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Second-Order Cone Programming with Warm Start

for Elastoplastic Analysis with von Mises Yield Criterion

Kazuo Yonekura † and Yoshihiro Kanno ‡

Department of Mathematical Informatics,
University of Tokyo, Tokyo 113-8656, Japan

Abstract

The incremental problem for quasistatic elastoplastic analysis with the von Mises yield
criterion is treated within the framework of the second-order cone program (SOCP). We show
that the classical flow rule under the von Mises yield criterion with the isotropic/kinematic
hardening is equivalently written as a second-order cone complementarity problem. The
minimization problems of the potential energy and the complementary energy for incremental
analysis are then formulated as the primal-dual pair of SOCP problems, which are to be solved
by using the primal-dual interior-point method. To enhance numerical performance in the
course of tracing an equilibrium path, we propose a warm-start strategy for the interior-point
method based on the primal-dual penalty method, in which the solution at the current loading
step is found by solving a penalized SOCP problem from the initial point defined by using
information of the solution at the previous loading step.

Keywords

Elastoplastic analysis; Interior-point method; Second-order cone programming; Warm-
start strategy; von Mises yield criterion.

1 Introduction

This paper discusses a numerical algorithm with guaranteed convergence for the quasistatic anal-
ysis of elastoplastic structures, in which we solve a new formulation of the incremental problem
based on the second-order cone programming (SOCP). We consider the von Mises yield criterion
in conjunction with a combination of the linear isotropic and kinematic hardening laws. There is a
vast literature on the numerical solutions of elastoplastic problems; among them, the radial return
methods (or, the return-mapping algorithms) [31, 33, 34] are widely used nowadays. Although
the convergence properties of the radial return methods are extensively studied [5, 7, 29, 38],
theoretical guarantee of global convergence property to a solution is not still perfectly clear for
incremental elastoplastic problems with hardening; see, [8, 18, 30], for related issues.

An alternative approach, which is also adopted in this paper, is to treat an elastoplastic prob-
lem as a mathematical programming problem. This approach was initiated by [9, 25, 26], with
†Present address: IHI Corporation, 3-1-1, Toyosu, Koto, Tokyo 135-8710, Japan.
‡Corresponding author. Address: Department of Mathematical Informatics, Graduate School of In-

formation Science and Technology, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. E-mail:
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employing a piecewise-linear approximation of the yield surface. Then the incremental problem is
reduced to a convex quadratic problem. Subsequently, the optimization-based methods have been
developed for more or less fine plasticity models, which include the augmented Lagrangian meth-
ods [10, 11], the parametric quadratic programming approaches [24, 42–44], the interior-point
methods for for general nonlinear programming problems [23], and the solution methods based
on the linear complementarity problem [45], nonlinear complementarity problem [17, 36, 37], and
so-called bi-potential formulation [16].

Recently, the Mohr–Coulomb criterion, which is often used in the limit analysis of geomateri-
als, has been shown to be represented by using the linear matrix inequality [6, 21]. Accordingly,
the limit analysis problem can be reduced to a semidefinite programming (SDP) problem [22].
In contrast, in this paper we show that the von Mises criterion, which is conventionally used
in the quasistatic analysis of metals, etc, can be represented by using several second-order cone
constraints. Accordingly, the incremental problem for the quasistatic analysis is shown to be
formulated as a minimization problem of the convex quadratic function over the second-order
cone constraints, which is further reduced to an SOCP problem. Thus the issue of global con-
vergence property of numerical solution for elastoplastic analysis is resolved particularly for the
von Mises criterion; the solution of the incremental problem is guaranteed to be obtained by using
the primal-dual interior-point method for SOCP; see, e.g. [1] for SOCP and the polynomial-time
interior-point methods. A warm-start strategy for the interior-point method is also proposed in
order to reduce the computational effort in the course of tracing an equilibrium path stepwise.

More specifically, in this paper we consider the associated flow rule in plasticity with the
von Mises yield criterion. The effect of strain hardening is also incorporated by considering a
combined law of the linear isotropic and kinematic hardening. In this setting we show that the
evolution law in plasticity can be formulated as the so-called second-order cone complementarity
(SOCC) conditions [15, 40], which have also been used to formulate the contact problem with
the Coulomb friction [20].

In the course of the quasistatic analysis, the incremental problem is solved repeatedly by
changing the boundary conditions stepwise and accordingly updating state variables. Therefore,
in the proposed approach we solve a series of closely related SOCP problems. In such a situation,
making use of the solution of the previous problem (or, more generally, some information obtained
during the solution of the previous problem) for solving the subsequent problem is called warm
start [2, 3, 12, 13, 19, 40]. If no such information is used for solving a new problem, we say that
the current problem is solved from cold start . In this paper we discuss a warm-start strategy for
the primal-dual interior-point method for SOCP.

Benson and Shanno [2] proposed a warm-start method for the primal-dual interior-point
method solving the linear program (LP). As an extension of this method, we propose a warm-
start strategy for the primal-dual interior-point method solving SOCP arising in the elastoplastic
analysis. Recently, several special techniques of warm start have been proposed; see, e.g. [2, 13, 19]
for the primal-dual interior-point methods solving LP, [3, 12] for the interior-point method solving
general nonlinear programming problems, [27] for the dual interior-point method for SDP, and
[40] for the Newton method solving SOCP.

This paper is organized as follows. Section 2 introduces the classical theory of associated
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plasticity with the hardening law. In section 3, we show that the associated flow law with
hardening can be reduced to SOCC conditions. Based on these SOCC conditions, in section 4
we formulate the minimization problems of the potential and complementary energies for the
incremental problem as the the primal-dual pair of SOCP problems. To solve the presented
SOCP formulation efficiently, a warm-start strategy for the primal-dual interior-point method
is proposed in section 5. Numerical examples are shown in section 6: a plane-strain problem is
solved in section 6.1, while a fully three-dimensional analysis is performed in section 6.2. Finally,
conclusions are drawn in section 7.

We conclude this section by introducing our notation. All vectors are assumed to be column
vectors. The (m + n) dimension vector (uT,vT)T consisting of u ∈ Rm and v ∈ Rn is often
written simply as (u,v). We denote by Rn+ the nonnegative orthant, i.e. Rn+ = {v = (vi) ∈ Rn |
vi ≥ 0 (i = 1, . . . , n)}. By S we denote the set of 3× 3 real symmetric matrices. Since we always
consider the Cartesian coordinate system, the distinction between the covariant and contravariant
components of a tensor can be ignored. Accordingly, we write ρ ∈ R3×3 if ρ is a second-order
tensor with the dimension three. Moreover, we write ρ ∈ S if ρ ∈ R3×3 is symmetric. For any ρ,
τ ∈ R3×3 we denote by ρ : τ their inner product, i.e. ρ : τ =

∑3
i=1

∑3
j=1 ρijτij . The norm of ρ,

denoted ‖ρ‖, is then defined by ‖ρ‖ =
√
ρ : ρ.

2 Plasticity with von Mises yield condition and linear hardening

This section preliminary introduces the classical theory of plasticity; see, e.g. [14, 31] for basic
of plasticity theory. Specifically, we consider the associated flow rule based on the von Mises
yield criterion and a combined law of isotropic/kinematic hardening. Throughout the paper we
assume that the deformation is small.

For any tensor τ ∈ S, we denote by τ̇ the time derivative of τ . The deviator of τ ∈ S,
denoted dev(τ ), is defined by

dev(τ ) = τ − 1
3

tr(τ )I,

where I ∈ S is the unit tensor. Let σ ∈ S denote the stress tensor. Define η ∈ S by

η = dev(σ)− β, (1)

where β ∈ S is the back stress tensor which satisfies tr(β) = 0. The von Mises yield function is
given by

f(σ, α,β) = ‖η‖ −
√

2
3kI(α), (2)

where α ≥ 0 is the internal hardening variable which represents the amount of plastic flow, and
k′I(α) is the isotropic hardening modulus. The admissible stress is then characterized by the
inequality

f(σ, α,β) ≤ 0. (3)
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Let εp ∈ S denote the plastic strain. In a plastic loading state, say ε̇p 6= o, the stress σ and
the plastic strain rate ε̇p should satisfy the associated flow rule

f(σ, α,β) = 0, (4)

ε̇p = γ
η

‖η‖ , (5)

γ ≥ 0, (6)

where γ is called the consistency parameter, and we define o/‖o‖ = I without loss of generality.
The condition (5) means that ε̇p is in the outer normal direction of the yield surface at σ. We
define the evolutions of α and β by

α̇ =
√

2
3γ, (7)

β̇ =
2
3
k′K(α)γ

η

‖η‖ , (8)

where k′K(α) is the kinematic hardening modulus. From (5) and (7) we obtain α̇ =
√

2
3‖ε̇p‖ to

see that α corresponds to the conventional equivalent plastic strain. To see that tr(β̇) = 0 holds,
we first observe from (1) that

tr(η̇) = tr
(

dev(σ̇)− β̇
)

= − tr(β̇) (9)

is satisfied, because tr(dev(τ )) = 0 for any τ ∈ S. On the other hand, from (8) we obtain

tr(β̇) =
2

3‖η‖k
′
K(α)γ tr(η). (10)

Since k′K(α)γ ≥ 0, (9) and (10) imply

tr(β̇) = tr(η) = 0. (11)

As a hardening law, we assume the combination of linear isotropic and kinematic hardening
rules, which is defined by [31]

k′I(α) = θH, (12)

k′K(α) = (1− θ)H, (13)

where H ≥ 0 and θ ∈]0, 1[ are constants. Note that θ represents the ratio of the effect of isotropic
hardening with respect to the total strain hardening. It follows from (12) that the function kI in
(2) is written as

kI(α) = σY + θHα, (14)

where σY > 0 is a constant called the flow stress.
We next introduce the variables sI and sK by

sI =
√

2
3θHγ, (15)

sK =
√

2
3(1− θ)Hγ, (16)
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which represent the amounts of the isotropic and kinematic hardening effects, respectively. By
using (15), the condition (3) together with (2) and (14) is rewritten as

‖η‖ −
√

2
3(σY + sI) ≤ 0, (17)

where α has been eliminated. On the other hand, by using (16), the condition (8) together with
(13) is rewritten as

β̇ =
√

2
3sK

η

‖η‖ . (18)

It follows from (5) that the consistency parameter γ is equal to the modulus of the plastic
strain rate. Hence, the loading and unloading states are characterized as

γ > 0 ⇒ f(σ, α,β) = 0; [loading]

f(σ, α,β) < 0 ⇒ γ = 0. [unloading]

This means that γ and f(σ, α,β) satisfies the complementarity condition. By using the expression
(17) of the yield condition, and from (6), we thus obtain

γ ≥ 0, (19a)

‖η‖ −
√

2
3

(
σY + sI

) ≤ 0, (19b)

γ

(
‖η‖ −

√
2
3(σY + sI)

)
= 0. (19c)

Consequently, the von Mises yield model with the linear hardening rule is represented by (1),
(5), and (15)–(19).

3 Second-order cone complementarity formulations of plasticity

law

The plasticity law introduced in section 2 is reduced to the form of second-order cone comple-
mentarity (SOCC) conditions.

3.1 Properties of the second-order cone complementarity condition

Usually, the second-order cone is defined by [1]

{(x,z) ∈ R× Rn | x ≥ ‖z‖}, (20)

where ‖z‖ is the standard Euclidean norm of the n-dimensional vector z, i.e. ‖z‖ =
√
zTz. Thus

the second-order cone (20) is the set of (n+ 1)-dimensional vectors. To treat the plasticity law,
we here extend the notion of the second-order cone to the set

{(x, τ ) ∈ R× Rn×n | x ≥ ‖τ‖}, (21)

where ‖τ‖ is the Frobenius norm of the n × n matrix (or, second-order tensors) τ , i.e. ‖τ‖ =√
τ : τ . The complementarity condition over the second-order cone in (21) is then naturally

defined as follows.
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Definition 1. For (x, τ ), (y,ρ) ∈ R×R3×3, by the second-order cone complementarity (SOCC)
condition we mean

x ≥ ‖τ‖, (22)

y ≥ ‖ρ‖, (23)

xy + τ : ρ = 0. (24)

�

The solution set of (22)–(24) is characterized as follows.

Proposition 2. (x,ρ) ∈ R×R3×3 and (y, τ ) ∈ R×R3×3 satisfy the SOCC condition if and only
if any one of the following cases is true:

Case 1 : x = 0, ρ = o, y ≥ ‖τ‖; (25a)

Case 2 : x ≥ ‖ρ‖, y = 0, τ = o; (25b)

Case 3 : xy 6= 0, x = ‖ρ‖, y = ‖τ‖, τ = −y ρ

‖ρ‖ . (25c)

Proof. Suppose that (22)–(24) are satisfied. If x = 0, then (22) implies τ = o. Consequently,
any (y, τ ) satisfying (23) satisfies (24). This situation corresponds to Case 1. Similarly, if y = 0,
then Case 2 becomes true. Conversely, it is easily seen that if either (25a) or (25b) holds, then
(22)–(24) are satisfied.

We next consider the case of xy 6= 0, where (22)–(24) are supposed to be satisfied. Divide
the both hand-sides of (24) by xy to obtain

τ

x
:
(
−ρ
y

)
= 1 (26)

On the other hand, from (22) and (23) we obtain

∥∥∥τ
x

∥∥∥ ≤ 1,
∥∥∥∥−
ρ

y

∥∥∥∥ ≤ 1. (27)

Application of the Cauchy–Schwarz inequality to (27) results in

τ

x
:
(
−ρ
y

)
≤ 1.

Moreover, we see that (26) holds if and only if there exists a λ > 0 satisfying

τ

x
= λ

(
−ρ
y

)
,
∥∥∥τ
x

∥∥∥ = 1,
∥∥∥∥−
ρ

y

∥∥∥∥ = 1,

which coincides with Case 3. Conversely, it is immediate to see that (25c) implies (22)–(24).

Among the three cases of Proposition 2, Case 3 in (25c) is particularly important, which means
that τ is in parallel with −ρ. Our essential idea to obtain SOCC formulations for the elastoplastic
problem is to make use of this property of the SOCC condition to express the conditions (5) and
(18), which are dealt with in detail in sections 3.2 and 3.3, respectively.
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3.2 Reformulation of flow law with isotropic hardening rule

The flow rule (5) and the yield condition (19), in the presence of the isotropic hardening, are
reduced to an SOCC condition as follows.

Proposition 3. Suppose that sI and γ satisfy (15). Then (sI,η) ∈ R × S and (γ, ε̇p) ∈ R × S
satisfy (5) and (19) if and only if (

√
2
3(σY + sI),η) and (γ,−ε̇p) satisfy SOCC condition, i.e.

√
2
3(σY + sI) ≥ ‖η‖, (28)

γ ≥ ‖ − ε̇p‖, (29)
√

2
3(σY + sI)γ − η : ε̇p = 0. (30)

Proof. Suppose that (28)–(30) are satisfied. It follows from Proposition 2 that (
√

2/3(σY +sI),η)
and (γ,−ε̇p) satisfy (28)–(30) if and only if any one of the following conditions holds:

Case 1 :
√

2
3(σY + sI) = 0, η = o, γ ≥ ‖ − ε̇p‖;

Case 2 :
√

2
3(σY + sI) ≥ ‖η‖, γ = 0, ε̇p = o;

Case 3 :
√

2
3(σY + sI) = ‖η‖, γ = ‖ − ε̇p‖, −ε̇p = −γ η

‖η‖
where

√
2
3(σY + sI)γ 6= 0.

Recall that σY > 0 is a constant. Moreover, (29) implies γ ≥ 0, from which and (15) we obtain

sI ≥ 0. Therefore,
√

2
3(σY + sI) > 0, and hence Case 1 never happens. In Case 2, which

corresponds to the unloading state, it is easy to see that (5) and (19) are satisfied. In Case 3, we
firstly see that (5) is satisfied by equality. Moreover, substitution ε̇p = γ

‖η‖η into (30) results in
(19c). Consequently, (28)–(30) imply (5) and (19).

Conversely, suppose that (5) and (19) hold. Since (28) is identical to (19b), it suffices to show
that (29) and (30) are satisfied. By taking the norms of the both hand-sides of (5), we obtain
‖ε̇p‖ = γ, and hence (29) is satisfied. By substituting (5), the left-hand side of (30) is reduced to

√
2
3(σY + sI)γ − η : ε̇p =

√
2
3(σY + sI)γ − η :

η

‖η‖γ

=
√

2
3(σY + sI)γ − ‖η‖γ. (31)

If γ = 0, (31) results in 0, and hence (30) is satisfied. If γ 6= 0, then (19c) implies

‖η‖ =
√

2
3(σY + sI).

Substitution of this relation into (31) shows that (30) is satisfied, which concludes the proof.

Compared with the traditional formulation of the flow rule, say (5) and (19), the SOCC
formulation provided in Proposition 3 can be distinguished from the following aspects: the static
variables (sI,η) ∈ R×S and kinematic variables (γ, ε̇p) ∈ R×S are subjected to the inequalities in
the same form as seen in (28) and (29), while in (19a) and (19b) only γ is involved as a kinematic
variable; the constraint condition (5) on the directions of ε̇p and η does not appear explicitly
in (28)–(30), although it is guaranteed to be satisfied at the solution. These properties play a
key role to formulate the incremental problems in elastoplastic analysis as an SOCP problem in
section 4.
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3.3 Reformulation of kinematic hardening rule

Concerning the kinematic hardening, we show that the evolution rule of the back stress β can be
represented as an SOCC condition as follows.

Proposition 4. Suppose that γ, η, and ε̇p satisfy (5), and that γ and sK satisfy (16). Then

sK ∈ R, β̇ ∈ S, and η ∈ S satisfy (18) if and only if (
√

2
3sK, β̇) and (γ,−ε̇p) satisfy the SOCC

condition, i.e.
√

2
3sK ≥ ‖β̇‖, (32)

γ ≥ ‖ − ε̇p‖, (33)
√

2
3sKγ − β̇ : ε̇p = 0. (34)

A proof of Proposition 4, which is based on Proposition 2 in a manner similar to Proposition 3,
is given in appendix A.

The kinematic hardening rule (18), together with (5), requires that the rate of back stress β̇
should be in parallel with the plastic strain rate ε̇p. Proposition 4 asserts that this condition can
be represented as the SOCC condition.

4 Second-order cone programming formulations of incremental

problem

The incremental problem for quasistatic analysis of elastoplastic bodies is shown to be formulated
as a primal-dual pair of SOCP (second-order cone programming) problems.

4.1 Incremental problem

We solve the incremental problems for quasistatic analysis of elastoplastic bodies by applying a
standard spatial discretization based on the conventional finite element approximation. Hence,
hereinafter we formulate the incremental problem and equivalent optimization problems for a
finitely discretized elastoplastic structure.

Suppose that the domain Ω of the continuous solid is subdivided into the nE finite elements.
The weak form contributions are integrated within each finite element according to the standard
finite element procedure. As usual, we employ the Gauss integration, and we denote by nG the
number of total Gauss evaluation points for the quadrature. The stress and strain tensors are
evaluated at each Gauss point q = 1, . . . , nG, and accordingly the constraint conditions, such as
the yield criteria, are to be imposed at each Gauss point. For simplifying the notation, with the
subscript “q” we denote the values of the strain and stress variables at the qth Gauss point, while
by those variables without “q” we mean the assembled tensors for all q = 1, . . . , nG; for example,
we denote by εpq the plastic strain tensor at the pth Gauss point, while εp is the assemblage of
εp1, . . . , εpnG .

Let u ∈ Rd and t ∈ Rd denote the generalized nodal displacements and stresses, respectively,
where d is the number of degrees of freedom. The set of indices of the degrees of freedom,
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say {1, . . . , d}, is partitioned into two disjoint subsets as Ju ∪ Jt, where the displacement uj is
prescribed to be ūj for any j ∈ Ju while the generalized nodal stress tj is specified as t̄j for j ∈ Jt.

We denote by B∗ the discrete equilibrium operator, so that the force-balance equation is given
by

B∗ · σ = t, (35)

where σ is the assemblage of σ1, . . . ,σnG , as mentioned above. The discrete strain–displacement
relation is then written as

ε = Bu, (36)

where B is the conjugate operator of B∗, which satisfies 〈B∗ · σ,u〉 = 〈σ, Bu〉 for any u and σ.
Let εeq ∈ S denote the elastic strain tensor. We denote by Cq the (forth-order) elasticity tensor.
Then the constitutive law is given by

σ = C : εe. (37)

Among the time interval [0, T ] under consideration, consider a specific subinterval [τ0, τ1].
The incremental problem is formulated as a quasistatic problem with respect to the unknown
variables at time τ1 when the variables at time τ0 are known. With the superscript “0” we
represent the values at time τ0, e.g. u0 for the displacement, and with (˙) the increments between
τ0 and τ1, e.g. u̇ for the incremental displacement. As exceptions, however, we represent by γ, sI,
and sK the incremental values, because by definitions they are related to the plastic strain rate
as seen in (5), (15), and (16). Moreover, concerning η defined by (1), we treat its total value at
time τ1 as a variable for convenience.

We are now in position to formulate the incremental problem. The force-balance equation,
compatibility condition, and elastic constitutive law are given by (35), (36), and (37). It should
be clear that the strain in (36) is additively decomposed to the elastic and plastic parts as
ε = εe + εp. The basic equations of the plasticity has been introduced section 2 as (1), (5), and
(15)–(19). In order to simplify the notation, define R0

q > 0 by

R0
q = σY

q +
∫ τ0

0
sIq,

which represents the radius of the yield surface at τ0. Accordingly, the incremental problem for
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the elastoplastic analysis is formulated as

σ0 + σ̇ = C : (ε0
e + ε̇e), (38a)

(ε0
e + ε̇e) + (ε0

p + ε̇e) = B(u0 + u̇), (38b)

B∗ · (σ0 + σ̇) = t0 + ṫ, (38c)

u0
j + u̇j = ūj (j ∈ Ju), t0j + ṫj = t̄j (j ∈ Jt), (38d)

ηq = dev(σ0
q + σ̇q)− (β0

q + β̇q), (38e)

ε̇pq = γq
ηq
‖ηq‖

, β̇q =
√

2
3sKq

ηq
‖ηq‖

, (38f)

sIq =
√

2
3θHγq, (38g)

sKq =
√

2
3(1− θ)Hγq, (38h)

γq ≥ 0, ‖ηq‖ −
√

2
3(R0

q + sIq) ≤ 0, γq

[
‖ηq‖ −

√
2
3(R0

q + sIq)
]

= 0. (38i)

Note again that the unknown variables in (38) are ε̇e, ε̇p, σ̇, u̇, ṫ, β̇, η, γ, sI, and sI. The
conditions (38e)–(38i) should be satisfied for any q = 1, . . . , nG, but we often omit to show it
explicitly in the equations in order to simplify the presentation, if it is clear from the context.

4.2 Minimization problem of potential energy

Since we assume the associated flow rule, the minimization principles of the potential energy and
the complementary energy can be formulated for the incremental problem [11, 32]. The principle
of potential energy involves only the kinematic variables as unknowns. In section 3 we have
seen that the plasticity law is formulated as the pair of SOCC conditions; see Proposition 3 and
Proposition 4. We here focus on the inequality constraints of the kinematic variables involved
in those SOCC conditions, i.e. (29) and (33). Besides the compatibility condition, say (38b), we
introduce (29) and (33) as the constraint conditions of the minimization problem of the potential
energy. This is a fundamental idea to formulate an SOCP problem which is equivalent to the
incremental problem (38).

As the objective function, we consider the sum of the increments of the elastic potential energy
and the plastic dissipation; see, e.g. [32]. In our case, the increment of the potential energy, in
the presence of the isotropic and kinematic hardening, is defined by

Π̇(ε̇e, ε̇p, u̇, γ, γ̂)

=
nG∑

q=1

(
1
2
ε̇eq : Cq : ε̇eq + ε0

eq : Cq : ε̇eq + β0
q : ε̇pq

+
√

2
3R

0
qγq +

1
3
θHγ2

q +
1
3

(1− θ)Hγ̂2
q

)
−
∑

j∈Jt
t̄j u̇j . (39)

Note that Π̇ is a convex quadratic function. Furthermore, γ and γ̂ represent the plastic strain
rates concerning the isotropic and kinematic hardening, respectively; see section 4.3 for detail.
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The minimization problem of the potential energy is then formulated as

(PE) : min
ε̇e,ε̇p,u̇,γ,γ̂

Π̇(ε̇e, ε̇p, u̇, γ, γ̂) (40a)

s. t. (ε0
e + ε̇e) + (ε0

p + dev(ε̇p)) = B(u0 + u̇), (40b)

u0
j + u̇j = ūj , ∀j ∈ Ju, (40c)

γq ≥ ‖ − ε̇pq‖, ∀q, (40d)

γ̂q ≥ ‖ − ε̇pq‖, ∀q. (40e)

Note that the constraint conditions (40d) and (40e) are in the same form. As we see below soon,
the optimal values of γq and γ̂q coincide, but they should be treated as independent variables in
the problem (40).

It is emphasized that the problem (40) consists of the convex quadratic objective function,
the linear equality constraints (in (40b) and (40c)), and the second-order cone constraints (in
(40d) and (40e)). Thus the problem (40) is a convex optimization problem. Furthermore, as
shown in section 4.5 below, the problem (40) can be reduced to an SOCP problem.

4.3 Optimality conditions

As seen in the preceding section, the problem (40) is a convex optimization problem. Moreover,
it is easy to see that there always exists an strictly feasible solution, because γq and γ̂q are not
bounded from above. If we assume the existence of a solution to the force-balance equation,
say (38c) and (38d), then the problem dual to (40) is also shown to be strictly feasible; see (46)
below for the dual problem. Consequently, the Karush–Khun–Tacker (KKT) condition for (40)
corresponds to the necessary and sufficient condition for the optimality.

We define the Lagrangian for the problem (40) as the function L takes the value

L = Π(ε̇e, ε̇p, u̇, γ, γ̂)− σ̇ : [(ε0
e + ε̇e) + (ε0

p + dev(ε̇p))−B(u0 + u̇)]

−
∑

j∈Jt
ṫj(u0

j + u̇j − ūj)−
nG∑

q=1

(λqγq − ηq : ε̇pq)−
nG∑

q=1

(µqγ̂q − β̇q : ε̇pq) (41)

if λq ≥ ‖ηq‖, µq ≥ ‖β̇q‖ (∀q), otherwise we put L = −∞. Here, σ̇, ṫj (j ∈ Jt), β̇, η, λ, and
µ are the Lagrange multipliers. As the stationary condition of L, the KKT condition for the
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problem (40) is obtained as

σ0 + σ̇ = C : (ε0
e + ε̇e), (42a)

(ε0
e + ε̇e) + (ε0

p + dev(ε̇p)) = B(u0 + u̇), (42b)

B∗ · (σ0 + σ̇) = ṫ, (42c)

u0
j + u̇j = ūj (j ∈ Ju), t0j + ṫj = t̄j (j ∈ Jt), (42d)

β0
q − dev(σ)q + ηq + β̇q = o, (42e)

λq =
√

2
3R

0
q +

2
3
θHγq, (42f)

µq =
2
3

(1− θ)Hγ̂q, (42g)

λq ≥ ‖ηq‖, γq ≥ ‖ − ε̇pq‖, λqγq − ηq : ε̇pq = 0, (42h)

µq ≥ ‖β̇q‖, γ̂q ≥ ‖ − ε̇pq‖, µqγ̂q − β̇q : ε̇pq = 0, (42i)

where σ0 and t0 are defined by

σ0 = C : ε0
e ,

t0 = B∗ · σ0.

In what follows, we show that (42) is equivalent to (38) to guarantee that solving the prob-
lem (40) is truly equivalent to solving the incremental problem (38). To this end, it suffices to
show that (42b), (42f)–(42i) are equivalent to (38b), (38f)–(38i).

By substituting (15) and (16) into (42f) and (42g), respectively, we obtain

λq =
√

2
3(R0

q + sIq), (43)

µq =
√

2
3sKq. (44)

From the definition (39), we see that the objective function Π̇ of the problem (40) increases
monotonically with respect to γq and γ̂q. Therefore, at the optimal solution, the constraints
(40d) and (40e) are satisfied as the equalities

γq = γ̂q = ‖ε̇pq‖,

i.e. γq and γ̂q share the same value at the optimal solution. From this observation, and using
(43) and (44), we can rewrite (42h) and (42i) equivalently as

√
2
3(R0

q + sIq) ≥ ‖ηq‖, γq ≥ ‖ − ε̇pq‖,
√

2
3(R0

q + sIq)γq − ηq : ε̇pq = 0, (45a)
√

2
3sKq ≥ ‖β̇q‖, γq ≥ ‖ − ε̇pq‖,

√
2
3sKqγq − β̇q : ε̇pq = 0. (45b)

Note that (45a) and (45b) are the SOCC conditions. If follows from Proposition 3 that (45a) is
equivalent to the flow rule in conjunction with the isotropic hardening, i.e. (5), (15), and (19).
Moreover, from Proposition 4 we see that (45b) is equivalent to the kinematic hardening rule,
i.e. (16) and (18). Consequently, (45a) and (45b), and hence (42h) and (42i) also, are equivalent
to (38f)–(38i).
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We thus have shown that (42h) and (42i) imply the plasticity law, say (1), (5), and (15)–(19).
The remainder is to show that the plasticity law implies dev(ε̇p) = ε̇p in order to see that (42b)
can be replaced with (38b) without loss of generality. As seen in section 2, the plasticity law
implies (11). Therefore, from (5) we obtain tr(ε̇pq) = 0, and hence dev(ε̇p) = ε̇p. Consequently,
(42h) and (42i) imply dev(ε̇p) = ε̇p, and hence we can replace dev(ε̇p) in (42b) with ε̇p without
loss of generality.

In this way, (42) is equivalent to (38). Therefore, the solution of the incremental problem (38)
can be truly obtained by solving the problem (40).

4.4 Minimization problem of complementary energy

The problem dual to (40) is formulated as the optimization problem whose KKT condition
coincides with (42). For explicitly describing the dual problem with the physical meaning, we
use (43) and (44) to replace the Lagrange multipliers λq and µq with variables sIq and sKq,
respectively. Then the problem dual to (40) can be formulated in the variables σ̇, ṫ, β̇, η, sI,
and sK as

(CE) min
σ̇,ṫ,β̇,η,sI,sK

Π̇c(σ̇, ṫ, β̇,η, sI, sK) (46a)

s. t. B∗ · (σ0 + σ̇) = t0 + ṫ, (46b)

t0j + ṫj = t̄j , ∀j ∈ Jt, (46c)

ηq = dev(σ0
q + σ̇q)− (β0

q + β̇q), ∀q, (46d)
√

2
3(R0

q + sIq) ≥ ‖ηq‖, ∀q, (46e)
√

2
3sKq ≥ ‖β̇q‖, ∀q, (46f)

where Π̇c is defined by

Π̇c(σ̇, ṫ, β̇,η, sI, sK)

=
nG∑

q=1

(
1
2
σ̇q : C−1

q : σ̇q + σ0
q : C−1

q : σ̇q + ε0
pq : σ̇q

+
1

2θH
s2

Iq +
1

2(1− θ)Hs2
Kq

)
−
∑

j∈Ju
ūj ṫj . (47)

Note that we formulate the problem (46) as a minimization problem following the conventional
way to state the complementary energy principle as a minimum principle.

It is emphasized that the problem (46) consists of the convex quadratic objective function,
the linear equality constraints (in (46b), (46c), and (46d)), and the second-order cone constraints
(in (46e) and (46f)). Therefore, like the problem (40), the problem (46) is a convex optimization
problem, which can be solved effectively. In this paper we propose to solve the pair of (40) and
(46) by using the primal-dual interior-point method for the SOCP.

It is noted that the problem (46) involves only the static variables, in contrast to the prob-
lem (40) which involves only kinematic variables. Thus the problem (46) serves as the minimiza-
tion problem of the complementary energy, and Π̇c defined by (47) is regarded as the comple-
mentary energy function. Moreover, if (46b) and (46c) have a a solution, then the problem (46)
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has a strictly feasible solution, because sIq and sKq are not bounded from above. Since Π̇c in-
creases monotonically with respect to sIq and sKq, the constraints (46e) and (46f) are satisfied as
equalities at the optimal solution. It is also emphasized that the conditions

tr(ε̇pq) = 0, tr(β̇q) = 0, tr(ηq) = 0

are not involved explicitly in the problems (40) nor (46) as constraints. Nonetheless, they are
guaranteed to be satisfied at their optimal solutions, because the optimal solutions satisfy the
SOCC conditions in Proposition 2 and Proposition 3.

4.5 Reduction to second-order cone programming problem

Through the discussion above it has been shown that the solution of the incremental problem
can be obtained by solving the primal-dual pair of SOCP problems, say (40) and (46). Each of
these problem is a minimization problem of a convex quadratic function over some linear equality
constraints and second-order cone constraints. It is known that such an optimization problem
can further be reduced to an SOCP problem, which is a minimization problem of a linear function
over some linear equality constraints and second-order cone constraints. Therefore, we propose
to solve (40) and (46) by applying the primal-dual interior-point method for SOCP [1, 4].

Since the treatment of the convex quadratic objective function within the framework of second-
order cone can be found in textbooks, e.g. [4], we here show only the fundamental idea. As an
example, consider the primal problem (40). In the objective function defined by (39), the terms

1
2
ε̇eq : C : ε̇eq,

1
3
θHγ2

q ,
1
3

(1− θ)Hγ̂2
q

are quadratic. Since problem (40) is a minimization problem, we consider, for example, the
minimization of the first term. By using the Voigt notation, the strain tensor ε ∈ S is put in a
vector form as

vec(ε) = (ε11, ε22, ε33, 2ε12, 2ε23, 2ε13)T.

Furthermore, we introduce an auxiliary variable tq ∈ R to rewrite the minimization of 1
2 ε̇eq : Cq :

ε̇eq as

min
ε̇eq ,tq

tq (48a)

s. t. tq ≥ 1
2

vec(ε̇eq)TC̃q vec(ε̇eq), (48b)

where C̃q ∈ R6×6 is the elasticity tensor in a matrix form. Because of the positive definiteness of
the elasticity tensor, C̃q is a symmetric positive definite matrix. Therefore, there exists a matrix
Gq ∈ R6×6 satisfying GT

q Gq = C̃q. By using Gq, the problem (48) can be reformulated as

min
ε̇eq ,tq

tq

s. t. tq + (1/2) ≥
∥∥∥∥∥

[
tq − (1/2)
Gq vec(ε̇eq)

]∥∥∥∥∥ ,

which is an SOCP problem. In this way, we can restate the nonlinear terms involved in the
objective functions of (40) and (46) with some second-order cone constraints to obtain SOCP
formulations.
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5 Warm-start strategy

We have shown in section 4 that the solution of incremental problem for the quasistatic elasto-
plastic analysis can be found by solving the primal-dual pair of SOCP problems, i.e. (40) and (46).
This pair of problems are solved efficiently by using the polynomial-time primal-dual interior-
point method with guaranteed convergence to the solution.

Because of the irrevertible property of the plasticity, the elastoplastic analysis should be
performed stepwise by dividing the time interval [0, T ] into sufficiently small subintervals. Once
the solution of the incremental problem for a specific subinterval, say [τ0, τ1], is obtained, then
we turn towards new incremental problem for the next time subinterval [τ1, τ2] by updating the
boundary conditions, i.e. ūj (j ∈ Ju) and t̄j (j ∈ Jt), as well as the state variables, i.e. β0, R0,
ε0

e , ε0
p, σ0, u0, and t0. It is usual that the change in these problem data is small. Thus in

the elastoplastic analysis we solve a series of closely related problems, and hence we may expect
that the difference between the solutions at τ1 and τ2 is also small. The warm-start strategy
proposed in this section is to make use of the solution at the loading step τ1 to solve the problem
for the loading step τ2 in order to reduce the computational effort required by the primal-dual
interior-point method for SOCP in the course of the elastoplastic analysis.

5.1 Problem setting

To begin, we define a parent problems, which is the primal-dual pair of the SOCP problems solved
at the previous loading step, say at time τ1. Let K ⊂ Rn denote the cone defined by the direct
product of the nonnegative orthant and some second-order cones. We write x �K 0 if x ∈ K.
The parent problem, consisting of (Parent P) and (Parent D), is written in the abstract form as

(Parent P) (Parent D)

min
x

cTx max
y,z

bTy

s. t. Ax = b, s. t. ATy + z = c,

x �K 0; z �K 0,

where A ∈ Rm×n, x, z ∈ Rn and y, b ∈ Rm. We suppose that both (Parent P) and (Parent D)
have strictly feasible solutions.

Let x∗ and (y∗,z∗) denote the optimal solutions of (Parent P) and (Parent D), respectively.
Then x∗, y∗, and z∗ satisfy the KKT condition

Ax∗ = b,

ATy∗ + z∗ = c,

x∗ �K 0, z∗ �K 0, x∗Tz∗ = 0.

From the practical point of view, we may assume that x∗ and z∗ are on the boundary of K, i.e.

x∗ 6∈ intK, z∗ 6∈ intK.

Although an approximate optimal solution obtained by the primal-dual interior-point methods is
usually an interior point of K in a precise sence, the point is very close to the boundary so that
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widely-used solvers, such as SDPT3 [39] or SDPA [41], recognize it as boundary points when it is
provided as an initial solution. Hence, in what follows we regard x∗ and z∗ as boundary points.

After solving the parent problem, we proceed to solve a new incremental problem for the next
loading step, i.e. for the loading step τ2. The pair of SOCP problems to be solved is called the
child problem, which is written in the abstract form as

(Child P) (Child D)

min
x

c̃Tx max
y,z

b̃
T
y

s. t. Ãx = b̃, s. t. ÃTy + z = c̃,

x �K 0; z �K 0.

Here, Ã, b̃ and c̃ are slightly perturbed from A, b and c, but are of the same sizes. The cone
K is also common between the parent and child problems. Suppose that both (Child P) and
(Child D) are strictly feasible. Let xopt and (yopt, zopt) denote the optimal solutions of (Child P)
and (Child D), respectively. We aim to make use of x∗ and (y∗, z∗) for warm-starting the primal-
dual interior-point method solving the pair of (Child P) and (Child D) in order to reduce the
computational effort required at the current loading step τ2.

In the context of the elastoplastic analysis, unfortunately, x∗ and (y∗, z∗) are not feasible for
(Child P) and (Child D) in general. Moreover, x∗ and z∗ are not interior points of K. From
these reasons, a crude warm-start strategy, in which we directly use (x∗,y∗, z∗) as an initial point
for the interior-point method to solve (Child P) and (Child D), is entirely inefficient; see, e.g.
the discussion in [2] for the case of LP. On the other hand, we prefer to employ the available
well-developed software packages of the primal-dual interior-point methods [39, 41], rather than
to implement a new algorithm specifically designed for warm start. Therefore, we have chosen
the following strategy for warm start: (i) We firstly formulate a penalized problem, which are
a primal-dual pair of SOCP problems, sharing the same optimal solution as the child problem;
(ii) secondly, by using (x∗,y∗,z∗), we construct an initial point which is strictly feasible for
the penalized problem; (iii) we start an interior-point solver from the initial point to solve the
penalized problem, and then obtain the optimal solution of the child problem. In the succeed
section we propose the penalized problem as well as its good initial point.

5.2 Penalized problems and warm-start strategy

For fully enjoying the advantage of the primal-dual interior-point methods, we introduce re-
laxations both for (Child P) and (Child D) to construct a penalized problem. The following
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penalized problem which we propose consists of a pair of primal and dual SOCP problems:

(Penalty P) (Penalty D)

min
x,ξ,v,w

c̃Tx+M1ξ +M2v max
y,z,ζ

b̃
T
y −M3ζ

s. t. Ãx+w = b̃, s. t. ÃTy + z = c̃,

x+ ξ1 �K 0, z + ζ1 �K 0,

ξ ≥ 0, ζ ≥ 0,

M3 − (x+ ξ1)T1 ≥ 0, M1 − zT1 ≥ 0,

v ≥ ‖w‖; M2 ≥ ‖y‖,

where M1, M2 and M3 > 0 are sufficiently large constants which serve as the penalty parameters,
while ξ, v, ζ ∈ R and w ∈ Rm are auxiliary variables. The vector 1 ∈ K is the identity element
of the Jordan algebra associated with K; for example, if K is given by

K = R2
+ × {(p1, q1) ∈ R3 | p1 ≥ ‖q1‖} × {(p2, q2) ∈ R4 | p2 ≥ ‖q2‖},

then 1 is the 9-dimensional vector defined by

1 = (1, 1, 1, 0, 0, 1, 0, 0, 0)T.

Note that w serves as the relaxation variables vector for the equality constraints of (Child P),
while ξ and ζ are the relaxation variables for the conic inequality constraints, say “�K”, in
(Child P) and (Child D), respectively.

The optimal solution of (Child P) and (Child D) can be obtained from the optimal solutions
of (Penalty P) and (Penalty D) in the following manner.

Proposition 5. Suppose that M1, M2, and M3 are sufficiently large, and that (Child P) and
(Child D) are strictly feasible. Then xopt and (yopt,zopt) are optimal for (Child P) and (Child D),
respectively, if and only if (x, ξ, v,w) and (y,z, ζ) defined by

x = xopt, ξ = 0, v = 0, w = 0, (49a)

y = yopt, z = zopt, ζ = 0 (49b)

are optimal for (Penalty P) and (Penalty D), respectively.

Proof. It is easily seen that the strict feasibility of (Child P) and (Child D) implies those of
(Penalty P) and (Penalty D). Since all these problems are SOCPs, their optimality conditions
are given by the KKT conditions.

Concerning (Child P) and (Child D), the optimal solutions, say xopt and (yopt,zopt), satisfy
the following KKT condition:

Ãxopt = b, (50a)

ÃTyopt + zopt = c̃, (50b)

xopt �K 0, zopt �K 0, xoptT
zopt = 0. (50c)
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Similarly, (x, ξ, v,w) and (y, z, ζ) are optimal for (Penalty P) and (Penalty D) if and only if they
satisfy

Ãx+w = b̃, (51a)

ÃTy + z = c̃, (51b)

x+ ξ1 �K 0, z + ζ1 �K 0, (x+ ξ1)T(z + ζ1) = 0, (51c)

ξ ≥ 0, M1 − zT1 ≥ 0, ξ(M1 − zT1) = 0, (51d)

M3 − 1Tx− (1T1)ξ ≥ 0, ζ ≥ 0, [M3 − 1Tx− (1T1)ξ]ζ = 0, (51e)

v ≥ ‖w‖, M2 ≥ ‖y‖, M2v +wTy = 0. (51f)

Since M1, M2, and M3 are sufficiently large, we may assume that xopt, yopt, and zopt satisfy

M1 − 1Tzopt > 0, (52a)

M3 − 1Txopt > 0, (52b)

M2 > ‖yopt‖. (52c)

Therefore, if we put x = xopt, y = yopt, and z = zopt in (51), then (51d)–(51f) and (52) imply
ξ = v = ζ = 0 and w = 0. Thus all the relaxation variables vanish, and hence the solution
defined by (49) satisfies (51).

Proposition 5 justifies solving (Penalty P) and (Penalty D) instead of (Child P) and (Child D).
Indeed, if the obtained optimal solutions of (Penalty P) and (Penalty D) satisfies ξ = v = ζ =
‖w‖ = 0, then we can see that M1, M2, and M3 have been chosen appropriately in the sense that
the optimal solutions of (Child P) and (Child D) are successfully obtained.

For solving the penalized problem by using the primal-dual interior-point method, it is pre-
ferred to give an interior feasible point which is expected to be close to the optimal point. The
condition (49) in Proposition 5 suggests a good initial point for the penalized problem; because
(xopt,yopt, zopt) is expected to be close to (x∗,y∗,z∗), the optimal solutions of (Penalty P) and
(Penalty D) may be close to (x∗, 0, 0,0) and (y∗, z∗, 0), respectively. Accordingly, we construct
initial solutions (x0, ξ0, v0,w0) and (y0, z0, ζ0) as

x0 = x∗, ξ0 = εx, v0 = ‖w0‖+ εx, w0 = b̃− Ãx0, (53a)

y0 = y∗, z0 = c̃− ÃTy∗, ζ0 = min
{
ζ | z0 + ζ1 �K εz1

}
, (53b)

where εx > 0 and εz > 0 are small constants; see Remark 6. It is easy to see that (x0, ξ0, v0,w0)
and (y0, z0, ζ0) defined by (53) are strictly feasible for (Penalty P) and (Penalty D), respectively.

Remark 6. In (53), εx and εz are positive constants guaranteeing that the initial point is in the
interior of K. However, too large values of εx and εz make an initial point far from the optimal
point of the penalized problem. Thus the computational efficiency depends on the choice of
(εx, εz). In the numerical examples in section 6, we set

εx = 0.1
‖x0‖
n

, εz = 0.1
‖z0‖
n

, (54)

which are suggested to be reasonable by our preliminary experiments. �
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Remark 7. The penalty parameters M1, M2, and M3 should be chosen so as to satisfy (52),
although we do not know xopt, yopt, and zopt in advance. On the other hand, too large penalty
parameters may possibly cause the numerical instability. Hence, we attempt to estimate appro-
priate values for the penalty parameters by using the optimal point of the parent problem, say
(xopt,yopt, zopt). Based on (52), we set

M1 = 3.1(1Tz∗),

M2 = 3.1‖y∗‖,
M3 = 1.1(1Tx∗),

which are adopted in the numerical experiments presented in section 6. �

In the elastoplastic analysis during the time interval [0, T ], we begin with solving the incre-
mental problem for the first loading step by using the primal-dual interior-point method from
cold start. At all the subsequent loading steps, we make use of the solution of the previous
loading step for warm start, i.e. the penalized problem is solved at each loading step from the
initial solution defined by (53) and (54). Such an initial point is a strictly feasible point of the
penalized problem, and is expected to be close to the optimal solution of the penalized problem.
Therefore, this warm-start strategy is expected to reduce the computational effort required by
the primal-dual interior-point method.

6 Numerical experiments

Two elastoplastic problems are solved numerically by the proposed method. Computation has
been carried out on Quad-Core Xeon E5450 (3.00 GHz with 16.0 GB memory) with MATLAB
Ver. R2007b [35]. The SOCP problems are solved by using SDPT3 Ver. 4.20 [39], which imple-
ments the primal-dual infeasible interior-point method.

In the following examples, we consider the isotropic solids, where the elastic modulus and
the Poisson ratio are 10.0 MPa and 0.2, respectively. The solids are discretized into 20-node
serendipity isoparametric hexahedron elements with 2× 2× 2 Gauss quadrature points [28]. The
parameters for hardening rules in (12)–(14) are taken to be σY = 10.0 kPa, H = 200.0 kPa, and
θ = 0.5.

6.1 Perforated plate

We consider a plate with a circular hole illustrated in Figure 1, which is in a state of plane strain.
Numerical analysis is performed by using the three-dimensional hexahedron elements by fixing
the nodal displacements in the thickness direction.

Due to the symmetry, only a quarter of the plate is modeled as shown in Figure 1 by 420
elements, which leads in total to 9549 degrees of freedom. The total number of Gauss evaluation
points is nG = 3360. The dimensions of this model are given as follows: The hight is ` = 12.0 cm,
the width is 8.0 cm, the thickness is 1.0 cm, and the radius of the hole is 4.0 cm. As the loading
condition, the displacements are prescribed as follows: The vertical displacement of the lower
edge and the horizontal displacement of the left edge are fixed, the horizontal displacement of the
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Figure 1: Plate with a circular hole (420 elements, 9549 degrees of freedom).

upper edge is free, and the vertical displacement of the upper edge, denoted ūupper, is prescribed.
The history of ūupper is given by ūupper = r`/100 with the parameter r.

We firstly consider a monotonic loading, where the variation of r is defined by Figure 2(a). The
obtained variation of reaction force is depicted in Figure 2(b). Figures 3(a) and (b) compare the
the number of iterations and computational time at each loading step required by the conventional
cold-start method and the proposed warm-start method. It can be seen that use of the warm-
start strategy decreases the computational effort by more than half compared with cold start.
To demonstrate the robustness of the proposed method, the same problem is resolved by using
the five equal increments, where ∆r = 0.03. The computational results are shown in Figures 3(c)
and (d), where we can observed that the step size does not affect the efficiency of the proposed
method. Figure 4 shows the evolution of the effective plastic strain, i.e. ‖εp‖, which agrees well
with the numerical results in literature [32, 34].

Secondly, we examine a cyclic loading, where the variation of r is defined by Figure 5(a).
The obtained load–displacement curve is depicted in Figure 5(b), where the Bauschinger effect
is clearly observed. In Figure 6 we show the evolution of the effective plastic strain. Note that
uupper at the 2nd loading step depicted in Figure 6(a) is same as that at the 6th step in the
monotonic loading case depicted in Figure 4(b), because in this cyclic loading test we use more
coarse time-discretization.

6.2 Tapered cylinder

We next consider a tapered cylinder illustrated in Figure 7. The cylinder is discretized into 480
hexahedron elements, which leads in total to the 6195 degrees of freedom and the 3840 Gauss
points.

The dimensions of the cylinder is given as follows: The height of the cylinder is ` = 10.0 cm,
the radii of the lower and upper faces are 2.0 cm and 3.0 cm, respectively, where the lower 2/3-
part of the cylinder is tapered. As the loading condition, we suppose that vertical displacement
of the lower face is fixed, while the horizontal displacements of the upper and lower faces are free.
The vertical displacement of the upper face is subjected to the prescribed increments defined by
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Figure 2: Monotonic loading test of the perforated plate.
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(b) CPU time for fine time-discretization.
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Figure 3: Computational results of the monotonic extension of the perforated plate.
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(a) (b) (c)

(d) (e)

Figure 4: Yield zone evolution of the perforated plate in the monotonic loading test. (a): 4th
step; (b): 6th step; (c): 8th step; (c): 10th step; (e): 12th step.

ūupper = r`/100, where the parameter r is increased monotonically as shown in Figure 8(a).
The relation between the displacement and the reaction force is shown in Figure 8(b). Figure 9

shows the number of iterations and CPU time required at each loading step. It is observed that
the decrease of computational effort due to our warm-start strategy is about 65% in average.
Figure 10 depicts the evolution of the plastic zone during the last four loading steps.

7 Conclusion

We have proposed a methodology with the guaranteed convergence for quasistatic analysis of
elastoplastic structures in small deformation. The solution method is based on the polynomial-
time primal-dual interior-point method for the second-order cone program (SOCP). The von Mises
yield criterion, in conjunction with a combination of linear isotropic and kinematic hardening
rules, is considered, which is shown to be formulated as the second-order cone complementarity
(SOCC) conditions. Based on the SOCC conditions, the minimization problems of the potential
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Figure 5: Cyclic loading test of the perforated plate.

(a) (b)

Figure 6: Yield zone evolution of the perforated plate in the cyclic loading test. (a): 2nd step;
(b): 50th step.

Figure 7: Cross-section of the tapered cylinder.
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Figure 8: Extension of the tapered cylinder.
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Figure 9: Computational results of the extension of the tapered cylinder.

energy and the complementary energy have been formulated as the primal-dual pair of SOCP
problems, which are to be solved by using the primal-dual interior-point method. To enhance the
numerical performance, we have proposed the warm-start strategy for the interior-point method,
which makes use of the incremental solution obtained at the previous loading step in the course of
the path-tracing equilibrium analysis to reduce the computational effort required at the current
loading step. As the theoretical advantage over the conventional methods, the proposed method
is guaranteed to converge to the equilibrium solution within polynomial time. The number of
iterations required, in practice, does not depend on the size of loading step. In the numerical
experiments the performance of this warm-start strategy has shown the decrease of around 2/3
in the computational time.
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A Proof of Proposition 4

Proof. Suppose that (32)–(34) are satisfied. It follows from Proposition 2 that one of the following
cases becomes true:

Case 1 :
√

2
3sK = 0, β̇ = o, γ ≥ ‖ − ε̇p‖;

Case 2 :
√

2
3sK ≥ ‖β̇‖, γ = 0, ε̇p = o;

Case 3 :
√

2
3sK = ‖β̇‖, γ = ‖ − ε̇p‖, −ε̇p = −γ β̇

‖β̇‖ ,

where
√

2
3sKγ 6= 0.

It follows from (16) that sK = 0 if and only if γ = 0. Therefore, in Cases 1 and 2 we have
sK = γ = 0. Since (32) implies β̇ = 0, we see that (18) is satisfied. In Case 3, the relation
between ε̇p and β̇ can be reduced to

β̇ = ‖β̇‖ ε̇p

γ
=
√

2
3sK

ε̇p

γ
. (55)

Substitution of (5) into (55) yields

β̇ =
√

2
3sK

η

‖η‖ .

Thus (18) is satisfied.

Conversely, suppose that (18) holds. We easily see that (18) implies ‖β̇‖ =
√

2
3sK, and

hence (32) is satisfied. Similarly, (5) implies ‖ε̇p‖ = γ, and hence (33) is satisfied. Finally, by
substituting (18) and (5), the left-hand side of (34) is reduced to

√
2
3sKγ − β̇ : ε̇p =

√
2
3sKγ −

(√
2
3sK

η

‖η‖
)

:
(
γ
η

‖η‖
)

=
√

2
3sKγ −

√
2
3sKγ

η : η
‖η‖2

= 0,

and hence (34) is satisfied. Consequently, (18) implies (32)–(34), which concludes the proof.
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