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Holonomic Gradient Descent

and its Application to Fisher-Bingham Integral

Tomonari Sei, Nobuki Takayama, Akimichi Takemura ;
Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara

May 28, 2010

We give a new algorithm to find local maximum and minimum of a holonomic
function and apply it for the Fisher-Bingham integral on the sphere Sn, which is
used in the directional statistics. The method utilizes the theory and algorithms
of holonomic systems.

1 Introduction

The gradient descent is a general method to find a local minimum of a smooth
function f(z1, . . . , zd). The method utilizes the observation that f(p) decreases if
one goes from a point z = p to a “nice” direction, which is usually −(∇f)(p). As
textbooks on optimizations present (see, e.g., [14]), we have a lot of achievements
on this method and its variations.

We suggest a new variation of the gradient descent, which works for real
valued holonomic functions f(z1, . . . , zd) and is a d-variable generalization of
Euler’s method for solving ordinary differential equations numerically and find-
ing a local minimum of the function. We show an application of our method to
directional statistics. In fact, it is our motivating problem to develop the new
method.

A function f is called a holonomic function, roughly speaking, if f satisfies
a system of linear differential equations

`1 • f = . . . = `r • f = 0, `i ∈ D (1)

whose solutions form a finite dimensional vector space. Here, D is the ring
of differential operators with polynomial coefficients C〈z1, . . . , zd, ∂1, . . . , ∂d〉,
∂i = ∂/∂zi.

Let us give a rigorous definition of holonomic function. A multi-valued ana-
lytic function f defined on Cd \V with an algebraic set V is called a holonomic
function if there exists a set of linear differential operators `i ∈ D annihilating
f as (1) such that the left ideal generated by {`1, . . . , `r} in D is a holonomic
ideal (see [13]). The function f is called real valued when a branch of f takes
real values on a connected component of (Cd \ V ) ∩Rd.
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We give an equivalent definition of holonomic function without the notion
of the holonomic ideal ( [16], [11], [13]). A multi-valued analytic function f is
called a holonomic function if f satisfies linear ordinary differential equations
with polynomial coefficients for all variables z1, . . . , zd. In other words, the
function f satisfies a set of ordinary differential equations

ri∑
k=0

aik(z1, . . . , zd)∂
k
i • f = 0, aik ∈ C[z1, . . . , zd], i = 1, . . . , d,

where ∂k
i • f = ∂kf

∂zk
i

. When n = 1, a holonomic function is nothing but a

solution of linear ordinary differential equation with polynomial coefficients. In
this case, a local minimum can be obtained numerically by a difference scheme,
which is called Euler’s method. Readers may think that it will be straight
forward to generalize Euler’s method to d-variables, which we will call holonomic
gradient descent. However, as we will see in this paper, a generalization of
Euler’s method to d-variables requires to utilize the theory, algorithms, and
efficient implementations of Gröbner basis for holonomic systems, which have
been studied recently (see [13] and its references).

In Section 2, we will illustrate holonomic gradient descent precisely. In
Sections 3 and 4, we study the Fisher-Bingham integral as a holonomic function.
The integral is important in the directional statistics. In Section 5, we consider
problems in the directional statistics as applications of Sections 2, 3, and 4. In
the last section 6, we will discuss advantages and disadvantages of our method.

2 Holonomic Gradient Descent

When we are given a Gröbner basis B, a set of monomials S is called the set of
standard monomials of B if it is the set of the monomials which are irreducible
(non-divisible) by B (see, e.g., [4], [15]). Let g(z1, . . . , zd) be a holonomic func-
tion and we suppose that it is annihilated by a holonomic ideal I. Let S be
the set of standard monomials of a Gröbner basis of RI in R, which is a ring of
differential operators with rational function coefficients. We may suppose that
S contains 1 as the first element of S. Since the function g is holonomic, the
column vector of functions G = (si • g | si ∈ S)T satisfies the following set of
linear partial differential equations (see, e.g., [13, p.39]).

∂G

∂zi
= PiG, i = 1, . . . , d. (2)

Note that each equation can be regarded as an ordinary differential equation
with respect to zi with parameters z1, . . . , zi−1, zi+1, . . . , zd. We call the system
of differential equations (2) the Pfaffian system for g. The first entry of G, which
is denoted by G1, is g.

For holonomic functions, we can evaluate the gradient ∇g by normal forms
with respect to a Gröbner basis. Let Fi be the normal form of ∂i by a Gröbner
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basis of RI in R. Then, Fi can be written as
∑

sj∈S aijsj modulo RI where

aij ∈ C(z1, . . . , zd). Therefore, we have ∂i•g =
∑

sj∈S aij(sj•g), and then∇g =

(aij)G. This enables us to apply the standard gradient descent for holonomic
functions as in the following algorithm.

Algorithm 1 Let ε > 0 be a small number.

1. Obtain a Gröbner basis of RI in R and the set of standard monomials S
of the basis.

2. Compute the matrices Pi in (2) by the normal form algorithm and the
Gröbner basis and the set of standard monomials.

3. Compute the normal form Fi of ∂i by a Gröbner basis of RI in R and
determine the matrix (aij). (Apply the normal form algorithm, which is
also called the division algorithm or the reduction algorithm, for ∂i in R.
See, e.g., [15].)

4. Take a point c as a starting point and evaluate numerically G at z = c.
Denote the value by Ḡ and put e = c.

5. Evaluate the approximate value (aij(e))Ḡ of the gradient g̃ = ∇g at e. If
g̃ = 0, then stop.

6. Put e← e− εg̃ (move to e− εg̃).

7. Obtain the approximate value Ḡ of G at z = e by solving numerically
([10]) the Pfaffian system (2). Goto 5.

Holonomic functions are holomorphic out of the singular locus of the sys-
tem of differential equations. We can apply known convergence criteria to this
algorithm (see, e.g., [14]).

We suggest the second algorithm to find a local minimum (resp. maximum)
of the holonomic function g in the domain E = [a1, b1]×· · ·× [ad, bd]. Although
it is an analogous method and is less sophisticated than the Algorithm 1, it is
faster in our applications discussed in the Section 5. We denote by εei a small
vector (0, . . . , 0, ε, 0, . . . , 0), ε > 0 in Rd.

Algorithm 2

1. Obtain a Gröbner basis of RI in R and a set of standard monomials S of
the basis.

2. Compute the matrices Pi in (2) by the normal form algorithm and the
Gröbner basis and the set of standard monomials.

3. Take a point c in E as a starting point and evaluate numerically G at
z = c. Denote the value by Ḡ and put e = c.
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4. Compute the approximate value Ḡ±i of G at z = e ± εei by a difference
scheme Ḡ±i = S(Ḡ(e), Pi(e), e,±ε). We evaluate it for all index i and the
sings + or − as long as the point e± εei lies in the domain E.

5. Choose the index i and the sign + or − so that (Ḡ±i)1 is the minimum
(resp. maximum) in {(Ḡ±j)1 (j = 1, . . . , d), Ḡ(e)1}. If there is no such
index, then stop and return the z value e and the first element Ḡ(e)1 of
the vector Ḡ(e). If i and ? are such index and sign, then put e = e ? εei
and G(e) = G?i. Go to 4.

We denote by z(i1,...,id) the (i1, . . . , id)-th grid point in the domain E with

the meshsize ε. In other words, we put z(i1,...,id) = (a1, . . . , ad) +
∑d

k=1 ikekε.
Let ḡ(z(i1,...,id)) be the value of g at the grid point z(i1,...,id) obtained by the
difference scheme S. We are interested in the question whether e gives a local
minimum point. The next theorem gives an answer to this question.

Theorem 1 Suppose that the approximate values of g converge in the order
more than 2. In other words, we have

|ḡ(z(i1,...,id))− g(z(i1,...,id))| ≤Mεp, p ≥ 3 (3)

uniformly on E. Let z = e be the output grid point of the Algorithm 2. Then,
there exists a non-negative constant δ such that the point e lies in the domain

d∩
i=1

({
z ∈ E

∣∣∣∣ ∣∣∣∣ ∂g∂zi (z)
∣∣∣∣ ≤ δ

}
∩
{
z ∈ E

∣∣∣∣ ∂2g

∂z2i
(z) ≥ −δ

})
.

The constant δ converges to 0 when ε→ 0.

Proof . We denote by g(z(i1,...,id)) the value of g at the grid point z =
z(i1,...,id) and by ḡ(z(i1,...,id)) the approximate value of g at the grid point z =
z(i1,...,id) obtained by the difference scheme S. It follows from the assumption
that we have the estimate

ε−1(g(e+ εei)− g(e))

= ε−1 ((g(e+ εei)− ḡ(e+ εei)) + (ḡ(e+ εei)− ḡ(e)) + (ḡ(e)− g(e)))

≥ −2Mεp−1

and
ε−1(g(e− εei)− g(e)) ≥ −2Mεp−1.

Since ε−1(g(e+ εei)− g(e)), which is ≥ −2Mεp−1, and −ε−1(g(e− εei)− g(e)),
which is ≤ 2Mεp−1, converge to ∂g

∂zi
(e), we conclude that the value of the partial

derivative of g at z = e stays in a neighborhood of 0.

Let us proceed on an estimation of ∂2g
∂2zi

, which is approximated by ε−2(g(e+
εei)− 2g(e) + g(e− εei)). This is estimated as follows.

ε−2(g(e+ εei)− 2g(e) + g(e− εei))
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= ε−2(g(e+ εei)− g(e) + g(e− εei)− g(e))

= ε−2((g(e+ εei)− ḡ(e+ εei)) + (ḡ(e+ εei)− ḡ(e)) + (ḡ(e)− g(e))

+(g(e− εei)− ḡ(e− εei)) + (ḡ(e− εei)− ḡ(e)) + (ḡ(e)− g(e)))

≥ −4Mεp−2

Therefore, we can see that the second partial derivative of g at z = e is bounded
from below by a small constant −δ. Q.E.D.

The assumption (3) is satisfied when we use the 4th order Runge-Kutta
method and Pi(z) are holomorphic on E. In this case, p = 4.

We note that the approximate minimal point z = e does not always converge
to a point. For example, suppose that g(z1, z2) = (z2−z1)2 and E = [0, 1]×[0, 1].
Then, the minimum of this function is attained on z2 = z1 and the approximate
minimal point z = e will stay in a neighborhood of this line, but it might not
converge to a point.

It is easy to generalize the algorithm for holonomic function which satisfies
inhomogeneous holonomic system.

Remark 1 In our implementation, we do not evaluate new G for all directions.
If the direction ei is chosen, then we move to the direction as long as g decreases
to the direction ei. Because Pk is usually a matrix of a huge size and the
computational cost of restricting the variables zj , j 6= i in Pk to numbers is
extremely high. The standard gradient descent moves from the point p to the
direction −∇g. Our method does not use this direction because it requires the
evaluation of new G for all directions.

The holonomic gradient descent is Euler’s method when the number of vari-
ables is 1. In applications, the function to minimize is often given as a definite
integral with parameters, for which we can utilize algorithms for holonomic sys-
tems to find a differential equation. We revisit this example in the Algorithm
3.

Example 1 d = 1. g(x) = exp(−x + 1)
∫∞
0

exp(xt − t3)dt. The function g(x)
satisfies the differential equation (3∂2

x +6∂x +(3−x)) • g = exp(−x+1), which
can be obtained by an integration algorithm for D-modules [8]. The holonomic
rank is 2 and we use a set of standard monomials S = {1, ∂x} and we have

dG

dx
=

(
0 1

(−3 + x)/3 −2

)
G+

(
0

exp(−x+ 1)/3

)
This system is obtained by the normal form algorithm in the ring R [12]. We
evaluate G(0) = (g(0), g′(0))T by a numerical integration method; Ḡ(0) =
(2.427,−1.20)T . We apply the holonomic gradient descent in D = [0, 5] with
ε = 0.1 and the 4th order Runge-Kutta method and obtain x = e = 3.4 and
g(e) = 1.016 as the minimum in this domain.
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3 Fisher-Bingham Integral on Sn

We denote by Sn(r) the n-dimensional sphere with the radius r in the n + 1
dimensional Euclidean space. Let x be a (n + 1) × (n + 1) symmetric matrix
and y a row vector of length n + 1. We are interested in the following integral
with the parameters x, y, r.

F (x, y, r) =

∫
Sn(r)

exp(tTxt+ yt)|dt| (4)

Here, t is the column vector (t1, . . . , tn+1)
T and |dt| is the standard measure

on the sphere. For example, in case of n = 1, the measure |dt| is rdθ in the
polar coordinate system t1 = r cos θ, t2 = r sin θ. We call the integral (4) the
Fisher-Bingham integral on the sphere Sn(r).

We denote by xii the i-th diagonal entry of the matrix x and by xij/2 the
(i, j)-th entry (or (j, i)-th entry) of the matrix x. Then, we can regard the
function (the Fisher-Bingham integral) F (x, y, r) as the function of xij (1 ≤ i ≤
j ≤ n+ 1) and yi (1 ≤ i ≤ n+ 1) and r.

Theorem 2 The Fisher-Bingham integral F (x, y, r) is a holonomic function.

Proof . We will prove it for n = 1 to avoid complicated indices. The cases
for n > 1 can be shown analogously.

Put x1 = r cos θ, x2 = r sin θ (the polar coordinate system). Then, the

invariant measure |dt| is written as rdθ. Therefore, F (x, y, r) =
∫ 2π

0
eg(x,y,r,θ)rdθ

where g(x, y, r, θ) = x11r
2 cos2 θ + x12r

2 cos θ sin θ + x22r
2 sin2 θ + y1r cos θ +

y2r sin θ. If we put s = tan θ
2 , then sin θ = 2s/(s2+1) and cos θ = (1−s2)/(s2+1)

and dθ = 2
1+s2 ds (rational representation of trigonometric functions). Then, the

integral F (x, y, r) can be written as∫ ∞

−∞
h(x, y, r, s)ds, h = eg̃(x,y,r,s)

2

1 + s2

where g̃ is a rational function in x, y, r, s. It is known that the exponential of a ra-
tional function is a holonomic function and the product of holonomic functions is
a holonomic function, then the integrand is a holonomic function in x, y, r, s (see,
e.g., [10] and [11]). By Lemma 1 in the Appendix, there exists a differential
operator `(x, y, r, ∂xij ) − ∂s`1(x, y, r, ∂xij , ∂s) depending only on x, ∂xij , y, r, ∂s
which annihilates the integrand h. Therefore, we have `•F (x, y, r) = [`1 •h]∞−∞.
Since we can show that ∂m

xij
∂n
s • h is a finite holonomic function at s = ±∞

for any non-negative integers m and n, the function F (x, y, r) is annihilated
by an ordinary differential operator of ∂xij with parameters x, y, r. The exis-
tence of annihilating ordinary differential operators with respect to ∂yi and ∂r
can be shown analogously. This existence implies that F (x, y, r) is a holonomic
function (see, e.g., [16, Theorem 2.4]). Q.E.D.
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4 Holonomic system for the Fisher-Bingham In-
tegral

In Example 1, we obtained a differential equation for the definite integral with
parameters by a D-module algorithm. This algorithm works for any definite
integral with a holonomic integrand, however, it requires huge computational
resources. For the Fisher-Bingham integral, we can obtain a holonomic system
of differential equations for the case of n = 1 by our computer program. The
case of n = 2 is not feasible by our program. We obtain the following result for
general n by utilizing an invariance of the Fisher-Bingham integral.

Theorem 3 The function F (x, y, r) is annihilated by the following system of
linear partial differential operators.

∂xij − ∂yi∂yj , (i ≤ j) (5)

n+1∑
i=1

∂xii − r2, (6)

xij∂xii
+ 2(xjj − xii)∂xij

− xij∂xjj
+

∑
k 6=i,j

(xjk∂xik
− xik∂xjk

)

+yj∂yi − yi∂yj , (i < j, xk` = x`k), (7)

r∂r − 2
∑
i≤j

xij∂xij −
∑
i

yi∂yi − n. (8)

We note that operators of the form (5) can be written as

∂u − ∂v, Au = Av, u, v ∈ N(n+1)(n/2+2).

Here, A is the support matrix of the polynomial tTxt+yt with respect to t. For
example, in case of n = 1, the polynomial is x11t

2
1+x12t1t2+x22t

2
2+y1t1+y2t2

and the matrix A is

A =

(
2 1 0 1 0
0 1 2 0 1

)
of which column vectors stand for supports of the polynomial respectively.

Proof . Denote by g(x, y, t) = exp(tTxt + yt) the integrand of (4). The
operator ∂xij − ∂yi∂yj annihilates g(x, y, t) because (∂xij − ∂yi∂yj ) • g = (titj −
titj)g = 0. On the sphere Sn(r), we have an identity

∑n+1
i=1 t2i = r2. Hence∑n+1

i=1 ∂xii − r2 annihilates g(x, y, t) for t ∈ Sn(r).
Let us prove (7). By the invariance of the measure |dt| with respect to the

orthogonal group, we have F (PxPT , yPT , r) = F (x, y, r) for any orthogonal
transformation P on Sn(r). Let In+1 be the (n+1)×(n+1) identity matrix and
eij be an (n+1)×(n+1) matrix whose (k, l)-th entry (eij)kl is 1 if (i, j) = (k, l)

and 0 else. Put P =

(
cos ε − sin ε
sin ε cos ε

)
⊕ In−1. This is an (n + 1) × (n + 1)

7



orthogonal matrix and we have P = In+1+ ε(e12− e21)+O(ε2). Hence we have

PxPT = (I + ε(e12 − e21))x(I + ε(e21 − e12)) +O(ε2)

= x+ ε(e12x− e21x+ xe21 − xe12) +O(ε2)

= x+ ε
∑
i≤j

fij(x)(eij + eji)/2 +O(ε2),

where

fij(x) =



x12 if i = j = 1,
2(x22 − x11) if i = 1, j = 2,
−x12 if i = j = 2,
x2j if i = 1, j ≥ 3,
−x1j if i = 2, j ≥ 3,
0 if j ≥ i ≥ 3,

and
yPT = y + ε ( y2 −y1 0 ) +O(ε2).

Differentiating the identity F (PxPT , yPT , r)− F (x, y, r) = 0 by ε, we obtain

0 =

∑
i≤j

fij(x)∂xij + y2∂y1 − y1∂y2

 • F +O(ε).

Taking the limit ε → 0, we have (7) with i = 1 and j = 2. By symmetry we
have (7) for any i < j.

Finally we differentiate the identity ρnF (ρ2x, ρy, r) = F (x, y, ρr) by ρ and
take the limit ρ→ 1. Then, we obtainn+ 2

∑
i≤j

xij∂xij +
∑
i

yi∂yi

 • F = r∂r • F

This shows that F is annihilated by (8). Q.E.D.

Example 2 When n = 1, the system is written as follows.

∂x11 − ∂2
y1
, ∂x12 − ∂y1∂y2 , ∂x22 − ∂2

y2
,

∂x11 + ∂x22 − r2,

x12∂x11
+ 2(x22 − x11)∂x12 − x12∂x22 + y2∂y1 − y1∂y2 ,

r∂r − 2(x11∂x11 + x12∂x12 + x22∂x22)− (y1∂y1 + y2∂y2)− 1.

Example 3 When n = 2, the system is written as follows.

∂x11 − ∂2
y1
, ∂x12 − ∂y1∂y2 , ∂x13 − ∂y1∂y3 ,

∂x22 − ∂2
y2
, ∂x23 − ∂y2∂y3 , ∂x33 − ∂2

y3
,

∂x11 + ∂x22 + ∂x33 − r2,
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x12∂x11
+ 2(x22 − x11)∂x12

− x12∂x22
+ x23∂x13

− x13∂x23
+ y2∂y1

− y1∂y2
,

x13∂x11 + 2(x33 − x11)∂x13 − x13∂x33 + x23∂x12 − x12∂x23 + y3∂y1 − y1∂y3 ,

x23∂x22 + 2(x33 − x22)∂x23 − x23∂x33 + x13∂x12 − x12∂x13 + y3∂y2 − y2∂y3 ,

r∂r − 2(x11∂x11 + x12∂x12 + x13∂x13 + x22∂x22 + x23∂x23 + x33∂x33)

−(y1∂y1 + y2∂y2 + y3∂y3)− 2.

Let R be the ring of differential operators with rational function coefficients.

Proposition 1 1. The operators given in Theorem 3 generate a holonomic
ideal in case of n = 1 and n = 2.

2. The holonomic rank of the system for n = 1 is 4. A set of standard
monomials in R is

1, ∂y1 , ∂y2 , ∂r.

3. The holonomic rank of the system for n = 2 is 6. A set of standard
monomials in R is

1, ∂r, ∂y3 , ∂y2 , ∂y1 , ∂x33 .

The proposition can be shown by a calculation on a computer with applying
algorithms for holonomic systems [18, toc.html], [13].

We conjecture that the system of operators given in Theorem 3 generates a
holonomic ideal in D.

5 Computational Results

Let us apply the holonomic gradient descent to minimize a holonomic function

F (x, y, 1) exp

− ∑
1≤i≤j≤n

Sijxij −
∑
i

Siyi

 (9)

with respect to x and y for given data ((Sij)i≤j , (Si)). Here F (x, y, 1) is the
Fisher-Bingham integral (4) with r = 1.

First we describe the background in statistics. This paragraph can be
skipped for the reader interested only in computational results. The Fisher-
Bingham family on the sphere Sn(1) is defined by the set of probability density
functions

p(t|x, y) = F (x, y, 1)−1 exp(t>xt+ yt) (10)

with respect to the standard measure |dt| on Sn(1). Since
∫
Sn(1)

p(t|x, y)|dt| = 1,

the function p(t|x, y) is actually a probability density function. We note that
the parameter x has redundancy. In fact, for any real number c the den-
sity function p(t|x + cI, y) is equal to p(t|x, y), where I denotes the identity
matrix. A sample refers to a set of points {t(1), . . . , t(N)} on Sn(1), where
N ≥ 1 is called the sample size. Assume that the sample is distributed accord-
ing to

∏N
ν=1 p(t(ν)|x, y) (independently identically distributed). To estimate
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the unknown parameter (x, y) from the sample is a main problem in statis-
tics. An established method is the maximum likelihood method (MLE) that

maximizes a function
∏N

ν=1 p(t(ν)|x, y) with respect to (x, y). The MLE is

equivalent to minimize the function (9) with Sij = N−1
∑N

ν=1 ti(ν)tj(ν) and

Si = N−1
∑N

ν=1 ti(ν). It is known that the logarithm of (9) is convex (see e.g.
[2]) and therefore a local minimum at an interior point is actually the global
minimum. Although gradient systems on probability families for optimization
are considered by [7], difficulty of computing the integral F is not taken into
account. See [6] for details on the Fisher-Bingham family and other probability
families on the sphere. We test two examples, astronomical data and magnetism
data. The astronomical data consist of the locations of 188 stars of magnitude
brighter than or equal to 3.0. The data is available from the Bright Star Cat-
alog (5th Revised Ed.) distributed from the Astronomical Data Center. The
magnetism data is analyzed in [3] and [5].

The data and programs to test the following examples can be obtained
from [18]. Please look up the instruction in the files fb-demo-0.txt and
fb-demo-1.txt.

Astronomical data: We consider the problem to minimize

F (x, y, 1) exp

− ∑
1≤i≤j≤3

Sijxij −
∑
i

Siyi


on

(x11, x12, x13, x22, x23, x33, y1, y2, y3)

∈ [−30, 10]× [−30, 10]× [−30, 10]× [−30, 10]× [−30, 20]× [−30,−0.01]
×[−30,−0.01]× [−30,−0.001]× [−30, 10]

where

(S11, S12, S13, S22, S23, S33, S1, S2, S3)

= (0.3119, 0.0292, 0.0707, 0.3605, 0.0462, 0.3276,−0.0063,−0.0054,−0.0762).

The result is that the minimum 11.68573121328159669 is taken at

x =

 −0.161 0.3377/2 1.1104/2
0.3377/2 0.2538 0.6424/2
1.1104/2 0.6424/2 −0.0928

, y = (−0.019,−0.0162,−0.2286) with

the grid size 0.05 and the 4th order Runge-Kutta method (see Fig. 1), where the
values near the border are underlined. A starting point is found by a quadratic
approximation of F (x, y, 1), which is exactly calculated from the moments of
the uniform distribution on the sphere, and solving the optimization problem
for the quadratic polynomial.

We pose the conditions x33 ≤ −0.01, y1 ≤ −0.01 and y2 ≤ −0.001, because
the variety x33 = y1 = y2 = 0 lies in the singularity of the Pfaffian system. The
optimal point is found near x33 = y1 = y2 = 0 and the point is in the interior of
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Figure 1: Graph of the target function with varying x12 and x13 around the
minimal point for astronomical data.

the domain with the restriction y1 = −0.019 and y2 = −0.0162, which do not
change from the starting values.

We briefly discuss the statistical meaning of the result. The spectral decom-
position of x is x =

∑3
i=1 λiziz

T
i with

(λ1, λ2, λ3) = (0.7047,−0.0103,−0.6944)

and

(z1, z2, z3) =

−0.5063 0.5055 0.6987
−0.6181 −0.7777 0.1148
−0.6014 0.3737 −0.7061

 .

From the decomposition the density function (10) is high around ±z1 and low
around ±z3. The effect of y is small because |y| = 0.230 is smaller than |λi|’s.

Magnetism data
We consider the problem to minimize

F (x, y, 1) exp

− ∑
1≤i≤j≤3

Sijxij −
∑
i

Siyi


on

(x11, x12, x13, x22, x23, x33, y1, y2, y3)

11



∈ [−30, 30]× [−30, 30]× [−30, 30]× [−30, 30]× [−30, 30]× [−30,−0.01]
×[−30, 30]× [−32,−0.001]× [−30, 32]

where

(S11, S12, S13, S22, S23, S33, S1, S2, S3)

= (0.045,−0.075, 0.014, 0.921,−0.122, 0.034, 0.082,−0.959, 0.131).

The result is that the minimum 0.4373096253840751950 is taken at

x = xo =

 7.065 −0.032/2 3.422/2
−0.032/2 5.339 24.922/2
3.422/2 24.922/2 −13.693

, y = (1.642,−31.99, 31.992)

with the grid size 0.01 and the 4th order Runge-Kutta method. Although y2
and y3 are on the border with this grid size, we can observe that the change
of the target value is relatively small, when we enlarge the domain. In fact,
we started the holonomic gradient descent from the optimal point, obtained by
Wood’s method [17], [18, toc.html], which is

x =

 5.985 8.478/2 2.902/2
8.478/2 6.869 16.732/2
2.902/2 16.732/2 −12.853

, y = (9.762,−28.770, 24.142). The op-

timal value of the target function is 0.4421940620633763292. If we restart the
holonomic gradient descent from the point xo by recalculating the integral val-
ues, we get a new optimal point and the target value changes only about 10−5.
Since the significant figures of the given data Sij , Si are 2 digits, we may con-
clude that there seems to be a variety which gives the optimal value of the target
function. Our method finds a point in the variety and moves in the variety.

6 Comparison with Other Methods

The statistical problems considered in Section 5 can be solved by a different
method. A. T. A. Wood [17] expressed the Fisher-Bingham integral of the case
n = 2 as a single integral with the integrand expressed by a modified Bessel
function. He gives a method to solve a minimization problem equivalent to
our problem (9) based on this single integral representation. We implement his
method by the statistical computing system R and obtain analogous computa-
tional results with us. The program is obtainable from [18, toc.html].

Although our two statistical problems can be solved by his different method,
the advantage of our approach is that the holonomic gradient descent can be
applied to a broad class of maximum likelihood problems. Let us illustrate our
algorithm in the most general form.

Algorithm 3 (Holonomic gradient descent in the most automatic form)
Input: a definite integral F (x) =

∫
C
f(x, t)dt with parameters x = (x1, . . . , xn)

where f(x, t) is a holonomic function of which annihilating ideal is J .
A holonomic function g(x) of which annihilating ideal is J ′.
Output: An approximate local minimum of g(x)F (x) if the algorithm does not
fail.

12



1. Apply integration algorithms for the holonomic ideal J (see, e.g., [1], [8],
[9], [10], [13] and their references) to find a holonomic ideal

∫
J annihi-

lating the function F (x). We note that these algorithms require some
conditions for the domain of the integration C. If C does not satisfy these
conditions, the algorithm fails.

2. Obtain a holonomic ideal I which annihilates g(x)F (x) from
∫
J and J ′

(see, e.g., [16], [10]).

3. Apply Algorithm 1 or Algorithm 2 for I where starting values of F (x)
and its derivatives are computed by a numerical integration method. If
we have a numerical difficulty in these algorithms, the algorithm fails.

Example 1 illustrates this algorithm in the simplest form. The algorithm
3 works for a broad class of problems including the Fisher-Bingham integral,
but we have several computational bottlenecks. For example, the step 1 (the
integration algorithm) for the Fisher-Bingham integral can be easily performed
in the case of n = 1 by our implementations, but the case n = 2 requires huge
memory space and we could not finish the computation. In order to avoid this
difficulty, we perform the step 1 of Algorithm 3 by hand as Section 4.

7 Appendix: Introduction to Holonomic Ideals

Although we want to suppose people with different disciplines as readers of this
paper, the theory and algorithms for holonomic ideals are not very popular and
there is no introductory text for these subjects. We will present an introductory
overview on holonomic ideals and algorithms for them (see [13] and its references
for proofs and original articles). This appendix is independent of the main text,
but it will help to read the main text.

We denote byD the ring of differential operators with polynomial coefficients

D = C〈x1, . . . , xd, ∂1, . . . , ∂d〉,

which is also called the Weyl algebra. This is an associative non-commutative
ring and xi and ∂j have the commuting relations

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i + δij

where δij is Kronecker’s delta. Elements in D are often expressed by using

the multi-index notation such as xα∂β =
∏d

i=1 x
αi
i

∏d
i=1 ∂

βi

i . By utilizing the
commuting relations, any element of D can be transformed into the normally
ordered form

∑
(α,β)∈E cαβx

α∂β . For example, the normally ordered form of

∂1x1∂1 is x1∂
2
1 + ∂1. Elements of D acts for function f(x1, . . . , xd) by

xα∂β • f = xα ∂|β|f

∂xβ1

1 · · · ∂x
βd

d

13



where we denote by • the action.
Let us introduce one more important ring R, which we call the ring of dif-

ferential operators with rational function coefficients,

R = C(x1, . . . , xd)〈∂1, . . . , ∂d〉

where we denote by C(x1, . . . , xd) the field of rational functions in x1, . . . , xd.
This is also an associative non-commutative ring and the commuting relations
are ∂i∂j = ∂j∂i and ∂ia(x) = a(x)∂i +

∂a
∂xi

for a(x) ∈ C(x1, . . . , xd).
The theory of Gröbner basis (see, e.g., [4]) can be easily generalized in D

and R as long as orders satisfy some conditions. Since we do not need consider
general orders, we fix the order to the graded reverse lexicographic order ≺
among monomials ∂β in the sequel. In case of d = 2, we have

1 ≺ ∂2 ≺ ∂1 ≺ ∂2
2 ≺ ∂1∂2 ≺ ∂2

1 ≺ · · · .

Let us explain some facts about Gröbner bases in R, which are used in this
paper. For f ∈ R, the leading term (the initial term) with respect to ≺ is de-
noted by in≺(f) and we regard this element as an element inC(x1, . . . , xd)[ξ1, . . . , ξd]
where ξi and xj commute each other. For example, when f = (x1 + x2)∂

2
1∂2 +

(x4
2 +1)∂2, we have in≺(f) = (x1 +x2)ξ

2
1ξ2. We say that a(x)ξβ divides b(x)ξβ

′

when βi ≤ β′
i for all i. We call the following algorithm the normal form algo-

rithm (the division algorithm).

Algorithm 4
Input: f , G = {g1, . . . , gm}
Output: r (normal form) and q1, . . . , qm such that f =

∑m
i=1 qigi + r in R,

f � qigi, and in≺(gi) does not divide any term of r for all i.

1. r ← 0, qi ← 0.

2. Call wNormalForm(f,G). We suppose that the output is r′, q′1, . . . , q
′
m.

3. f ← r′ − in≺(r
′), r ← r + in≺(r

′), qi ← qi + q′i. If f = 0, then return
r, q1, . . . , qm else goto 2.

Algorithm 5 (wNormalForm(f,G))

1. r ← f , qi ← 0

2. If there exists i such that in≺(gi) divides in≺(r) then
r ← r−c(x)∂βgi where c(x)∂

β is chosen so that in≺(r)−c(x)ξβ in≺(gi) = 0.
qi ← qi + c(x)∂β .
else return r, q1, . . . , qm.

3. goto 2.
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Example 4 We compute the formal form of f = ∂1∂
3
2 by g1 = ∂1∂2 + 1,

g2 = 2x2∂
2
2 − ∂1 + 3∂2 + 2x1. Since we have

∂1∂
3
2 − ∂2

2g1 = −∂2
2

−∂2
2 +

1

2x2
g2 =

1

2x2
(−∂1 + 3∂2 + 2x1) =: f∗,

the normal form is f∗ and q1 = ∂2
2 and q2 = − 1

2x1
. We note that the set {g1, g2}

is a system of differential operators for the Bessel function in 2 variables (see,
e.g., [10]).

Let I be a left ideal in R. A finite set G = {g1, . . . , gm}, gi ∈ R is
called a Gröbner basis of I with respect to ≺ when 〈in≺(g1), . . . , in≺(gm)〉 =
〈in≺(f) | f ∈ I〉. Here, 〈h1, . . . , hm〉 is the set

∑m
i=1 C(x1, . . . , xd)[ξ1, . . . , ξd]hi,

which is the ideal generated by h1, . . . , hm in C(x1, . . . , xd)[ξ1, . . . , ξd]. Al-
though, we use 〈, 〉 to specify the generators of non-commutative rings D and R,
we also use the notation 〈h1, . . . , hm〉 to denote the ideal generated by h1, . . . , hm

here. It might be a little confusing, but the meaning will be clear in the context.
A Gröbner basis can be obtained by the Buchberger algorithm. The proof is
analogous with the case of the ring of polynomials (see, e.g., [4, Chapter 2]).

Let G a Gröbner basis. The element ∂β is called a standard monomial
when none of in≺(g), g ∈ G divides ξβ . The normal form is a sum of standard
monomials over C(x1, . . . , xd).

Example 5 This is a continuation of the previous example. Put g3 = ∂2
1 −

3∂1∂2 − 2x1∂1 + 2x2∂2 − 2. Then, the set {g1, g2, g3} is a Gröbner basis of the
left ideal in R generated by g1 and g2. The set of the standard monomials is
{1, ∂1, ∂2}.

The output r of the normal form algorithm depends on what index i we
choose in the step 2 in the algorithm wNormalForm.

Theorem 4 If G is a Gröbner basis of I, then the normal form r is unique.

Proof . Suppose that we have two different normal forms r1 and r2. Since
we have r1 − r2 ∈ I, in≺(r1 − r2) is divisible by an in≺(gi) by the definition of
Gröbner basis. But it contradicts to that ri is a sum of standard monomials
over C(x1, . . . , xd). Q.E.D.

When the number of the standard monomials is finite, the ideal I is called
a zero-dimensional ideal . It follows from Theorem 4 that the number is equal
to the dimension of R/I as the vector space over C(x1, . . . , xd) (see, e.g., [4,
Chapter 5]). It implies that the number of the standard monomials does not
depend on Gröbner bases.

We call c(x)∂β , 0 6= c(x) ∈ C(x1, . . . , xd), a non-monic standard monomial
when ∂β is a standard monomial. Let S = {s1 = 1, s2, . . . , sp} be a set of
(independent) non-monic standard monomials of the Gröbner basis G such that
p = ]S = dimC(x1,...,xd) R/RG. Put Q = (si • g | si ∈ S)T . In order to apply
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holonomic gradient descent, we need to compute the p × p matrix Pi in the
Pfaffian equations

∂Q

∂zi
= PiQ, i = 1, . . . , d.

which is (2) in the main text. To obtain the matrix Pi, we apply the normal
form algorithm to ∂isj . Then, the coefficient of the normal form of ∂isj with
respect to sk is the (j, k)-th element of Pi. This is the step 2 of the Algorithm
1 in the main text.

Example 6 This is a continuation of the previous example. We choose S =
{1, x1∂1, x2∂2}. Then, we obtain

P1 =

 0 1
x 0

−x 2x2+1
x −2x

−y 0 0

 , P2 =

 0 0 1
y

−x 0 0

−x
1
2

x

−1
2

y


where x = x1 and y = x2. We can utilize several packages to perform this
computation. Among them, we use the package “yang” [12] on Risa/Asir1,
because it can perform a large scale computation, which is required in our
applications. The code to obtain the result above is

import("yang.rr");

def ex1() {

yang.define_ring([x,y]);

L1=dx*dy+1;

L2=dx^2-2*x*dx+2*y*dy+1;

L3=2*y*dy^2+3*dy-dx+2*x;

L=[L1,L2,L3];

L=yang.util_pd_to_euler(L,[x,y]);

L=map(nm,L);

L=map(dp_ptod,L,[dx,dy]);

G=yang.buchberger(L);

S1=yang.constant(1);

Sx=yang.operator(x);

Sy=yang.operator(y);

Base=[S1,Sx,Sy];

Pf=yang.pfaffian(Base,G);

return Pf;

}

ex1();

We need no application of the normal form algorithm for the step 3 of Al-
gorithm 1 in this example. In fact, we have ∂1 = 1

x1
s2 and ∂2 = 1

x2
s2. Then,

the matrix (aij) is

(
0 1

x1
0

0 0 1
x2

)
.

We call a function F a holonomic function when it satisfies ordinary differ-
ential equations for all variables. In other words, F satisfies

ri∑
k=0

aik(x1, . . . , xd)∂
k
i • F = 0, aik ∈ C[x1, . . . , xd], i = 1, . . . , d. (11)

1http://www.openxm.org
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The set of operators in R which annihilate a function F is a left ideal in R. In
fact, if `1 •F = `2 •F = 0, then we have (`1+ `2) •F = 0, and if ` •F = 0, then
(h`) •F = 0 for all h ∈ R. We denote the set by AnnRF . When the function F
is holonomic, AnnRF contains ordinary differential equations (11). Therefore,
the number of standard monomials of a Gröbner basis of AnnRF is less than or
equal to

∏d
i=1 ri. In other words, we have dimC(x1,...,xd) R/AnnRF ≤

∏d
i=1 ri.

Conversely, we have the following theorem.

Theorem 5 Let I be a left ideal in R. If m := dimC(x1,...,xd)R/I is finite, then
the left ideal I contains ordinary differential operators for all variables.

Proof . 1, ∂i, ∂
2
i , . . . , ∂

m
i are linearly dependent in R/I, which we regard as a

vector space over C(x1, . . . , xd). This implies that there exist rational functions
ck(x) such that

∑m
k=0 ck(x)∂

k
i ∈ I. Q.E.D.

This theorem is an analogy of the elimination theorem. The elimination in
R can be done by an analogous method in case of the ring of polynomials (see,
e.g., [4, Chapter 3]).

We have worked in the ring R. If we need to consider integrals of F , we
need the theory and algorithms for the Weyl algebra D. Let us proceed on a
discussion on D.

We first note that we can easily generalize the Gröbner basis theory for term
orders ≺ in D. For example, in case of d = 2, the Gröbner basis theory works
for the graded reverse lexicographic order such that 1 ≺ x1 ≺ x2 ≺ ∂1 ≺ ∂2 ≺
x2
1 ≺ · · ·. We note that for advanced algorithms like integration algorithms ([9],

[8])) in D non-term orders are needed (see, e.g., [13, Chapter 1]).
We introduce the notion of a holonomic ideal. Let Fk be the set of elements

in D of which order is less than or equal to k. In other words, Fk is a C-vector
space spanned by xα∂β , |α| + |β| ≤ k. {Fk} is called the Bernstein filtration.
A left ideal I in D is called a holonomic ideal when dimCFk/Fk ∩ I = O(kd)
for sufficiently large numbers k. The quotient D/I is called a holonomic D-
module when I is a holonomic ideal. We note that the dimension agrees with
the number of standard monomials of total degree less than or equal to k with
respect to a Gröbner basis of I by the graded reverse lexicographic order (see,
e.g., [4, Chapter 9]).

Lemma 1 Let I be a holonomic ideal in the ring of differential operators D =
C〈x1, . . . , xd, ∂1, . . . , ∂d〉. We choose a set of d+ 1 variables from the set
{x1, . . . , xd, ∂1, . . . , ∂d} and denote it by V . Then, the elimination ideal I∩C〈V 〉
contains a non-zero element.

Proof . Consider the C-linear map

ρk : C〈V 〉 ∩ Fk 3 ` 7→ [`] ∈ Fk/Fk ∩ I

The dimension of the C-vector space C〈V 〉 ∩ Fk is
(
d+1+k
d+1

)
= O(kd+1). On the

other hand, we have dimC Fk/Fk ∩ I = O(kd) because I is a holonomic ideal.
Since dimC Im ρk = dimC C〈V 〉∩Fk−dimC Ker ρk, we conclude that the vector
space Ker ρk contains a non-zero element. Q.E.D.
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When I is a holonomic ideal, the number of standard monomials is infinite in
general. It is natural to ask if there is a zero-dimensional ideal in D. However,
the following theorem claims that the holonomic ideals are biggest ideals and
there is no zero-dimensional ideal in D

Theorem 6 (Bernstein inequality) Let I be a left ideal in D. Suppose that I 6=
D. There exists a constant p such that dimCFk/Fk ∩ I = O(kp) for sufficiently
large k and the inequality p ≥ d holds.

Let us explain a relation of a holonomic ideal in D and the zero dimensional
ideal in R. For a left ideal I in D, put RI = {

∑
finite sum rifi | ri ∈ R, fi ∈ I}.

This is a left ideal in R. It follows from the Lemma 1 that if I is a holonomic
ideal, then I contains ordinary differential operators for all variables and RI is
a zero-dimensional ideal. Conversely, we have the following theorem.

Theorem 7 If J is a zero-dimensional ideal in R, then J ∩D is a holonomic
ideal in D.

An elementary proof of this fact is found in the appendix of [16]. We em-
phasize that when we are given a set of generators of J , it is not easy to find
generators of J∩D. The ideal J∩D is called the Weyl closure of J . An algorithm
to construct this closure is given by H. Tsai (Algorithms for associated primes,
Weyl closure, and local cohomology of D-modules. Lecture Notes in Pure and
Appl. Math., 226, 169–194, Dekker, New York, 2002). For algorithms in D,
we often require that inputs are holonomic. However, even finding a holonomic
subideal of J ∩ D requires a high complexity. It often makes computational
bottlenecks.

Example 7 We consider the function f(x, y, z) = exp(1/g) where g = x3 −
y2z2. The function f is annihilated by first order operators

g2∂x + 3x2, g2∂y − 2yz2, g2∂z − 2y2z

The left ideal I generated by these operator is not holonomic. The Weyl closure
J = RI ∩ D is holonomic. The below is a Macaulay 22 script to check the
holonomicity and find the Weyl closure of RI.

loadPackage "Dmodules"

D=QQ[x,y,z,dx,dy,dz, WeylAlgebra=>{x=>dx,y=>dy,z=>dz}];

I = ideal((x^3-y^2*z^2)^2*dx+3*x^2,

(x^3-y^2*z^2)^2*dy-2*y*z^2,

(x^3-y^2*z^2)^2*dz-2*y^2*z);

II=inw(I,{0,0,0,1,1,1});

print(dim II); --- the output 4 implies that it is not holonomic.

J=WeylClosure I;

print(toString(J));

JJ=inw(J,{0,0,0,1,1,1});

print(dim JJ); --- the output 3 implies that it is holonomic.

2http://www.math.uiuc.edu/Macaulay2
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We close this appendix with introducing the integration ideal. The next fact
is the fundamental fact for holonomic ideals and integrations.

Theorem 8 If I is a holonomic ideal, then the integration ideal (I+∂dD)∩Dd−1

is a holonomic ideal in Dd−1. Here Dd−1 = C〈x1, . . . , xd−1, ∂1, . . . , ∂d−1〉.

This theorem follows from the fact “if D/I is a holonomic D-module, then
D/(I + ∂dD) is a holonomic Dd−1 module”. As to a proof of this fact, see,
e.g., the Chapter 1 of the book “J. E. Björk, Rings of Differential Operators.
North-Holland, New York, 1979”.

Oaku’s algorithm [9] to find integration ideals is explained in the Chapter 5
of [13] in a form relevant to our applications. Modifications of this algorithm
[8] is used in the step 1 of our Algorithm 3 in the main text.

Example 8 Put f(x, t) = exp(xt − t3). The function f is annihilated by the
operators ∂t − (x− 3t2), ∂x − t, which generate a holonomic ideal L. This is a
Risa/Asir code to find the integration ideal (L+ ∂tC〈x, t, ∂x, ∂t〉) ∩C〈x, ∂x〉.

import("nk_restriction.rr");

def step1() {

L=[dt-(x-3*t^2),

dx-t];

I=nk_restriction.integration_ideal(L,[t,x],[dt,dx],[1,0] | inhomo=1);

return I;

}

step1();

We write this introductory section with a few overlaps with [13]. For other
fundamental facts, please refer to [13] and its references.
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