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Application of arrangement theory to unfolding
models

Hidehiko Kamiya, Akimichi Takemura and Norihide
Tokushige

Abstract.

Arrangement theory plays an essential role in the study of the
unfolding model used in many fields. This paper describes how ar-
rangement theory can be usefully employed in solving the problems of
counting (i) the number of admissible rankings in an unfolding model
and (ii) the number of ranking patterns generated by unfolding models.
The paper is mostly expository but also contains some new results such
as simple upper and lower bounds for the number of ranking patterns
in the unidimensional case.

§1. Introduction

The unfolding model (Coombs [6], De Leeuw [8]) is a model for
preference rankings in psychometrics. It is now widely applied not only
in psychometrics (De Soete, Feger and Klauer [10]) but also in other
fields such as marketing science (DeSarbo and Hoffman [9]) and voting
theory (Clinton, Jackman and Rivers [5]). The model is also used as
a submodel for more complex models, as in item response theory for
unfolding (Andrich [1, 2]). Moreover, in the context of Voronoi diagrams,
this model can be regarded as a higher-order Voronoi diagram (Okabe,
Boots, Sugihara and Chiu [22]).

The unfolding model describes the ranking process in which judges
rank a set of objects in order of preference. In this model, judges and
objects are assumed to be represented by points in the Euclidean space
Rn. Suppose a judge y ∈ Rn ranks m objects x1, . . . , xm ∈ Rn. Accord-
ing to the unfolding model, y ranks x1, . . . , xm in descending order of
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proximity in the usual Euclidean distance. Hence, y likes xi1 best, xi2

second best, and so on, iff ‖y − xi1‖ < ‖y − xi2‖ < · · · < ‖y − xim‖. In
this case, we will say y gives ranking (i1i2 · · · im).

For a given m-tuple (x1, . . . , xm) of objects, let RPUF(x1, . . . , xm)
be the set of admissible rankings, i.e., (i1 · · · im) such that ‖y − xi1‖ <

· · · < ‖y−xim‖ for some y ∈ Rn. We call RPUF(x1, . . . , xm) the ranking
pattern of the unfolding model with m-tuple (x1, . . . , xm). In the psy-
chometric literature, there has not been much study on the structure of
the ranking pattern. In this paper, we investigate the ranking pattern
by using the theory of hyperplane arrangements (Orlik and Terao [23]).
Specifically, we consider the following two problems:

(i) Find the cardinality of RPUF(x1, . . . , xm) for a given generic
m-tuple (x1, . . . , xm);

(ii) Find the cardinality of

{RPUF(x1, . . . , xm) : (x1, . . . , xm) is a generic m-tuple}.

The first problem asks how many rankings are admissible in one un-
folding model, and the second inquires how many ranking patterns are
possible by using different unfolding models (that is, by taking different
choices of m-tuples of objects). As we will see, these problems can be
reduced to those of counting the numbers of chambers of some real ar-
rangements; moreover, the latter problems can be solved by employing
general results in the theory of hyperplane arragements (e.g., Zaslavsky’s
result on the number of chambers of a real arrangement, the finite field
method, etc.). In this sense, arrangement theory plays an essential role
in the study of the unfolding model.

This paper gives a survey of recent results ([13], [14], [15], [19]) on
the problems stated above. It also contains new results on upper and
lower bounds for the number of ranking patterns in the unidimensional
case n = 1. In addition, the problem of counting inequivalent ranking
patterns (i.e., those which cannot be obtained from one another by just
the relabeling of the objects) when n = 1 was not dealt with specifically
in [13] but is discussed fully in the present paper.

The organization of the paper is as follows. In Section 2, we de-
fine genericness of the unfolding model, and give the answer to problem
(i) above, i.e., the number of admissible rankings of the unfolding model
with generic objects. Next, in Section 3 we discuss the problem of count-
ing the number of ranking patterns (problem (ii)). In Subsection 3.1,
we deal with the unidimensional case, and give the number of ranking
patterns in terms of the number of chambers of the mid-hyperplane ar-
rangement. We also provide explicit upper and lower bounds for the
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number of ranking patterns. In Subsection 3.2, we treat the unfolding
model of codimension one, where the restriction by dimension is weak-
est. In this case, we describe how the number of ranking patterns can
be expressed by the number of chambers of an arrangement called the
all-subset arrangement.

§2. Number of admissible rankings

In this section, we define genericness of the unfolding model, and
discuss the problem of counting the number of admissible rankings gen-
erated by the unfolding model with generic objects.

Suppose we are given x1, . . . , xm ∈ Rn with m ≥ 3 and n ≤ m − 2.
In general, for m distinct points z1, . . . , zm ∈ Rν (m ≥ ν + 1), let

zizj denote the one-simplex connecting two points zi and zj (i < j).
Consider the following condition:

(A) The union of ν distinct one-simplices zik
zjk

(ik < jk, k =
1, . . . , ν) contains no loop if and only if the corresponding vec-
tors zik

− zjk
(k = 1, . . . , ν) are linearly independent.

We assume x1, . . . , xm ∈ Rn (n ≤ m − 2) are generic in the sense
that they satisfy the following two conditions:

(A1) The m points x1, . . . , xm ∈ Rn satisfy condition (A).
(A2) The m points (xT

1 , ‖x1‖2)T , . . . , (xT
m, ‖xm‖2)T ∈ Rn+1 satisfy

condition (A).
Now, according to the unfolding model, judge y ∈ Rn prefers xi to

xj (i 6= j) iff ‖y−xi‖ < ‖y−xj‖. This condition is equivalent to y being
on the same side as xi of the perpendicular bisector

Hij := {y ∈ Rn : ‖y − xi‖ = ‖y − xj‖}

= {y ∈ Rn : (xi − xj)T (y − xi + xj

2
) = 0}

of the line segment xixj joining xi and xj . Let us define a hyperplane
arrangement

Am,n = Am,n(x1, . . . , xm) := {Hij : 1 ≤ i < j ≤ m}

in Rn. We call Am,n the unfolding arrangement.
Then Am,n, like any real hyperplane arrangement, cuts Rn into

chambers, i.e., connected components of the complement Rn \
∪
Am,n,

where
∪
Am,n :=

∪
H∈Am,n

H. Moreover, each of these chambers is of
the form

Ci1···im
:= {‖y − xi1‖ < · · · < ‖y − xim

‖} 6= ∅
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for some admissible ranking (i1 · · · im) ∈ Pm, where Pm denotes the set
of permutations of [m] := {1, . . . ,m}.

We observe that y ∈ Rn gives ranking (i1 · · · im) ∈ Pm if and only if
y ∈ Ci1···im 6= ∅. Thus there is a one-to-one correspondence between the
set of admissible rankings and the set of chambers Ch(Am,n) of Am,n:

(i1 · · · im) ↔ Ci1···im

for (i1 · · · im) such that Ci1···im 6= ∅. This implies that the problem of
counting the number of admissible rankings reduces to that of counting
the number of chambers of Am,n. The answer to the latter problem is
given by the theorem below. Let Sm

k (k ∈ Z) be the signless Stirling
numbers of the first kind: t(t + 1) · · · (t + m − 1) =

∑
k Sm

k tk.

Theorem 1 (Good and Tideman [11], Kamiya and Takemura [14,
15], Zaslavsky [29]). Suppose x1, . . . , xm ∈ Rn (n ≤ m − 2) are generic.
Then, the number of chambers of Am,n = Am,n(x1, . . . , xm) is

|Ch(Am,n)| = Sm
m−n + Sm

m−n+1 + · · · + Sm
m .

Furthermore, the number of bounded chambers of Am,n is

Sm
m−n − Sm

m−n+1 + Sm
m−n+2 − · · · + (−1)nSm

m .

The proof of Theorem 1 is based on Zaslavsky’s general result on
the number of chambers of an arrangement (Zaslavsky [28]) and the
following proposition. Denote by Πm the partition lattice, consisting
of partitions of [m] and ordered by refinement. Further, let Πn

m stand
for the rank n truncation of Πm, i.e., the subposet of Πm comprising
elements of rank (= m − # of blocks) at most n.

Proposition 1 (Kamiya and Takemura [14, 15]). The intersection
poset L(Am,n) of the unfolding arrangement Am,n is isomorphic to Πn

m:

L(Am,n) ∼= Πn
m.

The isomorphism is given by

L(Am,n) 3 X 7→ IX ∈ Πn
m,

where IX is the partition of [m] into equivalence classes under the equiv-
alence relation ∼X defined by i ∼X j

def⇐⇒ X ⊆ Hij (Hii := Rn).

Remark 1. When n ≥ m−1, and x1, . . . , xm ∈ Rn satisfy condition
(A1) with the ν = n in (A) replaced by m − 1, we can easily see that
|Ch(Am,n)| = m! and that the number of bounded chambers of Am,n is
zero (so the results in Theorem 1 continue to be valid). Therefore, all
m! rankings arise as unbounded chambers of Am,n in this case.
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§3. Number of ranking patterns

In this section, we consider the problem of counting the number
of ranking patterns. We treat two extreme cases—the unidimensional
unfolding model: n = 1 (Subsection 3.1) and the unfolding model of
codimension one: n = m − 2 (Subsection 3.2).

3.1. Unidimensional unfolding models
In this subsection, we look into the problem of counting the number

of ranking patterns of unidimensional unfolding models: n = 1. A
related problem is studied in Stanley [24].

In this case n = 1, objects are m points on the real line: x1, . . . , xm ∈
R. We assume x1, . . . , xm are generic, i.e., the midpoints xij := (xi +
xj)/2, 1 ≤ i < j ≤ m, are all distinct. This condition can be written as

(x1, . . . , xm) ∈ Rm \
∪

Mm,

where Mm := Bm ∪ Nm is the mid-hyperplane arrangement (Kamiya,
Orlik, Takemura and Terao [13]) with

Bm := {Kij : 1 ≤ i < j ≤ m}, Kij := {(x1, . . . , xm) ∈ Rm : xi = xj},
Nm := {Hijkl : (i, j, k, l) ∈ I4},

Hijkl := {(x1, . . . , xm) ∈ Rm : xi + xj = xk + xl},
I4 := {(i, j, k, l) : i, j, k, l are all distinct,

1 ≤ i < j ≤ m, i < k < l ≤ m}.

(In this subsection, we write elements of Rm as row vectors.) Note that
Bm is the braid arrangement. We have Hij = {xij}, 1 ≤ i < j ≤ m,
and Am,1 = {{xij} : 1 ≤ i < j ≤ m}.

An m-tuple x := (x1, . . . , xm) of objects gives the ranking pattern

RPUF(x) = {(i1 · · · im) ∈ Pm : |y−xi1 | < · · · < |y−xim | for some y ∈ R}.

We want to know

(1) r(m) := |{RPUF(x) : x ∈ Rm \
∪

Mm}|.

The braid arrangement Bm has a chamber C0 ∈ Ch(Bm) defined by
x1 < · · · < xm:

C0 := {(x1, . . . , xm) ∈ Rm : x1 < · · · < xm}.

Let us concentrate our attention on C0. For x = (x1, . . . , xm) ∈ C0 \∪
Nm and x′ = (x′

1, . . . , x
′
m) ∈ C0 \

∪
Nm, we can easily see that
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RPUF(x) = RPUF(x′) if and only if the order of the midpoints on R is
the same for x and x′ (i.e., ∀(i, j, k, l) ∈ I4 : xij < xkl ⇐⇒ x′

ij < x′
kl).

Noting that xij < xkl iff (x1, . . . , xm) ∈ H−
ijkl := {(x1, . . . , xm) ∈ Rm :

xi + xj < xk + xl}, we obtain the following lemma.

Lemma 1 (Kamiya, Orlik, Takemura and Terao [13]). For x,x′ ∈
C0 \

∪
Nm, we have RPUF(x) = RPUF(x′) if and only if x and x′ are

in the same chamber of Nm.

Put
r0(m) := |{RPUF(x) : x ∈ C0 \

∪
Nm}|,

i.e., the number of ranking patterns of unidimensional unfolding models
with generic m-tuples such that x1 < · · · < xm. Then, by Lemma 1 we
have

(2) r0(m) =
|Ch(Mm)|

m!

(Kamiya, Orlik, Takemura and Terao [13]).
Now consider r(m) in (1). For x = (x1, . . . , xm) ∈ Rm \

∪
Mm,

define −x := (−x1, . . . ,−xm) ∈ Rm \
∪

Mm. Then, clearly we have
RPUF(x) = RPUF(−x). On the other hand, for C,C ′ ∈ Ch(Mm)
such that C ′ 6= ±C (−C := {−x : x ∈ C}), we can easily see that
RPUF(x) 6= RPUF(x′) for x ∈ C and x′ ∈ C ′. These two facts, together
with Lemma 1, yield the following theorem.

Theorem 2. The number of ranking patterns of unidimensional
unfolding models with generic m-tuples of objects is

r(m) =
m!
2

r0(m) =
|Ch(Mm)|

2
, m ≥ 3.

Let us define equivalence of ranking patterns by saying that two
ranking patterns RPUF(x) and RPUF(x′) are equivalent iff

(3) RPUF(x) = σRPUF(x′) for some σ ∈ Sm,

where Sm is the symmetric group on m letters, consisting of all bijec-
tions: [m] → [m], and σRPUF(x′) := {(σ(i1) · · ·σ(im)) : (i1 · · · im) ∈
RPUF(x′)}. We want to find the number of inequivalent ranking pat-
terns.

Let rIE(m) be the number of inequivalent ranking patterns of uni-
dimensional unfolding models with generic m-tuples of objects:

rIE(m) := |{[RPUF(x)] : x ∈ Rm \
∪

Mm}|,
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where [ · ] stands for the equivalence class under the equivalence relation
defined by (3). We will see that rIE(m) is half of r0(m) for m ≥ 4.
Suppose we are given x = (x1, . . . , xm) ∈ C0 \

∪
Nm with m ≥ 4.

Then x′ = (x′
1, . . . , x

′
m) := (−xm, . . . ,−x1) also lies in C0 \

∪
Nm :

x′ ∈ C0 \
∪
Nm. Moreover, since m ≥ 4, four indices 1, 2,m − 1,m are

all distinct and we have x1m < x2,m−1 iff x′
1m > x′

2,m−1. This means
RPUF(x) 6= RPUF(x′) by Lemma 1. However, [RPUF(x)] = [RPUF(x′)]
since RPUF(x) = RPUF(−x). Next, it can be seen that any x′′ ∈ C0 \∪
Nm such that RPUF(x′′) 6= RPUF(x) and [RPUF(x′′)] = [RPUF(x)]

satisfies RPUF(x′′) = RPUF(x′). These arguments lead to the following
theorem.

Theorem 3. The number of inequivalent ranking patterns of uni-
dimensional unfolding models with generic m-tuples of objects is

rIE(m) =

{
r0(3) = |Ch(B3)|

3! = 1 if m = 3,
r0(m)

2 = |Ch(Mm)|
2 ·m! if m ≥ 4.

So far, we have expressed the number of ranking patterns in terms of
the number of chambers of an arrangement. We can use the finite field
method (Athanasiadis [3, 4], Crapo and Rota [7], Kamiya, Takemura and
Terao [16, 17, 18], Stanley [25, Lecture 5]) to calculate specific values of
r0(m), m ≤ 10:

r0(4) = 2, r0(5) = 12, r0(6) = 168, r0(7) = 4680,

r0(8) = 229386, r0(9) = 18330206, r0(10) = 1120831141.

The values of r(m) for m ≤ 8 are given in Kamiya, Orlik, Takemura
and Terao [13] along with the characteristic polynomials χ(Mm, t) of
Mm, m ≤ 8. After [13], the second author of the present paper, Take-
mura [26], calculated χ(M9, t) and r0(9); later Ishiwata [12] obtained
χ(M10, t) and r0(10) after an extensive computation. The characteristic
polynomials found by them are:

χ(M9, t) = t(t − 1)(t7 − 413t6 + 73780t5 − 7387310t4 + 447514669t3

−16393719797t2 + 336081719070t − 2972902161600),
χ(M10, t) = t(t − 1)(t8 − 674t7 + 201481t6 − 34896134t5 + 3830348179t4

−272839984046t3 + 12315189583899t2

−321989533359786t + 3732690616086600).

However, for large values of m, the finite field method is not feasible.
We will provide simple upper and lower bounds for r0(m).
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Theorem 4. For all m ≥ 4, we have

2
(

3
4

)m−4

{(m − 3)!}2 ≤ r0(m) <
2
m!

{
em(m − 1)2

8

}m−2

.

Proof. First, we derive the upper bound in the theorem.
Define H0 := {(x1, . . . , xm) ∈ Rm : x1 + · · ·+xm = 0}, and consider

the essentialization (Stanley [25, p.392]) M0
m := {H∩H0 : H ∈ Mm} of

Mm. Since L(M0
m) ∼= L(Mm), we may consider the essential, central

arrangement M0
m in H0 (dimH0 = m − 1) instead of Mm.

Recall, in general, that h hyperplanes divide Rd into at most
∑d

i=0

(
h
i

)
≤

(eh/d)d := c(h, d) chambers (see, e.g., [20, Proposition 6.1.1] and [21,
Theorem 2.6.1]). Thus, h̃ linear hyperplanes divide Rd̃ into at most
2c(h̃ − 1, d̃ − 1) chambers.

In our case, M0
m is central, so we can take h̃ = |Mm| = |Bm| +

|Nm| =
(
m
2

)
+ 3

(
m
4

)
≤ m(m − 1)2(m − 2)/8 (m ≥ 4) and d̃ = m − 1.

Hence, we have

|Ch(M0
m)| ≤ 2c(h̃ − 1, d̃ − 1)

≤ 2 ×

e
(

m(m−1)2(m−2)
8 − 1

)
m − 2


m−2

< 2 ×
{

em(m − 1)2

8

}m−2

.

This together with (2) and |Ch(Mm)| = |Ch(M0
m)| gives the upper

bound of r0(m) in the theorem.
Next, we will obtain the lower bound in the theorem.
Let x = (x1, . . . , xm), x1 < · · · < xm be fixed. We add one more

object y = xm+2t (t > 0) to x, and we will count the number of ranking
patterns arising from yt = (x, y), t > 0. Let M = {xij : 1 ≤ i < j ≤ m}
be the set of midpoints for x, and Yt = {xim + t : 1 ≤ i ≤ m} the
set of midpoints of xi (1 ≤ i ≤ m) and y. Then M ∪ Yt is the set
of midpoints for yt. To guarantee all these midpoints are distinct, we
require the following. First, by perturbing each xi without changing the
ranking pattern of x, we may assume that x1, . . . , xm are independent
over Q. Then we have |M ∩ Yt| ≤ 1 for all t > 0. Next, let T0 = {t >
0 : |M ∩ Yt| = 1}, T1 = (0,∞) \ T0, and we only consider t ∈ T1. Then
M ∪ Yt is legal, i.e., all midpoints are distinct.

Now the crucial observation is as follows: |{RPUF(yt) : t ∈ T1}| =
1 + |T0|. Moreover, we have |T0| =

∑m−1
i=1 |Vi|, where Vi = {v ∈ M :
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xim < v}. Using |Vi| ≥ m − 1 − i obtained by Vi ⊃ {xjm : i < j < m},
we have

|{RPUF(yt) : t ∈ T1}| = 1 +
m−1∑
i=1

|Vi| ≥ 1 + |V1|+
(m − 3)(m − 2)

2
=: N.

Namely, N is a lower bound for the number of ranking patterns arising
from yt, t ∈ T1.

Applying exactly the same argument to x′ = (−xm, . . . ,−x1) in-
stead of x, we see that the number of ranking patterns arising from
(x′,−x1 + 2t), t > 0 (or equivalently, (x1 − 2t,x), t > 0) is at least
N ′ = 1 + |V ′

1 | + (m − 3)(m − 2)/2, where |V ′
1 | = |{u ∈ M : u < x1m}| =(

m
2

)
− |V1| − 1. Notice that N + N ′ = 1 +

(
m
2

)
+ (m − 3)(m − 2) >

(3/2)(m − 2)2. Therefore, by the averaging argument, we have

r0(m + 1) ≥ r0(m) × 1
2 (N + N ′) > 3

4 (m − 2)2 r0(m).

So the induction starting from r0(4) = 2 gives the desired lower bound.
Q.E.D.

Let `(m) and u(m) be the lower and upper bounds in the theorem,
respectively. A computation shows {u(m)}1/m/m2 → e2/8 ≈ 0.92 and
{`(m)}1/m/m2 → 3/(4e2) ≈ 0.1 as m → ∞. It would be interesting to
prove (or disprove) the existence of lim{r0(m)}1/m/m2.

Strangely enough, r0(m) = a(m) holds for 4 ≤ m ≤ 7, where

a(m) :=
(m − 2){(m − 2)m−3 − 1} · (m − 4)!

m − 3
,

but r0(8) > a(8), r0(9) > a(9), r0(10) < a(10). Also, a(m) satisfies
{a(m)}1/m/m2 → 1/e ≈ 0.37.

Thrall [27] gave an upper bound f(m) for r0(m):

f(m) :=
{m(m−1)

2 }!
∏m−2

i=1 i!∏m−1
i=1 (2i − 1)!

.

We can see our u(m) satisfies f(m) < u(m) for m ≤ 8, f(m) > u(m) for
m ≥ 9, and u(m) = o(f(m)).

We list the values of r0(m), a(m), f(m) and approximate values
of `(m), u(m) for m = 4, . . . , 10 in Table 1. (For `(m), m ≤ 9, and
u(m), m ≤ 6, we exhibit d`(m)e and bu(m)c, respectively. For `(10), we
display d`(m)× 10−4e × 104, and similarly using b · c for u(m), m ≥ 7.)
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Table 1. r0(m), a(m), `(m), u(m), f(m), 4 ≤ m ≤ 10.

m r0(m) a(m) `(m) u(m) f(m)

4 2 2 2 12 2
5 12 12 6 334 12
6 168 168 41 18, 744 286
7 4, 680 4, 680 486 1.82 × 106 33, 592
8 229, 386 223, 920 9, 113 2.76 × 108 23, 178, 480
9 18, 330, 206 16, 470, 720 246, 038 6.06 × 1010 108, 995, 910, 720
10 1, 120, 831, 141 1, 725, 655, 680 9.05 × 106 1.81 × 1013 3, 973, 186, 258, 569, 120

3.2. Unfolding models of codimension one
In this subsection, we deal with the problem of counting the number

of ranking patterns of unfolding models of codimension one: n = m − 2
(i.e., when the restriction by dimension is weakest).

First, let us forget the unfolding model for a while and consider the
ranking patterns of braid slices.

We begin by defining the ranking pattern of a braid slice. For

H0 = {x = (x1, . . . , xm)T ∈ Rm : x1 + · · · + xm = 0},

consider the essential arrangement

B0
m := {H ∩ H0 : H ∈ Bm}

in H0, and write its chambers as

Bi1···im := {x = (x1, . . . , xm)T ∈ H0 : xi1 > · · · > xim} ∈ Ch(B0
m)

for (i1 · · · im) ∈ Pm. Moreover, define a hyperplane

Kv := {x ∈ H0 : vT x = 1}

in H0 for each v ∈ Sm−2 := {x ∈ H0 : ‖x‖ = 1}. Now we call the subset

RP(v) := {(i1 · · · im) ∈ Pm : Kv ∩ Bi1···im 6= ∅}, v ∈ Sm−2,

of Pm the ranking pattern of the braid slice by Kv.
Next, let us define genericness of the braid slice as follows. For the

all-subset arrangement (Kamiya, Takemura and Terao [19])

Am := {HI : I ⊆ [m], |I| ≥ 1}
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with HI := {x = (x1, . . . , xm)T ∈ Rm :
∑

i∈I xi = 0}, ∅ 6= I ⊆ [m],
consider its restriction to H0 = H[m]:

A0
m := AH0

m = {H0
I : I ⊂ [m], 1 ≤ |I| ≤ m − 1},

H0
I := HI ∩ H0 (1 ≤ |I| ≤ m − 1).

Then define
V := (H0 \

∪
A0

m) ∩ Sm−2.

We will say v ∈ Sm−2, or the braid slice by Kv, is generic if v ∈ V.
Now, we will see that the set of ranking patterns RP(v) for generic

v’s is in one-to-one correspondence with the set of chambers of A0
m.

Write V as V =
⊔

D∈D(A0
m) D (disjoint union), where

D(A0
m) := {D = D̃ ∩ Sm−2 : D̃ ∈ Ch(A0

m)},

which clearly is in one-to-one correspondence with Ch(A0
m). Then, we

can prove (Kamiya, Takemura and Terao [19]) that there is a bijection
from D(A0

m) to {RP(v) : v ∈ V} given by

(4) D(A0
m) 3 D 7→ RP(v), v ∈ D.

Hence,
RPD := RP(v) for v ∈ D ∈ D(A0

m)

is well-defined, and the mapping D(A0
m) → {RPD : D ∈ D(A0

m)} =
{RP(v) : v ∈ V} : D 7→ RPD is bijective.

Let us get back to the unfolding model and consider the ranking
pattern of the unfolding model of codimension one.

Suppose we are given x1, . . . , xm ∈ Rn with n = m − 2 ≥ 1. We as-
sume x1, . . . , xm are generic in the sense that they satisfy (A1) and (A2)
in Section 2. We call the unfolding model with such x1, . . . , xm ∈ Rm−2

the unfolding model of codimension one (for the reason stated below).
In addition, we will assume without loss of generality that x1, . . . , xm

are taken so that
∑m

i=1 xi = 0,
∑m

i=1 ‖xi‖2/m = 1.
We will see that the ranking pattern of the unfolding model of codi-

mension one with m-tuple (x1, . . . , xm):

RPUF(x1, . . . , xm) = {(i1 · · · im) ∈ Pm : ‖y − xi1‖ < · · · < ‖y − xim‖
for some y ∈ Rm−2}(5)

can be expressed as the ranking pattern of a braid slice.
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Define

W = W(x1, . . . , xm) = (w1, . . . , wm−2) :=

xT
1
...

xT
m

 ∈ Matm×(m−2)(R),

u = u(x1, . . . , xm) := −1
2

 ‖x1‖2 − 1
...

‖xm‖2 − 1

 ∈ Rm,

where Matm×(m−2)(R) denotes the set of m × (m − 2) matrices with
real entries. For the affine map κ : Rm−2 → Rm defined by κ(y) :=
Wy + u, y ∈ Rm−2, consider the image K := im κ = {k(y) : y ∈ Rm−2}
of κ. Then we have

K = u + col W ⊂ H0,

where col W stands for the column space of W . Using this K, we can
easily see that RPUF(x1, . . . , xm) in (5) can be expressed as

(6) RPUF(x1, . . . , xm) = {(i1 · · · im) ∈ Pm : K ∩ Bi1···im 6= ∅}.

We have dimK = dim H0 − 1 and u /∈ col W by (A1) and (A2), respec-
tively. That is, K is an affine hyperplane of H0. For this reason, we
called the unfolding model with generic x1, . . . , xm ∈ Rm−2 the unfold-
ing model of codimension one.

Write the affine hyperplane K ⊂ H0 as

K = Kṽ := {x ∈ H0 : ṽT x = ‖ṽ‖2}

using the orthogonal projection of u ∈ H0 on (col W )⊥ := {x ∈ H0 :
xT W = 0}:

ṽ := ṽ(x1, . . . , xm) = u − projcol W (u), u = u(x1, . . . , xm),

where projcol W denotes the orthogonal projection on colW . Noting
ṽ 6= 0, we can represent (6) as

RPUF(x1, . . . , xm) = {(i1 · · · im) ∈ Pm : Kv(x1,...,xm) ∩ Bi1···im 6= ∅},
(7)

v(x1, . . . , xm) :=
1

‖ṽ‖
ṽ ∈ Sm−2,

in terms of Kv(x1,...,xm) = {x ∈ H0 : v(x1, . . . , xm)T x = 1} instead of
K = Kṽ. The right-hand side of (7) is the ranking pattern of the braid
slice by Kv(x1,...,xm): RP(v(x1, . . . , xm)). Besides, it can be seen that
v(x1, . . . , xm) ∈ V.
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Proposition 2 (Kamiya, Takemura and Terao [19]). For generic
x1, . . . , xm ∈ Rm−2, we have v(x1, . . . , xm) ∈ V and

RPUF(x1, . . . , xm) = RP(v(x1, . . . , xm)).

Proposition 2 and bijection (4) tell us that in order to find the
number of ranking patterns of unfolding models of codimension one, we
need to study the image of the mapping v : {(x1, . . . , xm) : x1, . . . , xm ∈
Rm−2 are generic} → V =

⊔
D∈D(A0

m) D, (x1, . . . , xm) 7→ v(x1, . . . , xm).
In their main theorem (Theorem 4.1), Kamiya, Takemura and Terao [19]
proved that the image imv is given by

(8) imv = V2 t D1 t · · · t Dm = V \ ((−D1) t · · · t (−Dm)),

where

V2 := {v = (v1, . . . , vm)T ∈ V : vj > 0 for at least two j ∈ [m] and
vk < 0 for at least two k ∈ [m]}

and

Di := {v = (v1, . . . , vm)T ∈ V : vi > 0, vj < 0 (j 6= i)} ∈ D(A0
m),

−Di := {−v : v ∈ Di}
= {v = (v1, . . . , vm)T ∈ V : vi < 0, vj > 0 (j 6= i)} ∈ D(A0

m)

for i ∈ [m].
By Proposition 2 and imv in (8), we obtain the number of ranking

patterns of unfolding models of codimension one, which is denoted by

q(m) := |{RPUF(x1, . . . , xm) : generic x1, . . . , xm ∈ Rm−2}|.

Theorem 5 (Kamiya, Takemura and Terao [19]). The number q(m)
of ranking patterns of unfolding models of codimension one is given by

q(m) = |Ch(A0
m)| − m.

Kamiya, Takemura and Terao [19, Lemma 5.3] obtained the charac-
teristic polynomials χ(A0

m, t) of A0
m for m ≤ 8 by the finite field method.

Then q(m) can be calculated by q(m) = (−1)m−1χ(A0
m,−1) − m:

q(3) = 3, q(4) = 28, q(5) = 365,

q(6) = 11286, q(7) = 1066037, q(8) = 347326344

([19, Corollary 5.5]).
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We end this subsection by looking at the problem of finding the num-
ber of inequivalent ranking patterns of unfolding models of codimension
one.

In (3), we defined equivalence of ranking patterns of unidimensional
unfolding models. We define equivalence of ranking patterns of unfold-
ing models of codimension one in an obvious similar manner. At the
moment, we can only give an upper bound for the number qIE(m) of
inequivalent ranking patterns of unfolding models of codimension one:
(9)

qIE(m) ≤ |Ch(A0
m ∪ B0

m)|
m!

− 1 = |D1···m(A0
m)| − 1 = |D1···m

2 (A0
m)| + 1

for m ≥ 3 (Kamiya, Takemura and Terao [19]), where D1···m(A0
m) :=

{D ∈ D(A0
m) : D ∩ B1···m 6= ∅} and D1···m

2 (A0
m) := {D ∈ D(A0

m) : D ⊂
V2, D ∩ B1···m 6= ∅} = D1···m(A0

m) \ {D1,−Dm}. It is shown in [19],
however, that the upper bound in (9) is actually the exact number for
m ≤ 6. The specific values are

qIE(3) = 1, qIE(4) = 3, qIE(5) = 11, qIE(6) = 55

([19, Subsection 6.2]).
Open problem: Does the upper bound in (9) agree with the exact

number qIE(m) for all m?
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