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Abstract

We discuss the pricing of swing options with bang-bang control by a dual ap-
proach. The pricing problem of American-type derivatives is generally formulated as
an optimal multiple stopping problem. One method for solving the problem is a dual
approach. However, for swing options with bang-bang control, the problem includes
the decision of buying or selling when a right is exercised, and thus it is difficult to
apply the existing dual methods. We decompose the price of the swing options into
the sum of second-order differences of the price, and show that the sum of single stop-
ping problems that correspond to the second-order differences gives an upper bound
for the price of the options. We can solve a dual formulation of each single problem
numerically, so that we can compute an upper bound for the price of the options. A
numerical example shows that our method gives an appropriate upper bound for the
price of the swing options.

1 Introduction

Swing options are American-type derivatives. These are generally traded in gas and elec-
tricity markets. When an energy buyer contracts to buy fixed amounts of energy from a
seller at fixed dates, the buyer, who buys a swing option from the seller, gets rights to
change the amount at some times. The amount is subject to some constraints, such as
daily and annual constraints. The number of rights is also limited.

A popular method for pricing American-type derivatives is the least-squares Monte-
Carlo method. The method is proposed for pricing American options by Longstaff and
Schwartz [8] and Tsitsiklis and Van Roy [11]. Dörr [5] and Barrera-Esteve et al. [2] applied
the method for pricing swing options.

Another method for pricing American-type derivatives is based on an optimal exer-
cise boundary. Ibanez [7] studied in the optimal exercise boundaries of multiple American
options with exercise obligations and showed that the boundaries satisfy unique and mono-
tone properties. Using the boundary, they computed the price of the options.

The above methods are based on a sub-optimal strategy; therefore, the methods com-
pute a lower bound for the true price of options. In contrast, a dual approach is recently
advocated and it computes an upper bound for the true price of options. Rogers [10]
and Haugh and Kogan [6] introduced a dual form of the pricing problem for American
options. They showed that the dual form gives an upper bound for the true price of the
options. Some studies [9] [1] [3] extended this method to more complicated options, such
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as multiple exercise options under volume constraints. The complicated options allow the
changed volume to have only positive bias. However, on swing options the changed volume
can have positive and negative values, and thus their methods cannot be used for pricing
swing options.

In this paper, we discuss swing options with bang-bang control1. We reveal two things
for the swing options. First, we discuss optimal exercise boundaries of the swing options.
We show that the optimal exercise boundaries of the swing options have some good char-
acters, such as monotonicity and uniqueness. Second, we describe a dual approach for
pricing the swing options, which is our main topic. To apply a dual approach to the swing
options, we introduce a second-order difference of the price of the swing options. Specifi-
cally, we decompose the price of the swing options into the sum of second-order differences
of the price. We define a single optimal stopping problem for each second-order difference,
and then we show that the sum of the solution of the optimal stopping problems gives an
upper bound for the sum of second-order differences of the price. In the proof, we use the
property of the optimal exercise boundaries. A single optimal stopping problem gives an
upper bound by the classic dual approach, which enables us to calculate an upper bound
for the price of the swing option.

This paper is organized as follows. Section 2 defines the swing options in this paper.
In section 3, we discuss optimal exercise boundary of the swing options and show some
properties of the boundary. Section 4 proposes a dual approach for pricing the swing
options. Then, section 5 describes a pricing algorithm and gives a numerical result. Section
6 concludes.

2 Definition

In this section we define swing options which we consider in this paper.
There are a buyer and a seller of energy. They close a contract to trade some amount

ui of energy at a strike price of Ki at date ti (i = 0, 1, . . . , T ). A swing option is defined as
a set of rights to change of delivery amount with the contract. When the buyer of energy
buys a swing option from the seller and exercises a right at ti, the buyer can change the
amount from ui to ui + vi under some constraints. The number of rights is L(≤ T + 1).
The payoff upon exercise with vi at ti is vi(Si − Ki) where Si is the energy price at ti.

In this paper, we consider swing options with bang-bang control. We assume that vi

can be equal to only vmax(≥ 0) or vmin(≤ 0, vmax > vmin) at exercise dates, and the times
of choosing vi = vmax and vi = vmin are not less than Lb and Ls, respectively. In addition,
we restrict that L rights must be exercised by the maturity tT .

Remark 1: The above setting is a specific case of swing options with daily and annual
constraints. Daily constraints (often called DCQ) are generally defined by vmin ≤ vi ≤
vmax for all i and annual constraints (often called ACQ) are defined by Vmin ≤

∑T
i=0 vi ≤

Vmax. If Vmin and Vmax satisfy

Vmin = a · vmin + (L − a)vmax,

Vmax = b · vmin + (L − b)vmax

with a, b ∈ Z+, that is, if the equality of the annual constraints can be attained by L
exercises with vmin or vmax, then we can show that the pricing problem under the daily
and annual constraints is equivalent to that with the above bang-bang setting.

1“Bang-bang” control means that changed volume is only maximum or minimum in an available set.
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The option with the bang-bang constraints can be interpreted as the sum of 1) Lb,
the number of obligations to buy, 2) Ls, the number of obligations to sell and 3) Ld, the
number of straddles2 (Lb, Ls, Ld ≥ 0, Lb + Ls + Ld = L). Then, the constraints of the
option are characterized as (Lb, Ld, Ls), which means the combination of the claims. We
consider (Lb, Ld, Ls) as a state of the option. At each time, only one of three claims can
be exercised. Exercise of obligations is prior to that of straddles, and this is consistent
with the fact that a straddle is valuable than an obligation. When a claim is exercised, a
state transits. Figure 1 shows an example of the state transition of the swing option. We
call a chart like Figure 1 a transition tree.

In particular, when L = T + 1, the option can be decomposed into 1) L obligations to
sell and 2) multiple American call options that have Ld rights and Lb obligations to buy.
The obligation to sell is exercised at every time from t0 to tT and the call options also can
be exercised.

After this section, we refer to collectively obligations and straddles as rights.

：buy：sell
Figure 1: An example of the state transition tree of the swing option. A state (1, 1, 2)
transits to (0, 1, 2) when a right to buy is exercised and to (1, 1, 1) when a right to sell is
exercised.

3 Optimal exercise strategy and boundary

In this section, we show some properties which an optimal exercise strategy and boundary
of swing options satisfies.

We consider some filtered probability space (Ω,F , P, (Ft)t0≤t≤tT ) with a time horizon
tT . We define an adapted stochastic process Xt as the underlying energy price process
and assume that E[Xt] < ∞. We denote Xti as Si. We also assume that probability P is
a risk-neutral pricing probability.

Under these settings, let us formulate the pricing problem as dynamic programming.
An option holder can choose an action from buying, selling and not exercising, and then
V (Lb, Ld, Ls, i), the price of the swing option with (Lb, Ld, Ls) at ti, is represented as

V (Lb, Ld, Ls, i) = max[Y (Lb, Ld, Ls, i), Zb(i) + Y (Lb − 1, Ld, Ls, i),
Zs(i) + Y (Lb, Ld, Ls − 1, i)]

(1)

2Straddles are options whose holder can both buy and sell an underlying asset.
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where Y (Lb, Ld, Ls, i) is a continuation value, and Zb(i) and Zs(i) are payoffs by exercising
a right to buy and sell, respectively:

Y (Lb, Ld, Ls, i) = E[V (Lb, Ld, Ls, i + 1) | Fti ],
Y (0, 0, 0, T ) = 0, Zb(i) = e−rtivmax(Si − K), Zs(i) = e−rtivmin(Si − K),

(2)

where r is the spot rate, which we assume to be constant. For simplicity, we abbreviate
E[· | Fti ] to Ei[·].

Remark 2: The notation of equation (1) is not accurate, since for example Y (Lb −
1, Ld, Ls, i) cannot be defined when Lb = 0. But we use this notation for simplicity. Later
we prove theorems in this abbreviate notation, because it is easy to extend the proofs to
the general case by a similar procedure.

Let us define the difference of the value of options between different actions.

Ub(Lb, Ld, Ls, i) = Y (Lb − 1, Ld, Ls, i) + Zb(i) − Y (Lb, Ld, Ls, i),
U s(Lb, Ld, Ls, i) = Y (Lb, Ld, Ls − 1, i) + Zs(i) − Y (Lb, Ld, Ls, i),

Ubs(Lb, Ld, Ls, i) = Y (Lb − 1, Ld, Ls, i) + Zb(i) − Zs(i) − Y (Lb, Ld, Ls − 1, i).

(3)

Then we define an optimal exercise strategy ξ as follows:

ξ(Lb, Ld, Ls, i) =


1 (Ub(Lb, Ld, Ls, i) ≥ 0),
−1 (U s(Lb, Ld, Ls, i) ≥ 0, Ub(Lb, Ld, Ls, i) < 0),
0 (otherwise).

(4)

Optimal exercise strategies between different states intuitively have some relations. Actu-
ally, the next theorem shows monotonicity of optimal exercise strategies.

Theorem 1: For any (Lb, Ld, Ls) and any i, the following monotonicity holds.

• If ξ(Lb, Ld, Ls, i) = 1, then ξ(Lb + 1, Ld, Ls − 1, i) = 1.

• If ξ(Lb, Ld, Ls − 1, i) = 1, then ξ(Lb, Ld, Ls, i) = 1.

• If ξ(Lb, Ld, Ls, i) = −1, then ξ(Lb − 1, Ld, Ls + 1, i) = −1.

• If ξ(Lb − 1, Ld, Ls, i) = −1, then ξ(Lb, Ld, Ls, i) = −1.

Proofs are given in Appendix. The monotonicity is easily-interpreted on a transition
tree like Figure 1. For example, in Figure 2, if a right to buy is exercised at a node a,
then a right to buy is also exercised at the parent nodes and at the node b such that node
a and b have a same parent and node b has more rights to buy than node a.

Next we consider optimal exercise boundaries. As Ibanez [7], we hold some assumptions
about the underlying asset price process {Xt}. The following properties holds a.s. for
a function F (i, Si) ≡ Ei[e−r∆tif(i + 1, Si+1)] and f(i, Si) = max[h(Si), F (i, Si)] where
∆ti = ti+1 − ti and h(Si) is a payoff function.

(i) If f is a continuous function for S, then F is a continuous and differentiable function
for S.

(ii) Let fS(i, Si) denote the derivative of f with respect to Si. For any c1, c2, if c1 ≤
fS(i + 1, Si+1) ≤ c2 then c1 ≤ FS(i, Si) ≤ c2. In particular, if fS(i + 1, Si+1) ̸= c1, c2

then c1 < FS(i, Si) < c2.
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parent
parent

：buy：sell
Figure 2: Monotonicity of the swing options on a transition tree

(iii) When FS(i, Si) = hS(Si) = c, F (i, Si) ̸= h(Si) for any Si.

The property (iii) is a condition for excluding the case that the exercise boundary of
obligations becomes indeterminate. A mean-reverting process holds these properties, and
Brownian motion holds these properties in the case of r > 0. For Brownian motion with
r = 0, the property (iii) is not satisfied.

Then we define optimal exercise boundaries.

Definition 1: we call Sb(Lb, Ld, Ls, i), Ss(Lb, Ld, Ls, i) and Sbs(Lb, Ld, Ls, i) as optimal
exercise boundaries of the swing option with (Lb, Ld, Ls) at ti when Sb(Lb, Ld, Ls, i) holds
Ub(Lb, Ld, Ls, i) = 0, Ss(Lb, Ld, Ls, i) holds U s(Lb, Ld, Ls, i) = 0 and Sbs(Lb, Ld, Ls, i)
holds Ubs(Lb, Ld, Ls, i) = 0.

We show that optimal exercise boundaries of the swing options are unique and mono-
tone.

Theorem 2: Optimal exercise boundaries of the swing options satisfy following unique-
ness and monotonicity.

1. Sb(Lb, Ld, Ls, i) is unique, in other words, Si which satisfies Ub(Lb, Ld, Ls, i) = 0 is
at most one point.

2. Ss(Lb, Ld, Ls, i) is unique.

3. Sbs(Lb, Ld, Ls, i) is unique.

4. For any (Lb, Ld, Ls) such that Lb + Ld + Ls < T − i + 1, the greater the number of
exercise rights is, the larger the exercise region of buying is, that is,

Sb(Lb, Ld, Ls, i) ≤ Sb(Lb − 1, Ld, Ls, i), Sb(Lb, Ld, Ls, i) ≤ Sb(Lb, Ld, Ls − 1, i).

For (Lb, Ld, Ls) such that Lb + Ld + Ls = T − i + 1,

Sbs(Lb, Ld, Ls, i) ≤ Sb(Lb − 1, Ld, Ls, i), Sbs(Lb, Ld, Ls, i) ≤ Sb(Lb, Ld, Ls − 1, i).

5. For any (Lb, Ld, Ls) such that Lb + Ld + Ls < T − i + 1, the greater the proportion
of obligations to buy, the larger the exercise region of buying is, that is,

Sb(Lb, Ld, Ls, i) ≤ Sb(Lb − 1, Ld, Ls + 1, i).

For (Lb, Ld, Ls) such that Lb + Ld + Ls = T − i + 1,

Sbs(Lb, Ld, Ls, i) ≤ Sbs(Lb − 1, Ld, Ls + 1, i).
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The properties 4-5 mean monotonicity. Similar monotonicity holds for Ss.

Figure 3 is an example of optimal exercise boundaries that hold Theorem 2. For
example, if there is an option with (Lb, Ld, Ls) and Si ≥ Sb(Lb, Ld, Ls, i), then exercise
of a right to buy is optimal at ti. We note that the properties (i)-(iii) about {Xt} are
necessary only for proving uniqueness and not necessary for monotonicity.

Figure 3: An example of optimal exercise boundaries

4 Main result

In this section, we show the main result that gives upper bounds for the price of the swing
options.

The pricing problem of the swing option is formulated as the following multiple stop-
ping problem:

V (Lb, Ld, Ls, 0) = sup
τ,λ

L∑
j=1

E[Zλj (τj)]

s.t. 0 ≤ τ1 < . . . < τL ≤ T, λj ∈ {b, s},
L∑

j=1

1{λj=b} ≥ Lb,

L∑
j=1

1{λj=s} ≥ Ls.

(5)

The optimal stopping time of problem (5) can be constructed from an optimal exercise
strategy of the swing options. For example,

τ∗
1 = inf{i | Ub(Lb, Ld, Ls, i) ≥ 0 or U s(Lb, Ld, Ls, i) ≥ 0 or i = T − L + 1},

λ∗
1 = 1Ub(Lb,Ld,Ls,i)≥0−1Us(Lb,Ld,Ls,i)≥0 +1i=T−L+1 ·(1Ubs(Lb,Ld,Ls,i)≥0−1Ubs(Lb,Ld,Ls,i)<0).

Therefore a solution of problem (5) also has monotonicity.
Our goal is to give an upper bound of V (Lb, Ld, Ls, 0), but we do not use the methods

in the existing studies because problem (5) includes choices to buy or sell.
To solve problem (5), we aim to bound problem (5) from above by single optimal

stopping problems. We define a second-order difference of the price for the number of
exercise rights.

∆∆V (Lb, Ld, Ls, i) = V (Lb, Ld, Ls, i) − V (Lb − 1, Ld, Ls, i)
−V (Lb, Ld, Ls − 1, i) + V (Lb − 1, Ld, Ls − 1, i).

(6)
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We call swing options with (Lb − 1, Ld, Ls), (Lb, Ld, Ls − 1) and (Lb − 1, Ld, Ls − 1) as
components of a second-order difference with (Lb, Ld, Ls).

Using equation (6), we can decompose the price of the swing option into the sum of
the second-order differences:

V (Lb, Ld, Ls, 0) =
∑

l∈L(Lb,Ld,Ls)

∆∆V (lb, ld, ls, 0), (7)

where l ≡ (lb, ld, ls) and L(Lb, Ld, Ls) is the set of nodes in the transition tree whose root
is (Lb, Ld, Ls) like Figure 1.

Example 1: A set L(2, 1, 0) is defined as L(2, 1, 0) = {(2, 1, 0), (1, 1, 0), (2, 0, 0), (1, 0, 0),
(1, 0, 0), (0, 1, 0)}. Note the two occurrences of (1, 0, 0) in L(2, 1, 0).

Next, we define a payoff function of a second-order difference. For multiple American
options, Bender [3] defines a payoff function of a first-order difference. He gives an exercise
strategy of a component of the first-order difference. Then the function takes a sufficiently
negative value when one more right cannot be exercised at the time on the exercise strategy,
and otherwise takes a normal payoff. We similarly define a payoff function, but we must
add adjustment terms to the function because a second-order difference has four terms.
The concrete formulations are given in Appendix.

We consider optimal stopping problems that correspond to each second-order difference
in the equation (7). The next theorem shows that the sum of the optimal stopping
problems gives an upper bound for the sum of the second-order differences:

Theorem 3: For any (Lb, Ld, Ls) such that Lb, Ld, Ls ≥ 0 and Lb + Ld + Ls ≤ T + 1, if
an exercise strategy ξ is monotone, and satisfies some conditions related to the optimal
exercise boundary ξ∗, then it holds that

V (Lb, Ld, Ls, 0) =
∑

l∈L(Lb,Ld,Ls)

∆∆V (lb, ld, ls, 0)

≤
∑

l∈L(Lb,Ld,Ls)

sup
0≤τ≤T

E[Zξ
l (τ)],

(8)

where Zξ
l (i) is an adjusted payoff function determined by the exercise history of compo-

nents of a second-order difference with (lb, ld, ls) from t0 to ti, which depends on ξ. The
inequality becomes an equality when ξ = ξ∗.

All proofs in this section and the description of the conditions are provided in Ap-
pendix. We note that Theorem 3 is about the sum of second-order differences and the
inequality does not hold about a second-order difference.

The right side of equation (8) is the sum of single stopping problems, and thus we can
get a dual representation of the problem that gives an upper bound for the option price:

Theorem 4: For any (Lb, Ld, Ls) such that Lb, Ld, Ls ≥ 0 and Lb + Ld + Ls ≤ T + 1, it
holds for any martingale Ml with Ml(0) = 0 that

V (Lb, Ld, Ls, 0) =
∑

l∈L(Lb,Ld,Ls)

sup
0≤τ≤T

E[Zξ∗

l (τ)]

≤
∑

l∈L(Lb,Ld,Ls)

E
[

max
i=0,...,T

[Zξ∗

l (i) − Ml(i)]
]

.
(9)
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The inequality becomes an equality when Ml(i) is the martingale part of the Doob de-
composition of ∆∆V (l̂ξ

∗

b (i), l̂ξ
∗

d (i), l̂ξ
∗

s (i), i) where (l̂ξb(i), l̂
ξ
d(i), l̂

ξ
s (i)) is residual rights deter-

mined by the exercise history of components of the second-order difference with (lb, ld, ls)
from t0 to ti, which depends on ξ.

The problem size |L(Lb, Ld, Ls)| is O(L2), so our method is robust to the number of
rights.

5 Algorithm and numerical result

5.1 Algorithm

In this section we address a numerical algorithm for calculating upper and lower bounds
for the price of swing options. We recall the assumption that the underlying asset price
process satisfies the properties in Section 3, i.e. optimal exercise boundaries are unique3.

For calculating an upper bound for the price of options, Andersen and Broadie [4]
and Bender [3] used nested simulation. We cannot apply their methods without change,
because an exercise strategy must satisfy monotonicity. Therefore we construct exercise
boundaries as follows.

First we run least-squares Monte Carlo regression for all rights (lb, ld, ls) and all
time ti. Using the obtained regression coefficients, we can calculate continuation value
ŷ(lb, ld, ls, i, Si) for all (lb, ld, ls) and i.

Second we construct exercise boundaries. We use the following backward algorithm
for i = T − 1, . . . , 0 and for all (lb, ld, ls) ∈ L(Lb, Ld, Ls).

1. Set an initial value Ŝi as Ŝb(lb, ld, ls, i).

2. Generate N paths from Ŝi, i.e. S1
i+1, . . . , S

N
i+1.

3. Compute a difference d = zb(i, Ŝi) + Ŷ (lb − 1, ld, ls, i) − Ŷ (lb, ld, ls, i). If |d| is suffi-
ciently small, then set Ŝb(lb, ld, ls, i) = Ŝi and go to step 4, and if |d| is not small,
then update Ŝi by the secant method and return step 2.

4. If Ŝb(lb, ld, ls, i) > Ŝb(lb, ld, ls − 1, i), then update Ŝb(lb, ld, ls, i) = Ŝb(l′b, l
′
d, l

′
s, i).

Similarly update for Ŝb(lb − 1, ld, ls + 1, i),

where

Ŷ (lb, ld, ls, i) =
1
N

N∑
n=1

max
[
ŷ(lb, ld, ls, i + 1, Sn

i+1),

zb(i + 1, Sn
i+1) + ŷ(lb − 1, ld, ls, i + 1, Sn

i+1),
zs(i + 1, Sn

i+1) + ŷ(lb, ld, ls − 1, i + 1, Sn
i+1)

]
and zb(i+1, Si+1) and zs(i+1, Si+1) are precise forms of Zb(i+1) and Zs(i+1), respectively.
Similarly, Ŝs, Ŝbs are constructed. Step 4 ensures that the constructed boundary satisfies
monotonicity. The condition related to optimal strategy ξ∗ in Theorem 3 is not ensured,
but as noted in Appendix B the condition is not severe, so is practically ensured.

3In the algorithm, uniqueness of exercise boundary is not necessary. However, if uniqueness is not
assumed, then it is complex to estimate the region such that Ûb(lb, ld, ls, i) > 0 and Û s(lb, ld, ls, i) > 0
where Ûb,Û s are estimation of Ub,U s, respectively. Thus we discuss the algorithm under the assumption
of uniqueness.
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Using the constructed exercise boundary, we calculate a lower bound for the price of
the option by simulation with NL paths from i = 0 to T .

For computing an upper bound, we use a similar method to Bender [3]. A difference
from the method of Bender is in the estimation of martingale M(i) in equation (9). For the
estimation, Bender generates one period nested paths. For each nested path he determines
whether exercising rights or not and calculates the option value by using the least-square
regression coefficients. On the other hand, we use exercise boundaries. Concretely, we
generate one period nested paths and for each nested path we determine exercising or not
by exercise boundaries, and the least-square regression coefficients are used only calculating
the option value. This method is same burden as the method in previous studies and
ensures to give an upper bound for the price.

The algorithm is as follows.

1. Generate NU paths with T periods from S0.

2. For i = 0, . . . , T − 1 and for j = 1, . . . , NU ,

(a) Generate NX subpaths from Sj
i .

(b) For (lb, ld, ls) ∈ L(Lb, Ld, Ls),

i. For k = 1, . . . , NX , determine a right is exercised or not for (lb, ld, ls) on
Sj,k

i+1 (j = 1, . . . , NU ) using exercise boundaries. Let us define

Ẑ(i + 1, Sj,k
i+1) =


zb(i + 1, Sj,k

i+1) (Sj,k
i+1 ≥ Ŝb(lb, ld, ls, i)),

zs(i + 1, Sj,k
i+1) (Sj,k

i+1 ≤ Ŝs(lb, ld, ls, i)),
0 (otherwise)

and define (l′b, l
′
d, l

′
s) as residual rights after exercise.

ii. Compute

Ei[V̂
j
l (i + 1)] =

1
NX

NX∑
k=1

(
Ẑ(i + 1, Sj,k

i+1) + ŷ(l′b, l
′
d, l

′
s, i, S

j,k
i+1)

)
.

(c) Determine a right is exercised or not for (lb, ld, ls) on Sj
i+1 and set

V̂ j
l (i + 1) = Ẑ(i + 1, Sj

i+1) + ŷ(l′b, l
′
d, l

′
s, i, S

j
i+1).

(d) Compute

M j
l (i + 1) = M j

l (i) + ∆∆V̂ j

l̂
(i + 1) − Ei[∆∆V̂ j

l̂
(i + 1)],

where l̂ is an abbreviated form of l̂ξb(i + 1), l̂ξd(i + 1), l̂ξs (i + 1).

5.2 Numerical Example

We show a numerical result that computes an upper bound for swing options. We assume
that the underlying asset process {Xt} is the following mean-reverting process:

dXt = −3(Xt − 40)dt + 0.5dWt, Xt0 = S0 = 40.

We set parameters to r = 0, K = 40, vmax = 1, vmin = −1, T = 20, 60, 100 and
∆ti ≡ ti − ti−1 = 1/24 for all i. In these settings, we price five different swing options
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Table 1: A numerical example of upper and lower bounds for the price of swing options

rights T = 20 T = 60 T = 100
lower upper lower upper lower upper

(2, 2, 2) 0.8985 0.9007 1.5969 1.5987 1.9408 1.9426
(0.0011) (0.0006) (0.0013) (0.0009) (0.0013) (0.0015)

(4, 4, 4) 1.5927 1.5934 2.9912 2.9955 3.6716 3.6738
(0.0019) (0.0010) (0.0024) (0.0015) (0.0023) (0.0020)

(6, 6, 6) 2.0638 2.0692 4.2060 4.2133 5.2251 5.2421
(0.0024) (0.0015) (0.0033) (0.0034) (0.0033) (0.0094)

(8, 8, 8) - - 5.2584 5.2676 6.6286 6.6602
- - (0.0041) (0.0040) (0.0041) (0.0101)

(10, 10, 10) - - 6.1646 6.1864 7.9007 7.9364
- - (0.0047) (0.0046) (0.0048) (0.0079)

Notes. Standard errors are in parentheses. For (8, 8, 8) and (10, 10, 10), the column of T = 20 is
blank because the number of rights exceed T + 1.

in the number of rights. Also, we set NL = 1, 000, 000, N = 5000, NU = 100 and
NX = 10000.

Figure 4 depicts a part of optimal exercise boundaries. We confirm that uniqueness
and monotonicity holds. Table 1 indicates that for each option the difference between
upper and lower bounds is less than 1% of the price. This implies that our method gives
appropriate upper bounds.

40.1
39.9
39.8

40.2
40.0

Figure 4: Optimal exercise boundaries obtained from a numerical example

6 Conclusion

In this paper, we have proposed a dual approach for pricing swing options with bang-
bang control. The existing methods cannot treat options such that the holder can choose
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buying or selling. So, we have considered optimal stopping problems that correspond to
the value of second-order differences of the swing options. We have shown that the sum
of the optimal stopping problems gives a tight upper bound for the price of the options.
A numerical example indicates that our methods give an appropriate upper bound with
an accuracy of 1 % .

A future work is to extend the method to pricing problems with more general con-
straints, such as DCQ and ACQ. When DCQ is constant for all time periods, it is known
that changed volumes can be limited to some discrete values in an optimal strategy. Using
this character, we will be able to extend the method in a similar way.
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A Proof of Theorem in Section 3

A.1 Proof of Theorem 1

We prove Theorem 1 by backward induction on i. As described in Remark 2, the proof is
an abbreviate version.

First, at i = T , the number of residual rights is at most 1, so we need to show the
property only about ξ(1, 0, 0, i), ξ(0, 1, 0, i), ξ(0, 0, 1, i). ξ(1, 0, 0, i) must be equal to 1 and
ξ(0, 0, 1, i) must be equal to −1, so monotonicity trivially holds.

Next we assume that monotonicity is satisfied at i = T − k + 1, . . . , T , and show that
monotonicity is also satisfied at i = T − k.

Let us prove monotonicity for rights to buy, that is, ξ(Lb, Ld, Ls, i) = 1. To begin with,
we prove the case of T − i + 1 > Lb + Ld + Ls. For simplicity, we define two difference of
U .

∆1U
b(Lb, Ld, Ls, i) ≡ Ub(Lb, Ld, Ls, i) − Ub(Lb, Ld, Ls − 1, i),

∆2U
b(Lb, Ld, Ls, i) ≡ Ub(Lb + 1, Ld, Ls − 1, i) − Ub(Lb, Ld, Ls, i).

Monotonicity is equivalent to ∆1U
b(Lb, Ld, Ls, i), ∆2U

b(Lb, Ld, Ls, i) ≥ 0, so let us prove
these equations. We define

Bb
1 = {Ub(Lb − 1, Ld, Ls, i + 1) ≥ 0}, Bs

1 = {U s(Lb − 1, Ld, Ls, i + 1) ≥ 0},
Bb

2 = {Ub(Lb, Ld, Ls, i + 1) ≥ 0}, Bs
2 = {U s(Lb, Ld, Ls, i + 1) ≥ 0},

Bb
3 = {Ub(Lb, Ld, Ls − 1, i + 1) ≥ 0}, Bs

3 = {U s(Lb, Ld, Ls − 1, i + 1) ≥ 0},
Bb

4 = {Ub(Lb − 1, Ld, Ls − 1, i + 1) ≥ 0}, Bs
4 = {U s(Lb − 1, Ld, Ls − 1, i + 1) ≥ 0},

and then

∆1U
b(Lb, Ld, Ls, i)

= −Y (Lb, Ld, Ls, i) + Y (Lb − 1, Ld, Ls, i) + Y (Lb, Ld, Ls − 1, i) − Y (Lb − 1, Ld, Ls − 1, i)
= Ei[∆1U

b(Lb − 1, Ld, Ls, i + 1)1Bb
4

+ Ub(Lb − 1, Ld, Ls, i + 1)1Bb
4∪Bb

1
+ 01Bb

1∪Bb
3

− Ub(Lb, Ld, Ls − 1, i + 1)1Bb
3∪Bb

2
+ ∆1U

b(Lb, Ld, Ls, i + 1)1Bb
2∪Bs

2

− U s(Lb − 1, Ld, Ls, i + 1)1Bs
1∪Bs

2
+ 01Bs

3∪Bs
1

+ U s(Lb, Ld, Ls − 1, i + 1)1Bs
4∪Bs

3
+ ∆1U

b(Lb, Ld, Ls − 1, i + 1)1Bs
4
]

≥ 0,

where 1B is the indicator function4. The inequality is by induction. Similarly, we define
Bb

5 = {Ub(Lb + 1, Ld, Ls − 1, i + 1) ≥ 0} and Bs
5 = {U s(Lb + 1, Ld, Ls − 1, i + 1) ≥ 0}, and

4That is to say, 1B =

(

1 (Si+1 ∈ B),

0 (Si+1 ̸∈ B).
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then

∆2U
b(Lb, Ld, Ls, i)

= −Y (Lb + 1, Ld, Ls − 1, i) + Y (Lb, Ld, Ls − 1, i) + Y (Lb, Ld, Ls, i) − Y (Lb − 1, Ld, Ls, i)
= Ei[∆2U

b(Lb − 1, Ld, Ls, i + 1)1Bb
1

+ Ub(Lb, Ld, Ls − 1, i + 1)1Bb
1∪Bb

3

+ 01Bb
3∪Bb

2
− Ub(Lb, Ld, Ls, i + 1)1Bb

2∪Bb
5

+ ∆2U
b(Lb, Ld, Ls, i + 1)1Bb

5∪Bs
2

+ (∆2U
b(Lb, Ld, Ls, i + 1) + U s(Lb, Ld, Ls, i + 1))1

(Bs
5∩Bs

1)∪Bs
2

+ (∆1U
b(Lb + 1, Ld, Ls − 1, i + 1) + ∆2U

b(Lb + 1, Ld, Ls − 1, i + 1))1Bs
5∪Bs

1

+ (∆2U
b(Lb, Ld, Ls − 1, i + 1) + ∆2U

s(Lb, Ld, Ls − 1, i + 1))1Bs
1∪Bs

5

+ (∆2U
b(Lb, Ld, Ls − 1, i + 1) − U s(Lb, Ld, Ls − 1, i + 1))1Bs

3∪(Bs
1∩Bs

5)

+ ∆2U
b(Lb, Ld, Ls − 1, i + 1)1Bs

3
]

≥ 0.

Consequently, Sb is monotone in the case of T − i + 1 > Lb + Ld + Ls.
Next we prove the case of T − i + 1 = Lb + Ld + Ls. For monotonicity between

ξ(Lb, Ld, Ls, i) and ξ(Lb + 1, Ld, Ls − 1, i), the proof is quite similar to that in the case of
T − i + 1 > Lb + Ld + Ls, so we abbreviate the proof.

Let us prove monotonicity between ξ(Lb, Ld, Ls−1, i) and ξ(Lb, Ld, Ls, i). We will show
that if Ub(Lb, Ld, Ls−1, i) ≥ 0 then Ubs(Lb, Ld, Ls−1, i) ≥ 0. Because of Ubs(Lb, Ld, Ls, i) =
Ub(Lb, Ld, Ls − 1, i) − U s(Lb − 1, Ld, Ls, i), we only need to show that if Ub(Lb, Ld, Ls −
1, i) ≥ 0 then U s(Lb − 1, Ld, Ls, i) ≤ 0.

Here, we use the decomposition of the swing option. As we mentioned in Section
2, V (Lb, Ld, Ls, i) with Lb + Ld + Ls = T − i + 1 can be decomposed into the value
of obligations to sell (buy) and a multiple American call (put) option. Let us denote
V c(Lb, Ld, i) as a multiple American call option with Ld rights and Lb obligations at
ti and denote V p(Ls, Ld, i) as a multiple American put option with Ld rights and Ls

obligations at ti. Then,

vmin · Ub(Lb, Ld, Ls − 1, i) − vmax · U s(Lb − 1, Ld, Ls, i)
= Ei[−vmin · V (Lb, Ld, Ls − 1, i + 1) + vmax · V (Lb − 1, Ld, Ls, i + 1)
− (vmax − vmin)V (Lb − 1, Ld, Ls − 1, i + 1)]

= Ei[−vmin · (V (k, 0, 0, i + 1) + (vmin − vmax)V p(Ls − 1, Ld, i + 1))
+ vmax · (V (0, 0, k, i + 1) + (vmax − vmin)V c(Lb − 1, Ld, i + 1))
− (vmax − vmin)V (Lb − 1, Ld, Ls − 1, i + 1)]

= Ei[(vmax − vmin)(vmax · V c(Lb − 1, Ld, i + 1) + vmin · V p(Ls − 1, Ld, i + 1)
− V (Lb − 1, Ld, Ls − 1, i + 1))]

≥ 0.

(10)

The third equality is from vmax ·V (0, 0, k, T −k +1)−vmin ·V (k, 0, 0, T −k +1) = 0. From
equation (10), U s(Lb − 1, Ld, Ls, i) must be less than or equal to 0 when Ub(Lb, Ld, Ls −
1, i) ≥ 0. So it is monotone between ξ(Lb, Ld, Ls − 1, i) and ξ(Lb, Ld, Ls, i).

Finally, the proof is completed from induction.

A.2 Proof of Theorem 2

We prove the theorem by backward induction on i. We only show uniqueness since mono-
tonicity is trivial from uniqueness and Theorem 1.
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A.2.1 Case of i = T

At i = T , the number of residual rights is at most 1, so we only need to show uniqueness
of Sbs(1, 0, 0, i), Sbs(0, 1, 0, i), Sbs(0, 0, 1, i).

On our definition an obligation must be exercised until tT , so Sbs(1, 0, 0, T ) = ∞ and
Sbs(0, 0, 1, T ) = −∞. Moreover because Sbs(0, 1, 0, T ) satisfies vmax(Sbs(0, 1, 0, T )−K) =
vmin(Sbs(0, 1, 0, T ) − K), Sbs(0, 1, 0, T ) is equal to K and then uniqueness holds.

For preparation of the next section, we note that the derivative of Ubs(0, 1, 0, T ) =
e−rtT (vmax − vmin)(ST − K) w.r.t. ST is equal to or greater than 0.

A.2.2 Case of i = T − k (k > 1)

We assume that uniqueness and monotonicity are satisfied at i = T − k + 1, . . . , T , and
show that the properties are also satisfied at i = T − k.

First we show uniqueness of Sb and Sbs. For Sb, we define Bb
1 = {Sb(Lb−1, Ld, Ls, i+

1) ≤ Si+1}, Bs
1 = {Ss(Lb − 1, Ld, Ls, i + 1) ≥ Si+1}, Bb

2 = {Sb(Lb, Ld, Ls, i + 1) ≤ Si+1}
and Bs

2 = {Ss(Lb, Ld, Ls, i + 1) ≥ Si+1}, and then

Ub(Lb, Ld, Ls, i) = Y (Lb − 1, Ld, Ls, i) + Zb(i) − Y (Lb, Ld, Ls, i)
= Zb(i) + Ei[(Y (Lb − 2, Ld, Ls, i + 1) − Y (Lb − 1, Ld, Ls, i + 1))1Bb

1

−Zb(i + 1)1Bb
1∪Bb

2

+(Y (Lb − 1, Ld, Ls, i + 1) − Y (Lb, Ld, Ls, i + 1))1Bb
2∪Bs

2

+(Y (Lb − 1, Ld, Ls, i + 1) − Y (Lb, Ld, Ls − 1, i + 1) − Zs(i + 1))1Bs
2∪Bs

1

+(Y (Lb − 1, Ld, Ls − 1, i + 1) − Y (Lb, Ld, Ls − 1, i + 1))1Bs
1
]

= Zb(i) − Ei[Zb(i + 1)]
+Ei[Ub(Lb − 1, Ld, Ls, i + 1)1Bb

1
+ 01Bb

1∪Bb
2

+ Ub(Lb, Ld, Ls, i + 1)1Bb
2∪Bs

2

+Ubs(Lb, Ld, Ls, i + 1)1Bs
2∪Bs

1
+ Ub(Lb, Ld, Ls − 1, i + 1)1Bs

1
].

A derivative of the third term of the right side of the equation w.r.t. Si is greater than or
equal to 0 from induction and property (ii), and the derivative of Zb(i)−Ei[Zb(i+1)] w.r.t.
Si is also greater than or equal to 0 from property (ii), so the derivative of Ub(Lb, Ld, Ls, i)
is greater than or equal to 0 and Sb is unique from property (iii) .

Similarly for Ubs, we define Bb
3 = {Sbs(Lb − 1, Ld, Ls, i + 1) ≤ Si+1} and Bs

3 =
{Sbs(Lb, Ld, Ls − 1, i + 1) ≥ Si+1}, and then

Ubs(Lb, Ld, Ls, i) = Y (Lb − 1, Ld, Ls, i + 1) + Zb(i) − Y (Lb, Ld, Ls − 1, i + 1) − Zs(i)
= Zb(i) − Zs(i) − Ei[Zb(i + 1) − Zs(i + 1)]

+Ei[Ubs(Lb − 1, Ld, Ls, i + 1)1Bb
3

+ 01Bb
3∪Bs

3

+Ubs(Lb, Ld, Ls − 1, i + 1)1Bs
3
]

so Sbs is unique in a similar way to the case of Sb.

B Proof of Theorems in Section 4

B.1 Detail of Theorem 3

First we define the condition that an exercise strategy ξ must satisfy. The condition claims
that ξ must be an appropriate approximation of ξ∗, that is, ξ must satisfy the following
condition.
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• If Ubs(Lb, Ld, Ls, i) = 0, then Ûb(Lb − 1, Ld, Ls, i) ≥ 0 and Û s(Lb, Ld, Ls − 1, i) ≥ 0,

where Ûb and Û s are the estimate value of Ub and U s on ξ, respectively. In the context
of optimal exercise boundaries, the condition is rewritten as

Ŝb(Lb − 1, Ld, Ls, i) ≥ Sbs(Lb, Ld, Ls, i),
Ŝs(Lb, Ld, Ls − 1, i) ≤ Sbs(Lb, Ld, Ls, i),

(11)

where Ŝb and Ŝs are exercise boundaries constructed by ξ.
Note that ξ does not have to satisfy the condition that

• If Ubs(Lb, Ld, Ls, i) = 0, then Ûb(Lb, Ld, Ls − 1, i) ≥ 0 and Û s(Lb − 1, Ld, Ls, i) ≥ 0,

which is equivalent to

Ŝb(Lb, Ld, Ls − 1, i) ≥ Sbs(Lb, Ld, Ls, i),
Ŝs(Lb − 1, Ld, Ls, i) ≤ Sbs(Lb, Ld, Ls, i).

(12)

This reduces the accuracy of estimation of ξ that is necessary to give a true upper bound
of the options. For example, in Figure 4, Ŝb(1, 2, 0, T − 3) and Ŝbs(1, 2, 1, T − 3) are very
close, so Ŝb(1, 2, 0, T − 3) and Sbs(1, 2, 1, T − 3) will be close. Therefore if equation (12)
must hold, then the accuracy approximation is necessary.

Next we define an adjusted payoff function Zξ
(lb,ld,ls)

(i). The function Zξ
(lb,ld,ls)

(i) means
the value of a second-order difference of a swing option with (lb, ld, ls). If components of
the second-order difference are exercised at ti, then we define Zξ

(lb,ld,ls)
(i) = −C such that

C is a sufficient large constant value.

Example 2: We consider Zξ
(1,1,2)(i). At i = 0, suppose ξ(0, 1, 1, 0) = 1. Then ξ(1, 1, 2, 0) =

ξ(1, 1, 1, 0) = ξ(0, 1, 2, 0) = 1 from monotonicity. These executions are shown by solid ar-
rows in Figure 5. In this case, we interpret that a right to buy is automatically exercised
and Zξ

(1,1,2)(0) = −C, and this auto execution is shown by a dotted arrow in Figure 5.

Moreover, at i = 1, Zξ
(1,1,2)(i) indicates a second-order difference of a swing option with

(0, 1, 2).

Figure 5: An example of auto exercise

Let us define l̂ξb(i), l̂
ξ
d(i), l̂

ξ
s (i) as the state of a second-order difference at ti.

(l̂ξb(0), l̂ξd(0), l̂ξs (0)) = (lb, ld, ls),
l̂ξb(i + 1) = max[0, l̂ξb(i) − 1ξ(l̂b,l̂d,l̂s−1,i)=1],

l̂ξd(i + 1) = max[0, l̂ξd(i) − 1ξ(l̂b,l̂d,l̂s−1,i)=1 · 1l̂ξb(i)=0
− 1ξ(l̂b−1,l̂d,l̂s,i)=−1 · 1l̂ξs (i)=0

],

l̂ξs (i + 1) = max[0, l̂ξs (i) − 1ξ(l̂b−1,l̂d,l̂s,i)=−1],

(13)
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where l̂b, l̂d, l̂s is an abbreviated form of l̂ξb(i), l̂
ξ
d(i), l̂

ξ
s (i). Then the value of Zξ

(lb,ld,ls)
(i)

depends on whether options with (l̂b − 1, l̂d, l̂s) and (l̂b, l̂d, l̂s − 1) are exercised or not
exercised at ti on an exercise strategy ξ:

Zξ
(lb,ld,ls)

(i) = Dξ
(lb,ld,ls)

(i)

+



Ûmax(l̂b, l̂d, l̂s, i)
(
ξ(l̂b, l̂d, l̂s − 1, i) = ξ(l̂b − 1, l̂d, l̂s, i) = 0

)
,

0
((

ξ(l̂b, l̂d, l̂s − 1, i) = 1, ξ(l̂b − 1, l̂d, l̂s, i) = 0
)

or(
ξ(l̂b − 1, l̂d, l̂s, i) = −1, ξ(l̂b, l̂d, l̂s − 1, i) = 0

))
,

−C + ∆Û(l̂b − 1, l̂d, l̂s, i) (ξ(l̂b − 1, l̂d, l̂s, i) = 1),
−C + ∆Û(l̂b, l̂d, l̂s − 1, i) (ξ(l̂b, l̂d, l̂s − 1, i) = −1),

Ûmax(l̂b, l̂d, l̂s, i) = max
[
Ûb(l̂b, l̂d, l̂s − 1, i), Û s(l̂b − 1, l̂d, l̂s, i)

]
,

∆Û(l̂b, l̂d, l̂s, i) = Ûb(l̂b, l̂d, l̂s, i) − Ûb(l̂b, l̂d, l̂s − 1, i),
(14)

where Dξ
(lb,ld,ls)

(i) is the following adjustment term which depends on an exercise history
by ξ:

Dξ
(lb,ld,ls)

(i + 1) = Dξ
(lb,ld,ls)

(i)

+



−Û s(l̂b − 1, l̂d, l̂s − 1, i)
(
ξ(l̂b, l̂d, l̂s − 1, i) = −1, ξ(l̂b − 1, l̂d, l̂s − 1, i) = 0

)
,

−Ûb(l̂b − 1, l̂d, l̂s − 1, i)
(
ξ(l̂b − 1, l̂d, l̂s, i) = 1, ξ(l̂b − 1, l̂d, l̂s − 1, i) = 0

)
,

−C − ∆Û(l̂b − 1, l̂d, l̂s, i)
(
ξ(l̂b, l̂d, l̂s − 1, i) = 1, ξ(l̂b − 1, l̂d, l̂s, i) = 0

)
−C − ∆Û(l̂b, l̂d, l̂s − 1, i)

(
ξ(l̂b − 1, l̂d, l̂s, i) = −1, ξ(l̂b, l̂d, l̂s − 1, i) = 0

)
,

0 (otherwise).
(15)

In equation (14) and (15), the term added to −C is necessary for the inequality in equation
(8) to become an equality.

B.2 Proof of Theorem 3

As a preparation, we define a part transition tree and the set of the trees.

Definition 2: We call a tree K as a part transition tree of L(Lb, Ld, Ls), if the tree K
includes all leafs5 of L(Lb, Ld, Ls). We also denote T (Lb, Ld, Ls) as the set of all part
transition trees of L(Lb, Ld, Ls).

For simplicity, we denote time-shifted problems as follows:

SV ξ(lb, ld, ls, i) = ess sup
0≤τ≤T−i

Ei[Z
ξi

l (τ)] · exp−r(ti−t0),

SY ξ(lb, ld, ls, i) = ess sup
0≤τ≤T−i+1

Ei[Z
ξi+1

l (τ)] · exp−r(ti−t0),

ξi(lb, ld, ls, k) = ξ(lb, ld, ls, i + k) ((lb, ld, ls) ∈ L(Lb, Ld, Ls), k = 0, . . . , T − i).

We prove the theorem in two parts. First we show the following Lemma.

5A leaf is a node at the bottom of the tree, which corresponds to a swing option with one residual right.
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Lemma 1: For i = 0, . . . , T − 1, any K ∈ T (Lb, Ld, Ls) and any ξ that satisfies the
condition of Theorem 3, there is a K′ ∈ T (Lb, Ld, Ls) and the following equation holds:∑

l∈K
SV ξ(lb, ld, ls, i) ≥

∑
l∈K′

SY ξ(lb, ld, ls, i). (16)

Proof. To begin with, if ξ(Lb, Ld, Ls) = 0, then it is trivial that equation (16) has inequal-
ity for K′ = K.

We consider the case of ξ(Lb, Ld, Ls) = 1. We decompose K into the following four
groups:

K1 = K ∩ {(lb, ld, ls) | ξ(lb, ld, ls − 1, i) = 0},
K2 = K ∩ {(lb, ld, ls) | ξ(lb, ld, ls − 1, i) = 1 and ξ(lb − 1, ld, ls, i) = 0},
K3 = K ∩ {(lb, ld, ls) | ξ(lb − 1, ld, ls, i) = 1 and ξ(lb − 1, ld, ls − 1, i) = 0},
K4 = K ∩ {(lb, ld, ls) | ξ(lb − 1, ld, ls − 1, i) = 1}.

(17)

Moreover, we decompose K1 into two groups:

K11 = K1 ∩ {(lb, ld, ls) | (lb + 1, ld, ls) ∈ K3 ∩ K},
K12 = K1 ∩ {(lb, ld, ls) | (lb + 1, ld, ls) ̸∈ K3 ∩ K}.

(18)

For a second-order difference, possible combinations of K11,K12,K2,K3 and K4 are de-

Figure 6: Possible combinations of K

picted in Figure 6. We induce equation (16) as follows:

∑
l∈K

SV ξ(lb, ld, ls, i) =
4∑

j=1

∑
l∈Kj

SV ξ(lb, ld, ls, i)

≥
∑
l∈K4

SY ξ(lb − 1, ld, ls, i) +
∑
l∈K2

0

+
∑
l∈K3

(
SY ξ(lb − 1, ld, ls, i) − Ûb(lb − 1, ld, ls − 1, i)

)
+

∑
l∈K1

SV ξ(lb, ld, ls, i)

≥
∑
l∈K4

SY ξ(lb − 1, ld, ls, i) +
∑
l∈K3

(
SY ξ(lb − 1, ld, ls, i) − Ûb(lb − 1, ld, ls − 1, i)

)
+

∑
l∈K11

Ûb(lb, ld, ls − 1, i) +
∑

l∈K12

SY ξ(lb, ld, ls, i)

=
∑
l∈K4

SY ξ(lb − 1, ld, ls, i) +
∑
l∈K3

SY ξ(lb − 1, ld, ls, i) +
∑

l∈K12

SY ξ(lb, ld, ls, i)

=
∑
l∈K′

SY ξ(lb, ld, ls, i).

(19)

17



The last equality is from relations of a second-order difference in Figure 6.
In the case of ξ(Lb, Ld, Ls) = −1, equation (16) holds for symmetry, and thus the proof

is finished.

Lemma 2: For i = 0, . . . , T , any K ∈ T (Lb, Ld, Ls) and any ξ,

V (Lb, Ld, Ls, i) =
∑

l∈L(Lb,Ld,Ls)

∆∆V (lb, ld, ls, i) ≤
∑
l∈K

SV ξ(lb, ld, ls, i) (20)

Proof. We proof by backward induction on i. For i = T , from the definition of K, K must
be equal to L(Lb, Ld, Ls) and |K| is equal to 1, so that equation (20) has equality.

Let us assume that equation (20) holds for i = k +1 and proof equation (20) for i = k.
First, if ξ∗(Lb, Ld, Ls, k) = 0, then equation (20) holds by induction and Lemma 1. Thus
we consider the case of ξ∗(Lb, Ld, Ls, k) = 1. We decompose K into the following groups:

M1 = K ∩ {(lb, ld, ls) | (lb, ld, ls) ∈ L(Lb − 1, Ld, Ls)},
M2 = K \M1,

M21 = M2 ∩ {(lb, ld, ls) | ξ(lb, ld, ls − 1, i) = 0},
M22 = M2 ∩ {(lb, ld, ls) | ξ(lb, ld, ls − 1, i) = 1 and ξ(lb − 1, ld, ls, i) = 0},
M23 = M2 ∩ {(lb, ld, ls) | ξ(lb − 1, ld, ls, i) = 1}.

(21)

From equation (11) and equation (12), ξ(lb, ld, ls, k) ̸= −1 holds for l ∈ M2 \ (Lb, Ld, Ls),
and then∑
l∈K

SV ξ(lb, ld, ls, k)

= 1ξ(Lb,Ld,Ls,k)=−1

∑
l∈K

SV ξ(lb, ld, ls, k) + 1ξ(Lb,Ld,Ls,k)̸=−1

∑
l∈K

SV ξ(lb, ld, ls, k)

≥ 1ξ(Lb,Ld,Ls,k)=−1

 ∑
l∈M1

SV ξ(lb, ld, ls, k) +
∑

l∈M21

SV ξ(lb, ld, ls, k)


+ 1ξ(Lb,Ld,Ls,k)̸=−1

 ∑
l∈M1

SV ξ(lb, ld, ls, k) +
∑

l∈M23

SV ξ(lb, ld, ls, k)

 +
∑

l∈M21

SV ξ(lb, ld, ls, k)


≥ 1ξ(Lb,Ld,Ls,k)=−1

 ∑
l∈M1

SV ξ(lb, ld, ls, k) + Zb(k)


+ 1ξ(Lb,Ld,Ls,k)̸=−1

 ∑
l∈M1

SV ξ(lb, ld, ls, k) +
∑

l∈M23

SV ξ(lb, ld, ls, k)

 + Zb(k)


≥ 1ξ(Lb,Ld,Ls,k)=−1

(∑
l∈K′

SY ξ(lb, ld, ls, k) + Zb(k)

)

+ 1ξ(Lb,Ld,Ls,k)̸=−1

( ∑
l∈K′′

SY ξ(lb, ld, ls, k) + Zb(k)

)
≥ Y (Lb − 1, Ld, Ls, k) + Zb(k)
= V (Lb, Ld, Ls, k),

(22)
where K′,K′′ ∈ T (Lb −1, Ld, Ls). The third inequality is obtained by the proof of Lemma
1 and the fourth inequality is by induction.

In the case of ξ∗(lb, ld, ls, k) = −1, we can similarly prove so the proof is completed.
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From Lemma 2 and ξ0 = ξ, the inequality of equation (8) is trivial. Addition-
ally, from the definition of Zξ∗

l (i) and the optimality of ξ∗, ess sup0≤τ≤T Ei[Z
ξ∗

l (τ)] =
∆∆V (lb, ld, ls, 0), and then the equality of equation (8) holds. Therefore, Theorem 3 is
proved.

C The proof of Theorem 4

The left side of equation (9) is the set of single stopping problems, and thus we can apply
the theorem of Rogers [10] to the left side of equation (9). Then we prove the inequality
of equation (9).

From the theorem of Rogers [10], the inequality in equation (9) becomes an equality
when Ml(i) is the martingale part of the Doob decomposition of Snell envelope, which is
equal to ess supi≤τ≤T Ei[Z

ξ∗

l (τ)]. From the definition of Zξ
l (i), the martingale part is equal

to the martingale part of the Doob decomposition of ∆∆V (l̂ξ
∗

b (i), l̂ξ
∗

d (i), l̂ξ
∗

s (i), i), and thus
Theorem 4 holds.
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