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In this paper we show a zero point theorem for a certain meaningful class of
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1 Introduction

Given a simplex and its triangulation, Sperner’s lemma [8], to be stated as Theorem 2.1,

says that if every vertex of the triangulation is properly labeled then there exists at least

one (actually an odd number of) completely labeled subsimplex. The lemma gives a proof

of Brouwer’s fixed point theorem [2] (see e.g. [1]), which in turn implies the lemma (see

[10]). In this sense we can say that Sperner’s lemma and Brouwer’s fixed point theorem

are equivalent.

In this paper we show a zero point theorem for a certain (meaningful) class of corre-

spondences on the set of vertices of the standard triangulation of unit simplex, which is

equivalent to Sperner’s lemma. Also, we show a zero point theorem for correspondences

on the set of vertices of the standard triangulation of the direct product of unit simplices,

which is derived from a Sperner-like theorem on the simplotope by van der Laan and Tal-

man [7] and Freund [4]. Note that stated in the form of “∀ =⇒ ∃” the contraposition of

an existence lemma is also an existential statement. Loosely speaking, the two zero point

theorems on the simplex and simplotope are the contrapositions of Sperner’s lemma on

the simplex and simplotope, respectively. The two discrete zero point theorems are also

closely related to the discrete fixed point theorem for direction preserving correspondences

in [5], with a new, weaker, “simplexwise” version of direction preserving property.

In Section 2, we give some definitions and lemmas concerning simplices and Sperner’s

lemma. In Section 3, we define our correspondence, and establish the zero point theorems

for correspondences on the discrete simplex and simplotope. Section 4 gives applications of

our results to economic and game models, and Section 5 gives some concluding comments.

2 Definitions and lemmas

Let Rd be the d-dimensional Euclidean space and Zd the set of integer points in Rd. The

notation 0 denotes the vectors of all zeros. The notation ei is the ith unit vector whose

jth component ei
j is one if j = i and zero if j 6= i. For any vectors x and y in Rd we

denote by x · y the inner product of x and y. For a set X, we denote by conv X the

convex hull of X. If X is a set of d affinely independent points then conv X is called a

(d− 1)-dimensional simplex. A triangulation T of a convex set S is a finite collection of

simplices satisfying (i) S =
⋃

T∈T T , (ii) if T ′ is a face of T ∈ T then T ′ ∈ T , and (iii) for

T1, T2 ∈ T with T1 ∩ T2 6= ∅, T1 ∩ T2 is a face of T1 and T2.

The set conv{e1, · · · , ed} is called the (d − 1)-dimensional unit simplex, where we
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assume d > 1 to avoid trivialities. Given any positive integer m, it admits a standard

triangulation such that the components of its vertices are nonnegative integer multiples of

1/m that sum to one (Kuhn’s regular triangulation [6]). To obtain the integrality of the

triangulation, we consider its m multiple. Fix m to some positive integer, and let Sd−1 =

conv{me1, · · · ,med}. For brevity, let S = Sd−1. Then S admits an integral triangulation

T , any of whose (d− 1)-dimensional element (subsimplex) T = conv{x1, · · · , xd} is such

that x1 ∈ Zd and xt+1 = xt +eit+1−eit ∈ Zd, t = 1, · · · , d−1, where (it | t = 1, · · · , d−1)

is a permutation of (1, · · · , d − 1). Then T 0 = T ∩ Zd is the set of vertices of T and

S0 = S ∩Zd is the set of vertices of T . We call this integral triangulation T the standard

triangulation of the simplex S. Let λ : S0 → {1, · · · , d} be a function. We call λ a labeling

of S0.

Definition 2.1. A vertex x ∈ S0 is properly labeled by λ if xi = 0 implies λ(x) 6= i. A

subsimplex T in T is completely labeled by λ if the set of labels of the vertices is {1, · · · , d},
i.e., if λ(T 0) = {1, · · · , d}, where λ(T 0) = {λ(x) | x ∈ T 0}.

Theorem 2.1 (Sperner’s lemma [8]). Let S0 be the set of vertices of the standard tri-

angulation T of the simplex S. If every vertex in S0 is properly labeled by λ, then there

exists a subsimplex in T completely labeled by λ.

The direct product of simplices is called a simplotope. Let S = Sd1−1 × · · · × Sdn−1,

where Sdi−1 = conv{mie
i,1, · · · , mie

i,di} ⊂ Rdi , in which di and mi are some given

positive integers (di > 1) and ei,j is the jth unit vector in Rdi , j = 1, · · · , di, i = 1, · · · , n.

The simplotope S ⊂ Rd1+···+dn has
∏n

i=1 di vertices and dimension
∑n

i=1(di−1). Let d be

the number of the vertices of
∑n

i=1(di−1)-dimensional simplex, i.e., d = (
∑n

i=1(di−1))+1.

Let ẽi,j be a unit vector in Rd1+···+dn , given by a concatenation of i − 1 zero vectors

in Rdk (k = 1, · · · , i − 1), the jth unit vector ei,j in Rdi , and n − i zero vectors in

Rdk (k = i + 1, · · · , n), in this order. We regard any vector x ∈ Rd1+···+dn as such a

concatenation of n vectors in Rdi , i = 1, · · · , n, and denote the jth component of the ith

subvector of x by xi,j . In this notation ẽi,j is a vector such that ẽi,j
i,j = 1 with all other

components being zeros.

Let S0 = S ∩ Zd1+···+dn . The simplotope S admits an integral triangulation T
similar to those of component simplices, any of whose (d − 1)-dimensional subsimplex

T = conv{x1, · · · , xd} is such that x1 ∈ S0 and xt+1 = xt + ẽit,jt+1 − ẽit,jt ∈ S0, t =

1, · · · , d−1, where ((it, jt) | t = 1, · · · , d−1) is a permutation of ((1, 1), (1, 2), · · · , (1, d1−
1); (2, 1), (2, 2), · · · , (2, d2− 1); · · · ; (n, 1), (n, 2), · · · , (n, dn− 1)) (see [3]). We call this in-
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tegral triangulation T the standard triangulation of the simplotope S. Let λi : S0 →
{(i, 1), · · · , (i, di)} be a function, i = 1, · · · , n. We also call λi a labeling of S0.

Definition 2.2. Let i ∈ {1, · · · , n}. A vertex x ∈ S0 is properly labeled by λi if xi,j = 0

implies λi(x) 6= (i, j). A subsimplex T in T is completely labeled by λi if λi(T 0) =

{(i, 1), · · · , (i, di)}, where λi(T 0) = {λi(x) | x ∈ T 0}.

In [7] and [4], a Sperner-like theorem (Theorem 2.2 below) is proved using a slightly

different labeling function L : S0 → ⋃n
i=1{(i, 1), · · · , (i, di)}. Recall that xi,k denotes the

kth component of the ith subvector of x ∈ S0.

Theorem 2.2 (van der Laan and Talman [7], Freund [4, Theorem 3]). Let L : S0 →
⋃n

i=1{(i, 1), · · · , (i, di)}. If every x in S0 is properly labeled by L in the sense that xi,k = 0

implies L(x) 6= (i, k), k = 1, · · · , di, i = 1, · · · , n, then there exists a subsimplex T in T
such that L(T 0) = {(j, 1), · · · , (j, dj)} for some j ∈ {1, · · · , n}.

3 The main results

3.1 A zero point theorem on the discrete simplex

Let S = conv{me1, · · · ,med} ⊂ Rd, S0 = S∩Zd, and T the standard triangulation of the

simplex S. For any T ∈ T , T 0 = T∩Zd is the set of vertices of T . We are concerned with a

correspondence (set-valued function) ∆: S0 →→ {ej − ei ∈ Zd | i, j = 1, · · · , d} (possibly

i = j), which is “pointwise one-directional” and “simplexwise direction preserving” in the

following sense.

Definition 3.1. A correspondence ∆: S0 →→ {ej − ei ∈ Zd | i, j = 1, · · · , d} is (nega-

tively) pointwise one-directional if, for each x ∈ S0 such that ∆(x) \ {0} 6= ∅, there exists

one and only one ix ∈ {1, · · · , d} such that δix < 0 for all δ ∈ ∆(x) \ {0} (i.e. δ = ej − eix

for some j if δ ∈ ∆(x) and δ 6= 0); it is simplexwise direction preserving on T if, for

each (d − 1)-dimensional subsimplex T in T , there exists a family DT of δ(x) ∈ ∆(x)

indexed by x ∈ T 0, i.e., DT = (δ(x) ∈ ∆(x) | x ∈ T 0), such that δi(x)δi(x′) ≥ 0 for all

i ∈ {1, · · · , d} for any x and x′ in T 0.

Remark 3.1. In the definition of simplexwise direction preservingness we may choose

different δ(x) ∈ ∆(x) for DT for different T 3 x. As a special case of singleton-valued ∆

(i.e. if ∆ is a function), the condition reduces to the “simplicial local direction preserving”

condition of [9]. Also we remark that δ(x) · δ(x′) ≥ 0 is equivalent to δi(x)δi(x′) ≥ 0 for

all i = 1, · · · , d by the form of δ(x) and δ(x′) (somewhat similarly to [5]).
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Now, let us denote {x}+∆(x) by x+∆(x), for short. We claim that the next theorem

holds, and is equivalent to Sperner’s lemma (Theorem 2.1).

Theorem 3.1. Let S0 be the set of vertices of the standard triangulation T of the sim-

plex S. If ∆: S0 →→ {ej − ei ∈ Zd | i, j = 1, · · · , d} is pointwise one-directional and

simplexwise direction preserving on T , then there exists an x ∈ S0 such that 0 ∈ ∆(x) or

x + ∆(x) 6⊆ S0. (Hence 0 ∈ ∆(x) if ∆ points inward at the boundary of S.)

Proof of [Sperner’s lemma =⇒ Theorem 3.1]. Given the correspondence ∆ of the theo-

rem, define a function λ∆ : S0 → {1, · · · , d, 0} by λ∆(x) = 0 if 0 ∈ ∆(x), and λ∆(x) = ix if

0 6∈ ∆(x) and δix < 0 for all δ ∈ ∆(x), for each x ∈ S0. If λ∆(x) = 0 for some x ∈ S0 then

0 ∈ ∆(x) and we are done. So assume in the following that λ∆(x) 6= 0 for every x ∈ S0.

Then λ∆(T 0) 6= {1, · · · , d} for every T ∈ T . To see this, suppose λ∆(T 0) = {1, · · · , d}
for some T ∈ T , and let xi ∈ T 0 be such that λ∆(xi) = i, i = 1, · · · , d. Then every δ

in ∆(xi) is written as δ = ej − ei for some j ∈ {1, · · · , d} \ {i}. In particular, for each

δ = ej − e1 ∈ ∆(x1), δ · δ′ < 0 for all δ′ in ∆(xj) since δ′ is written as δ′ = eh − ej

(h ∈ {1, · · · , d} \ {j}). This contradicts the simplexwise direction preservingness of ∆.

Hence λ∆(T 0) 6= {1, · · · , d} for every T ∈ T . Since λ∆ is a labeling of S0 and every T in

T is incompletely labeled by λ∆, the contraposition of Sperner’s lemma then says that

there is an x in S0 improperly labeled by λ∆, i.e., x ∈ S0 such that xi = 0 and λ∆(x) = i

for some i. Then we have x + ∆(x) 6⊆ S0.

Proof of [Theorem 3.1 =⇒ Sperner’s lemma]. Assume that every (d − 1)-dimensional

subsimplex T of T is incompletely labeled by λ : S0 → {1, · · · , d}, and define ∆λ : S0 →→
{ej − ei ∈ Zd | i, j = 1, · · · , d} by ∆λ(x) = {ej − eλ(x) | j 6= λ(x) (j = 1, · · · , d)}, for each

x ∈ S0 (the cardinality of ∆λ(x) is d− 1). Then ∆λ is clearly pointwise one-directional.

It is also simplexwise direction preserving, since, for µ(T ) ∈ {1, · · · , d} \λ(T 0) (a missing

label of T ), we can take DT = (δ(x) = eµ(T ) − eλ(x) | x ∈ T 0) to let δi(x)δi(x′) ≥ 0 hold

for all i ∈ {1, · · · , d} for any x and x′ in T 0. Hence there is an x such that x+∆λ(x) 6⊆ S0

by Theorem 3.1. Since x + ∆λ(x) 6⊆ S0 if and only if xi = 0 and λ(x) = i for some i,

we can conclude that there exists an x in S0 improperly labeled by λ, which proves the

lemma.

Given a pointwise one-directional ∆: S0 →→ {ej − ei ∈ Zd | i, j = 1, · · · , d} (possibly
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i = j), define a function λ∆ : S0 → {1, · · · , d, 0} by

λ∆(x) =





0 if 0 ∈ ∆(x), and

ix if 0 6∈ ∆(x) and δix < 0 for all δ ∈ ∆(x).
(1)

Also, given a λ : S0 → {1, · · · , d, 0}, define a pointwise one-directional ∆λ : S0 →→ {ej −
ei ∈ Zd | i, j = 1, · · · , d} by

∆λ(x) =




{0} if λ(x) = 0, and

{ej − eλ(x) | j 6= λ(x) (j = 1, · · · , d)} otherwise.
(2)

Then the set of λ∆ and the set of ∆λ are one-to-one each other. If we classify x ∈ S0

such that λ∆(x) = 0 also as “improperly labeled” by λ∆, and continue to call (d − 1)-

dimensional T ∈ T such that λ∆(T 0) 6= {1, · · · , d} “incompletely labeled” by λ∆, then

the equivalence established above may be summarized as in Figure 1. Theorem 3.1 is

then of the form of the contraposition of Sperner’s lemma.

Sperner’s lemma

∀ vertices (properly labeled) =⇒ ∃ subsimplex (completely labeled)

(contraposition of Sperner’s lemma)

∃x[improperly labeled by λ∆] ⇐= ∀T [incompletely labeled by λ∆]

m Theorem 3.1 m
∃x[0 ∈ ∆λ(x) | x + ∆λ(x) 6⊆ S0] ⇐= ∆λ pointwise 1-d & simplexwise dp

Figure 1: The relationship between Sperner’s lemma and Theorem 3.1

3.2 A zero point theorem on the discrete simplotope

Let Sdi−1 = conv{mie
i,1, · · · ,mie

i,di} ⊂ Rdi , i = 1, · · · , n, S = Sd1−1 × · · · × Sdn−1,

S0 = S∩Zd1+···+dn , and let T be the standard triangulation of the simplotope S. For any

T ∈ T , T 0 = T ∩Zd1+···+dn is the set of vertices of T . Let ∆i : S0 →→ {ei,k − ei,j ∈ Zdi |
j, k = 1, · · · , di} (possibly j = k), i = 1, · · · , n. The pointwise one-directional property

and the simplexwise direction preserving property of ∆i are similarly defined as follows.

Let d = (
∑n

i=1(di − 1)) + 1.

Definition 3.2. A correspondence ∆i : S0 →→ {ei,k − ei,j ∈ Zdi | j, k = 1, · · · , di} is

(negatively) pointwise one-directional if, for each x ∈ S0 such that ∆i(x) \ {0} 6= ∅,
there exists one and only one jx ∈ {1, · · · , di} such that δi

jx
< 0 for all δi ∈ ∆i(x) \ {0}

6



(i.e. δi = ei,k − ei,jx for some k if δi ∈ ∆i(x) and δi 6= 0); it is simplexwise direction

preserving on T if, for each (d− 1)-dimensional subsimplex T in T , there exists a family

Di
T of δi(x) ∈ ∆i(x) indexed by x ∈ T 0, i.e., Di

T = (δi(x) ∈ ∆i(x) | x ∈ T 0), such that

δi
j(x)δi

j(x
′) ≥ 0 for all j ∈ {1, · · · , di} for any x and x′ in T 0.

We claim that the next theorem is derived from the Sperner-like theorem (Theorem

2.2).

Theorem 3.2. Let S0 be the set of vertices of the standard triangulation T of the sim-

plotope S. If ∆i : S0 →→ {ei,k − ei,j | j, k = 1, · · · , di} is pointwise one-directional and

simplexwise direction preserving on T for all i = 1, · · · , n, then, for ∆: S0 →→ Zd1+···+dn

defined by ∆(x) = {(δ1, · · · , δn) | δi ∈ ∆i(x), i = 1, · · · , n}, there exists an x ∈ S0 such

that 0 ∈ ∆(x) or x + ∆(x) 6⊆ S0. (Hence 0 ∈ ∆(x) if ∆ points inward at the boundary of

S.)

Proof. Given the correspondences ∆i of the theorem, define λi
∆ : S0 → {(i, 1), · · · , (i, di), (i, 0)}

by λi
∆(x) = (i, 0) if 0 ∈ ∆i(x), and λi

∆(x) = (i, jx) if 0 6∈ ∆i(x) and δi
jx

< 0 for

all δi ∈ ∆i(x), for each x ∈ S0, for every i = 1, · · · , n. If λi
∆(x) = (i, 0) for all

i = 1, · · · , n for some x ∈ S0 then 0 ∈ ∆(x) and we are done. So assume in the fol-

lowing that λi
∆(x) 6= (i, 0) for some i ∈ {1, · · · , n} for all x ∈ S0. Then λi

∆(T 0) 6=
{(i, 1), · · · , (i, di)} for every T ∈ T due to the simplexwise direction preservingness of

∆i, for every i = 1, · · · , n (the proof is similar to a part of Proof of [Sperner’s lemma

=⇒ Theorem 3.1]). Define L∆ : S0 → ⋃n
i=1{(i, 1), · · · , (i, di)} by L∆(x) = λi

∆(x) for

each x ∈ S0 with some i ∈ {1, · · · , n} such that λi
∆(x) 6= (i, 0). Then L∆ is a la-

beling function of S0 that appears in the Sperner-like theorem (Theorem 2.2), and

L∆(T 0) 6= {(i, 1), · · · , (i, di)} for all i = 1, · · · , n for every T ∈ T , since otherwise

λi(T 0) = {(i, 1), · · · , (i, di)} for some i ∈ {1, · · · , n} and T ∈ T (here T 0 is the set

vertices of T and L∆(T 0) = {L∆(x) | x ∈ T 0}). The contraposition of the Sperner-like

theorem then says that there is an x in S0 improperly labeled by L∆, i.e., x ∈ S0 such

that xi,j = 0 and λi
∆(x) = (i, j) for some i ∈ {1, · · · , n} and j ∈ {1, · · · , di}. Then we

have x + ∆(x) 6⊆ S0.

Observe that the Sperner-like theorem is summarized as

∀x[∃i[x is properly labeled by λi]] =⇒ ∃T [∃i[T is completely labeled by λi]],

using a set of labelings λi : S0 → {(i, 1), · · · , (i, di)} (i = 1, · · · , n) satisfying L(x) = λi(x)

for every x ∈ S0 with some i ∈ {1, · · · , n} such that λi(x) 6= (i, 0), instead of L : S0 →

7



⋃n
i=1{(i, 1), · · · , (i, di)}. Figure 2 shows the relationship between the Sperner-like theorem

and Theorem 3.2. Note that x with λi
∆(x) = (i, 0) is classified as “improperly labeled”

therein.

Sperner-like theorem

∀x[∃i[x is properly labeled by λi]] =⇒ ∃T [∃i[T is completely labeled by λi]]

(contraposition of Sperner-like theorem)

∃x[∀i[x is improperly labeled by λi
∆]] ⇐= ∀T [∀i[T is incompletely labeled by λi

∆]]

⇓ Theorem 3.2 ⇑
∃x[0 ∈ ∆(x) | x + ∆(x) 6⊆ S0] ⇐= ∀i[∆i pointwise 1-d & simplexwise dp]

Figure 2: The relationship between Theorem 2.2 (Sperner-like theorem) and Theorem 3.2

4 Applications

In this section we give the applications of our results, which are the simple adaptations

of Theorems 3.1 and 3.2 in some specific context, respectively.

(1) Walrasian equilibrium in integer prices

Let Zd
+ be the nonnegative orthant of Zd and ζ : Zd

+ \ {0} →→ Zd a nonempty-valued

correspondence satisfying (i) ζ(tp) = ζ(p) if p, tp ∈ Zd
+ \ {0} (homogeneous of degree

zero), (ii) p · z ≤ 0 for all z ∈ ζ(p) and all p ∈ Zd
+ \ {0} (weak Walras’s law), and (iii)

zi > 0 if z ∈ ζ(p) and pi = 0 (boundary condition). We call ζ an (aggregate) excess

demand correspondence that assigns for each nonnegative nonzero integer price vector

p ∈ Zd
+ \ {0} a nonempty set ζ(p) of integer excess demand vectors z ∈ Zd. By the

zero-homogeneity, the set S0 = S ∩ Zd with S = conv{me1, · · · ,med} is a natural subset

of integer price vectors, for which we consider the existence of a Walrasian equilibrium

price vector p∗ ∈ S0 such that 0 ∈ ζ(p∗).

For p ∈ S0 such that pk > 0 for all k = 1, · · · , d, the weak Walras’s law implies that

zi < 0 for at least one i if z ∈ ζ(p) and z 6= 0, so assign ip ∈ {1, · · · , d} such that zip < 0

for some z ∈ ζ(p) if 0 6∈ ζ(p); assign 0 if 0 ∈ ζ(p). For p ∈ S0 such that pk = 0 for some

k, the boundary condition implies that pi > 0 if zi ≤ 0, so assign ip ∈ {1, · · · , d} such

that zip ≤ 0 for some z ∈ ζ(p) if 0 6∈ ζ(p); assign 0 if 0 ∈ ζ(p). The assigned integer ip

represents a good whose price is to be lowered at p. Let T be the standard triangulation
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of the simplex S.

Proposition 4.1. Suppose that, for every (d − 1)-dimensional T ∈ T , the goods whose

prices are to be lowered at the vertices of T are not completely different. Then there exists

a Walrasian equilibrium price vector.

Proof. Let λ : S0 → {1, · · · , d, 0} be the assignment rule. Then λ(T 0) 6= {1, · · · , d} by the

assumption, where T 0 = T ∩Zd, the set of vertices of T . Let µ(T ) ∈ {1, · · · , d}\λ(T 0) for

each T ∈ T . Then ∆: S0 →→ {ej− ei | i, j = 1, · · · , d} defined by ∆(p) = {eµ(T )− eλ(p) |
T 0 contains p} if λ(p) 6= 0 and ∆(p) = {0} otherwise is a price adjustment correspondence

that is pointwise one-directional and simplexwise direction preserving. Also ∆ points

inward at p ∈ S0 on the boundary of S due to the boundary condition of ζ. Hence there

exists a p∗ ∈ S0 such that 0 ∈ ∆(p∗) by Theorem 3.1, which is a Walrasian equilibrium

price vector since 0 ∈ ∆(p∗) ⇐⇒ λ(p∗) = 0 ⇐⇒ 0 ∈ ζ(p∗).

(2) Nash equilibrium in rational mixed strategies

It is known that every finite n-person game has a Nash equilibrium point in mixed strate-

gies. It is not known, however, when it is obtained as an n-tuple of rational mixed

strategies. We address this issue here.

Let di > 1 be the number of pure strategies of player i, i = 1, · · · , n. We identify

the kth unit vector ei,k in Rdi with the kth pure strategy of player i. Then the set of

(mixed) strategies of player i is conv{ei,1, · · · , ei,di}, the (di − 1)-dimensional unit sim-

plex. Given the payoff πi(e1,k1 , · · · , en,kn) ∈ R of player i for each pure strategy profile

(e1,k1 , · · · , en,kn), the payoff Pi(s) of player i for each strategy profile s = (s1, · · · , sn), sj ∈
conv{ej,1, · · · , ej,dj} for each j = 1, · · · , n, is Pi(s) =

∑d1
k1=1 · · ·

∑dn
kn=1 s1

k1
· · · sn

kn
πi(e1,k1 , · · · , en,kn).

We denote by Pi(s \ ti) the payoff of player i when the strategy ti is used by player i in

the profile s.

Let Sdi−1 = conv{mie
i,1, · · · ,mie

i,di} with some positive integer mi, i = 1, · · · , n,

and S = Sd1−1 × · · · × Sdn−1. We call S0 = S ∩ Zd1+···+dn the discretized strategy

profile space. We identify x = (x1, · · · , xn) ∈ S0 with the n-tuple of rational vectors

of strategy s = (x1/m1, · · · , xn/mn), for which we put s = x/m, for brevity. Then

Pi(x/m) =
∑d1

k1=1 · · ·
∑dn

kn=1(x
1
k1

/m1) · · · (xn
kn

/mn)πi(e1,k1 , · · · , en,kn). Let βi : S0 →→
Sdi−1 ∩ Zdi be the best reply correspondence of player i such that yi ∈ βi(x) if and only

if Pi((x/m) \ (yi/mi)) ≥ Pi((x/m) \ (zi/mi)) for all zi ∈ Sdi−1 ∩ Zdi . Then conv βi(x) is

a nonempty face of Sdi−1 due to the multilinear form of payoff function. We say that a

pure strategy ei,k is acceptable for player i at x if mie
i,k is a vertex of conv βi(x). Define
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β : S0 →→ S0 by β(x) = β1(x)×· · ·×βn(x) for each x ∈ S0. A discretized strategy profile

x∗ ∈ S0 is a Nash equilibrium point if x∗ ∈ β(x∗). Let T be the standard triangulation

of the simplotope S, whose dimension is d− 1 with d = (
∑n

i=1(di − 1)) + 1.

Proposition 4.2. Suppose that, for every (d − 1)-dimensional T ∈ T , there is at least

one pure strategy for each player acceptable for him at all the vertices of T . Then there

exists a Nash equilibrium point in the discretized strategy profile space.

Proof. For each (d−1)-dimensional T ∈ T and player i = 1, · · · , n, let µi(T ) ∈ {(i, 1), · · · , (i, di)}
be the index of an acceptable pure strategy for player i at T , which always exists due to

the assumption. For each x = (x1, · · · , xn) ∈ S0 and player i = 1, · · · , n, let λi(x) = (i, k)

if there is ei,k not acceptable for i at x and xi
k > 0, and λi(x) = (i, 0) otherwise (i.e. if all

the pure strategies are acceptable or every unacceptable one is already “dropped” in that

xi
k = 0; λi(x) signifies a pure strategy to be dropped, if any). Note that λi(x) = (i, 0) if and

only if xi ∈ βi(x). Now, define ∆i : S0 →→ {ei,k − ei,j | j, k = 1, · · · , di} (possibly j = k)

for each player i = 1, · · · , n by ∆i(x) = {0} if λi(x) = (i, 0), and ∆i(x) = {eµi(T )−eλi(x) |
T 0 contains x} otherwise (T 0 = T ∩Zd1+···+dn is the set of vertices of T ). Then every ∆i

is pointwise one-directional, simplexwise direction preserving, and ∆: S0 →→ S0 defined

by ∆(x) = ∆1(x) × · · · × ∆n(x) for each x ∈ S0 satisfies x + ∆(x) ⊆ S0. Hence there

exists an x∗ ∈ S0 such that 0 ∈ ∆(x∗) by Theorem 3.2, which is a Nash equilibrium point

since 0 ∈ ∆(x∗) ⇐⇒ λi(x∗) = (i, 0) (∀i = 1, · · · , n) ⇐⇒ x∗ ∈ β(x∗).

5 Concluding comments

Let S0 be the set of vertices of the standard triangulation T of the simplex S. The

zero point theorem on the simplex (Theorem 3.1) gives a discrete fixed point theorem for

functions f : S0 → S0 such that f(x) = x + ej − ei, with the condition that (fi(x) −
xi)(fi(x′) − x′i) ≥ 0 for all i = 1, · · · , d (or equivalently (f(x) − x) · (f(x′) − x′) ≥ 0 in

this case) for any x and x′ in the same subsimplex of T . The proof of the existence of

an x ∈ S0 such that x = f(x) is immediate from Theorem 3.1 if we define ∆: S0 →→
{ej − ei | i, j = 1, · · · , d} by ∆(x) = {f(x)− x}. We note that this is a special case of the

theorem in [5].

Theorem 3.1 also gives a proof of continuous fixed point theorem by Brouwer. If

S ⊂ Rd is the unit simplex and f : S → S is continuous, the proof is direct and goes as

follows (this is a slightly modified, typical proof of “Sperner =⇒ Brouwer”; see e.g. [1]

for this type of proof of Brouwer’s theorem). For each positive integer m, let Tm be the
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standard triangulation of S such that S0
m = S ∩ ( 1

mZd) is the set of vertices of Tm. Define

∆m : S0
m →→ { 1

mej− 1
mei | i, j = 1, · · · , d} by ∆m(x) = { 1

mej− 1
mei | j 6= i (j = 1, · · · , d)}

with an i ∈ {k | xk > fk(x)} if x 6= f(x), and ∆m(x) = {0} if x = f(x), for each x ∈ S0
m.

Then, for each m, ∆m is pointwise one-directional and x + ∆m(x) ⊆ S0
m for all x ∈ S0

m.

If ∆m is also simplexwise direction preserving then 0 ∈ ∆m(x) for some x ∈ S0
m. If not,

there exists a completely labeled subsimplex, since ∆m is simplexwise direction preserving

if and only if all the subsimplices of Tm are incompletely labeled. Hence we have either

a finite m such that 0 ∈ ∆m(x) for some x = f(x) ∈ S0
m, or a sequence of completely

labeled subsimplices converging to some x = f(x) ∈ S.

In this paper we started from a unit simplex {x ∈ Rd | 1 · x = 1, x ≥ 0} (where 1

is the vector of all ones), and used the “negative” one-directional condition “δix < 0 for

all δ ∈ ∆(x) \ {0} for some ix”. A similar argument is possible, starting from a non-unit

simplex {x ∈ Rd | 1 · x = 0, x ≤ 1} ([6]) using a “positive” one-directional condition

“δix > 0 for all δ ∈ ∆(x) \ {0} for some ix”. The convention of sign is determined so

as to obtain x + ∆(x) ⊆ S0 at the extreme points of the simplex S at hand. The same

comment also applies to the theorem on the simplotope.
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