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Abstract

In this paper, we derive graphical and analytic criteria for the existence
of periodic oscillations in large-scale cyclic gene regulatory networks,
and present quantitative biological insight based on the analytic re-
sult. Based on the Poincaré-Bendixson theorem for cyclic systems, it
is first shown that local instability of an equilibrium point implies the
existence of periodic oscillations. Then, we prove that local instability
of the heterogeneous gene regulatory network system, where dynamics
of gene expression is considerably different between genes, is satisfied,
if the homogeneous system is locally unstable. From this observation,
the simple graphical and its equivalent analytic criteria for the exis-
tence of periodic oscillations are derived by local instability analysis
of homogeneous cyclic gene regulatory networks. These criteria have
the remarkable feature that they are easily applied to a large-scale
cyclic gene regulatory network systems consisting of arbitrary number
of genes, and thus, dynamical properties of such large-scale systems can
be systematically obtained. The latter part of this paper is devoted
to the rigorous investigation of the nonlinear dynamical properties.
Specifically, we examine the relation between an equilibrium state and
biochemical parameters, and present the analytic criterion which takes
the dependence of the equilibrium state on biochemical parameters
into account. Since this rigorous analytic criterion depends only on
the given biochemical parameters, one can easily obtain the relation
between biochemical parameters and the existence of periodic oscilla-
tions. In particular, we propose the decisive physical quantities for the
existence of periodic oscillations, and reveal the quantitative relation
between such physical quantities and the dynamical behaviors. Finally,
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transportation time delay is introduced into the dynamical model, and
the effects of such delay are briefly discussed.

Keywords: Gene regulatory network; Systems biology; Large-scale sys-
tems; Periodic oscillation; Nonlinear systems

1 Introduction

Gene regulatory network refers to a chemical interaction network between
genes and proteins in a cell. With the rapid progress of molecular biology,
it has been revealed that these mutual chemical interactions produce com-
plex dynamical behaviors of protein levels in a cell, and that such dynamical
behaviors play a key role to maintain fundamental biological functions of liv-
ing organisms such as circadian rhythms (see Leloup and Goldbeter (2008)
and references therein). Recently, Systems biology and Synthetic biology,
new interdisciplinary research field between biology and engineering, have
emerged to unravel quantitative properties of the gene regulatory networks.
In these lines of research, theoretical analysis based on mathematical mod-
els is indispensable to systematically understand the relation between the
biochemical parameters and the dynamical behaviors of protein concentra-
tions. In particular, a unified analysis scheme for examining oscillations in
large-scale gene regulatory networks is now strongly required.

Existing mathematical models of gene regulatory networks can be mainly
classified into two types: stochastic and deterministic modeling. In stochas-
tic modeling (Gillespie, 1992), the randomness of molecular interactions in
biological networks is explicitly considered, and an efficient algorithm (Gille-
spie, 1976) has been developed to examine the stochastic nature of molecular
levels in biological networks. On the other hand, deterministic differential
equation models have been widely used to capture relatively macroscopic
dynamical behaviors, and the detailed quantitative relation between bio-
chemical parameters and dynamical behaviors has been investigated in many
previous works (see for instance, Samad et al. (2005); Ugander et al. (2007);
Vecchio (2007); Wang et al. (2004); Chesi and Hung (2008)).

One of the pioneering theoretical analyses of gene regulatory network
was presented by Goodwin (1965), where the dynamical model of cyclically
interconnected gene’s products was introduced. Later, the cyclic feedback
structure was found in metabolic and cellular signaling pathways as well
(Stephanopoulos et al., 1998; Kholodenko, 2000), and it is recently consid-
ered that cyclic structure plays a key role to produce the various dynamical
behaviors of protein levels. In fact, the artificially constructed biological
oscillator, Repressilator (Elowitz and Leibler, 2000), was performed with a
simple cyclic interaction of repressors in Escherichia coli. Also, theoretical
analysis has shown that the cyclic structure is simple but important to main-
tain the oscillations of protein concentrations (Trané and Jacobsen, 2008).
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Therefore, better understanding of cyclic gene regulatory network behaviors
becomes the first key step to reveal the whole picture of large-scale gene
regulatory networks.

Samad et al. (2005) have presented the analytic criteria for the existence
of oscillations in cyclic gene regulatory networks based on the result in Hast-
ings et al. (1977). A key feature of their result is that the criteria are explic-
itly expressed in terms of biochemical parameters, and thus, one can easily
observe the relation between the parameters and the periodic oscillations of
protein concentrations. These criteria were obtained by directly calculating
the eigenvalues of the Jacobian matrix. However, this approach becomes
considerably difficult as the number of genes, equivalently the size of the
Jacobian matrix, gets large. Thus, it is desirable to develop a novel analysis
scheme that is independent on the scale of the gene regulatory network. In
particular, it is important to note that the equilibrium state, at which the
system is linearized, usually changes depending on the biochemical parame-
ters due to the inherent nonlinearity of gene regulatory networks. Therefore,
the dependence of the equilibrium state on biochemical parameters should
be explicitly treated in analyzing the existence of periodic oscillations.

The objective of this paper is to derive existence criteria of periodic
oscillations of protein concentrations in large-scale cyclic gene regulatory
networks, and present novel biological insights. We perform both graphical
and analytic criteria which can be applied to cyclic gene regulatory networks
consisting of any number of genes. In particular, the developed analytic cri-
terion explicitly takes the dependence of the equilibrium on biochemical
parameters into account despite it is derived based on local instability anal-
ysis. Thus, significant biological insights are obtained from the analytic
result. Specifically, we propose the novel physical quantities that are es-
sential for determining the existence of periodic oscillations, and reveal the
quantitative relation between the existence of periodic oscillations and the
physical quantities.

To this end, we first show that the existence condition of periodic oscil-
lations can be reduced to local instability condition of the equilibrium state
based on the Ponicaré-Bendixson theorem for cyclic systems (Mallet-Paret
and Smith, 1990), and then, prove that the existence of periodic oscilla-
tions in heterogeneous gene regulatory networks, where dynamics of gene
expression is considerably different between genes, can be guaranteed if it
is guaranteed in gene regulatory networks with homogeneous gene expres-
sion dynamics. Then, local instability analysis leads the graphical criterion.
Though this graphical criterion has been originally presented for the homo-
geneous gene regulatory networks (Hori et al. (2009a)), it now covers the
heterogeneous gene regulatory networks as well. Then, we reveal the im-
portant relation between the equilibrium state and biochemical parameters.
This leads to the analytic criterion for the existence of periodic oscillations,
and biological insights obtained from the criterion are performed with illus-
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Figure 1: Mechanism of protein synthesis in gene regulatory networks
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Figure 2: Gene regulatory networks with cyclic structure

trative numerical simulations.
Finally, transportation time delay, which is sometimes unignorable es-

pecially for eukaryotic cells (Chen and Aihara, 2002), is introduced into the
dynamical model, and the effects of such time delay are briefly discussed by
extending our analysis scheme developed for the non-delay case. The devel-
oped scheme reduces the tough analysis of nonlinear time delay system to a
simple graphical criterion, and thus it would be useful for extensive future
research.

2 Model description of gene regulatory networks

The well-known central dogma of molecular biology is that protein is syn-
thesized following the two steps called transcription and translation: genes
on a DNA is first transcribed into messenger RNA(mRNA), and then a
mRNA is translated into one or multiple copies of corresponding proteins.
Furthermore, some proteins, called transcription factors, are known to acti-
vate or repress the transcription of other genes. Such chemical interactions
between transcription factors and genes can be described by gene regulatory
networks (see Fig. 1).

The gene regulatory networks where each protein activates or represses
another transcription in a cyclic way as in Fig. 2, are called cyclic gene
regulatory networks. The dynamics of mRNA and protein concentrations
in the cyclic gene regulatory networks with N genes is modeled as, for i =
1, 2, · · · , N ,

ṙi(t) = −airi(t) + βifi(pi−1(t)),
ṗi(t) = ciri(t) − bipi(t),

(1)

where ri ∈ R+(:= {x ∈ R | x ≥ 0}) and pi ∈ R+ denote the normalized
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concentrations of the i-th mRNA and its corresponding protein synthesized
in the i-th gene, respectively (Elowitz and Leibler, 2000; Samad et al., 2005)
1. Let p0(t) := pN (t) and r0(t) := rN (t) for the sake of notational sim-
plification. Positive constants ai, bi, ci and βi represent the followings: ai

and bi denote the degradation rates of the i-th mRNA and protein, respec-
tively; ci and βi denote the translation and transcription rates, respectively.
A monotonic function fi(·) : R+ → R+ represents either activation or re-
pression of the transcription: it is defined for repression as fi(0) = 1 and
fi(∞) = 0 (monotonically decreasing), whereas for activation as fi(0) = 0
and fi(∞) = 1 (monotonically increasing). In practical applications, the
following Hill function is often introduced to describe biochemical charac-
terization:

fi(pi−1) =


1

1+pν
i−1

(=:FR(pi−1)) (for repression)

pν
i−1

1+pν
i−1

(=:FA(pi−1)) (for activation)
(2)

where ν(≥ 1) ∈ R+ is a Hill coefficient, which represents a degree of cooper-
ative binding, and determines the nonlinearity of the system (Alon, 2006).

Let δ be defined as

δ :=
(

df1

dp

)
·
(

df2

dp

)
· · ·

(
dfN

dp

)
. (3)

The system belongs to a class of cooperative systems (Smith, 1995) when
δ > 0, and dynamical properties of such systems have been investigated
in many previous works (see Smith (1995) and references therein). Smith
(1987) and Samad et al. (2005) have shown that almost all solutions of (1)
asymptotically converge to one of equilibria when δ > 0. On the other
hand, the protein concentrations exhibit oscillatory behaviors as well as
convergence when δ < 0, and the detailed study is required to clarify the
relation between the parameters and the solution trajectories. Therefore,
we focus on the cyclic gene regulatory networks that satisfy the following
assumption in this paper.

Assumption 1. For given fi(·) (i = 1, 2, · · · , N), δ < 0 is satisfied.

This assumption means that a given gene regulatory network has an odd
number of repressive interactions between genes.

3 Characterization of omega-limit set

In this section, we examine the omega-limit set of cyclic gene regulatory
networks modeled by the nonlinear differential equations of (1), and show

1ri and pi are normalized by activation/repression coefficient in the Hill function, and
dimensionless quantities.
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that the omega-limit set of (1), in fact, consists of either an equilibrium
state or limit cycles.

Although the dynamical behavior of high dimensional nonlinear system
can be very complicated, Mallet-Paret and Smith (1990) gave a key result
which characterizes the omega-limit set of cyclic feedback systems (see The-
orem 4.1 in Mallet-Paret and Smith (1990)).

Proposition 1 (Mallet-Paret and Smith (1990)). For the system (1), if all
of the following conditions (a),(b) and (c) hold, then the omega-limit set
consists of either (i) an equilibrium state q∗ := [r∗1, p

∗
1, r

∗
2, p

∗
2, · · · , r∗N , p∗N ] ∈

R2N , (ii) a non-constant periodic orbit, or (iii) q∗ together with a collection
of orbits homoclinic to q∗:

(a) R2N
+ is a positively invariant set,

(b) Positive semiorbit {q(t) | t ≥ 0 and t∈dom q(·)}⊂R2N
+ is bounded,

(c) There is a unique equilibrium state q∗.

Furthermore, if the following condition also holds then either (i) or (ii)
occurs:

(d) det(−J) > 0,

where J is the Jacobian matrix of (1) evaluated at q∗.

This proposition restricts a class of omega-limit set of the system, and
rules out chaotic behavior of the solution as in the Poincaré-Bendixson the-
orem for two dimensional systems (Khalil, 2001). Indeed, it is proven that
all the solution trajectories of (1) can be embedded into a two dimensional
subspace by a planner projection.

In the following, we show that (1) satisfies the above conditions (a),
(b), (c) and (d). Regarding (a) and (b), the following result is presented in
Samad et al. (2005).

Lemma 1 (Samad et al. (2005)). For the system (1), R2N
+ is a positively

invariant set. In particular, all orbits starting from q(0) ∈ R2N
+ converge to

the set S where

S :=
{

(r1, p1, r2, p2, · · · , rN , pN ) ∈ R2N
+

∣∣∣
0 ≤ ri ≤

βi

ai
, 0 ≤ pi ≤

ciβi

aibi
, i = 1, 2, · · · , N

}
.

This lemma implies that all trajectories q(·) starting from R2N
+ are bounded,

and thus the conditions (a) and (b) hold for the system (1).
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Next, we consider the number of equilibria of the system (1). It follows from
the definition of the equilibria that

p∗i = (R2
i fi)◦(R2

i−1fi−1) ◦ · · ·
◦ (R2

1f1) ◦ (R2
NfN )· · ·(R2

i+1fi+1)(p∗i ), (4)

where R2
i := (ciβi)/(aibi) (i = 1, 2, · · · , N) and the notation ◦ denotes the

composition of function. Then, the monotonicity of the both sides of (4)
leads the following lemma (See Appendix A for proof).

Lemma 2. The system (1) has a unique positive equilibrium state.

Note that the equation (4) is generally highly complicated, but the equilib-
rium point can be effectively obtained by using a bisectional search algorithm
due to the monotonicity.

Condition (d) can be verified by simple calculation (see Appendix B and
Remark 4.1 in Mallet-Paret and Smith (1990)).

Lemma 3. Denote the Jacobian of (1) evaluated at q∗ by J . Then, det(−J) >
0 holds.

Thus, it is concluded that the conditions (a), (b), (c) and (d) in Proposi-
tion 1 hold for the system (1). This implies that the protein concentrations
pi(t) (i = 1, 2, · · · , N) in (1) exhibits either (i) convergence to a unique
equilibrium state or (ii) periodic oscillations, and homoclinic and chaotic
behaviors are ruled out. From this observation, we obtain the following key
proposition.

Proposition 2. Consider the cyclic gene regulatory network systems mod-
eled by (1). Then, the system has periodic oscillations if the unique equilib-
rium point of the system is locally unstable.

Proof. If the linearized system is unstable, there exists a set of initial values
in the neighborhood of the equilibrium state such that the trajectory goes
away from the equilibrium state. Since homoclinic orbit is ruled out, the
trajectory starting from the unstable manifold eventually enters into a non-
constant periodic orbit.

This proposition enables us to check the existence of periodic oscilla-
tions by local stability analysis of the unique equilibrium point, though it is
generally difficult to show the existence of periodic oscillations in nonlinear
systems. Thus, local instability conditions for the cyclic gene regulatory
networks systems are considered in the next section.
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Figure 3: Block diagram of the linearized gene regulatory network system: het-
erogeneous gene regulatory network G(s)

4 Local instability analysis of heterogeneous gene
regulatory networks

As shown in Proposition 2, there exists a set of initial values so that pro-
tein concentrations do not converge to the equilibrium state and eventually
enter into a non-constant periodic orbit if the unique equilibrium state is
locally unstable. Though conventional local stability analysis methods such
as Routh and Hurwitz algorithms may be available to check the local sta-
bility of the equilibrium state, these approaches have a potential drawback
that the computational burden becomes excessive as the number of genes
gets large and the degree of the system increases. Therefore, it is desirable
to develop the reasonable analysis method of which the computation burden
does not highly depend on the number of genes, which is one of our research
objectives.

Let q∗ := [r∗1, p
∗
1, r

∗
2, p

∗
2, · · · , r∗N , p∗N ] ∈ R2N denote an equilibrium point

of (1). Then, the state space representation of the linearized system of (1)
at q∗ can be expressed as, for i = 1, 2, · · · , N ,[

ṙi

ṗi

]
=

[
−ai 0
ci −bi

] [
ri

pi

]
+

[
βi

0

]
ui, ui := ζipi−1, (5)

where

ζi := f ′
i(p

∗
i−1). (6)

Note that ζi > 0 when fi(·) = FA(·), and ζi < 0 when fi(·) = FR(·), and
Assumption 1 coincides with the inequality

∏N
i=1 ζi < 0. Then, mRNA and

protein concentrations of the i-th gene, ri and pi in (5), can be interpreted
from a control theoretic viewpoint as the internal states of the system, and
the transfer function of the i-th gene, gi(s), from the input ui to the protein
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concentration pi is obtained as

gi(s) :=
ciβi

(s + ai)(s + bi)
. (7)

Consequently, the overall dynamics of the cyclic gene regulatory network
system G(s) is expressed as shown in Fig. 3, where u = Wp with u :=
[u1, u2 · · · , uN ]T ∈ RN and W := cyc(ζ1, ζ2, · · · , ζN ) ∈ RN×N , where the
notation cyc(·) stands for the constant matrix defined as

cyc(x1, x2, x3, · · · , xN ) :=


0 0 0 · · · x1

x2 0 0 · · · 0
0 x3 0 · · · 0
...

...
. . . . . .

...
0 0 · · · xN 0

 . (8)

In gene regulatory networks, however, dynamical uncertainty of gene expres-
sion is one of important features (Stelling et al., 2007), and such uncertainty
should be explicitly taken into account. Thus, parametric perturbations to
G(s) is considered in the following analysis, though other types of pertur-
bations may be treated within the framework of the authors’ previous work
(Hori et al., 2009b).

Suppose only the upper and lower bounds of each parameter value are
given by a ≤ ai ≤ a, b ≤ bi ≤ b, c ≤ ci ≤ c and β ≤ βi ≤ β for
i = 1, 2, · · · , N . Both perturbation of the Hill coefficient ν in (2) and the
dependence of the equilibrium point p∗i−1 in ζi on the perturbed parameters
are simultaneously treated by perturbation of ζi, i.e., ζ

i
≤ |ζi| ≤ ζi for given

positive bounds, ζ
i
and ζi. The existence condition of periodic oscillations is

considered by specifying the worst case parameter values of (ai, bi, ci, βi, ζi)
that guarantees the instability of G(s).

Define γ(s) := (s + b1)
∏N

i=2 1/gi(s) and v := |
∏N

i=1 ζi|. Then, the char-
acteristic polynomial of G(s) is written as

N∏
i=1

1
gi(s)

+
N∏

i=1

|ζi| =
1

c1β1
(s + a1)γ(s) + v = 0. (9)

In the sequel, we examine the worst case parameter values of (ai, bi, ci, βi)
for instability of G(s). It follows from the gain and phase conditions of
(9) that for given (ai, bi, ci, βi), the critical gain v∗ for instability can be
expressed as

v∗ =
1

c1β1

√
a2

1 + ω2|γ(jω)| (10)

such that ∠ (a1 + jω) = π − ∠γ(jω), (11)
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where the critical gain refers to the value of v that satisfies (9). We can
easily see that G(s) tends to be unstable as v gets large, because v can be
regarded as the feedback gain of G(s). It means that the parameter values of
(ai, bi, ci, βi) becomes the worst case for instability of G(s) when v∗ achieves
a minimum. The following lemma gives an important relationship between
the parameters (ai, bi, ci, βi) and the critical gain v∗, and greatly simplifies
our analysis.

Lemma 4. Consider the linearized gene regulatory network system given
by G(s). Then, the critical gain v∗ for instability of G(s) monotonically
increases with respect to ai and bi (i = 1, 2, · · · , N), and monotonically
decreases with respect to ci and βi (i = 1, 2, · · · , N).

Proof. We first assume that the parameters ai (i = 2, 3, · · · , N) and bi, ci, βi

(i = 1, 2, · · · , N) are fixed, and concentrate on the perturbation of a1. Let
aρ(= a1) and ωρ(= ω) satisfy both (10) and (11), and v∗ρ be the critical gain
for instability of G(s) with (aρ, ωρ). In addition, let aν be a certain positive
constant satisfying aν > aρ. It is obvious that

∠(aν + jωρ) < ∠(aρ + jωρ) = π − γ(jωρ). (12)

Moreover, it follows from (12) that there exists ων(> ωρ) such that ∠(aν +
jων) = π − γ(jων) because ∠γ(jω) is a monotonically increasing function
with respect to ω. Then, the critical gain v∗ν for instability of G(s) with
(aν , ων) is obtained as

v∗ν =
1

c1β1

√
a2

ν + ω2
ν |γ(jων)|. (13)

This implies v∗ν > v∗ρ because aν > aρ and ων > ωρ. Thus, the critical gain v∗

monotonically increases with respect to a1. Following the similar arguments,
the above condition is also proven for a2, a3, · · · , aN and b1, b2, · · · , bN .
On the other hand, since the phase condition (11) is not affected by the
change of ci and βi (i = 1, 2, · · · , N), it immediately follows from (10) that
the critical gain monotonically decreases with respect to ci and βi.

This lemma implies that the critical gain v∗ achieves a minimum when ai =
a, bi = b, ci = c and βi = β (i = 1, 2, · · · , N). In other words, G(s) is most
likely to be stable when ai = a, bi = b, ci = c and βi = β (i = 1, 2, · · · , N),
and thus, this parameter set gives the worst case for instability of G(s).
Therefore, the following criterion for the existence of periodic oscillations in
cyclic gene regulatory networks is obtained.

Proposition 3. Consider the cyclic gene regulatory networks modeled by (1)
and its linearized system G(s). Suppose a ≤ ai ≤ a, b ≤ bi ≤ b, c ≤ ci ≤ c,
β ≤ βi ≤ β and ζ

i
≤ |ζi| ≤ ζi (i = 1, 2, · · · , N) are satisfied for given

10
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Figure 4: Block diagram of the linearized gene regulatory network system: homo-
geneous gene regulatory network H(s).

a, a, b, b, c, c, β, β, ζ
i

and ζi. Then, there exist periodic oscillations of
protein concentrations pi (i = 1, 2, · · · , N) if the linear system G(s) with
ai = a, bi = b, ci = c, βi = β and ζi = ziζi

is unstable, where zi = +1 if
fi(·) = FA(·) and zi = −1 if fi(·) = FR(·) (i = 1, 2, · · · , N).

Proof. It follows from the above arguments that G(s) is unstable for any
(ai, bi, ci, βi, ζi) (i = 1, 2, · · · , N) satisfying the given lower and upper bounds
if and only if G(s) with ai = a, bi = b, ci = c, βi = β and ζi = ziζi (i =
1, 2, · · · , N) is unstable. The conclusion immediately follows since the gene
regulatory network system modeled by (1) has periodic oscillations if G(s)
is unstable (see Proposition 2).

This proposition means that the existence of periodic oscillations can
be confirmed by checking the local stability of the gene regulatory network
system with ai = a, bi = b, ci = c, βi = β, ζi = ziζi

(i = 1, 2, · · · , N). Our
analysis is now greatly simplified because we only need to consider the ho-
mogeneous cyclic gene regulatory networks where the dynamics of each gene
expression is identical between genes. Therefore, we hereafter focus on the
homogeneous gene regulatory network, and derive the existence condition of
periodic oscillations for the heterogeneous gene regulatory networks modeled
by (1).

5 Criteria for the existence of periodic oscillations

In this section, graphical and analytic criteria for the existence of periodic
oscillations of protein concentrations are presented for the homogeneous
cyclic gene regulatory networks. For the sake of notation simplicity, we
denote a := a, b := b, c := c, β := β and ξi := ziζi

(i = 1, 2, · · · , N) where zi

is defined as mentioned in Proposition 3.
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5.1 Graphical criterion

Consider the linear system G(s) depicted in Fig. 3 where ai = a, bi = b, ci =
c, βi = β and ζi = ξ for i = 1, 2, · · · , N . Since the feedback gain matrix W
has a special structure, the gain ciβi/aibi of gi(s) can be merged into the
corresponding feedback gains in W , and the original feedback system of Fig.
3 can be transformed into the system H(s) shown in Fig. 4 where

h(s) :=
1

(Trs + 1)(Tps + 1)
(14)

with Tr := 1/a, Tp = 1/b, and

K := R2 · cyc(ξ1, ξ2, · · · , ξN ) ∈ RN×N (15)

with cyc(·) defined by (8). The dimensionless quantity R is defined as

R :=
√

cβ√
ab

. (16)

Note that R is the ratio between the geometric means of degradation and
production rates, and is one of the important quantities that determine the
existence of periodic oscillations, as will be shown in later. Then, the overall
transfer function of the linearized homogeneous gene regulatory network
system H(s) is obtained as

H(s) := (ϕ(s)I − K)−1 , ϕ(s) :=
1

h(s)
. (17)

Therefore, instability of the linear system H(s) implies the existence of pe-
riodic oscillations in cyclic gene regulatory networks (see Proposition 2).

Here we point out that H(s) is regarded as a system with a generalized
frequency variable ϕ(s) (Hara et al., 2009; Tanaka et al., 2009). Thus, the
stability analysis scheme presented in Hara et al. (2009) leads the follow-
ing graphical criterion for the existence of periodic oscillations of protein
concentrations.

Theorem 1. Consider the heterogeneous cyclic gene regulatory network sys-
tems modeled by (1), and the linear system H(s) in (17). Then, the system
has periodic oscillations of protein concentrations pi (i = 1, 2, · · · , N) if at
least one of the eigenvalues of K in (15) lies inside the domain Ω+ defined
by

Ω+ := ϕ(C+) = {λ ∈ C | ∃s ∈ C+ s.t. ϕ(s) = λ}. (18)

This graphical criterion means that the stability of H(s) can be easily
checked by the eigenvalue distribution of K which expresses the interaction
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Figure 5: Domain Ω+ and eigenvalue distribution of K.

between genes, and the domain Ω+ which is determined by the homoge-
neous gene dynamics h(s). In particular, it is worth noting that stability
analysis of the large-scale gene regulatory networks can be done with the
eigenvalues of the relatively small matrix K and ϕ(s) in (17). Specifically,
the eigenvalues of K are computed as, for k = 1, 2, · · · , N ,

λk = Lej(2k−1)π/N , L := R2

∣∣∣∣∣
N∏

ℓ=1

ξℓ

∣∣∣∣∣
1
N

, (19)

which implies that all the eigenvalues of K are located on a circle with a
center at the origin and a radius of L (see Fig. 5). Therefore, the existence
of periodic oscillations can be easily confirmed from the eigenvalues on the
circle and the curve defined by ϕ(jω).

We remark that the condition presented in Theorem 1 is the necessary
and sufficient condition for local instability of H(s). Thus, we can also
conclude that there exists a set of initial values for which the protein con-
centrations in the homogeneous cyclic gene regulatory network converge to
the equilibrium if and only if Theorem 1 does not hold.

5.2 Analytic criterion

In this section, we investigate detailed properties of the graphical criterion,
and derive an equivalent analytic criterion for the existence of periodic os-
cillations.

First, we consider an analytic expression of the boundary ϕ(jω) of the
domain Ω+. Let the x-y coordinate be defined as illustrated in Fig. 5. Then,
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the domain Ω+ can be expressed in terms of x := Im[s] and y := −Re[s] as

Ω+ :=
{
−y + jx ∈ C | y <

1
4
Q2x2 − 1

}
, (20)

where

Q :=

√
TrTp

(Tr + Tp)/2

(
=

√
ab

(a + b)/2

)
. (21)

Obviously, the boundary of the region Ω+ becomes a parabolic curve char-
acterized by Q. The dimensionless quantity Q is the ratio between the arith-
metic and geometric means of the degradation time constants of mRNA and
protein, Tr and Tp, and is one of the essential physical quantities for deter-
mining the existence of periodic oscillations as will be shown in later. It
should be noted that it follows from the definition that 0 < Q ≤ 1 and the
equality holds if and only if Tr = Tp.

Based on the above characterization of Ω+ and the eigenvalue distribu-
tion of K in (19), an analytic criterion for the existence of periodic oscilla-
tions in large-scale cyclic gene regulatory networks is obtained.

Theorem 2. Consider the heterogeneous cyclic gene regulatory network sys-
tems modeled by (1) and the linear system H(s) in (17). Then, the system
has periodic oscillations of protein concentrations pi (i = 1, 2, · · · , N), if

L > W (N,Q), (22)

where

W (N,Q) :=
2
(
− cos( π

N )+
√

cos2( π
N )+Q2 sin2( π

N )
)

Q2 sin2( π
N )

. (23)

Proof. Consider ϕ(s) defined by (17). We first claim that |ϕ(jω)| monoton-
ically increases as |ω| increases, and arg(ϕ(jω)) monotonically increases as
ω increases. The monotonicity of arg(ϕ(jω)) is clear from (18)(see Fig. 5).
The monotonicity of |ϕ(jω)| is also verified from (18), i.e.,

|ϕ(jω)| =
√

x2 + y2 =

√
x2 +

(
1
4
Q2x2 − 1

)2

(24)

monotinically increases with respect to x.
Recall that eigenvalues of K are given by (19), which means that all the

eigenvalues are located on a circle with a center at the origin and a radius
of L. Then, it is follows that λ1 and λN , which are the eigenvalues with
the largest real part, always reach the boundary of Ω+, i.e., ϕ(jω), first,
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because of the monotonicity claimed above. Therefore, λ1 and λN lie inside
Ω+ if and only if L is greater that |λ1|(= |λN |).

Let x = Im[s] and y = −Re[s] be rewritten as x = d sin θ, and y =
−d cos θ, where d ∈ R is the distance between the origin and the boundary,
and θ is taken positive in counter-clockwise direction as illustrated in Fig.5.
Then, we obtained

d =
2

(
− cos θ +

√
cos2 θ + Q2 sin2 θ

)
Q2 sin2 θ

(25)

by substituting the above x and y into y = (Q2x2)/4 − 1, and solving the
equation. Therefore, the conclusion follows by writing the condition follows
by evaluating the distance d at θ = π/N where λ1 is located.

The above condition (22) is equivalent to the graphical one in Theorem
1. In particular, the left-hand side of (22) stands for the radius of the circle
where all the eigenvalues are located, while the right-hand side is the distance
from the origin to the boundary ϕ(jω) which goes through the eigenvalue λ1

(i.e., θ = π/N in Fig. 5). By using this analytic criterion we can easily check
the existence of periodic oscillations in heterogeneous cyclic gene regulatory
networks with a large number of genes.

Finally, we briefly remark on the relation between our results and the
conventional one. A condition for instability of H(s) has been obtained
in Thron (1991) in the context of biochemical analysis. It, however, gives
a necessary condition for instability, while Theorem 1 and Theorem 2 are
necessary and sufficient. Thus, the criteria obtained in this paper are more
strict than the previous one.

5.3 Numerical simulations

The synthetic biological oscillator, Repressilator, was performed in Escherichia
coli with cyclic gene regulatory networks consisting of three genes (Elowitz
and Leibler, 2000). In this example, we consider the same negative feedback
structure as Repressilator except that the number of genes is increased to
see that our criteria can effectively work for large-scale cyclic gene regula-
tory networks. We remark that the leakiness term modeled in Elowitz and
Leibler (2000) is omitted here, but the analysis can be done in a similar
fashion even if there is the one.
Example 1. Consider the cyclic gene regulatory network composed of
N = 7 genes with the dynamics in (1), where all the interactions between
genes are repressive, i.e., fi(·) = FR(·) in (2). Suppose the exact values of the
parameters are not known due to the inherent uncertainty of the dynamics,
but the ranges are specified as 0.5 ≤ ai ≤ 1.5, 1.0 ≤ bi ≤ 2.5, 8.0 ≤ ci ≤ 10.0
and 8.5 ≤ βi ≤ 10.0 for i = 1, 2, · · · , N . Moreover, suppose ξ1 = −0.10, ξ2 =
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Figure 6: (Right) The domain Ω+ and the eigenvalues of K: Two eigenvalues
belong to Ω+. (Left) Time plot of oscillatory protein concentrations
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Figure 7: (Right) The domain Ω+ and the eigenvalues of K: All eigenvalues are
located outside Ω+. (Left) Plot showing the convergence of protein concentrations
to a unique equilibrium state

−0.05, ξ3 = −0.10, ξ4 = −0.03, ξ5 = −0.11, ξ6 = −0.13 and ξ7 = −0.05.
Then, the worst case parameters for the exsitence of periodic oscillations
are obtained from Proposition 3 as a = 1.5, b = 2.5, c = 8.0, β = 8.5, which
implies R = 4.26 and Q = 0.968.

Let the linearized homogeneous gene regulatory network system H(s)
be defined by using the above (a, b, c, β) and ξi (i = 1, 2, · · · , 7). We first
verify the effectiveness of the result in Theorem 1 (graphical criterion). The
radius L of the eigenvalues of K is computed by (19) as L = 1.32. On the
other hand, the domain Ω+ is drawn based on (20) as illustrated in Fig.
6(Left). Since two eigenvalues belong to the domain Ω+ in Fig. 6(Left), we
can readily conclude that any of the heterogeneous gene regulatory network
systems satisfying the above parameter bounds have periodic oscillations of
protein concentrations. The same conclusion also immediately follows from
Theorem 2, since L = 1.32 and W (7, 0.968) = 1.06.

To confirm the above result, let the actual parameters of the heteroge-
neous gene regulatory network be set as a = [1.2, 1.0, 1.2, 1.4, 1.0, 1.4, 1.2]T ,
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b = [1.4, 2.2, 1.5, 1.5, 1.4, 2.2, 2.2]T , c = [8.8, 8.1, 9.2, 9.2, 8.1, 8.2, 8.1]T ,
β = [8.9, 9.8, 8.7, 8.9, 9.8, 9.8, 8.7]T , where the i-th element of each vector
denotes ai, bi, ci and βi, respectively. We remark that the actual values of
ζi (i = 1, 2, · · · , 7) are obtained via numerical computation of the equilib-
rium as ζ = [−0.102, −0.0706, −0.103, −0.0495, −0.121, −0.150, −0.0667]T .
Then, the time course of simulated protein concentrations in the cyclic gene
regulatory network is obtained as illustrated in Fig. 6(Right). The protein
concentrations indeed exhibit periodic oscillations.
Example 2. In this example, we observe the contraposition of Theorem 1
and Theorem 2. The contraposition of the theorems states that if the protein
concentrations converge to an equilibrium state for some heterogeneous gene
regulatory network, the conditions of the theorems do not hold, i.e, all the
eigenvalues of K lie outside of Ω+, and L < W (N,Q). Consider the cyclic
gene regulatory network where there are N = 7 genes and all the interactions
are repressive, i.e., fi(·) = FR(·) for i = 1, 2, · · · , 7. Suppose the protein
concentrations in the heterogeneous cyclic gene regulatory network converge
to an equilibrium state as illustrated in Fig. 7(Right), and the parameters
are identified as a = [1.0, 2.7, 2.7, 4.8, 4.8, 1.0, 2.7]T b = [2.4, 2.0, 2.4, 2.0,
2.4, 2.4, 2.0]T c = [5.0, 5.0, 5.8, 7.2, 5.8, 5.0, 7.2]T β = [5.2, 5.2, 5.5, 7.0,
5.5, 7.0, 5.2]T . Let the linear system H(s) be defined with a = 4.8(= a),b =
2.4(b), c = 5.0(= c), β = 5.2(= β).

Let us verify the graphical criterion of Theorem 1. First, Q is calculated
as Q = 0.943 and the region Ω+ is drawn as Fig. 7(Left). On the other hand,
R and ξi (i = 1, 2, · · · , 7) in L of (19) are computed as R = 1.50 and ξ =
[−0.0713, −0.647, −0.0262, −0.446, −0.0847, −0.0221, −0.241]T , where ξi is
exactly the same value as ζi of (6) since the values of ζi (i = 1, 2, · · · , 7) are
exactly calculated from (ai, bi, ci, βi) (i = 1, 2, · · · , 7). Then, we observe that
L = 0.256 and the eigenvalues of the matrix K are located outside of the
region Ω+. The above result is consistent with the Theorem 1. In addition,
it also agrees with the analytic criterion of Theorem 2 since L = 0.256 and
W (7, 0.943) = 1.06.

6 Analytic criterion and biological insights

6.1 Analaytic criterion involving equilibrium point analysis

In Theorem 1 and Theorem 2, we have assumed that the perturbed ranges
of the linearized gains ξi of fi(·) (i = 1, 2, · · · , N), are given in advance.
However, it sometimes makes it difficult to unravel the relation between dy-
namical properties and the parameters of the gene regulatory network sys-
tems because ξi (i = 1, 2, · · · , N) are not the biological parameters. Thus,
in this section, we derive the analytic criterion that does not depend on
the linearized gains of fi(·). In particular, it is indispensable to explicitly
take the dependence of the equilibrium state on the parameters into account
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because the linearized gain ζi depends on the equilibrium state. Thus, we
first reveal the relation between the equilibrium point and the system’s pa-
rameters in the following, though it is one of the challenging problems in
nonlinear control systems analysis.

For the sake of analysis, we hereafter focus our attention to the class of
homogeneous cyclic gene regulatory networks where all the interactions be-
tween genes are repressive, i.e., fi(·) = FR(·) for i = 1, 2, · · · , N . Note that
the result presented in this section can be directly applied to Repressilator
(Elowitz and Leibler, 2000) since it was performed with three repressors
interacting in a cyclic way.

Let f(·) be defined as f(·) := FR(·)(= f1(·) = f2(·) = · · · = fN (·)).
It follows from (1) and the definition of equilibria that p∗i = R2f(p∗i−1) for
i = 1, 2, · · · , N , where p∗i is the value of an equilibrium state of pi. Then,
by repeatedly applying the above equation, we have (4). In particular,
p∗1 = p∗2 = · · · = p∗N (=: p∗) holds because of the symmetric property that
replacing the index i and j (i ̸= j) in (1) does not affect the dynamics.
Moreover, the symmetric property simplifies (4) as

p∗ = R2f(p∗) =
R2

1 + p∗ν
. (26)

Then, ζi in (6) can be expressed as follows.

Lemma 5. Consider the cyclic gene regulatory networks modeled by (1).
Suppose fi(pi−1) = 1/(1 + pν

i−1) for i = 1, 2, · · · , N . Then, ζi in (6) is
identical to each other, i.e., ζ1 = ζ2 = · · · = ζN (=: ζ). Moreover, the
following holds:

ζ = −|f ′(p∗)| = − ν

R4
(R2 − p∗). (27)

Proof is presented in Appendix C. In (27), ζ is written in linear form with
respect to p∗, and this linearity plays a key role in the following analysis.

Consider the analytic criterion given in Theorem 2. First, L in the left-
hand side of (22) can be simplified by Lemma 5 as L = R2|ζ| = ν(R2 −
p∗)/R2, and the condition in (22) can be rewritten as

p∗

R2
< 1 − W (N,Q)

ν
(28)

Since the equilibrium protein concentration p∗ satisfies p∗ > 0, we have the
following proposition.

Proposition 4. Consider the homogeneous cyclic gene regulatory networks
modeled by (1) where ai = a, bi = b, ci = c, βi = β (i = 1, 2, · · · , N). Suppose
fi(pi−1) = 1/(1 + pν

i−1) for i = 1, 2, · · · , N . Then, the gene regulatory
network has periodic oscillations of protein concentrations for some R if
ν > W (N,Q) is satisfied.
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Proof. Suppose the right-hand side of (28) is positive, which is equivalent
to the inequality in Proposition (4). First, it is important to note that the
right-hand side of (28) depends only on (N, ν, a, b) because of the defini-
tion of Q in (21), and the left-hand side depends on (ν, a, b, c, β) because
of the definition of R(:=

√
cβ/

√
ab) and p∗. Consider some fixed values

(N0, ν0, a0, b0). Then, the right-hand side of (28) is fixed, and only R in
the left-hand side is a free parameter. We claim that p∗/R2 monotonically
decreases as R decreases, which follows from the argument below: If p∗

does not decrease as R decreases, (26) does not hold because the right-
hand side of (26) decreases while the left-hand side does not. In particular,
limR↓0 p∗ → 0 follows from (26). Therefore, we can always find R which
makes H(s) unstable by choosing sufficiently small c and β.

Proposition 4 is the analytic condition for the existence of R which
guarantees the existence of periodic oscillations. In particular, it is con-
cluded from the statement that the existence of periodic oscillations is de-
termined by using these four parameters (N, ν,R,Q), while the six parame-
ters (N, ν, a, b, c, β) are given in advance. Hence, we hereafter concentrate on
quantitative relation between these parameters and the existence of periodic
oscillations.

Let ρ be defined by ρ := 1 − W (N,Q)/ν. It follows from (26) that (28)
can be equivalently written as p∗ν+1 + p∗ = R2 < (R2ρ)ν+1 + R2ρ. with
p∗ > 0. Therefore, solving the above inequality leads the following analytic
criterion for the existence of periodic oscillations which explicitly considers
the relation between the equilibrium and the parameters.

Theorem 3. Consider the homogeneous cyclic gene regulatory networks
modeled by (1) where ai = a, bi = b, ci = c, βi = β (i = 1, 2, · · · , N).
Suppose fi(pi−1) = 1/(1+ pν

i−1) for i = 1, · · · , N . Then, there exist periodic
oscillations of protein concentrations pi(i = 1, 2, · · · , N), if both

ν > W (N,Q) (29)

and

R2 >

(
W (N,Q)

ν − W (N,Q)

) 1
ν

(
ν

ν − W (N,Q)

)
(30)

are satisfied, where W (N,Q) is defined by (23).

This analytic condition only depends on the given biochemical param-
eters (N, ν, a, b, c, β), and thus, we can easily discuss the relation between
the parameters and the existence of periodic oscillations. In particular, it
should be emphasized that (29) and (30) are written only in terms of the
four quantities (N, ν,R,Q). This implies that these four parameters are
essential for determining the existence of periodic oscillations..
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Figure 8: Parameter domain for the existence of periodic oscillations. For any Q,
cyclic gene regulatory networks tend to have periodic oscillations as N and ν get
larger.

We remark that Proposition 14 in Samad et al. (2005) gave the analytic
criterion for the existence of oscillations for N = 3, which was developed
based on direct computation of the eigenvalues of the Jacobian. It is obvious
that Theorem 3 with Q = 1 (i.e., a = b) and N = 3 corresponds to their
result.

6.2 Biological insight

In this section, we give an interpretation of Theorem 2 from a biological
viewpoint, and reveal the class of cyclic gene regulatory networks which
tends to have periodic oscillations. Then, we perform illustrative numerical
simulations to elucidate the insight.

First, we see from (29) and (30) that the four physical quantities (N, ν,
R,Q) are essential to determine the existence of periodic oscillations. There-
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Figure 9: Parameter domain for the existence of periodic oscillations. Cyclic gene
regulatory networks tend to have periodic oscillations as Q gets close to 1.0 (i.e.,
Tr ≃ Tp). Also, the effect of Q is ignorable when the number of genes, N , is
sufficiently large.

fore, these four parameters may potentially become a clue to unravel the un-
derlying principles of the dynamical properties in gene regulatory networks.
In particular, the proposed parameters R and Q are interpreted as follows:
R is the ratio between the geometric means of the degradation and produc-
tion rates, and Q is the ratio between the arithmetic and geometric means
of degradation rates (see (16) and (21)). In the sequel, we concentrate on
how these four parameters affect the existence of periodic oscillations.

First, (29) should be naturally satisfied in practical gene regulatory net-
works, because it is equivalent to p∗ satisfying (28) to be positive. Thus, it is
inferred that the crucial condition is (30). In (30), the right-hand side mono-
tonically decreases, as the number of genes, N gets larger. It means that
the cyclic gene regulatory networks consisting of a large number of genes are
more likely to have periodic oscillations. This fact is also confirmed from
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Fig. 8 where the parameter region satisfying (30) for several values of Q is
illustrated. Moreover, it may be concluded from Fig. 8 that the cyclic gene
regulatory networks with a relatively large Hill coefficient, ν, tend to have
periodic oscillations 2. In addition, the right-hand side of (30) is a mono-
tonically decreasing function with respect to Q, and thus, the existence of
periodic oscillations is more likely to be expected as Q approaches to a unity,
which means mRNA and protein lifetimes (i.e., Tr and Tp) get closer. It can
be confirmed from Fig. 9 as well, where each plot illustrates the parameter
region satisfying (30) for various N . In particular, it is observed from Fig.
9 that the effect of Q can be disregarded when the number of genes, N , is
large.

In summary, the cyclic gene regulatory network gets more likely to have
periodic oscillations if some or all of the followings are satisfied:

• The number of genes, N , gets larger,

• The Hill coefficient, ν, gets higher,

• mRNA and protein lifetimes, Tr and Tp, get closer.

Example. To elucidate the biological insights obtained above, we will see
some illustrative examples.

First, we consider the cyclic gene regulatory network composed of N =
3 genes where all interactions between genes are repressive. Suppose the
parameters of the gene regulatory network become a1 = a2 = a3 = 1.00, b1 =
b2 = b3 = 0.172, c1 = c2 = c3 = 0.360 and β1 = β2 = β3 = 1.43, and
the Hill coefficient ν is ν = 2.3. Then, it is easily verified that R2 =
3.0 and Q2 = 0.50. The point A in Fig. 8(b) corresponds to the above
parameters, which does not guarantee the existence of periodic oscillations.
Indeed, the numerical simulation result in Fig. 10(a) shows convergence to
an equilibrium state.

According to the above insight, the cyclic gene regulatory networks are
more likely to have periodic oscillations as the number of genes gets larger.
Thus, in the next example, we set the parameters ai, bi, ci, βi and ν to the
same ones in the above example, and just change the number of genes to N =
7. The time course of simulated protein concentrations is illustrated in Fig.
10(b), which shows periodic oscillations. In fact, this example corresponds
to the point A with N = 7 in Fig. 8(b), which implies the existence of
periodic oscillations.

Finally, we see another example to confirm the insight that the Hill
coefficient ν should be large for the existence of periodic oscillations. Let the
number of genes be N = 3, and ai, bi, ci and βi are set to the same values as
in the first example. Since the time plot of the protein concentration shows

2Note that this is not necessarily the case for sufficiently large ν which is outside of
the range of our interest.
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(c) Case B with N = 3

Figure 10: Time plot of protein concentrations: the gene regulatory network tends
to have periodic oscillations as the number of genes and the Hill coefficient get large.

the convergence in the first example with ν = 2.3, we here consider the case
of ν = 4.3. In this case, the time plot of protein concentrations exhibits
periodic oscillations as shown in Fig. 10(c). This example corresponds to
the point B in Fig. 8(b), and the existence of periodic oscillations is indeed
predicted.

Note that we do not rely on numerical computation to obtain the pa-
rameter region such as Fig. 8 and Fig. 9, because the criterion is obtained
in analytic form as shown in (30). Though there are many previous works
that rely on numerical computations, such approaches may suffer from the
potential drawback that the essential physical quantities such as R and Q
are difficult to obtain. On the other hand, analytic criteria obtained in this
paper can give biological insights, and are helpful for understanding the
underlying essence of biochemical networks.

7 Discussion on effects of time delay

Though the model in (1) is broadly accepted, it is said that sizable time
delays in the transportation of chemical substances in a cell play a significant
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role to determine dynamical behavior of proteins. In particular, such effect
is unignorable for eukaryotic cells, because the volume of the cell is relatively
large, and mRNA and protein productions occur at different locations (Chen
and Aihara, 2002). Here, we briefly discuss the effect of such time delay.

Cyclic gene regulatory networks with time delay are modeled as, for
i = 1, 2, · · · , N ,

ṙi(t) = −airi(t) + βifi(pi−1(t − τpi−1)),
ṗi(t) = ciri(t − τri) − bipi(t),

(31)

where τpi and τri are the time delays of transcription and translation of
the i-th gene, respectively (Chen and Aihara, 2002). In this case, Poincaré-
Bendixson type theorem for cyclic feedback systems with delay (Mallet-Paret
and Sell, 1996), which is similar to Proposition 1, is available 3. Then, it is
concluded that the cyclic gene regulatory network system with delay in (31)
has oscillations if the equilibrium point is locally unstable.

The overall dynamics of the linearized model of homogeneous gene reg-
ulatory network is obtained in a similar way to (17) as

HT (s) =
(
ϕ(s)esT I − K

)−1
, (32)

where T is the average time delay, T :=
∑N

i=1 (τri + τpi)/N, and K and ϕ(s)
are as defined in (15) and (17), respectively. Note that during the derivation,
we employ the distributive property, and equally distribute the time delays
among h(s). The stability of HT (s) can be analyzed in a similar fashion to
H(s), and the following graphical criterion for the existence of oscillations
is obtained.

Theorem 4. Consider the heterogeneous cyclic gene regulatory networks
modeled by (31). Then, if at least one of the eigenvalues of K lies inside the
domain Ω+ defined by

Ω+ := {λ ∈ C | ∃s ∈ C+ s.t. ϕ(s)esT = λ},

there exist oscillations of protein concentrations pi (i = 1, · · · , N).

An example of the region Ω+ is illustrated in Fig. 11(right). It is observed
that the boundary of Ω+, i.e., ϕ(jω)ejωT , is obtained by rotating each point
of ϕ(jω) by ωT (see Fig 11(right)). Then, it can be proven that the eigen-
values of K at θ = ±π/N always cross the boundary first. Furthermore, the
equilibrium point and its properties shown in Section 6 do not change by
the time delays. Hence, the following analytic criterion for the existence of
oscillations is obtained in a similar fashion to Theorem 3 (see Appendix D
for proof).

3Unlike Proposition 1, homoclinic oscillations are not ruled out in the discussion of this
section.
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Figure 11: (Left)Time plot of oscillatory protein concentrations in a cyclic gene
regulatory network with time delay. (Right) The domain Ω+ and the eigenvalues
of K: Two eigenvalues belong to Ω+.

Theorem 5. Consider the homogeneous cyclic gene regulatory networks
modeled by (31) where ai = a, bi = b, ci = c, βi = β (i = 1, 2, · · · , N).
Suppose fi(pi−1) = 1/(1 + pν

i−1) for i = 1, · · · , N .
(i) If both (29) and (30) hold, there exist oscillations of protein concen-

trations pi, for any τri ≥ 0 and τpi ≥ 0 (i = 1, · · · , N),
(ii) else if both ν > 1 and

R2 >

(
1

ν − 1

) 1
ν

(
ν

ν − 1

)
(33)

hold, then there exist critical time delays τ∗
ri

> 0 and τ∗
pi

> 0 (i = 1, · · · , N)
such that the cyclic gene regulatory network has oscillations when τri > τ∗

ri

and τpi > τ∗
pi

.

The case (i) in the above theorem means that if there exist periodic oscil-
lations in a cyclic gene regulatory network without delay, the existence of
oscillations is also guaranteed in this network system with any time delays.
On the other hand, (ii) means that even if the existence of oscillations is
not guaranteed in a cyclic gene regulatory network without delay, it can be
guaranteed when the time delays are sufficiently large. Otherwise, it can
be stated that the equilibrium point is locally stable, though it does not
necessarily imply nonexistence of oscillations.

It should be noted that Theorem 5 encompasses the discussion presented
in Section IV in Chen and Aihara (2002), because our criterion explicitly
considers the change of the equilibrium point with respect to parameters,
and does not assume that the equilibrium point is given in advance.
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8 Conclusion

In this paper, we have studied criteria for the existence of periodic oscil-
lations in cyclic gene regulatory networks. First, we have shown that the
existence of periodic oscillations in heterogeneous gene regulatory networks
can be checked by local instability analysis of homogeneous gene regula-
tory networks. Then, the graphical criterion was presented based on the
Poincaré-Bendixson type theorem (Mallet-Paret and Smith, 1990) and the
local instability analysis of the linearized gene regulatory network system.
Based on this criterion, the analytic criterion was derived, and the relation
between biochemical parameters and the equilibrium point was clarified.
Although the equilibrium point of the cyclic gene regulatory networks de-
pends on the system’s parameters, many existing works do not take such
effects into account. In contrast, the presented analytic criterion has the
distinctive features that (i) it explicitly considers the relation between the
equilibrium point and the parameters, (ii) it is written only in terms of given
biochemical parameters, and (iii) it is applicable to cyclic gene regulatory
networks composed of any number of genes. Thus, it is easy to interpret the
result from a biological viewpoint. In fact, we have provided novel biological
insights on the class of cyclic gene regulatory networks that is more likely
to have periodic oscillations based on the analytic result. Finally, we have
discussed the case where unignorable time delay exists in the dynamics of
gene expression. In short, the most fundamental yet essential gene regula-
tory networks have been comprehensively analyzed in this paper. Thus, our
next step will be to introduce additional interactions between genes, and
develop a more versatile analysis method for such networks.
Acknowledgment: This work is supported in part by Grant-Aid for Ex-
ploratory Research of the Ministry of Education, Culture, Sports, Science
and Technology in Japan, No. 19656104 and No. 21656106.
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A Proof of Lemma 2

First, we see that (R2
i fi) ◦ (R2

i−1fi−1)(pi−2) in (4) becomes a monotonic
function, i.e., it is a monotonically increasing function when f ′

i(·) · f ′
i−1(·) >

0, and a decreasing function when f ′
i(·) · f ′

i−1(·) < 0. Then, by applying the
above argument recursively, we see from Assumption 1 that the right-hand
side of (4) decreases monotonically, Therefore, the existence of a unique
solution p∗i (i = 1, 2, · · · , N) follows from the monotonicity of both sides of
(4). Uniqueness of r∗i (i = 1, 2, · · · , N) is clear because r∗i = bip

∗
i /ci holds

from the definition.

B Proof of Lemma 3

First, Jacobian can be written as

J =



−a1 0 · · · · · · β1f
′
1(p

∗
N )

c1 −b1
. . . . . . 0

0 β2f
′
2(p

∗
1) −a2

. . .
...

...
. . . . . . . . .

...
0 · · · · · · cN −bN


.
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Then, it is easily verified that det(−J) =
∏N

i=1 aibi −
∏N

i=1 ciβif
′
i(p

∗
i−1).

Assumption 1 implies that the second term of the right-hand side of det(−J)
becomes negative, which implies det(−J) > 0

C Proof of Lemma 5

The former part of the claim is clear because p∗1 = p∗2 = · · · = p∗N follows
from the symmetric property, In the following, we prove the latter part. It
follows from the definition of f(·) that ζ = −|f ′(p∗)| = −νp∗ν−1/(1 + p∗ν)2.
Then, by repeatedly applying (26), we have

− νp∗ν−1

(1 + p∗ν)2
= −νp∗ν+1

R4
= − ν

R4
(R2 − p∗). (34)

D Proof of Theorem 5

The eigenvalues of K at θ = ±π/N always pass through the boundary
of Ω+ in Fig. 11(Right) first, because of the monotonicity of |ϕ(jω)| and
arg(ϕ(jω)) mentioned in the proof of Theorem 2. Then, the statement (i)
in Theorem 5 immediately follows from Theorem 4, because the conditions
(29) and (30) in Theorem 4 are equivalent to that the eigenvalues of K at
θ = ±π/N lie inside Ω+ with T = 0.

The statement (ii) in Theorem 5 is equivalent to that the radius of the
circle where all the eigenvalues of K are located is greater than the minimum
distance between the origin and the boundary of Ω+. Thus, the statement
(ii) follows from the fact that |ϕ(jω)ejωτ | = |ϕ(jω)| holds, and the minimum
distance is given as ϕ(0) = 1.

29


