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Abstract. We derive a Markov basis consisting of moves of degree at
most three for two-state toric homogeneous Markov chain model of arbi-
trary length without parameters for initial states. Our basis consists of
moves of degree three and degree one, which alter the initial frequencies,
in addition to moves of degree two and degree one for toric homogeneous
Markov chain model with parameters for initial states.
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1 Introduction

Consider a Markov chain Xt, t = 1, . . . , T (≥ 3), over finite state space S. Let
ω = (s1, . . . , sT ) ∈ ST denote a path of a Markov chain. In this paper we discuss
Markov bases of toric ideals arising from the following statistical model

p(ω) = cβs1s2
. . . βsT−1sT

, (1)

where c is a normalizing constant. In [3], the model (1) is called a toric Markov
chain model. In [6] we considered a model with additional parameters γs, s ∈ S,
for the initial states:

p(ω) = cγs1
βs1s2

. . . βsT−1sT
(2)

and derived a Markov basis of toric ideals arising from (2) for the case of
S = {1, 2} (arbitrary T ) and the case of T = 3 (arbitrary S). In [6] we called
the model (2) a toric homogeneous Markov chain(THMC) model. The model
(1) corresponds to THMC model with γ1 = · · · = γ|S|. For distinguishing two
models, we call (1) a toric homogeneous Markov chain model without initial
parameters.

In the present paper, we generalize the result in [6] to the model (1) and
derive a Markov basis for the case S = {1, 2} and arbitrary T .

From a statistical viewpoint, Markov bases are used to test goodness-of-fit
of the model based on the exact distribution of a test statistic. A data set of
paths is summarized in an |S|T contingency table. The set of contingency tables
sharing sufficient statistic is called a fiber. A Markov basis is defined as a set
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of moves connecting every fiber. In this paper we consider the problem in the
framework of contingency table analysis and derive a Markov basis as a set of
moves which guarantees the connectivity of every fiber.

The organization of the paper is as follows. In the rest of this section we
introduce some notations and terminologies and give some preliminary results.
In Section 2, we state the main theorem and give a Markov basis for the model
(1) with S = {1, 2}. We give a proof of the theorem in Section 3. In Section 4
we end the paper with some concluding remarks.

1.1 Notation and terminology

Let ω = (s1, . . . , sT ) be a path. For notational simplicity we sometimes write
ω = (s1 . . . sT ) or ω = s1 . . . sT . If s1 = · · · = sT = i, we call ω a flat path at
state i. If for some t (1 ≤ t < T ), s1 = · · · = st = i 6= j = st+1 = · · · = sT , then
we call ω a single-step path from i to j at time t. We say that a path ω starts
at i and ends at j if s1 = i, sT = j. The set of such paths is denoted by Wi∗···∗j .
We call ω a non-flat cycle, if it starts from i, visits j 6= i on the way and ends
at i. We denote the set of non-flat cycles starting from i by

Wi∗j∗i = {ω | s1 = i, st = j, sT = i, for some 1 < t < T}. (3)

In Figure 1, we depict examples of a flat path, a single-step path and a non-flat
cycle.

1

2

s\t
1 2 3 4

1

2

s\t
1 2 3 4

1

2

s\t
1 2 3 4

(i) a flat path (ii) a single-step path (iii) a non-flat cycle

Fig. 1. A flat path, a single-step path and a non-flat cycle for T = 4

A data set of n paths is summarized in an |S|T contingency table x =
{x(ω), ω ∈ ST } of total frequency n, where x(ω) denotes the frequency of the
path ω. Let xt

ij =
∑

ω:st=i,st+1=j x(ω) denote the number of transitions from

st = i to st+1 = j in x and let xt
i =

∑

ω:st=i x(ω) denote the frequency of the

state st = i in x. In particular x1
i is the frequency of the initial state s1 = i. Let

x+

ij =
T−1∑

t=1

xt
ij

denote the total number of transitions from i to j in x.
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The sufficient statistic for the model (1) is given by the frequencies of tran-
sitions

b = {x+

ij , i, j ∈ S}. (4)

The sufficient statistic for the model (2) is given by the union of (4) and the set
of initial frequencies,

b′ = {x1
i , i ∈ S} ∪ {x+

ij , i, j ∈ S} ⊃ b.

For S = {1, 2} we write the elements of b in (4) as b11, b12, b21, b22.

If we order paths appropriately and write x as a column vector according to
the order, b in (4) is written in a matrix form

b = Ax,

where A is an |S|2 × |S|T matrix consisting of non-negative integers with the
rows indexed by |S|2 transitions and the columns indexed by |S|T paths. The
((i, j), ω) element A is the number of occurrences of the transition from i to j
in the path ω.

A is the configuration defining toric ideal IA arising from the model (1).
A toric ideal IA is the kernel of the homomorphism of polynomial rings ψ :
k[{p(ω), ω ∈ ST }] → k[{βij , i, j ∈ S}] defined by

ψ : p(ω) 7→ βs1s2
. . . βsT−1sT

,

where {p(ω), ω ∈ ST } is regarded as a set of indeterminates. Algebraically a
Markov basis is defined as a set of generators of IA ([1]).

The set of all contingency tables sharing b is called a fiber and denoted by

Fb = {x ∈ Z
|S|T

≥0
| Ax = b}, where Z≥0 = {0, 1, . . . }. A move z for the model

(1) is an integer array satisfying Az = 0. In contingency table analysis a Markov
basis is defined as a finite set of moves Z satisfying that for all b and all pairs x

and y in Fb there exists a sequence z1, . . . ,zK ∈ Z such that

y = x +

K∑

k=1

zk, x +

l∑

k=1

zk ≥ 0, l = 1, . . . ,K. (5)

In this article we provide a Markov basis as a set of moves satisfying (5) for the
model (1) with S = {1, 2}.

A move z is expressed by a difference of two contingency tables x and y in
the same fiber:

z = x − y, z(ω) = x(ω) − y(ω), ω ∈ ST .

We write zt
ij = xt

ij − yt
ij .
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1.2 Some classes of moves

In this section we introduce some classes of moves for the model (2) discussed
in [6]. The moves introduced in this section are also moves for the model (1).

Denote st:t′ = st . . . st′ and s′
t:t′ = s′t . . . s

′
t′ for t ≤ t′. If t > t′, let st:t′ be an

empty sequence. Let ω̄ = (s1, . . . , sT ) be a path satisfying st0 = st1 = st2 = i

for 1 ≤ t0 < t1 < t2 ≤ T and st = j 6= i for some t0 < t < t2. Then consider the
following swapping

ω̄ = (s1:t0−1, st0:t2 , st2+1:T ) ↔ ω̄′ := (s1:t0−1, st1:t2−1, st0:t1 , st2+1:T ).

Then an integer array z = {z(w), w ∈ ST }

z(ω) =







1 if ω = ω̄

−1 if ω = ω̄′

0 otherwise
(6)

forms a move for (2). We call this move a degree one move.
We depict a degree one move with T = 4, t0 = 1, t1 = 2 and t2 = 4 as

1

2

s\t
1 2 3 4

, (7)

where a solid line from (i, t) to (j, t+1) represents zt
ij = 1 and a dotted line from

(i, t) to (j, t+ 1) represents zt
ij = −1. We call a graph like (7) a move graph. A

node of a move graph is a pair (i, t) of state i and time t and an edge from (i, t)
to (j, t + 1) represents the value of zt

ij . If |zt
ij | = 0, there is no corresponding

edge in the graph. If |zt
ij | ≥ 2, we write the value of |zt

ij | beside the edge.
We say that two paths ω = (s1, . . . , sT ), ω′ = (s′1, . . . , s

′
T ) meet (or cross) at

the node (i, t) if i = st = s′t. If ω and ω′ cross at the node (i, t), consider the
swapping of these two paths like

{ω̄, ω̄′} = { (s1:t−1, i, st+1:T ), (s′, i, s′
t+1:T ) }

↔ { (s1:t−1, i, s
′
t+1:T ), (s′, i, st+1:T ) } =: {ω̃, ω̃′}.

Then the integer array z

z(ω) =







1 if ω = ω̄ or ω̄′

−1 if ω = ω̃ or ω̃′

0 otherwise
(8)

forms a move for (2). We call this move a crossing path swapping. As shown in
[6], a crossing path swapping is expressed by the difference of two tables with the
same edge-sign pattern and hence the move graph for a crossing path swapping
has no edge. As shown in [6], if x and y are in the same fiber such that the move
graph of z has no edge, x and y are connected by crossing path swappings.
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Suppose that t0 6= t1. Choose (not necessarily distinct) four paths ω1, ω2, ω3, ω4

as

ω1 = (s1,1:t0−1, 1, 1, s1,t0+2:T ), ω2 = (s2,1:t0−1, 2, 2, s2,t0+2:T ),

ω3 = (s3,1:t1−1, 1, 2, s3,t1+2:T ), ω4 = (s4,1:t1−1, 2, 1, s4,t1+2:T ),

where sk,t:t′ = sk,t, . . . , sk,t′ . Then we consider the swapping {ω1, ω2, ω3, ω4} ↔
{ω̃1, ω̃2, ω̃3, ω̃4}, where

ω̃1 = (s1,1:t0−1, 1, 2, s2,t0+2:T ), ω̃2 = (s2,1:t0−1, 2, 1, s1,t0+2:T ),

ω̃3 = (s3,1:t1−1, 1, 1, s4,t1+2:T ), ω̃4 = (s4,1:t1−1, 2, 2, s3,t1+2:T ).

Then the integer array z

z(ω) =







1 if ω = ω1, . . . , ω4,

−1 if ω = ω̃1, . . . , ω̃4,

0 otherwise.

is a move for (2) and is called 2 by 2 swap. The corresponding move graph is
depicted as

t0 t1

(9)

For S = {1, 2} it can be shown that we can always choose either ω1 = ω3,
ω2 = ω4 or ω1 = ω4, ω2 = ω3. Therefore for S = {1, 2} a 2 by 2 swap always
corresponds to a degree two move z.

Next we consider the following swapping for T ≥ 4:

(ω1, ω2) :=
{
(st0−1, 1, 1, 2, st0+3:T ), (s′

1:t1−1, 1, 2, 2, s
′
t1+3:T )

}

↔ (ω̃1, ω̃2) :=
{
(s1:t0−1, 1, 2, 2, st0+3:T ), (s′

1:t1−1, 1, 1, 2, s
′
t1+3:T )

}
.

Then the integer array z

z(ω) =







1 if ω = ω1, ω2,

−1 if ω = ω̃1, ω̃2,

0 otherwise.
(10)

also forms a move for (2), which can be depicted as

t0 t1

or

t0 t1

2 .

2 Main result

In [6] we provided a Markov basis for the model (2) as follows.
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Proposition 1. A Markov basis for S = {1, 2}, T ≥ 4, for (2) consists of (i)
degree one moves (6), (ii) crossing path swappings, (iii) 2 by 2 swaps (9), (iv)
moves in (10). For T = 3 a Markov basis consists of the first three types of
moves.

Since 2 by 2 swaps for S = {1, 2} corresponds to degree two moves, (2) has
a Markov basis consisting of moves of degree at most two.

We call degree one moves in (6) type I degree one moves. We note that the
moves introduced in the previous section are moves for (2) and hence do not
alter the initial frequencies. For connecting fibers for the model (1) we need
moves altering initial frequencies. First we present a degree one move altering
the initial frequency. Consider a non-flat cycle ω ∈Wi∗j∗i in (3), vising j at time
t. Consider the following degree one move:

Wi∗j∗i ∋ ω = (s1, . . . , sT ) ↔ ω′ = (st, . . . , sT−1, s1, . . . , st) ∈Wj∗i∗j . (11)

ω and ω′ has the same number of transitions, but the initial states are different.
We call this move a type II degree one move. An example of a type II degree one
move for T = 4 is depicted as

. (12)

Next we consider a degree three move. Let 1 ≤ a ≤ b ≤ T − 1, a+ b ≤ T − 1.
Choose 1 ≤ u ≤ T − 1 such that

a+ u ≤ T − 1, b+ (T − 1 − u) ≤ T − 1.

The range of such u is
b ≤ u ≤ T − 1 − a.

Consider the following set of three paths:

W1 = {11 . . . 1, 1 . . . 1
︸ ︷︷ ︸

a

2 . . . 2
︸ ︷︷ ︸

T−a

, 1 . . . 1
︸ ︷︷ ︸

b

2 . . . 2
︸ ︷︷ ︸

T−b

},

which consists of a flat path at i = 1, a single-step path going from 1 to 2 at time
a, and a single-step path going from 1 to 2 at time b. Choose u ∈ {b, . . . , T−1−a}
and let a′ = a+ u, b′ = b+ T − 1 − u. Consider

W2 = {22 . . . 2, 1 . . . 1
︸ ︷︷ ︸

a′

2 . . . 2
︸ ︷︷ ︸

T−a′

, 1 . . . 1
︸ ︷︷ ︸

b′

2 . . . 2
︸ ︷︷ ︸

T−b′

}.

Then integer array z

z(ω) =







1 if ω ∈W1,

−1 if ω ∈W2,

0 otherwise
(13)

is a move for (2). We call this move a degree 3 sliding move. An example of a
degree 3 sliding move with T = 4, a = 1, b = 2 and u = 3 is depicted in Figure 2
(i). As a degree 3 sliding move, we also consider the time reversal of (13) which
involves single-step paths going from 2 to 1 as depicted in Figure 2 (ii).

Now we state the main theorem of this paper.
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2 2

(i) (ii)

Fig. 2. Sliding moves

Theorem 1. The set of type II degree one moves of (11) and the set of degree
3 sliding moves in (13), in addition to moves in Proposition 1, constitutes a
Markov basis for (2).

We give a proof of this theorem for T ≥ 4 in the next section. Note that the
above statement also covers the case T = 3, namely, for T = 3, we do not need
moves of type (iv) in Proposition 1.

At this point we briefly discuss the case of T = 3. Although we can prove
Theorem 1 for the case T = 3 along the lines of the next section, it is trivial to
use 4ti2 ([7]) and verify Theorem 1. It is interesting to note that the degree 3
sliding move for T = 3

{111, 122, 122} ↔ {112, 112, 222}

is indispensable ([4], [2]). Hence every Markov basis has to contain a degree three
move for T = 3.

3 Proof of the main theorem

In this section we give a proof of Theorem 1 for T ≥ 4. We first take care of two
types of special fibers. Then we employ a distance reduction argument as in [6]
and [5].

Consider a fiber with b11 = 0 or b22 = 0. We have the following lemma.

Lemma 1. Fibers with b11 = 0 or b22 = 0 are connected by type I degree one
moves and crossing path swappings.

Proof. By symmetry consider the case b11 = 0. Consider an arbitrary fiber Fb

with b11 = 0 and arbitrary x ∈ Fb. It suffices to show that we can transform x

to a unique x∗ ∈ Fb by type I degree one moves and crossing path swappings.
This can be accomplished as follows. We can easily check that by applying type
I degree one moves and crossing path swappings, we can transform paths w ∈
W1∗···∗2 in x to following three types of paths,

1. (1212 · · · 12) when T is even or (1212 · · · 122) when T is odd;

or

2. (1212 · · · 1222 · · · 2);
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3. (1222 · · · 2);

so that the number of type 2 paths is at most one. In the same way we can
transform paths w ∈W2∗···∗2 in x to

1. (2121 · · · 2122) when T is even and (2121 · · · 212) when T is odd;
2. (2121 · · · 2122 · · · 2);
3. (22 · · · 2);

so that the number of type 2 paths is at most one. The paths w ∈W1∗···∗1 in x

are transformed to

1. (1212 · · · 12) when T is even and (1212 · · · 1221) when T is odd;
2. (1212 · · · 1222 · · · 21);
3. (122 · · · 21);

so that the number of type 2 paths is at most one. The paths w ∈W2∗···∗1 in x

are transformed to

1. (2121 · · · 21) when T is even and (2121 · · · 21221) when T is odd;
2. (2121 · · · 2122 · · · 21);
3. (22 · · · 21);

so that the number of type 2 paths is at most one. Then the resulting contingency
table is uniquely defined.

Next consider a fiber with b12 = 0 or b21 = 0.

Lemma 2. Fibers with b12 = 0 or b21 = 0 are connected by moves of type (iv)
in Proposition 1, crossing path swappings and degree 3 sliding moves.

Proof. By symmetry consider the case b21 = 0. In this case every path of a
contingency table is either a flat path or a single-step path going from 1 to 2. In
particular the number of single-step paths is b12. Note that a contingency table
of a fiber is determined by choosing positions of transitions for the single-step
paths from 1 to 2. A single-step path going from 1 to 2 at time t contains t− 1
transitions 1 → 1 and T − t − 1 transitions 2 → 2. Therefore once we choose
positions of the transitions, the number of transitions 1 → 1 and 2 → 2 contained
in these single-step paths are determined. The remaining number of transitions
1 → 1 and 2 → 2 belong to flat paths. Therefore the remaining numbers have to
be multiples of T − 1. This implies that fiber is partitioned into subsets by the
number of flat paths at 1 or at 2. Note that two contingency tables x,y with the
same number of flat paths at 1 and at 2 have the same initial frequencies. Then
these x, y are connected by moves of type (iv) in Proposition 1 and crossing
path swappings.

Suppose that initial frequencies of x and y are different. We note that b11 +
b22 + b12 = n(T − 1). Let α ∈ {0, 1, . . . , T − 2} be the remainder of b11 when it
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is divided by T − 1 and β be the remainder of b22 when it is divided by T − 1.
Then α+ β + b12 = n′(T − 1) for some integer n′ ≤ n.

Since 0 ≤ α, β ≤ T − 2, α + β + b12 = (T − 1) for b12 = 1. Then we can see
that a fiber contains a single contingency table when b12 = 1.

Now consider the case that b12 = 2. It can be easily verified that if α = T −2,
β = T − 2 and the two transitions from 1 to 2 have to occur at t and T − t

(1 ≤ t ≤ T − 1). Then the number of transitions 1 → 1 and 2 → 2 in the single-
step paths are both T − 2. Since x and y are in the same fiber, the number
of flat paths are the same. Hence the initial frequency of x and y is uniquely
determined. Therefore x and y in the same fiber are connected by moves of type
(iv) in Proposition 1. If α < T − 2 or β < T − 2, then the number of flat paths
at 1 in the fiber takes two consecutive integer values. Without loss of generality
consider the case x(11 . . . 1) = y(11 . . . 1) + 1. Then we can apply a degree 3
sliding move z to x such that x′(11 . . . 1) = x(11 . . . 1) − 1 where x′ = x + z.
Then x′ and y are connected by moves of type (iv) in Proposition 1.

For the case b12 ≥ 3, there are more than two single-step paths going from
1 to 2. In this case we pick two such paths and apply moves of type (iv) of
Proposition 1, so that the locations of transitions from 1 to 2 of these two paths
are far apart from those of other paths. Then we can slide these two paths to
alter the initial frequency. This proves the lemma.

After proving above two lemmas, it suffices to consider fibers satisfying

b11 > 0, b12 > 0, b21 > 0, b22 > 0. (14)

We now employ distance reduction argument. Let x and y be two contingency
tables of the same fiber and z := x − y. Define |z| :=

∑

t

∑

i,j |z
t
ij |. If x and y

have the same initial frequencies, then they are connected by moves in Proposi-
tion 1. We note that

b21 − b12 = xT
1 − x1

1 = yT
1 − y1

1 ,

which implies z1
1 = zT

1 . In the same way we have z1
2 = zT

1 . Therefore, without
loss of generality we assume

z1
1 = a, zT

1 = a, z1
2 = −a, zT

2 = −a, a > 0.

Lemma 3. Assume (14) and T > 3. Suppose that a = z1
1 > 0 can not be

decreased by type II degree one moves. Then x(11 . . . 1) > 0 and y(22 . . . 2) > 0 or
by these moves we can transform x and y to x′ and y′ such that x′(11 . . . 1) > 0
and y′(22 . . . 2) > 0.

Proof. Suppose that there exists a path w = (s1, . . . , sT ) ∈ W1∗2∗1 in x such
that st = 2 for 1 < t < T . Then by a type II degree one move (11) with i = 1
and j = 2, we can reduce a. Therefore we can assume that all paths in W1∗···∗1

are (11 · · · 1). By symmetry, we can also assume that all paths of y in W2∗···∗2

are (22 · · · 2).
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Suppose that x(11 · · · 1) = 0. By the above argument, x has no path in
W1∗···∗1. Hence for any path in x, s1 = 1 implies sT = 2 and sT = 1 implies
s1 = 2. Then we note that z1

2 = zT
2 = −a implies y(22 · · · 2) > 0. Therefore either

x(11 · · · 1) > 0 or y(22 · · · 2) > 0 is satisfied. We now assume x(11 · · · 1) > 0
without loss of generality.

Suppose that y(22 · · · 2) = 0. Then for any path in y, s1 = 2 implies sT = 1
and sT = 2 implies s1 = 1. Suppose that ω̄ = (s1, . . . , sT ) ∈W2∗···∗1 is a path in
y. Since z1

2 = zT
2 = −a < 0, there has to exist a path ω̄′ = (s′1, . . . , s

′
T ) ∈W1∗···∗2

in y.
If ω̄ and ω̄′ meet at t, by applying a crossing path swapping z in (8), y

is transformed to y′ = {y′(w), w ∈ {1, 2}T } ∈ Fb such that y′(ω̃) > 0 and
ω̃ = (s1, . . . , st, s

′
t+1, . . . , s

′
T ) ∈ W2∗···∗2. Then by the above argument we can

assume that y′(22 · · · 2) > 0.
Next we consider the case where ω̄ does not meet any ω̄′ ∈ W1∗···∗2 in y.

Then y has only one path in each of W2∗···∗1 and W1∗···∗2. Let ω̄ and ω̄′ be such
paths. Suppose that ω̄ = (2121 · · · 21) and ω̄′ = (1212 · · · 12). Then from the
assumptions that b11 > 0 and b22 > 0 we have y′(22 · · · 2) > 0.

Suppose that both ω̄ and ω̄′ are single-step paths. If b22 = T − 2,

y(ω) =

{
1, if ω = ω̄ or ω̄′

0, otherwise

and b12 = b21 = 1. Then x has to contain two single-step paths ω̃ and ω̃′ which
does not meet each other. (ω̄, ω̄′) is transformed to (ω̃, ω̃′) by a 2 by 2 swap (9).
Hence |z| is reduced.

If b22 > T−2, there has to exist another path ω̄′′ = (s′′1 , . . . , s
′′
T ) in y such that

s′′t = s′′t+1 = 2 for some t. By a 2 by 2 swap, ω̄ and ω̄′ are transformed to single-
step paths at t. Denote them by ω̂ = (22 · · · 211 · · · 1) and ω̂′ = (11 · · · 122 · · · 2).
Then apply crossing path swappings as follows,

{ω̂, ω̄′′} = {(22 · · · 211 · · · 1), (s′′
1:t, s

′′
t+1:T )}

↔ {(22 · · · 2, s′′
t+1:T ), (s′′

1:t, 11 · · · 1), }

{ω̂′, (22 · · · 2, s′′
t+1:T )} = {(22 · · · 22, s′′

t+2:T ), (11 · · · 122 · · · 2)}

↔ {(22 · · · 2), (11 · · · 12s′′
t+2:T ), }

Therefore y is transformed to y′ such that y′(22 · · · 2) > 0.
Suppose that both ω̄ and ω̄′ are not single-step paths. Then we can easily

see that ω̄ is transformed to another path ω̄′′ = (s′′1 , . . . , s
′′
T ) by a type I degree

one move. Then ω′ and ω′′ meet somewhere. Therefore in the same way as the
above argument by a crossing path swapping to y, y is transformed to y′ such
that y′(22 · · · 2) > 0.

Lemma 4. Assume (14) and T > 3. Suppose that a = z1
1 > 0 can not be

decreased by the moves of Theorem 1 except for degree 3 sliding moves. Then by
these moves we can transform x and y to x′ and y′ which consist of flat paths
and single-step paths only.
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Proof. By Lemma 3, we can assume that x(11 · · · 1) > 0. By the argument in
the proof of Lemma 3, we can assume that paths in x which start and end at 1
are flat paths at 1 (11 · · · 1). In the same way we can easily show that paths in x

which start at 1 and end at 2 are assumed to be single-step paths (11 · · · 12 · · · 2).
We can also assume that paths in x which ends at 1 are flat paths at 1 (11 · · · 1)
or single-step paths (22 · · · 21 · · · 1).

Next we consider a path ω in x which starts and ends at 2. Suppose that ω
is not a flat path at 2. Then there exists 1 < t0 ≤ t1 < T such that s1:t0−1 =
(22 · · · 2), st0 = st1 = 1, st1+1:T = (22 · · · 2). We now suppose that there exists
t0 < t2 < t1 such that st2 = 2. Then by crossing path swapping of ω and a flat
path ω′ at 1, we can transform (ω, ω′) to ω̃ ∈W2∗1∗2 and ω̃′ ∈W1∗2∗1 as follows.

,

↔ , .

Then we can reduce a by applying a type II degree one move to ω̃′. Hence we
can assume that st0:t1 = (11 · · · 1).

Since x(11 · · · 1) > 0, we can apply a crossing path swapping of ω and a flat
path (11 · · · 1), we can transform them to two single-step paths as

,

↔ , .

Therefore we can transform x to x′. In the same way we can show that y is
transformed to y′.

By Lemma 4 we assume that x and y consist of flat paths and single-step
paths only. Now by applying degree 3 sliding moves and adjusting the number
of flat paths at 1 as in Lemma 2, we can adjust the initial frequencies of x and
y. This proves Theorem 1.

4 Concluding remarks

We derived a Markov basis for THMC model without initial parameters (1) for
S = {1, 2} and arbitrary T ≥ 3. The basis consists of moves of degree at most
three and the types of moves are common for all T ≥ 4. For the model (2) we
had similar “finiteness” result in [6] with a Markov basis consisting of moves of
degree at most two.

Each fiber of (2) is a subset of a fiber in (1). This corresponds to the fact
that (1) is a submodel of (2), such that the sufficient statistic for (1) is a linear
function of the sufficient statistic for (2). Type II degree one moves and the
degree 3 sliding moves are needed to connect fibers of (2) in each fiber of (1). It
is of interest to consider other nested toric statistical models and identify moves
which are needed to cross fibers of a larger model within each fiber of a smaller
model.
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