = Ky =: K). Then,®(¢,n) is expressed as

®(¢,m) = ZZQK (12)

=0 j=0
In this case®((, ) induces ayuadratic differential form (QDF)epresented by
Qo : COO(Rv (Cq) - COO(Ra R)v
pr(f) = Lq;.(f, é)

Thederivativeof the VQDFQu (¢) is defined by< Qy (¢). This is also a QDF. Let
V¥ € H*9[¢,n] induce 4 Qu (¢), i.e.Quy (¢) = £Qu(¢). Then, itis given by

U(¢,m) = (C+n)¥(C,n).

The nonnegativity of a QDF is characterized by its coefficient matrix as seen in the
following lemma.

Lemma 1 [16][1] Let ® € H?*4[(,n] be given. Then, we hav®g (¢) > 0 for all
¢ e C=(R,CY) if and only if B

b >0 (13)
holds.



2.3 Dissipation Theory

We assume theB in (4) is controllable in this section. Thef has an observable
image representation (6). Léte H2*?[¢, n] be given.
We give the definition of dissipativity of a behavior.

Definition 1 [16] Assume thafs is controllable. Le® € HY*?[(, n| be given. Then,
a behaviof® is calleddissipative with respect to the supply r&@e (w) if

+oo
Qo (w)dt >0, Yw e BND>(R,CY)

holds.

We may think 0fQs (w) as the power delivered to the behavidr The dissipativity
implies that the net flow of energy into the system is non-negative. This shows the
system dissipates energy. Hence, due to this dissipation, the rate of increase of the
energy stored inside of the system does not exceed the power supplied to it. This
interaction between supply, storage, and dissipation is now formalized in Definition 2
and Proposition 1 below.

We give the definition of a storage function and dissipation rate.

Definition 2 [16] Assume thafs is controllable. Let € H?*?[(, n] be given.
(i) The QDFQy (w) induced by¥ € H?*4[(, n)] is called astorage function fofs
with respect to the supply rat@s (w) if

%Q\p(w) < Qo(w), VweB (14)

holds. We call (14) theissipation inequality
(i) The QDFQa(w) induced byA € H?*¢[¢, 7] is called adissipation rate for

Q@(w) if
Qa(w) >0, VweB (15)
and
+oo +oo
Qo (w)dt = Qa(w)dt, VweBNDR,CY)
hold.

There is a one-to-one relation between a storage fun@ipfw) and a dissipation rate
Qa (w) defined by

25Qu(w) = Qa(w) ~ Qau). (15)

The equation (16) is called thssipation equality
The next proposition gives a characterization of the dissipativity in terms of a stor-
age function and a dissipation rate.

Proposition 1 [16] Let® € H?*4[(, n] be given. The following statements (i), (ii) and
(iii) are equivalent.

(i) The behaviofB is dissipative with respect to the supply r&le (w).



(i) There existadl € H?*9|¢, n] satisfying the dissipation inequalit}4).

(iii) There exisW € H?*?[(,n] and A € H?*9[¢, n] satisfying(15) and the dissipa-
tion equality(16).

Consider the frequency domain inequality (FDI) expressed as
M(jw)*0P(jw)M (jw) >0, VweR. a7)

The FDI (17) is a necessary and sufficient condition for the dissipativit$ dfom
Proposition 5.2 in [16].

Proposition 2 [16] Assume tha®3 is controllable. Let(6) be an observable image
representation of3 and ® € H?*?[(, n] induce the supply rate fdB. Then, FDI(17)
holds if and only if the behavidB is dissipative with respect to the supply r&le (w).

The above proposition shows that (17) is an inequality which interprets the dissipativity
in the frequency domain.

3 Problem Formulation

In this paper, we consider a characterization of finite frequency properties in the frame-
work of dissipation theory. We give the problem formulation in this section.

We consider a controllable linear time-invariant system= (R, C?,%B) in this
paper. Assume th@8 is controllable. The behavidB is typically represented by the
kernel representation (2), whete € C*°(R,C?) is the manifest variable ang <
CP*4[¢]. Then, the behavior is given by (4). Assume that (2) is minimal throughout
paper and suppose that an observable image representaffois described by (6) for
M c CqX’m[g].

Let® € H?*4[¢,n] in (12) be given. Suppose that thi4(, ) induces the supply
rate forB. Define the frequency domainin the finite interval by

Q={weR |7(w—wi)(w—wz) <0}, (18)

wherew,@wy € R, @w; < wy andr € Zis either+1 or —1. Our goal is to find
a characterization of the finite frequency property described by the follofimitg
frequency domain inequality (FFDUsing QDFs:

M*(jw)0P(jw)M (jw) >0, YVw e Q. (19)

The sef(2 for 7 = +1 represents the middle frequency interjal , z,], while Q
expresses the high frequency dom@irro, ;| and[ws, +00) in the case of = —1.
Moreover {2 becomes the entire real numbers, f22= R, if we chooseo; = wy :=0
with 7 = —1.

An interpretation of the FFDI (19) from the behavioral approach is the following.
Consider the QDR)¢ (w) induced by® € H?*9[¢, 5] in (12). The Fourier transform
of Qg (w) is computed as

W(jw)* 0P (jw)ib(jw) = {(jw)* M (jw)* 0P (jw) M (jw)l(jw),

wherew € L5(C,C%) and/ € L5(C,C™) are Fourier transform ofv € B N
D> (R,C™) and?¢ € D>*(R,C™), respectively. Sincé(t) can be taken an arbitrarily
trajectory inD>° (R, C™), the inequality

W(jw) 0P (jw)w(jw) >0, Ywe BND®(R,C"), we N



is equivalent to FFDI (19). We can regard the above inequality imposes a weighted
frequency constraint om € B over the restricted frequency domdh Hence, it
expresses the weighted rate limitation on the trajectories contairBdaithough the
FFDI (19) is described by usinty/ ().

Remark 1 In the state-space setting [3][5][6], Iwasaki et.al considered the EFDI

. 1 * . —1
{(]wln . A) B} B, {(wan . A) B} <0, YweQ, (20)

whered, ¢ H+m)x(n+m) 4 ¢ C"*" B e C**™ and(A, B) is a controllable pair.

We can regard the FFDI (19) as a generalization of the FFDI (20) to the behavioral
approach. It is explained as follows. L¥te CP*™[¢] andU € C™*™[¢] be defined

by a right coprime factorizatiof¢ I, — A) "' B = Y (£)U~1(¢). If we defineM (¢) :=

col (Y (£),U(§)) and® (¢, n) := —Py € HI*, then (19) is rewritten by the FFDI (20).

In addition, defineb, as

1
@y = JIT° {Omxm Im }11

ITVL OanL

then the FFDI (20) falls to the finite frequency positive realness [6]. Thus, the
FFDI (19) can be considered as a generalization of the FFDI (20) to the behavioral
approach.

4 Characterization of Finite Frequency Properties

This section derives a characterization of finite frequency properties in terms of a dis-
sipation inequality and an integral of the supply rate using QDFs as a main result.

4.1 Main Theorem
We definerw_ € R andw .. € R by

w_ = @ and wy = w (22)

and the seg by

Joo+ Ui

L(¢n) = H [wlw? ﬁ?] H T(¢m)

R qXxq
G =T EHGA o some € H?*4(¢, n] such that 2
7Qy(w) >0, Vw € C®(R,C7)
We see that
Ol (jw) = =7 (w — @) (W — @2) - TOT(jw)
>0 (23)

holds for allw € Q.

liwasaki and Hara [3] considered a unified FFDI which can describe the FFDIs in both continuous- and
discrete-time systems. The FFDI (20) is the continuous-time version of the FFDI in [3]



We have seen from Proposition 1 that the FDI (17) is equivalent to the dissipation
inequality (14). As we consider the FDI (17) restrictedowe can imagine that there
holds an analogous relationship to Proposition 1. This is explained as follows.

Assume that there exist two-variable polynomial matridess H?*?[¢, n] and
I' € G satisfying

%%(w) < Qe(w) — Qr(w), VweB. (24)

The above inequality corresponds to the dissipation inequality (14). Inequality (24)
is equivalent to the existence of € H?*?|(, n] satisfying a two-variable polynomial
matrix equation

(C+n)M*(C)¥(¢,n)M(n)
= M*(Q)®(¢,n)M(n) — M*(Q)T(¢,n)M(n) — M*(O)A(G,m)M(n)  (25)

andQa (w) > 0,V w € B. Substituting = —jw andn = jw into (25), we obtain the
FFDI

M (jw)*0®(jw)M (jw) = M (jw)* 0T (jw) M (jw) + M (jw) OA(jw) M (jw)
>0, YVwe
from (23). The above inequality guarantees the FFDI (19).
Inequality (24) also gives a necessary condition for the finite frequency property.

Thus, we obtain the following main result which provides a necessary and sufficient
condition for the property.

Theorem 1 Assume tha® in (4) is controllable and thaf3 is represented by an ob-
servable image representati@®). Let® € H?*?[(, n] be given. Defin€ by (18)and
G by (22). Then, the following statements (i), (ii) and (iii) are equivalent.

(i) FFDI (19)holds for allw € .
(i) There exisW € H1*?[¢,n] andT € G satisfying inequality24).

(i) Inequality
+oo
Qo (w)dt >0 (26)
holds for allw € B satisfying
THe ((z — jwiz) (2 — ngz)*) <0, (27)

wherez € D> (R, C(N+1)4) s defined by

z2:=27Zn (jt) w (28)

with some nonnegative integaf € Z.

Proof See Appendix B.1 for the proof. O
We call the QDRQr(w) satisfying (24) a&ompensation rate foB with respect to

the frequency domaifl. Namely,Qr(w) guarantees the dissipativity of some behavior
related to% and(). The detail of this claim is explained in Subsection 4.2.

10



Remark 2 It should be noted that the characterization in Theorem 1 is representation-
free. Namely, it does not suppose any particular representati#n bf this sense, this
theorem gives a more general result than the previous works done by Iwasaki et.al [5].

Remark 3 The equivalence of (i) and (iii) corresponds to the result if we restrict The-
orem 3 in [5] to continuous-time systems. The statement (iii) shows that the integral of
the power supplied to the system is nonnegative for the manifest variable which varies
in the frequency contained in.

Remark 4 The two-variable polynomial

= L)

¢ Jwt -1 | |n
is a real coefficient polynomial f2 is symmetric about the origin, i.e. low frequency
domain

Qow :={w €R| |w| < w} (29)
and high frequency domain

thgh = {w eR | |w| > w} (30)

for example, wherev € R is a given scalar satisfying > 0. If M (¢) and®(¢,n) are
all real polynomial matrices, we can restrigf¢,n) andT'(¢,#) in Theorem 1 to real
symmetric two-variable polynomial matrices without loss of generality.

4.2 Physical Interpretation

In this subsection, we clarify the physical interpretation of Theorem 1 from the view-
point of dissipation theory.
Define the subbehavi®® C B by

B = {w € B | w satisfies (27) for € D> (R, CN+D9)in (28)} . (31)
SinceQr(w) can be rewritten by
Qr(w) = —3*T% + jwy (z*fz - Z*Yz) — e Tz,
we have
Qr(w) = tr [f (=32 4 jwy (327 — 28%) — wlwgzz*}]
= tr |7 - {—7He (2 — jmi2) (¢ - jm22)") }] - (32)

It follows from 7Y > 0thatQr(w) > 0,V w € By holds if and only ifz satisfies (27).
Hence, we can regafB, as the set of all trajectories 98 which vary in the frequency
contained irf2. Namely,®B, has a rate constraint determined®f(, n) ands?.

We can obtain the following corollary, which shows the physical interpretation of
Theorem 1 in terms of the dissipation inequality.

Corollary 1 Assume thaf3 in (4) and that® is represented by an observable image
representatior(6). Let® € H?*¢[¢, n] be given. Defin€) by (18), G by (22) and B,
by (31). Then, the following statements (i), (ii) and (iii) are equivalent.

11



(i) FFDI (19)holds for allw € .

(i) There existal € H?*?[(, n] satisfying the dissipation inequality

d
%Q\I’(w) < Qa(w), Vw € Bg.
(iii) There exis® € HI*[(,n], A € H?*?[(,n] andT € G satisfying the dissipation
equality
d
ng,(w) = Qs (w) — Qatr(w), Yw € Bg (33)
and
Qatr(w) >0, Vw € Bg. (34)

This implies that the QDR+ (w) is a dissipation rate fof3,.
(iv) The behaviofB, is dissipative with respect to the supply r&e (w).

Proof See Appendix B.2 for the proof. O

Corollary 1 provides us a physical interpretation of the compensating rate as ex-
plained below.

It is not difficult to see thafB is not necessarily dissipative with respect to the
supply rateQq (w) from Proposition 1. However, Corollary 1 (iv) states that, if we
concentrate ourselves to the trajectories to those varying in the frequency contained
in ©, thenB, becomes dissipative. Namely, the compensating rate guarantees the
dissipativity of the subbehavior which has a constraint on the rate of change. We de-
scribe this interpretation after an intuitive example. Such an observation has not been
considered in the previous works by lwasaki et.al [5].

Consider the latent variablg, € C>°(R,C™) by £, (t) := e/“'v, v € C™ for a
givenw € . We easily get

which impliesw € Bq. SincerQy(w) > 0 holds for allw € 9B, we have
Qr(w) = —7(w — @1)(w — w2) - TQy(w) > 0, Yw € Bg s.t. (35)
From (24) and the above inequality, the inequality
d
>
T dt

holds for allw € B, such that (35). On the other hand, we h&ew) < 0 for all
w € B such that (35) ifv ¢ Q. Hence, (36) does not always hold, which concludes
the intuitive explanation.

We generalize the above intuitive explanation to a physical interpretation in the
dissipativity theory. We can see from Corollary 1 that Q@ w) satisfies the equality

Q(w) > Qr(w) + 5:Qu(w) > 5Qu(w) (36)

+oo +oo
QA_H"(U))dt = Qq)(’w)dt, Ywe BagN DOO(R, (Cq)

— 00 — 00
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Also, we observe that
Qa+r(w) = Qa(w) + Qr(w)
= tr[A 22| 4 tr [7T - {—rHe (2 — jmi2) (2 - jw22)]})
= tr[A 22" 47T - {=rHe (2 - jm12) (2 - jw22)") }]
A0

= tr ~
0 77

zz* 0
0 —7He((2 —jwi2) (¢ — jwaz)")
holds. This implies thaQ A (w) satisfies
Qasr(w) >0, YweBq

and
Qa+r(w) 2 0, YweB\Bq.

If we regard QDFQ4(w) andQy (w) as the supply rate and the storage function in
(33) along the line of Definition 2, the above observation shows that QRFr (w)
becomes the dissipation rate®f, for supply rateQ (w) from Definition 2 (ii). There-

fore, Qr(w) can be regarded as a compensating power which guarantees the dissipa-
tivity of Bg,.

Corollary 1 (iii) also gives a time domain characterization of sum-of-squares (SoS)
decomposition by similar discussion made by Hara and lwasaki [2]. This is explained
as follows.

Since (6) is an observable image representatio®pf{33) can be equivalently
rewritten by a two-variable polynomial matrix equation

(¢, m) =M* ()AL, m)M(n) + M*(C)T(¢, )M (n)
+ (¢ +n)M*(Q)¥(¢,n)M(n),

where®’ € H™*™[(,n] is defined by

O'(¢,m) := M*(Q)@(C, n) M (n). 37)

From (22), we obtain

(¢, m) =M*({)A(C,m) M (n)
+7{=Cn+jw (¢ —n) —@wwa} - TM*({)Y(C,n)M(n)
+ (C+n)M*(C)®(¢,n)M(n).

By substitutingl = —jw, n = jw, w; = we =: w and7 = —1 into the above
equation, it follows from (34) that

0% (jw) = M(jw)"0A(jw) M (jw) + (w — =) {=M (jw)" 0T (jw) M (jw)}
>0, Vwe (38)
holds. SinceM (jw)*0A(jw)M (jw) > 0 and —M (jw)*9Y (jw)M (jw) > 0 hold
for all w € R, we see that (38) gives an SoS decomposition of the polynomial matrix

0%'(jw) in the indeterminate.. Hence, statement (iii) gives a time domain interpreta-
tion of the SoS factorization derived in [2] for continuous-time systems.

13



4.3 Numerical Example

In this subsection, we demonstrate a simple numerical example to show how FFDI (19)
is characterized in terms of QDFs based on Theorem 1 and Corollary 1.
Consider the behavidB given by a kernel representation

d2 d -1

a T2y | @ |y + 2 | ws=0,

0 1 s

wherew := col (w, we, w3) is the manifest variable. This representation is is induced

by a polynomial matrix )
_[¢+2 & -1

We see tha® has an observable image representation

d 841
w=M (d) 0ME) = |-€E+2)|, (e R R).
t €242

We introduce a two-variable polynomial matidxe H3*3[¢, 5] defined by

1—=¢n Cn+n* 0
(¢,m) = |¢(n+¢* 20+2n+1 0f,
0 0 1
which induces the the supply rate #8rgiven by

Qo (w) = wi — w? + 211y + 2wty + 2wty + 2003 + w3 + w3.

We analyze a finite frequency property based on the aBéye) and®(¢, n), where
we set the (low) frequency domaih:= [—1, 1]. We have the following FFDI

M (jw)*0®(jw)M (jw) = —3w® + 5w* — 5w? +5
>0, VweAqQ,

sinceM () has full column rank for alA € C and

1—w? 0 0
0P (jw) = 0 1 0 >0, VweQ.
0 0 1

Define two-variable polynomial matricds A, T' € H3*3[(, n] by

0 n O 0 0 O
U(¢,n):=1(¢ 2 0|,An):=10 1 0],
00 0 00 1
1 00
L'(¢,n) =0 -¢m7T(n), Y(¢n):=1{0 0 0f.
00 1

Then, QDFRy (w) andQr(w) are computed as

Qu(w) = 2wty + 2w?,
2

Qr(w) = wf — wi + w5 — wi,

14



respectively, and hence we have

Qo) ~ & Quw) = Qa(w) + Qelw) = wf —1i? + j + uf.

We easily see that

d
aQ\p(U)) £ Qo(w), YweB

holds. In addition, if we ad@Qr(w) to the left-hand side of the above inequality, we
get

Qu(w) + %qu(w) < Quw) Ywe®,

becauseQa (w) = w? + w2 > 0 holds for allw € B. Hence, we can see from
Theorem 1 (ii) that FFDI (19) holds.
Moreover, focusing on inequality

Qa(w) + Qr(w) = w? — i + w3 +wi >0, Ywe Bq.

yields the dissipation inequality

%Q‘y(w) < Qo(w), VweBq.

This shows thafB, is dissipative with respect to the supply r&le (w) from Corol-
lary 1 (ii). This is guaranteed by the existence of the compensatio®f&te).

5 Finite Frequency Bounded- and Positive-Realness

In Section 5, we consider the case where the results of the previous section is applied to
the finite frequency bounded- and positive- realness [6] under the input-output setting.

We also consider a controllable linear time-invariant systers= (R, C%,B) as
in Section 4. Assume tha@8 is controllable. Let (6) be an observable image repre-
sentation ofB. Let (8) be an input-output partition d¥/(£), whereY € RP*™[¢]
andU € R™*™[¢] is nonsingular. Theny is partitioned asv = col (y, u), where
u:= U (&) ¢andy := Y (4) ¢ are an input and output, respectively. Such a parti-
tion always exists by the observability assumption of (6). Then, the transfer function
G € Cr*™ (&) from u to y is given by (9). Define the low frequency domain by

Q/

low

={weR | |w| <wanddet (U(jw)) #0} (40)

for a givenw € R, w > 0.

5.1 Finite Frequency Bounded Realness

We characterize the finite frequency bounded realneé& §f in this subsection.
We give the definition of the finite frequency bounded realness.

15



Definition 3 Assume thaf3 in (4) and that® is represented by an observable image
representation (6). Let (8) be an input-output partitio6f¢), whereY € RP*™[¢]
andU € R™*™[¢] is nonsingular. Letd € CP*™ (&) in (9) be given. Defin&)|_ by

low

(40). ThenG (&) is calledfinite frequency bounded real (FFBR) with bandwidthf
G(jw)* Gjw) <1 (41)

holds for allw € !

low?

wherey € R is a given positive number.
Define® € HY*? by
-1, 0
¢ =1II" P TR 42
|:Om><p ’721’m,:| ( )

wherell € C?%? is a nonsingular permutation matrix in (8). Then, we immediately
obtain the following corollary from Theorem 1.

Corollary 2 Assume thaf in (4) and thatB is represented by an observable image
representatior(6). Let(8) be an input-output partition ob/ (£), whereY € RP*™[¢]
andU € R™*™[¢] is nonsingular. Defing&s € CP*™(¢) by (9). Let® € H?*? be
given by(42). Define(Y;_, by (40). Then, the following statements (i), (ii), (iii) and (iv)
are equivalent.

(i) The transfer functioidz(¢) is FFBR with bandwidtho.
(i) FFDI (20)holds for allw € €

low*

(iii) There exis® € H?*?[¢,n] andT € G satisfying

d
Qr(w) + - Qu(w) < P llull* = llyl*, VweB.

oo 2 too 2
22 / ull? dt > / Iyl dt
— 00 — 00

holds for allu € D> (R,C™) andy € D> (R, C?) satisfying

(iv) Inequality

25* < w?zz¥, (43)

wherez € D>®(R,CV+19) is defined by(28) with w = col (y, ) and some
nonnegative integeN € Z.

Proof See Appendix B.3 for the proof. |

5.2 Finite Frequency Positive Realness

In the following, we characterize the finite frequency positive realnegs(¢f in the
case wher& (&) is square, i.ep = m. This property is one of the key properties for
the integrated design [6].
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Definition 4 Assume thaf3 in (4) and that® is represented by an observable image
representation (6). Let (8) be an input-output partitiodbf¢), whereY € R™*™[¢]
andU € R™*™[¢] is nonsingular. LeGG € C™*™(¢) in (9) be given. Defin€)|__ by

low

(40). ThenG(&) is calledfinite frequency positive real (FFPR) with bandwidthif

G(jw) + G(jw)* >0, Vwe N, (44)
holds.
Suppose thab € H?*?[(, n] is described by
. 1 0m><m Im
¢:=50 { L, ome] , (49)

wherell € C?%? is a nonsingular permutation matrix in (8). Then, we obtain the
following corollary which characterizes the FFPR property.

Corollary 3 Assume tha®s in (4) and thats is represented by an observable image
representatior(6). Let® € H?>"*2™ pe given by(45). Let(8) be an input-output
partition of M (£), whereY € RP*™[¢] andU € R™*™[¢] is nonsingular. Define
G e C™*™(£) by (9). Let® € H*? be given by45). DefineQ; . by (40). Then, the
following statements (i), (i), (iii) and (iv) are equivalent.

(i) The transfer functioidz(¢) is FFPR with bandwidtho.
(i) FFDI (20)holds for allw € €

low*

(i) There exis® € H2™*2™[¢ n] andT € G satisfying
d
Qr(w) + aQ\p(w) <u*y YweB.

(iv) Inequality
+o0
/ uw*ydt >0

—00

holds for allu,y € D>(R,C™) satisfying(43), wherez € C>® (R, C(N+14) is
defined by(28) with w = col (y, u) Some nonnegative integéf € Z.

Proof See Appendix B.4 for the proof. O

5.3 Numerical Example: Mechanical System

In this subsection, we apply Corollary 3 to a typical mechanical system and confirm
the efficiency of the result.

Consider a mass-spring-damper mechanism depicted in Fig. 2. The mechanism
consists of two carts with mass € R linked with a spring: € R and a dampet € R.
We apply a forceF" € C>°(R,R) to cart 1 and measure the velocity of cart 2. In this
setting, we examine that the system has the FFPR property.

Letw := col(%q, F') and? := z; be the manifest and latent variable, respectively.
We can regard” andz, as an input and output variable, respectively. Then, the behav-
ior is given by

B = {weC®(R,R*) |3 (e C®R,R)s.t (46)},

17



Figure 2: mass-spring-damper system

which has a latent variable representation
d d? d .
|: 2 k . dt :|w:|:mdt2+cdt+k:|€ (46)
By eliminating/, the kernel representation & is induced by
R(§) = [(me? + e + k)" — k2 —ke].

Hence /5 is represented by the image representation

d k x
w=M <dt) E, M(f) = {m2£3+2mc§2+ (2mk‘+02)§+2kc] € Rz l[ﬂ

Let G € R(¢) be the transfer function frorfi to Z22. Then,G (&) can be computed as

k
m2E3 + 2mc€? + (2mk + ¢2) € + 2kc’

G(§) =
In order to check the FFPR property, defibec S?*2 in (45) by
10 1
®:=3 {1 0} '
Then, the supply rate fdB is given byQq (w) = FZ>. We see that

M ()0 (ju) M (ju) = 27 <_w2 + Z)

holds. ThenG(£) is FFPR in the frequency domain (40) for

w = ay/ %, a€0,1] and U(€) := m*€® + 2meg® + (2mk + ¢*) € + 2ke.

DefineV, T' € H?*2[¢, n] in Corollary 3 by

vy o= PTG e G

2me |1 0
k

(G = (@ = V(G TG = 2= | ] € B 2lcnl
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Then,Qy (w) andQr(w) are computed as

2

Qu(w) =mzi12s — (21 — 22) 22 + %Z'zza
2 k
Qr(w) = <me (_2-22 +a22-22) 7
k m

respectively. Thus, we obtain the equality

Qo (w) — %Qw(w) =2¢(1 — @)z} + Qr(w).

Hence, we see that

%qu(w) £ Qo (w), Vw € B

holds. However, if we add the QD& (w) to the left-hand side of the above inequality,
we get

Qr(w) + %qu(ﬂ)) < Qs(w), VweB,

becausec(1 — «)2% > 0 holds for allz; from o € [0,1]. This shows that inequal-
ity (24) is satisfied for altv € 8.

6 Finite Frequency KYP Lemma

In this section, we give an LMI characterization of FFDI (19) or the finite frequency
KYP lemma for a numerical checking of the finite frequency properties. We first de-
rive a finite frequency property characterization in term$3atanonical polynomial
matrices as a preliminary result. This yields the finite frequency KYP lemma in the
behavioral framework. See Appendix A.1 for the definition and basic properties of
$B-canonical polynomial matrices.

6.1 Finite Frequency KYP Lemma

We here assume thd € CP*?[¢] in (2) is row reduced [7]. This assumption does
not lose the generality, because there always exists a unimodular polynomial matrix
U € CP*P[¢] satisfying

Rrea(§) = U(E)R(E),

whereR,.q € C?*?[¢] is row reduced. It should be noted that.4 (£) may be obtained
by the commandowred of Polynomial Toolbox [12] for MATLAB. In addition, we
set the following degree constraint

deg R > deg, @ = deg, ®. 47

This constraint does not lose the generality. If (47) does not hold, de&;, R <
deg, ® = deg, @, we can reduce it to (47) by takil+1 = Rp42 = -+ = Rg =
0pxq. Hence, it is sufficient to prove under the assumption (47).

From Theorem 1 and Lemma A.2, we obtain a characterization for the finite fre-
guency property usin@-canonical polynomial matrices.
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Proposition 3 Assume thafB in (4) is controllable and thatR € CP*9[¢] is row-

reduced. Suppose th& is represented by an observable image representg6n
Let® € H?*?[¢, n] be given by12) and satisfy(47). Define2 by (18)and G by (22).

Then, the following statements (i), (ii) and (iii) are equivalent.

(i) FFDI (19)holds for allw € €.

(i) There exist uniqu&-canonicall € H?*4[¢,n] and’ € G with B-canonical
T € H2*9[¢, n] satisfying

%Q@(w) < Qa(w) — Qr(w), ¥w € B. (48)

(iii) Inequality(26) holds for allw € 9B satisfying(27), wherez € D> (R, C(N+1)a)
is defined by28) for nonnegative integer such that < deg R — 1.

Proof See Appendix B.5 for the proof. O
In Theorem 1 and Corollary 1, we do not know the degre® @f, n) andT'(¢,n) in
advance. Although Proposition 3 is a preliminary result for the finite frequency KYP
lemma, it shows that the upper bounds of the degree are determined by B@f of

As we have established the preliminary result, we give the finite frequency KYP
lemma. In the following, we transform the kernel representation (2) into a latent vari-
able representation with a first-order differential-algebraic equation (A.2) along the
same line in [13]. Let; € C'*9[¢] (i = 1,--- ,p) denote thath row of R(¢), i.e.

r1(¢)
re - [
2(6)
For theser;’s, defineR, € CXi=1(L+1=ri)xa[¢] by
wo| el
Re(©) = | . |, Bel§) = : : (49)
RE(E) €iri(€)
wherep;, € Z (i = 1,2,---,p) denotes the maximal degree of the elements of

r;(§). We easily see thaR.(¢) satisfiesdeg R, = L. Define the variabley €
C>® (R, C(E+19) by stackingw and its derivatives as

d
=275 | —
v L (dt) “

whereZ; € RUE+HD9x9[¢] is defined by (5). Then, the kernel representation (2) can be
rewritten by a first-order differential-algebraic equation expressed as

[ILq OLqu} o



whereR, € CXi=i(L+1-p:)x(L+1)a denotes the coefficient matrix @t.(¢). We can
see from this expression thRtv = 0 holds if and only if

P
v=Rlk k€C®(R,CY), d:=(L+1)g— Y (L+1-p) (50)

i=1

holds, whereR: € C(L+1Daxd js the constant matrix satisfying
im (E‘f) = ker (Ee> . (51)

This implies thatR, can define the first-order latent variable representation with man-
ifest variablew and the latent variable as

w=[I, Ogxrq] REF, (52)
d
E—k=F
k= Fk, (53)
where
E:= (I, Opgxq] RE € Cloxd, (54)
F = [Opgxq Irg] R: € Claxd, (55)

Using (50) and (51)% in (4) coincides with the set of trajectories given by (52) and
(53) (see pp. 287 in [13]), i.e.

B = {w e C®(R,CY) | Ik € C(R,C?) s.t. (52) and (53} .

Using R+ and®, we defined, € H**? by
By (ﬁj)* [ ) O(L+1)gx(L—K)q ﬁe{ (56)
OL-K)gx(L+1)g  O(L-K)qx(L-K)q

where® ¢ HE+Dex(K+1) s the coefficient matrix ofb(¢, 7). Consequently, we
obtain the finite frequency KYP lemma in the behavioral framework. This is a natural
result which follows from Lemma 1 and Proposition 3.

Theorem 2 Assume tha® in (4) is controllable and thaf € CP*?[¢] is row reduced.
Suppose tha® is represented by an image representatiéh Let® € H2*?[¢, n] be
given by(12) and satisfy(47). Define2 by (18). Then, the following statements (i) and
(i) are equivalent.

(i) FFDI (19)holds for allw € €.
(i) There existl € HL7<Le and Y € HL7*L4 satisfying
T >0, (57)
E*UF + F*UE + (@? — @, 2)E*TE — F*TF
+{(= F*TE) + (jo  F'TE)' } <@, (58)

whereE, F € CF9*d and ®, € H*? are defined by54), (55) and (56), re-
spectively, andv_, w, € R are defined by21).
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Proof See Appendix B.6 for the proof. O

We now explain relationship between Theorem 2 and the previous works [3][13]
associated with KYP lemma.

Theorem 2 is not a new result because this is a special case of the generalized
KYP lemma [3] if we restrict ourselves to continuous-time systems and the curve in
the complex plane t62. The lemma was derived based on the input-output setting,
however, Theorem 2 does not assume such a relation in advance.

On the other hand, Theorem 2 includes the KYP lemma derived in [13] in a sense
that we can deal with the LMIs over the restricted frequency domain. This is explained
as follows.

If we choose the parameters= —1 andw; = w, = 0, 2 coincides with the set
of real number®. Hence, Theorem 2 falls to the KYP lemma [13] in the behavioral
framework. Sincev = w, = 0 holds, the LMI (58) is equivalent to

E*UF + F*UE + F* (—T) F < ®,. (59)
It follows from —Y > 0 that the above LMI is equivalently rewritten by rewritten by
E*UF + F*UE < ®,.

If there existy and Y satisfying (59),Y = 0 also satisfies (59) fromY > 0. Then,
the LMI (59) can be rewritten by the following LMIs

(ﬁl)* ({ P 0(L+1>qx(L—K)q]
e
OL—K)gx(L+1)qg  O(L—K)gx(L-K)q
- [OLqu v } B [OqiLq Ogxq }) EL >0

Oqu OqXLq v OLqu

which was proposed in Theorem 4.2 in [13]. Hence, Theorem 2 includes the KYP
lemma in previous works in behavioral approach.

6.2 Numerical Example

In the subsection, we will see how to check the finite frequency property based on the
LMI conditions in Theorem 2.

Consider the behavidB whose kernel representation is induced®y) in (39).
We see thatR.(¢) coincides withR(£). This polynomial matrix has the coefficient
matrix R, € R2*? which is given by

From (51), we compute

[0.3780 0 —0.3780 0 —0.3780 0 0

0 0 0 0 0 0 —0.7071

0.9186 0 0.0814 0 0.0814 0 0

N 0 1.0000 0o o o 0 0
R = |0.0814 0 0.9186 0 —0.0814 0 0
0 0 0 1.0000 0 0 0

0.0814 0 —0.0814 0 09186 0 0

0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0.7071
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We can solve the LMIs (57) and (58) by using the solver in Robust Control Tool-
box [9] of MATLAB 2009a. One of the feasible solutions obtained is given by

[—0.3105  0.2767  0.1751 —0.8558  0.8161 —0.2541]
0.2767  2.0634 —0.1511: 0.0649 —0.1580  0.1172
~ 0.1751 —0.1511 -0.1025: 0.3220  0.0249 —0.2742

V= o8558 00640 0.3220 01485 0.14510.1666 | °
0.8161 —0.1580  0.0249 | —0.1451 —0.0705  0.0098

| 02541 0.1172 —0.2742 0 0.1666  0.0098 —0.1527

[ 0.8302 —0.0438 —0.1069 | —0.0040 —0.0348 —0.0104]
~0.0438  0.7088 —0.0847 . 0.0499  0.0018 —0.0022
§_ [ 701069 —0.0847 05867 ; 0.0077  0.0044  0.0009

—0.0040  0.0499  0.0077: 1.1633  0.0154 —0.0792
—0.0348  0.0018  0.0044 : 0.0154  0.6566 —0.0132
| —0.0104 —0.0022  0.0009 ; —0.0792 —0.0132  0.6100

Note that the symmetric matri¥ is nonnegative definite, since the eigenvalues are
located at
{0.5014, 0.5956, 0.6540, 0.7475, 0.8767, 1.1804} .

We can therefore conclude from Theorem 2 that the finite frequency property holds.

7 Conclusions

In this paper, we have characterized the finite frequency properties in terms of the
dissipation inequality and the integral of the supply rate based on QDFs. This leads the
finite frequency KYP lemma which characterizes the FFDI (19) as a natural result.

As a future work, our results should be applied to a synthesis of a controller with
frequency domain specifications in the framework of dissipation theory. Partial solu-
tions for such problems have been derived by Iwasaki and Hara [4] based on state-space
and descriptor system. However, our result may be efficient to solve these problems,
since we can deal with systems described by artless high-order differential algebraic
equations.
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Appendix A Background Materials

In this section, we collect the background materials which are used in the proofs. They
relate LMIs with QDFs and play important roles in Section 6.

Appendix A.1 B-canonical Polynomial Matrices

We introduce®B-canonicity of polynomial matrices in this appendix, which are taken
from the reference [7][8].

23



We assume thaR € C?2*?[¢] in (2) is row reduced [7] in this section. The as-
sumption does not lose the generality as we have explained in Section 6. We define the
$B-canonicity of polynomial matrices.

Definition A.1 [8] Let % be represented by a kernel representation (2)Horc
CPx4[¢]. Assume thatR(¢) is row reduced. LetD € CP*9[¢] be given. Let
r; € C1*9[¢] andd; € C**9[¢] (i = 1,---,p) denote theith rows of R(¢) and
D(¢), respectively. A polynomial matri®o(¢) is called%-canonicalif

degd; < degr;—1, Vi=1,---,p
holds.

The next lemma ensures the uniqueness dtaanonical polynomial matrix up to
B-equivalence.

Lemma A.1 [8] LetB be represented by a kernel representai@jfor R € CP*4[¢].
Assume thaR?(¢) is row reduced. For anyD € CP*?[¢], there exists a uniqués-
canonicalD’ € CP*9[¢] satisfying

d (d

We now define théB-canonicity of two-variable polynomial matrices. Lét €
H?*?[¢, n] be given. Suppose thdt({, n) has a (symmetric) canonical factorization

(¢, n) = F*(¢)Za F(n) (A.1)
with S € Srank®xrank® ot 34 24 0 and F € Crank®xmig],

Definition A.2 [8] Let 9 be represented by a kernel representation (2)Horc
CPxa¢]. Assume thatR(§) is row reduced. Let € H?*9[(, 7] be given. Let

F ¢ Crank®xm[¢] he defined by the canonical factorization (A.1). Thé(,n) is
calledB-canonicalif F'(£) is B-canonical.

The following result is an immediate consequence of the uniqueness of the canon-
ical factorization of®(¢,n) and of Lemma A.1.

Lemma A.2 [8] Let®B be represented by a kernel representati@yfor R € CP*?[¢].
Assume thaR(¢) is row reduced. Le® € H?*4[(, n] be given. Then, for ang (¢, n),
there exists a uniqui-canonical®’ € H?*4[(, n] satisfying

Qo (w) = Qa(w), YweB.

Appendix A.2 Trimness

We summarize the definition and some basic result of the trimness of first order kernel
representation in this appendix, which are taken from the reference [13].

Definition A.3 [13] Let B¢ be the behavior whose kernel representation is described
by a first-order differential-algebraic equation

Ew = Fw, E,F € CP*4. (A.2)
Define theset of consisting pointsf (A.2) by
Wy :={wp € C? | FJw € Br s.t.w(0) =wp }.
The representation given by (A.2) is callgn if 1/, = C? holds.
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The next lemma ensures that the representation given by (52) is trim, which is used
to prove the the finite-frequency KYP Lemma. This lemma was taken from Lemma 4.1
in[13].

Lemma A.3 [13] Let B be represented by a kernel representati@) for R ¢
CP*e[¢]. Assume thaR(¢) is row reduced. Then, the kernel representat{b8) is
trim.

Appendix B Proofs
Appendix B.1  Proof of Theorem 1

The proof consists of three steps. We first show the characterization for the low fre-
guency property in Appendix B.1.1. This leads to the high frequency case in Appendix
B.1.2. Finally, we conclude the proof in Appendix B.1.3 for the general frequency
property. Note that the most part of the proof are devoted to Appendix B.1.1.

Appendix B.1.1 Low Frequency Case

In this appendix, we restrict our attention to the low frequency property and derive a
characterization of the property as preliminary result.

Define the low frequency domain,,, C R in the restricted interval by (29). We
remark thatr in (18) is equal to+1 for the low frequency property. We consider a
characterization of the following FFDI based on QDFs.

M(jw)* 0P (jw)M (jw) >0, YVw € Now (B.1)

For this purpose, define the set of two-variable matrices for the frequency domain given
by

for someY € H*?[¢, n] such tha

glow = I'e quq[ga 77]
Qr(w) >0, Vw € C(R,CY)

I'(¢,n) = (=@ = (n) Y(¢,m) }
£y (B.2)

We see that
Il (jw) = (@ — w?) 0T (jw) > 0, Vw € Noy.

holds for anyI’ € G. We obtain a necessary and sufficient condition for the low
frequency property.

Lemma B.1 Assume thaf8 in (4) is controllable and thatB is represented by an
observable image representati@®). Let® € HI*?[(,n] be given. Definé,,, by
(29) and defineG, by (B.2). Then, the following statements (i), (ii) and (iii) are
equivalent.

(i) FFDI (B.1)holds for allw € Qo
(i) There exis@ € H1*9[¢,n] andT € Gy satisfying(24).
(iii) Inequality(26) holds for allw € 9B satisfying
222*, (B.3)

22*<w

wherez € D>(R,CV+19) is defined by(28) with some nonnegative integer
N e Z.
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Proof (i)=-(ii) Assume that the statement (ii) does not hold. This is the case if and
only if there do not exis (¢, n) andTl’ € G, satisfying

da

dt
for somee > 0. The above inequality is equivalent to the two-variable polynomial
matrix equation

M*(OT(Cm)M () + (¢ + ) M* ()R (C, n) M (n) — M*(C)®(C, 1) M (1)
—eM*(Q)M (n) + M*(CQ)A(¢, n)M(n) = 0. (B.4)

for someA € H?*?[¢, n] such thaQa (w) > 0,V w € B. Substituting = —jw and
n = jw into (B.4), we get

Qu(w) — Qa(w) + Qr(w) < e fw|®, VweB

M (jw) o (jw) M (jw) — M(jw) 0 (jw) M (jw) — eM (jw)" M (jw)
+ OA(Jw)M (jw) =0, Y w € Qoy.
SincedA(jw) > 0 holds for allw € ., We obtain the matrix inequality
M (jw)* 0T (jw) M (jw) — M(jw)*dB(jw)M (jw) < eM(jw)* M(jw), Yw € Qow.
This shows that there does not exis€ G, satisfying
M (jw)* 0T (jw) M (jw) — M(jw)*0®(jw) M (jw) <0, ¥w € Qo

From the definition off’({,n), there does not exisf (¢, n) satisfyingQy(w) > 0,
Y w e % and

(w® = w?) M(jw)* 0T (jw) M (jw)

0, Vwe Qlow-

Hence, the statement (i) does not hold, which completes the proof of the claim.

(ii)=-(iii) By integrating (24) fromt = —cotot = +oo alongw € B N
D> (R, C?), we get the inequality
+oo +oo
Qr(w)dt < Qo(w)dt, YweBND(R,C?).

— 00 — 00

The QDF Qr(w) is expressed aQy(w) = 2*Tz from (28), whereY e
HN+Dax(N+1)q js the coefficient matrix of((¢, 7). Hence,Qr(w) can be rewrit-
ten as

Qr(w) = — Vi + w2 Y2,

By integrating the above equation fram= —oo tot = 400, we obtain

“+o0 +oo ~ .
Qr(w)dt = / (—2*T73 + WQZ*TZ) dt

= /;OO {—tr ['f (22* — w2zz*)} } dt
= /_;OO tr {T {— (zz* — w%z*)}} dt.
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SincerY > 0 holds from (B.2) and Lemma 1, we have (26) foraalle 98 satisfying
(B.3). This concludes the claim.

(ii)=() We prove the statement (i) by showing a contraposition. Debihe
H™™ [, ] by (37).

Assume that there exists a € ,, such thato, > 0 andd®’(jwo) # 0, i.e.
the minimum eigenvalue a#®’(jwy) is negative. We can assurmg > 0 because it
can be proved the case wherg = 0 by replacingw;, with wj, + ¢ (¢ > 0) and taking
the limitatione — 0. Letv € C™ be the eigenvector corresponding to the eigenvalue.
Then, we have

Qg (e7*0%) = v* 0’ (jwg)v < 0. (B.5)

Let?¢,, € D> (R, C™) be a latent variable satisfying

tl < 2)
< 2m
Cat) = ST (14 222) (1< —222)
9 2 2
b(t-22) (t>2z2)

with some nonnegative integere Z, wheref,, € D>*(R,C™) is chosen as a function
which does not depend anand be such that, is a smooth function forn.. For the
abovel,,, definez, € D>®(R, CN+1a) by

d d

We can compute
Znfr — YDQZHZ:; = (wg — w2) Z N (Jwo) M (jwo)vv* M (jwo)* Zn (jwo )™
Since we assumédy| < w, we get

S it — izl <0.

On the other hand, we observe that

—+o0 “+o0
Qq> (wn)dt = Qq>/ (fn)dt
4
= ﬂv*@@’(jwo)v + A1
wo

holds, whered; € R is a constant which does not dependrorHence, if we choose
n as a sufficiently large number, from (B.5), we have
+oo
Q@(’wn)dt < 0.

—0o0

This implies that the statement (iii) does not hold, which completes the proof. ]
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Appendix B.1.2 High Frequency Case

As we have completed a characterization of the low frequency property, we consider to
characterize the high frequency property in this appendix.

Define the high frequency domaidy,;,, C R in the domain given by (30). Note
thatr in (18) is equal to-1 for this case. We derive a characterization of the following
FFDI in terms of QDFs.

M(jw)*a(b(Jw)M(ﬂu) > 07 Vwe thgh (BG)

Similarly to the low frequency case, we define the set of two-variable polynomial ma-
trices forQp;gn by

T(¢,n) = (w? = ¢n) T(¢,n)
Ohigh := { I' € H?*?[¢, n] | for someY € H?*9((, n] such that p . (B.7)
Qr(w) >0, Vw € C*(R,C9)

We obtain a necessary and sufficient condition for the high frequency domain prop-
erty by using a similar discussion to the low frequency case.

Lemma B.2 Assume thaf8 in (4) is controllable and thatB is represented by an
observable image representati¢). Let® < H*9[(,n] be given. Defin€yign by
(30) and defineGuign by (B.7). Then, the following statements (i), (i) and (iii) are
equivalent.

(i) FFDI (B.6)holds for allw € Qpigp.
(i) There existW € HI*?[¢,n] andl’ € Gy;gn Satisfying(24).
(iii) Inequality(26) holds for allw € B8 satisfying
23* > wlzzt,

wherez € D>®(R,C(N+1)9) is defined by(28) with some nonnegative integer
N € 7.

Proof The proof follows immediately by the same discussion to the low frequency
case. O

Appendix B.1.3  Proof of Theorem 1

We conclude the proof of Theorem 1 in this appendix.
Definew’ € R andw € R by

Wimw+wy, andw i=w_.

Then, we havey’ € Q if and only if there holdv € Qi (7 = +1) andw € Qpign
(r = —1). Hence, the claim follows immediately for = +1 andr = —1 from
Lemmas B.1 and B.2, respectively. This completes the proof of Theorem 1. O
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Appendix B.2 Proof of Corollary 1

()=(iii) We assume that the statement (i) holds. From Theorem 1, there exist
two-variable polynomial matrice§ € H?*9[¢, n] andT" € G satisfying the inequality
(24) for allw € B. This is the case if and only if (33) holds for soec H?*?[(, ]
such thalQa (w) > 0,V w € %B. SinceQr(w) satisfiesQr(w) > 0 for all w € Bq
from (32), we get

Qair(w) = Qa(w) + Qr(w) >0, Ywe Bq.

Hence, the first part of (iii) follows.

In addition, by integrating (33) froh= —oco tot = +oo along®Bo N D> (R, C?),
we obtain

+o0 +oo
Qria(w)dt = Qo(w)dt, Y w e BgND>(R,CT). (B.8)

This shows thaQa+r(w) becomes the dissipation rate fér, with respect to the
supply rateQq (w) from Definition 2 (ii). This completes the proof.

(i) =(iv) Integrating (33) fromt = —co to ¢t = +oo0 alongBq N D> (R, C?)
yields (B.8). SinceQa 1 (w) satisfieQair(w) > 0,V w € Bg, we get

+oo +oo
Q@(w)dt = QF+A (w)dt >0, VweBoND™® (R, (Cq)
Hence, the statement (iv) holds.
(iv)=(i) Since the statement (iv) is equivalent to the statement (iii) of Theorem 1,
the proof follows immediately from Proposition 1.
(i< (iii))  The proof is straightforward from Proposition 1. O

Appendix B.3 Proof of Corollary 2

The equivalence of (i), (iii) and (iv) follows immediately from Theorem 1 since
Qo(w) = 72 |Jul|* = ||ly||* holds for allw = col(y,u) € B. Hence, we have only
to show the statement (i) is equivalent to (ii).
Assume that (i) holds. Pre- and post-multiplying (41){jw)* andU (jw), re-

spectively, we get

Y (jw)*Y (jw) < YU (jw)* U(jw), Yw e Q..
From the definition of7(¢), the above inequality is equivalent to the FFDI (20) dor
in (42). O

Appendix B.4  Proof of Corollary 3

Assume that the statement (i) holds. Pre- and post-multiplying (44Y Gw)* and
U(jw), respectively, we get

U(jw)*Y (jw) + Y (jw)*U(jw) >0, Vwe N

low*

It follows from (45) and the definition of7(¢) that the above inequality is equivalent
to (ii). The equivalence of (ii), (iii) and (iv) follows immediately from Theorem 1 since
Qo (w) = u*y holds for allw = col(y, u) € B. O
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Appendix B.5 Proof of Proposition 3

()=(ii) Assume that the statement (i) holds. Then, there ekist H?*?[¢, ]
andI’ € G satisfying (24). We can choose these matrice®asanonical two-variable
polynomial matrices from Lemma A.2. This concludes the claim.

(i)=-(iii)  Assume that there exig(¢{,n) andI'(¢{,n) satisfying the statement
(if). SinceY(¢,n) is B-canonical Qy (w) is expressed as

-~ d
Qr(w) = 2*Tz, T € HNFVxWN+Da . 7 (dt) w

for N < deg R — 1. Then, we obtain

— 00 — 00

o Qr(w)dt = tr {TT {T /+OO He ((2 — jw12) (¢ — jwaz)"] dt}) )

SincerY > 0 holds from (22) and Lemma 1, we have (26) forallc %8 satisfying
(B.3). This concludes the claim.
(ii)=-(@) The proof is straightforward from Theorem 1. O

Appendix B.6  Proof of Theorem 2

Assume that the FFDI (19) holds. From Proposition 3, there exist uraanonical
U € H2*9[¢,n] andY € H?*4[(, n] satisfying

%Q\y(w)-i- (w% - w+2) QT(w) - Qr (w) +Jjwy {LT (waw) + Ly (w’ w)}
< Qo(w), YweB. (B.9)

It follows from the®B-canonicity ofU({,n) thatQg (w) is expressed as
d * d
o= {rs (3) ) 9. (3)-
d T ¥ o d
=4z = axq| 7 [ Z
{ g (dt> w} [quLq quq] g (dt> b
= ZL i w ) [ILq OLqu]T\TJ[ILq OLqu] ZL i w.
dt dt
SinceZ;, (&) w = Rtk holds from (50), we get

Q‘lf(w) =k" (§j> [ILq OLqu]T \TI [ILq OLqu] Eék (B.lO)
Substituting (55) into (B.10Qg (w) is rewritten by

Qu(w) = k*E*VEF.
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Similarly, from the®B-canonicity of Y' (¢, n) and®(¢, ), we obtain
Qr(w) = k*E*YEk,
Qr(w) = k*E*YEk,
Ly (i, w) = k*E*TEk,

Qu(w) = k" ()’ [ ° o@qu(m)q} Rk
O(L—K)gx(z4+1)a  O(L—K)gx(L—K)q

= k*®ok.

Hence, (B.9) is equivalently rewritten by
%k*E*@EkH— (w? — wy?) K*E*TEk — k*E*YEk
+ s (k*E*TEk n w*E*TEk) < kK ®ok

for all k € C>(R,C?) such that (53). This is the case if and only if the following
inequality holds from (53) and the product rule.

K F*UEk + k" E*UFk+ (w? — @, ?) k*E*YEk — k*E*YEk
+ oy (k*F*TEk + w*E*TFk) < k* Dok

Since the kernel representation (53) is trim from Lemma A.3, the above inequality is
equivalent to the LMI (58). This completes the proof. O
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