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Abstract

Markov chain models are used in various fields, such behavioral sciences or econo-
metrics. Although the goodness of fit of the model is usually assessed by large sample
approximation, it is desirable to use conditional tests if the sample size is not large.
We study Markov bases for performing conditional tests of the toric homogeneous
Markov chain model, which is the envelope exponential family for the usual homo-
geneous Markov chain model. We give a complete description of a Markov basis
for the following cases: i) two-state, arbitrary length, ii) arbitrary finite state space
and length of three. The general case remains to be a conjecture. We also present
numerical examples of conditional tests based on our Markov basis.

1 Introduction

Consider a Markov chain Xt, t = 1, . . . , T (≥ 3), over a finite state space S = {1, . . . , S}

(S ≥ 2). Let πi, i ∈ S, denote the initial distribution of X1 and let p
(t)
ij = P (Xt+1 = j |

Xt = i) denote the transition probability from time t to t + 1. We want to test the null
hypothesis of homogeneity

H0 : p
(t)
ij = pij, t = 1, . . . , T − 1. (1)

This model is used as a standard model in many fields. See Haccou and Meelis [9] for
behavioral sciences and Fühwirth-Schnatter [8] for econometrics. Usually the goodness
of fit of the model is assessed by large sample approximation (Anderson and Goodman
[3], Billingsley [5]). However when the sample size is not large, it is desirable to use
conditional tests. The Markov basis methodology (Diaconis and Sturmfels [6]) is attractive
for performing them.

∗Graduate School of Information Science and Technology, University of Tokyo
†JST, CREST
‡Department of Technology Management for Innovation, University of Tokyo
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In this paper we study Markov bases for performing conditional tests of the null
hypothesis of homogeneity. However the homogeneous Markov chain model (1) is a curved
exponential family due to the constraints

∑

j∈S pij = 1, ∀i ∈ S, and we cannot directly
apply conditional tests to H0 in (1). Instead, by the Markov basis methodology we
can test a larger null hypothesis H̄0 that Xt, t = 1, . . . , T , are observations from a toric
homogeneous Markov chain (cf. Section 1.4 of Pachter and Sturmfels [13]), which is the
envelope exponential family (cf. Küchler and Sørensen [11] and Küchler and Sørensen
[12], Chapter 7) of the homogeneous Markov chain model (1). In Section 2.1 we discuss
interpretations of the toric homogeneous Markov chain model and its difference from the
usual homogeneous Markov chain model.

In the following for notational simplicity we write THMC for “toric homogeneous
Markov chain”. Note that in Section 1.4 of Pachter and Sturmfels [13] they consider a
model without parameters for the initial distribution, whereas our THMC model contains
parameters for the initial distribution. As an alternative hypothesis to THMC model we
can take non-homogeneous Markov chain model, which is an (affine or full) exponential
family model which includes THMC model as a submodel.

In this paper we derive complete description of Markov bases for THMC model for the
case of S = 2 (arbitrary T ) and the case of T = 3 (arbitrary S). For other combinations
of (S, T ) with small S and T , we can use a computer algebra package 4ti2 ([1]). Complete
description of Markov bases for general S and T seems to be a difficult problem at present.

The organization of this paper is as follows. In Section 2 we first set up our model
and then give some preliminary results. We derive a Markov basis for the case of S = 2
in Section 3 and for T = 3 in Section 4. In Section 5 we present applications of our
Markov bases to some data sets. In Section 6 we give some discussions on Markov bases
for general S and T .

2 Toric homogeneous Markov chain model

2.1 THMC model and its interpretation

Let ω = (s1, . . . , sT ) ∈ ST denote an observed path of a Markov chain. Each path is
considered as one frequency of a |S|T contingency table. The usual homogeneous Markov
chain model (1) specifies the probability of the path ω as

H0 : p(ω) = πs1
ps1s2

. . . psT−1sT
, (2)

where the normalization is
∑

i∈S πi = 1 and
∑

j∈S pij = 1, ∀i ∈ S. In THMC model, the
normalization is only assumed for the total probability. In order to avoid confusion, let
γi, i ∈ S, and βij, i, j ∈ S, be free nonnegative parameters. We specify THMC model by

H̄0 : p(ω) = cγs1
βs1s2

. . . βsT−1sT
, (3)

where c is the overall normalizing constant. THMC model (3) is the envelope exponential
family of the homogeneous Markov chain model (2), i.e., the linear hull of logarithms of
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the probabilities in (2) coincides with the set of logarithms of probabilities in (3). This
simply follows from the fact that the linear hull of elementwise logarithms of probability
vector

{(log p1, . . . , log pS) | pi > 0, i ∈ S,
∑

i∈S

pi = 1}

is the whole R
S. The THMC model H̄0 contains the usual homogeneous Markov chain

model H0 and the difference in degrees of freedom is S − 1.
As discussed in Küchler and Sørensen [11] an envelope exponential family is often

difficult to interpret. For THMC model we give the following interpretation. Write

βij = αipij,
∑

j∈S

pij = 1.

Then (3) is written as

p(ω) = cγs1
αs1

ps1s2
. . . αsT−1

psT−1,T
= cγs1

ps1s2
. . . psT−1,T

× (αs1
. . . αsT−1

).

Compared to (2), αi specifies a magnifying ratio of probability of a path visiting the state
i. We can interpret αi as an internal growth rate or “birth rate” of state i, which is not
affected by immigration or emigration.

As an alternative hypothesis we can take the non-homogeneous Markov chain model

H1 : p(ω) = πs1
p(1)

s1s2
. . . p(T−1)

sT−1sT
. (4)

By reparametrization this model can be simply written as the linearly ordered conditional
independence model:

p(ω) = cβ(1)
s1s2

β(2)
s2s3

. . . β(T−1)
sT−1sT

.

This is a decomposable model of a T -way contingency table, with its independence graph
given by the following linear tree:

1
•

2
•

. . . T − 1
•

T
•

This model is a full exponential family model containing THMC model.
In this paper we consider testing H̄0 against H1 via Markov basis approach. Although

by this procedure we are not directly testing H0, it should be noted that we can reject H0

if H̄0 is rejected. When H̄0 is accepted, we further need to test H0 against H̄0. However
at present there is no general procedure for finite sample exact tests of curved exponential
family.

2.2 Sufficient statistic and moves for THMC model

Suppose that we observe N paths ω1, . . . , ωN from a homogeneous Markov chain (1). We
write W = {ω1, . . . , ωN}. Here multiple paths are allowed in W and hence W is a multiset.
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Let x(ω) denote the frequency of the path ω in W . Then the data set is summarized in
a T -way contingency table x = {x(ω), ω ∈ ST}.

Let xt
ij denote the number of transitions from st = i to st+1 = j in W and let xt

i

denote the frequency of the state st = i in W . In particular x1
i is the frequency of the

initial state s1 = i. Let

x+
ij =

T−1∑

t=1

xt
ij

denote the total number of transitions from i to j in W . Under H0 the joint probability
of x is written as

p(x) =
N !

∏

ω∈ST x(ω)!

∏

ω∈ST

(πs1
ps1s2

. . . psT−1sT
)x(ω)

=
N !

∏

ω∈ST x(ω)!

∏

s∈S

πx1
s

s

∏

i,j∈S

p
x+

ij

ij .

Therefore the sufficient statistic for H0 is given by the initial frequencies and the frequen-
cies of transitions

b = b(x) = {x1
i , i ∈ S} ∪ {x+

ij, i, j ∈ S}. (5)

In fact this sufficient statistic for H0 is minimal sufficient and it is also the sufficient
statistic for THMC model. This simply reflects the fact that THMC model is the envelope
exponential family of the homogeneous Markov chain model. Since THMC model (3) is
an exponential family with integral sufficient statistic, we can perform the conditional
test of H̄0 by the Markov basis methodology. Therefore our goal in this paper is to obtain
Markov bases for H̄0 with various S and T .

If we order paths of ST appropriately and write x as a column vector according to the
order, b = b(x) in (5) is written in a matrix form

b = Ax,

where A is an S(S + 1) × ST matrix consisting of non-negative integers. The set of all
contingency tables sharing b is called a fiber and denoted by Fb = {x ∈ Z

ST

≥0 | Ax = b},
where Z≥0 = {0, 1, . . . }. A move z for THMC model is an integer array satisfying Az = 0.
Then z is expressed by a difference of two contingency tables x and y in the same fiber:

z = x − y, z(ω) = x(ω) − y(ω), ω ∈ ST .

We write zt
i = xt

i − yt
i and zt

ij = xt
ij − yt

ij. Note that
∑

i∈S zt
i = 0 for all t, because

N =
∑

i∈S xt
i =

∑

i∈S yt
i is the number of paths. Also since x and y is in the same fiber

∑T−1
t=1 zt

ij = 0 for all i, j ∈ S.

Example 1. For illustration we consider the case of S = 2 and T = 4. The configuration
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A is written as

A =

1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

“11” 3 2 1 1 1 0 0 0 2 1 0 0 1 0 0 0
“12” 0 1 1 1 1 2 1 1 0 1 1 1 0 1 0 0
“21” 0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0
“22” 0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3

(6)

The first two rows of A correspond to x1
1 and x1

2. The other rows correspond to x+
11,

x+
12, x+

21, x+
22 respectively. The columns of A are indexed by the paths ω ∈ {1, 2}4 in the

lexicographic order. Note that compared to a similar configuration in Section 1.4.1 of [13],
A in (6) has additional two rows corresponding to initial frequencies.

An interesting feature of the above A is that it contains identical columns. The columns
1121 and 1211 are identical. This means that the difference of the two paths z = {z(ω) |
ω ∈ ST}

z(ω) =







1, if ω = 1121,
−1, if ω = 1211,

0, otherwise

forms a degree one move. We depict the degree one move as

1

2

s\t
1 2 3 4

, (7)

where a solid line from (i, t) to (j, t + 1) represents zt
ij = 1 and a dotted line from (i, t) to

(j, t+1) represents zt
ij = −1. We note that the columns 2122 and 2212 are also identical.

We could remove redundant columns from A and only leave a representative column from
the set of identical columns. However it seems better to leave identical columns in view of
the symmetry in A and we will work with the above form of A.

In the following we often use the graph representation of moves as (7). We call such
a graph a move graph. A node of a move graph is a pair (i, t) of state i and time t

and an edge from (i, t) to (j, t + 1) represents the value of zt
ij. If |zt

ij| = 0, there is no
corresponding edge in the graph. If |zt

ij| ≥ 2, we write the value of |zt
ij| beside the edge.

For example, the move for S = 2 and T = 4 such that z1
11 = z3

22 = −1, z2
12 = −2 and

z1
12 = z2

22 = z2
11 = z3

12 = 1 is represented by

2 .

We note that a move graph does not have a one-to-one correspondence to a move and
more than one move have the same move graph in general.

5



For notational simplicity we denote the edge from (i, t) to (j, t) as t : ij. Given
a contingency table x, xt

i is the number of paths passing through the node (i, t) and
xt

ij is the number of paths passing through the edge t : ij. Consider a partial path
(st, st+1, . . . , st′) starting at time t and ending at time t′ > t. We write this partial path
as t : stst+1 . . . st′ . xt

stst+1...st′
denotes the frequency of the partial path t : stst+1 . . . st′ in

W . For a particular path ω ∈ ST we say that ω passes through t : stst+1 . . . st′ if ω is of
the form (∗, . . . , ∗, st, st+1, . . . , st′ , ∗, . . . , ∗) where ∗ is arbitrary.

Let z = x − y. If zt
i > 0 we say that x dominates y at the node (i, t). Similarly if

zt
ij > 0 we say that x dominates y in the edge t : ij. Consider a partial path t :st . . . st′ . If

all of zt
st,st+1

, zt+1
st+1,st+2

, . . . , zt′−1
st′−1,st′

are positive, we say that x dominates y in the partial
path t :st . . . st′ .

Given the signs of some zt
ij’s, we depict the pattern of signs as an undirected graph

with thick edges. Positive edges are depicted by thick solid lines and negative edges by
thick dotted line. In the case of S = 2 and T = 4, when z1

11, z
2
12 and z3

22 are positive and
z1
12, z

2
11, z

2
22 and z3

12 are negative, the corresponding graph is depicted by

s\t 1 2 3 4

1

2 (8)

regardless of the signs of z1
22, z1

21, z1
21, z3

21 and z3
11 where no edge is depicted. We call such

graphs edge-sign pattern graphs. We note that edges of an edge-sign pattern graph have
only the information on the signs of zt

ij and do not have the information on the value of
zt

ij like a move graph.
For considering our Markov basis it is important to note that THMC model possesses

the symmetry with respect to time reversal. The following fact is well known, as discussed
in Section 2 of Billingsley [5].

Lemma 1. For all x in the same fiber Fb of THMC model, the terminal frequencies xT
j ,

j ∈ S, are common.

In terms of moves, the above lemma implies that zT
i = 0 for all i ∈ S. Since z1

i = 0,
we have

T−1∑

t=2

zt
i = 0. (9)

Lemma 1 shows that given b, the paths of the original homogeneous Markov chain
and the paths of the time-reversed homogeneous Markov chain has the same conditional
distribution. This symmetry with respect to time reversal is important in considering a
Markov basis for the present problem.
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2.3 Linearly ordered conditional independence model and cross-

ing path swapping

Let x and y in the same fiber be given. We call x and y edge-wise equivalent if zt
ij = 0

for all t and for all i, j. Edge-wise equivalence does not mean that x and y are identical
as a multiset of N paths. However consider a non-homogeneous Markov chain H1 in (4),
which is a linearly ordered conditional independence model of T -way contingency tables.
Then xt

ij, 1 ≤ t ≤ T − 1 and i, j ∈ S, constitute the sufficient statistic for the model.
Therefore moves for H1 is expressed by the difference of two edge-wise equivalent paths
and their move graphs have no edges.

We note that H1 is a decomposable model for contingency tables. By Dobra [7] there
exists a Markov basis for this model consisting of square-free degree two moves. These
square-free degree two moves are related to the idea of swapping of two paths meeting
(or crossing) at a node. Let ω̄ = (s1, . . . , sT ) and ω̄′ = (s′1, . . . , s

′
T ) be two paths. We say

that these two paths meet (or cross) at the node (i, t) if i = st = s′t. If ω and ω′ cross at
the node (i, t), consider the swapping of these two paths like

{ω, ω′} = { (s1, . . . , st−1, i, st+1, . . . , sT ), (s′1, . . . , s
′
t−1, i, s

′
t+1, . . . , s

′
T ) }

↔ { (s1, . . . , st−1, i, s
′
t+1, . . . , s

′
T ), (s′1, . . . , s

′
t−1, i, st+1, . . . , sT ) } := {ω̃, ω̃′} (10)

t

•i•i

Then the difference z of (ω, ω′) and (ω̃, ω̃′)

z(ω) =







1 if ω = ω̄ or ω̄′

−1 if ω = ω̃ or ω̃′

0 otherwise

forms a move for H1. We call this move a “crossing path swapping”. By Dobra [7] we
have the following proposition.

Proposition 1. The set of crossing path swappings in (10) constitutes a Markov basis
for the linearly ordered conditional independence model.

Therefore once x and y of the same fiber are brought to be edge-wise equivalent, they
can be further brought to be identical as multisets by crossing path swappings. Therefore
for constructing a Markov basis for THMC model, we need to find an additional finite set
of moves, which can make two elements of the same fiber edge-wise equivalent.

Crossing path swapping has the following implication. Suppose that x dominates y in
the partial path t : st . . . st′ . Then clearly there exists a path ω in x passing through the
edge t :stst+1. Similarly there exists a path ω′ in x passing through the edge t+1:st+1st+2.
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We can then make the crossing path swapping of these two paths and make ω go through
the partial path t : stst+1st+2. Repeating this procedure, by a sequence of crossing path
swappings of paths of x, we can assume that x contains a path ω which goes through the
partial path t :st . . . st′ . We state this as a lemma.

Lemma 2. Let x and y be two elements of the same fiber. If x dominates y in the partial
path t :st . . . st′, then by crossing path swappings of paths in x, we can transform x to x̃,
such that there exits a path in x̃ going through the partial path t :st . . . st′.

Note that during the sequence of crossing path swappings, the values of {zt
ij} stay the

same. By Lemma 2, we can identify all x’s with the same edge frequencies, whenever we
are concerned about decreasing

∑

t,i,j |z
t
ij| for our distance reduction argument in Sections

3 and 4.

2.4 Some properties of moves for THMC model

In this subsection we present an important class of moves for THMC model. Consider two
different states i1 6= i2 at time t and two different states j1 6= j2 at time t + 1. Let t : i1j1

and t : i2j2 be two edges joining these states. Now consider t′ > t and two edges t′ : i1j2

and t′ : i2j1, which swaps the transitions i1j1, i2j2 of time t. Suppose that all of xt
i1j1

, xt
i2j2

,

xt′

i1j2
, xt′

i2j1
are positive. Choose (not necessarily distinct) four paths ω1, ω2, ω3, ω4 from x

passing through t : i1j1, t : i2j2, t′ : i1j2, t′ : i2j1, respectively:

ω1 = (s11 . . . , s1,t−1, i1, j1, s1,t+2, . . . , s1T ), ω2 = (s21 . . . , s2,t−1, i2, j2, s2,t+2, . . . , s2T )

ω3 = (s31 . . . , s3,t′−1, i1, j2, s3,t′+2, . . . , s3T ), ω4 = (s41 . . . , s4,t′−1, i2, j1, s4,t′+2, . . . , s4T ).

Then we consider swapping the transitions in {t : i1j1, t : i2j2} and those in {t′ : i1j2, t
′ : i2j1}

in x as {ω1, ω2, ω3, ω4} ↔ {ω̃1, ω̃2, ω̃3, ω̃4}, where

ω̃1 = (s11 . . . , s1,t−1, i1, j2, s2,t+2, . . . , s2T ), ω̃2 = (s21 . . . , s2,t−1, i2, j1, s1,t+2, . . . , s1T ),

ω̃3 = (s31 . . . , s3,t′−1, i1, j1, s4,t′+2, . . . , s4T ), ω̃4 = (s41 . . . , s4,t′−1, i2, j2, s3,t′+2, . . . , s3T ).

The resulting move z = {z(ω) | ω ∈ ST} is written as

z(ω) =







1 if ω = ω1, . . . , ω4,

−1 if ω = ω̃1, . . . , ω̃4,

0 otherwise.

We call this move a “2 by 2 swap”. The corresponding move graph is depicted as follows,

i1 i1

i2 i2

j1 j1

j2 j2 (11)
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We denote the set of 2 by 2 swaps sharing the move graph (11) by

{t : i1j1, t : i2j2} ↔ {t′ : i1j2, t
′ : i2j1}. (12)

As noted above, ω1, ω2, ω3 and ω4 are not necessarily distinct. It may be the case that
ω1 = ω3, ω1 = ω4, ω2 = ω3 or ω2 = ω4. In the 2 by 2 swap in (12) and (11), the paths
are only partially specified. Therefore it corresponds to a set of moves in term of fully
specified paths. In particular, depending on which paths are the same, a 2 by 2 swap may
be of degree 2,3, or 4 in terms of the fully specified paths.

The above 2 by 2 swap can be extended in various ways. First it can be extended to
a permutation of more states

{t : i1j1, . . . , t : imjm} ↔ {t′ : i1jσ(1), . . . , t
′ : imjσ(m)}, (13)

where σ is an element of the symmetric group Sm. We call this move an “m by m

permutation”. The degree of this move is at most 2m in terms of paths. The degree is
smaller if σ(l) = l for some l, because swapping t : iljl and t′ : iljl = t′ : iljσ(l) does not
change anything.

Second, it can be extended to swapping of two partial paths

t : i ∗ · · · ∗ j
︸ ︷︷ ︸

k

↔ t′ : i ∗ · · · ∗ j
︸ ︷︷ ︸

k

, (t 6= t′),

where ‘*’ is arbitrary. For example we can swap t :112 and t′ :122, (t 6= t′):

{s1 . . . st−1112st+3 . . . sT , s′1 . . . s′t′−1122s′t′+3 . . . s′T}

↔ {s1 . . . st−1122st+3 . . . sT , s′1 . . . s′t′−1112s′t′+3 . . . s′T}, (14)

which can be depicted as

t t′

(15)

3 Markov basis for two state space case

In this section we give an explicit form of a Markov basis for the case of S = 2. The
length T of the Markov chain is arbitrary.

Theorem 1. A Markov basis for S = 2, T ≥ 4, consists of the following moves:

1. Crossing path swappings.

2. Degree one moves.

3. 2 by 2 swaps of the following form:

9



4. Moves of the following form: .

This includes the case of a double transitions in the middle: 2 .

For T = 3 a Markov basis consists of the first three types of moves.

Proof. We use an induction on the length T of the Markov chain combined with the
distance reduction argument in [15] for the distance |z| :=

∑

t,i,j |z
t
ij|.

If z1
ij = 0, ∀i, j, then we can ignore the transitions 1 : ij, i, j ∈ S, in both x and y and

regard the chain as starting from t = 2. Similarly if zT−1
ij = 0, ∀i, j, then we can regard

the chain as ending at time t = T − 1. Therefore we can assume that z1
ij 6= 0 for some

i, j and zT−1
ij 6= 0 for some i, j. In view of the symmetry of the model and the fact that

z1
1 = z1

2 = 0, we can assume without loss of generality that z1
11 > 0 and z1

12 < 0:

1 2

As the initial step of the induction we assume T = 3. Then by (9) z2
i = 0, i = 1, 2.

This necessarily implies that the edge-sign pattern of z is of the following form:

1 2 3

By Lemma 2, we can assume that x contains the path 112 and 221. Therefore by adding
the 2 by 2 swap

1 2 3

to x, we can reduce |z| by eight. This takes care of the case of T = 3.
Now consider the case of T ≥ 4. First we explain our strategy. We claim that by

moves in Theorem 1 we can always achieve one of the following two things:

1) |z| is reduced without increasing
∑

i,j |z
1
ij| +

∑

i,j |z
T−1
ij |;

2)
∑

i,j |z
1
ij| +

∑

i,j |z
T−1
ij | is reduced.

Then either |z| can be reduced to zero and we are done, or if we can not further decrease
|z| then, we can now reduce

∑

i,j |z
1
ij|+

∑

i,j |z
T−1
ij |, noting that

∑

i,j |z
1
ij|+

∑

i,j |z
T−1
ij | has

not increased. By this strategy we can either make |z| = 0 or employ induction on T .
Therefore Theorem 1 is implied by the above claim.

As a preliminary step consider a path of x passing through s = 1, t = 2. If this path
ever moves to s = 2 and then comes back to s = 1 before T − 1, i.e., if this path contains
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t :12 and t′ :21, t < t′ < T − 1, then we can apply a degree 1 move of the following form

1 t′ − t + 1 t t′

and reduce
∑

i,j |z
1
ij| without affecting

∑

i,j |z
T−1
ij |. Therefore in the following we only need

to consider the case that every path of x passing through s = 1, t = 2 either always stays
at s = 1 until T −1 or moves once to s = 2 and then stays at s = 2 thereafter until T −1.

We now check four possible sign patterns of {zT−1
ij }.

1)

T − 1 T

2)

T − 1 T

3)

T − 1 T

4)

T − 1 T

Case 1.

1 2 T − 1 T

As shown above, a path in x passing through the node s = 1, t = 1, 2 has to either stay
at s = 1 until T − 1 or has to transit once to s = 2 and stay s = 2 thereafter until T − 1.
Consider the latter case. If a transition from s = 1 to s = 2 occurs before T − 1, then
in view of zT−1

21 > 0, we can assume that the path also contains T − 1 : 21 by Lemma 2.
Then we can apply a degree one move to x and then

∑

i,j |z
1
ij| +

∑

i,j |z
T−1
ij | is reduced.

Therefore we only need to consider the case where every path in x passing through the
node s = 1, t = 1, 2 move to s = 2 at T − 1. By Lemma 2, we can assume that there is
no transition t :12, t = 2, . . . , T − 1 in x and therefore zt

12 ≤ 0, for t = 2, . . . , T − 1. Then
zT−1
12 > 0 in view of z1

12 < 0. Interchanging the roles of x and y and reversing the time
direction we similarly have z1

21 < 0. From the fact that z1
2 = zT

2 = 0, we have z1
22 > 0 and

zT−1
22 < 0, i.e. z has a sign pattern

1 2 T − 1 T

.

Therefore |z| is reduced by eight by a 2 by 2 swap.

Case 2.
1 2 T − 1 T

Since z1
12 < 0, zT−1

12 < 0, either there exists 2 ≤ t ≤ T − 1 such that zt
ij ≥ 2 or there

exist 2 ≤ t < t′ ≤ T − 1 such that zt
12, z

t′

12 > 0. In the former case write t′ = t. By the
symmetry with respect to time reversal of THMC model, we can assume that a path in
x passing through the node s = 2, t = T, T − 1 stays at s = 2 until t = 2 or transits once
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to s = 1 and stays s = 1 until t = 2. By Lemma 2, we can assume that there exist two
paths passing through t − 1 : 112 and t′ : 122, respectively:

t t′

.

Then by subtracting a move of type 4, we can widen the difference t′ − t. By iterating
this procedure until either t = 1 or t′ = T − 1, we can reduce

∑

i,j |z
1
ij| +

∑

i,j |z
T−1
ij |.

Case 3.
1 2 T − 1 T

We can assume zT−1
11 ≥ 0 because we have already covered Case 1. Then there has to be

2 ≤ t ≤ T − 1 such that zt
11 < 0:

1 2 t T − 1 T
.

Also it can be easily seen that z1
21 < 0 (hence z1

22 > 0) is reduced to Case 1 by a symmetry
consideration. Therefore we can assume z1

21 ≥ 0. Then

z2
1 = z1

11 + z1
21 > 0,

i.e., x dominates y at the node s = 1, t = 2. Then z2
2 < 0 because z2

1 + z2
2 = 0.

Similar consideration shows that zT−1
1 > 0 and zT−1

2 < 0. Suppose that a path of y

passing 1 : 12 arrives at s = 1 at time t. By Lemma 2 we can assume that the path
stays at s = 1 at time t + 1. Denote the path by w = (12s3 · · · st−111st+2 · · · sT ). Let
w′ = (112s3 · · · st−11st+2 · · · sT ). Then the difference of w and w′ forms a degree one move
with a sign pattern

1 2
.

By adding it to x, we can reduce
∑

i,j |z
1
ij| by two without affecting

∑

i,j |z
T−1
ij |. Therefore

we only need to consider the case where there is no path of y passing the node s = 2, t = 2
and arriving at s = 1 at time t.

Since z2
1 > 0, there has to be some t′ ≤ t such that zt′

12 > 0. Now assume that t′ < T−2
and choose the minimum t′ with zt′

12 > 0. Then a path in x passing through (s, t) = (1, 2)
and t′ : 12 has to stay at s = 2 from t′ + 1 to T − 1. Recall 0 < zT−1

1 = zT−2
11 + zT−2

21 and
suppose that zT−2

11 > 0. Then we can assume that there exists a path passing through
T − 2 : 112. Therefore we can apply type 4 move

t − 1 t T − 2 T
.

12



and we can reduce
∑

i,j |z
T−1
ij | without affecting

∑

i,j |z
1
ij|. Suppose that zT−2

21 > 0. Then
we can assume that there exists a path passing through T − 3 : 2212 and hence we can
apply a degree one move

T − 2 T

to reduce
∑

i,j |z
T−1
ij | without affecting

∑

i,j |z
1
ij|. Therefore we only need to consider the

case of t′ = t = T − 2. Since zT−1
1 > 0 and zT−2

11 < 0, we have zT−2
21 > 0. In the same way

we also have zT−2
12 < 0. Hence z has a sign pattern

T − 2 T − 1

.

By symmetry we can easily see that z has a sign pattern

2 3 T − 2 T − 1

.

Then we can decrease |z| by a 2 by 2 swap.

Case 4.
1 2 T − 1 T

By a consideration as in the previous case there exists t such that zt
11 < 0:

1 2 t T − 1 T
.

As in the previous case there should exist (the minimum) t′ ≤ t with zt′

12 > 0. By
symmetry there also exists (the maximum) t′′ ≥ t + 1 with zt′′

21 > 0. Then we can apply a
degree 1 move

1 2 t′′ − t′ + 1 t′ t′′

.

to decrease
∑

i,j |z
1
ij|. This completes the proof of Theorem 1.

4 Markov basis for the case of length of three

In this section we give an explicit form of a Markov basis for the case of T = 3. The
number of states S = |S| is arbitrary.

13



Let i1, . . . , im, m ≤ S, be distinct elements of S. Similarly let j1, . . . , jm, m ≤ S, be
distinct elements of S. In the m by m permutation of (13) let t = 1, t′ = 2 and

σ(1) = m,σ(2) = 1, . . . , σ(k) = m − 1.

Then the resulting set of m by m permutation is denoted by

Z(i1, . . . , im; j1, . . . , jm) :

{1: i1j1, 1: i2j2, . . . , 1: imjm} ↔ {2: i1jm, 2: i2j1, . . . , 2: imjm−1}. (16)

A move graph of a permutation for S = 6 with m = 4, (i1, i2, i3, i4) = (1, 2, 4, 5),
(j1, j2, j3, j4) = (1, 3, 5, 6) is depicted in Figure 1. Now we state the following theorem on

1

2

3

4

5

6

1 2 3s\t

i1

i2

i3

i4

j1

j2

j3

j4

Figure 1: A typical permutation

a Markov basis for the case of T = 3.

Theorem 2. A Markov basis for THMC model with T = 3 is given by the set of crossing
path swappings in (10) and the set of m×m permutations Z(i1, . . . , im; j1, . . . , jm) in(16),
where m = 2, . . . , S, i1, . . . , im are distinct, and j1, . . . , jm are distinct.

For proving Theorem 2 we need more detailed consideration of these moves.
Let

I = {i1, . . . , im}, J = {j1, . . . , jm}.

For each j ∈ I ∩ J , there exist unique indices i(j), i′(j) ∈ I, k(j), k′(j) ∈ J , such that

1 : i(j)j ∈ {1: i1j1, 1: i2j2, . . . , 1: imjm},

2:jk′(j) ∈ {2: i1j1, 2: i2j2, . . . , 2: imjm},

1: i′(j)j ∈ {1: i1jm, 1: i2j1, . . . , 1: imjm−1},

2:jk(j) ∈ {2: i1jm, 2: i2j1, . . . , 2: imjm−1}.

14



For example consider j = 1 in Figure 1. Then i(1)1k(1) = 116 is a solid path and
i′(1)1k′(1) = 211 is a dotted path. Next, for each j ∈ I \ J , there exist unique indices
k(j), k′(j) such that

2 :jk(j) ∈ {2: i1jm, 2: i2j1, . . . , 2: imjm−1}, 2:jk′(j) ∈ {2: i1j1, 2: i2j2, . . . , 2: imjm}.

For j = 2 in Figure 1, k(j) = 1, k′(j) = 3, 2 :21 is a solid edge and 2:23 is a dotted edge.
Finally for each j ∈ J \ I there exist unique indices i(j), i′(j) such that

1 : i(j)j ∈ {1: i1j1, 1: i2j2, . . . , 1: imjm}, 1: i′(j)j ∈ {1: i1jm, 1: i2j1, . . . , 1: imjm−1}.

For j = 3 in Figure 1, i(j) = 2, i′(j) = 4, 1 : 23 is a solid edge and 1 :43 is a dotted edge.
Define the set of paths W1 and W2 as follows,

W1 = {i(j)jk(j), j ∈ I ∩ J } ∪ {sjjk(j), j ∈ I \ J } ∪ {i(j)js̃j, j ∈ J \ I}

W2 = {i′(j)jk′(j), j ∈ I ∩ I} ∪ {sjjk
′(j), j ∈ I \ J } ∪ {i′(j)js̃j, j ∈ J \ I},

where sj, j ∈ I \J and s̃j, j ∈ J \I are arbitrary states. Then we consider a set of moves
Z̄(i1, . . . , im; j1, . . . , jm) = {z̄(ω | i1, . . . , im; j1, . . . , jm) | ω ∈ ST},

z̄(ω | i1, . . . , im; j1, . . . , jm) =







1 if ω ∈ W1

−1 if ω ∈ W2

0 otherwise
(17)

Z̄(i1, . . . , im; j1, . . . , jm) is easily shown to be an m by m permutation. Now we have the
following proposition, which implies Theorem 2.

Proposition 2. A Markov basis for THMC model for T = 3 is given by the set of
crossing path swappings in (10) and moves of Z̄(i1, . . . , im; j1, . . . , jm) of the form (17),
where m = 2, . . . , S, i1, . . . , im are distinct, and j1, . . . , jm are distinct.

Proof. For T = 3, (9) implies that node frequencies are common for two elements x and
y of the same fiber. Therefore the edge-sign pattern graph G has the following property
(P1):

If z1
ij > 0 (< 0), there exists i′ such that z1

i′j < 0 (> 0).
If z2

ij > 0 (< 0), there exists j′ such that z2
ij′ < 0 (> 0).

Clearly similar property holds for initial nodes at t = 1 and terminal nodes at t = 3. Also
for T = 3 we have z1

ij + z2
ij = 0 and therefore z1

ij > 0 (< 0) if and only if z2
ij < 0 (> 0).

This means that G for t = 2, 3 is a copy of G for t = 1, 2 with sings of edges reversed.
Suppose that x and y are not edge-wise equivalent. Then by the above properties G

has some positive edge 1: i1j1. We follow the edge from t = 1 to t = 2. Then by (P1), we
can follow a negative edge 1: i2j1 back to t = 1. Then we can again follow a positive edge
1 : i2j2 to t = 2, etc. By continuing this, the same node is eventually visited twice and a
loop is formed. By considering the shortest loop, it can be easily shown that there exists
the following simple loop of G for t = 1, 2:
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There are distinct indices i1, . . . , im and distinct indices j1, . . . , jm such that
1 : i1j1, 1 : i2j2, . . . , 1 : imjm are positive edges of G and 1 : i1jm, 1 : i2j1, . . . 1 :
imjm−1 are negative edges of G.

Now we employ the distance reduction argument of Takemura and Aoki [15]. As
above let I = {i1, . . . , im} and J = {j1, . . . , jm}. By Lemma 2 we can assume that
x(i(j)jk(j)) > 0 for j ∈ I ∩ J . For j ∈ I \ J we can find a path ω = sjjk(j) with
x(ω) > 0. Similarly for j ∈ J \ I we can find a path ω = i(j)js̃j such that x(ω) > 0.
Now we can subtract a move in (17) from x. This reduces |z| by 4m. This completes the
proof of Proposition 2.

5 Numerical examples

In this section we give two numerical examples for testing THMC model against the
non-homogeneous Markov chain model using our Markov bases.

5.1 Respiratory illness example

Table 1: Results of breath test at four ages
age = 11

1 2
age = 9 age = 10 age = 12 age = 12

1 2 1 2
1 1 94 30 15 28
1 2 14 9 12 63
2 1 19 15 10 44
2 2 17 42 35 572

1: wheeze, 2: no wheeze

Table 5.1 refers to a longitudinal study of incidence of respiratory illness in children
caused by effects of air pollution (e.g. [18, 2]). The children were examined annually at
ages 9 through 12 and classified according to the process of the presence or absence of
wheeze.

We examine the goodness-of-fit of homogeneity of Markov chain model H0 with (S, T ) =
(2, 4) by testing the goodness-of-fit of THMC model H̄0. We use Pearson’s χ2 statistic.
For data in Table 5.1 we have χ2 = 129.59.

We computed the exact distribution of χ2 via MCMC with a Markov basis derived in
Theorem 1. We sampled 100,000 tables after 50,000 burn-in steps. The histogram of the
sampling distribution of χ2 is shown in Figure 5.1. The solid line in the figure represents
the density function of the asymptotic χ2 distribution with degrees of freedom 11. The
asymptotic p-value and the exact p-value are almost zeros and THMC model is rejected.
Since THMC model is rejected, the homogeneity of Markov chain model is also rejected.

16



D
en

si
ty

0 10 20 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 10 20 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 2: Sampling distribution of χ2 via MCMC

5.2 Marijuana use example

Table 2: Marijuana use data
1978

1 2 3
1977 1979 1979 1979

1 2 3 1 2 3 1 2 3
1 140 13 8 5 17 6 1 1 4
2 4 1 0 4 3 3 1 2 9
3 0 0 1 1 1 1 0 3 8

Table 5.2 refers to a longitudinal data from 1977 to 1979 on marijuana use of 237
respondents who were age 14 in 1977 (e.g [17]). The degrees of dependence are categorized
into the following three levels, 1. never use; 2. no more than once a month; 3. more than
once a month.

We examine the goodness-of-fit of H0 with (S, T ) = (3, 3) by testing H̄0. We again
use Pearson’s chi2. We have χ2 = 39.791.

We computed the exact distribution of χ2 via MCMC with a Markov basis derived
in Theorem 2. We sampled 100,000 tables after 50,000 burn-in steps. Figure 5.2 repre-
sents the histogram of the sampling distribution of χ2 and the solid line in the figure is
the density function of the asymptotic χ2 distribution with degrees of freedom 16. The
asymptotic p-value and the exact p-value are 8.352×10−4 and 0.02078 and THMC model
is rejected. Also for this example the homogeneity of Markov chain model is rejected,
since THMC model is rejected. However, note that the approximation by χ2 distribution
is not very good for this data. This is probably due to small frequencies in the data set.
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Figure 3: Sampling distribution of L via MCMC

6 Discussion and a conjecture for general case

From the viewpoint of application, it is clearly desirable to obtain Markov bases for general
S and T . By 4ti2 we can obtain a Markov basis for S = 3 and T = 5. However currently
this case seems to be the largest case which can be handled by a software.

Even if obtaining a Markov basis is difficult, it is of theoretical interest to know some
properties of Markov bases for general S and T . Note that the description of Markov
basis for S = 2 is common for all T ≥ 4. This is very similar to the notion of Markov
complexity ([10], [14], [4]) and we believe that there exists some bound of complexity of
Markov basis in T for a given S.

We have done extensive investigation of edge-sign pattern graphs G for the case S = 3
and T = 4. We will discuss these edge-sign pattern graphs in [16]. It seems that the
following notion of extended simple loop of the edge-sign pattern graph G is important.
Here we give only a rough definition of an extended simple loop. An extended simple loop
is a loop, such that when we are moving towards the future we follow positive edges and
when we are moving towards the past we follow negative edges of G. Also we require that
each node is passed at most once. An important example of an extended simple loop for
S = 3 and T = 4 is depicted as follows.

We have used the term “extended” to indicate that the lengths of partial paths may be
greater than one. If all the edges are of length one (in this case the loop involves only two
time points t and t + 1), we call it a simple loop.
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Note that for the case of S = 2, a Markov basis consists of moves, which are sum of
at most two extended simple loops. For the case of S = 3 and T = 4 we checked that a
Markov basis consists of moves, which are sums of at most three extended simple loops.
Therefore our conjecture at this point is that for each S, there exists kS, such that a
Markov basis consists of moves which are sums of at most kS extended simple loops. A
stronger conjecture is kS = S.

References

[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces. Available at www.4ti2.de.

[2] Alan Agresti. Categorical Data Analysis. John Wiley and Sons, 2nd edition, 2002.

[3] T. W. Anderson and Leo A. Goodman. Statistical inference about Markov chains.
Ann. Math. Statist., 28:89–110, 1957. ISSN 0003-4851.

[4] Satoshi Aoki and Akimichi Takemura. Minimal basis for a connected Markov chain
over 3 × 3 × K contingency tables with fixed two-dimensional marginals. Aust. N.
Z. J. Stat., 45(2):229–249, 2003. ISSN 1369-1473.

[5] Patrick Billingsley. Statistical methods in Markov chains. Ann. Math. Statist., 32:
12–40, 1961. ISSN 0003-4851.

[6] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from condi-
tional distributions. Ann. Statist., 26(1):363–397, 1998. ISSN 0090-5364.

[7] Adrian Dobra. Markov bases for decomposable graphical models. Bernoulli, 9(6):
1093–1108, 2003. ISSN 1350-7265.
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