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Abstract

In a weighted undirected graph, a matching is said to be α-robust if for all p, the total
weight of its heaviest p edges is at least α times the maximum weight of a p-matching in
the graph. Here a p-matching is a matching with at most p edges. In 2002, Hassin and
Rubinstein [5] showed that every graph has a 1√

2
-robust matching and it can be found by

k-th power algorithm in polynomial time.
In this paper, we show that it can be extended to the matroid intersection problem, i.e.,

there always exists a 1√
2
-robust matroid intersection, which is polynomially computable. We

also study the time complexity of the robust matching problem. We show that a 1-robust
matching can be computed in polynomial time (if exists), and for any fixed number α with
1√
2
< α < 1, the problem to determine whether a given weighted graph has an α-robust

matching is NP-complete. These together with the positive result for α = 1√
2
in [5] give

us a sharp border for the complexity for the robust matching problem. Moreover, we show
that the problem is strongly NP-complete when α is a part of the input. Finally, we show
the limitations of k-th power algorithm for robust matchings, i.e., for any ϵ > 0, there exists

a weighted graph such that no k-th power algorithm outputs a
(

1√
2
+ ϵ

)
-approximation for

computing the most robust matching.

1 Introduction

Let G = (V,E) be a graph with a nonnegative weight function w on the edges. A p-matching is a
matching with at most p edges. A matchingM inG is said to be α-robust if for all positive integer
p, it contains min{p, |M |} edges whose total weight is at least α times the maximum weight of
a p-matching in G. The concept of the robustness was introduced in [5], and studied for several
combinatorial optimization problems such as trees and paths [3, 6]. Hassin and Rubinstein [5]
showed that the k-th power algorithm (i.e., the one for computing a maximum matching in
the graph with respect to the k-th power weights wk) provides a min{2(1/k)−1, 2−1/k}-robust
matching in polynomial time. In particular, when k = 2, this implies the existence of a 1√

2
-

robust matching in any graph. They also show that the 1√
2
-robustness is the best possible for
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matchings by providing a weighted graph which does not contain α-robust matching for any
α > 1√

2
.

In this paper, we extend this result to the matroid intersection problem. Let M1 = (E, I1)
and M2 = (E, I2) be two matroids with independent sets I1 and I2, respectively, and w be
a nonnegative weight on the ground set E. The matroid intersection problem is to compute a
maximum common independent set I ∈ I1 ∩ I2 of two matroids M1 and M2. The matroid
intersection is a natural generalization of bipartite matching, and one of the most fundamental
problems in combinatorial optimization (see e.g., [8]). We show that the k-th power algorithm
computes a min{2(1/k)−1, 2−1/k}-robust common independent set in polynomial time, which
implies that the matroid intersection problem admits a 1√

2
-robust solution, where the 1√

2
-

robustness is the best possible [5]. In order to obtain the result, we make use of optimal dual
values for the linear programming formulation of the matroid intersection problem.

We next consider the complexity for the robust matching problem. We show that (1) a
1-robust matching can be computed in polynomial time (if exists), and (2) for any fixed number
α with 1√

2
< α < 1, the problem to determine whether a given weighted graph has an α-

robust matching is NP-complete. These together with the positive result for α = 1√
2
in [5]

give us a sharp border for the complexity for the robust matching problem, although the NP-
hardness is in the weak sense. We also show that deciding if G has an α-robust matching is
strongly NP-complete when α is a part of the input. We remark that all the negative results
use bipartite graphs, and hence these lead to the hardness for robust bipartite matching and
matroid intersection.

We finally analyze the performance of the k-th power algorithm for the robust matching
problem. Recall that the k-th power algorithm provides a min{2(1/k)−1, 2−1/k}-robust matching,
and we might expect that for some k, the k-th power algorithm provides a good approximate
solution for the robust matching. However, we show that this is not the case, i.e., 1√

2
is the

best possible for the approximation of the robustness. More precisely, we show that for any

ϵ > 0, there exists a weighted graph such that no k-th power algorithm outputs a
(

1√
2
+ ϵ

)
-

approximation for computing the most robust matching.
The rest of the paper is organized as follows. In the next section, we recall some basic

concepts and introduce notation. Section 3 shows the 1√
2
-robustness of the matroid intersection

problem, and Section 4 shows the NP-hardness for the robust matching problem. In Section 5,
we analyze the performance of the k-th power algorithm for the robust matching problem, which
includes the polynomial solvability for the 1-robust matching. Finally, in Section 6, we give a
proof for the strongly NP-hardness which is omitted in Section 4.

2 Preliminaries

For a finite set E and a nonempty collection of its subsets I ⊆ 2E , the pair (E, I) is called an
independent system if I satisfies the hereditary condition:

I ′ ⊆ I, I ∈ I ⇒ I ′ ∈ I,

where I ∈ I of size at most p (i.e., |I| ≤ p) is called p-independent. An independent system
(E, I) is a matroid if I satisfies

∀I, J ∈ I, |I| > |J | ⇒ ∃i ∈ I \ J, J ∪ {i} ∈ I.

Given an independent system (E, I) and a nonnegative weight function w : E → R+, the
maximum (p-)independent set problem is to compute a (p-)independent set I ∈ I that maximizes
the weight w(I) =

∑
e∈I w(e).
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Let w : E → R+ be a weight function on a ground set E, and let J = {e1, e2, . . . , eq} be a
subset of E with w(e1) ≥ w(e2) ≥ · · · ≥ w(eq). Define

J(p) =

{
{e1, e2, . . . , ep} if p ≤ q,

J otherwise.

For an independence system (E, I), we denote by I(p) a maximum p-independent set. An
independent set J is called α-robust if

w(J(p)) ≥ α · w(I(p)) for all p = 1, 2, . . . , |E|.

Note that any matroid has a 1-robust set, since a greedy algorithm solves the maximum inde-
pendent set problem for matroids. For an original weight function w : E → Z+, the function
wk : E → Z+ is defined by wk(e) = {w(e)}k.

Given two matroids M1 = (E, I1) and M2 = (E, I2), the matroid intersection is the
independent system of form M1 ∩M2 = (E, I1 ∩ I2), and the matroid intersection problem is
to compute a maximum independent set of the matroid intersection. Let ri : 2

E → Z+ denote
the rank function of Mi which is defined as ri(A) = max{|I| | I ⊆ A, I ∈ Ii}. Edmonds [1]
showed that the following linear programming solves the matroid intersection problem:

maximize w · x
subject to x(A) ≤ r1(A) (∀A ⊆ E) (1)

x(A) ≤ r2(A) (∀A ⊆ E)

xe ≥ 0 (∀e ∈ E),

where x ∈ RE and x(A) =
∑

e∈A xe. Consider the dual of the problem:

minimize
∑
A⊆E

(
r1(A)y

1
A+r2(A)y

2
A

)
subject to

∑
e∈A⊆E

(y1A + y2A) ≥ w(e) (∀e ∈ E)

y1A, y
2
A ≥ 0 (∀A ⊆ E).

For an optimal solution (y1, y2) of this dual, we define weight functions w1 and w2 as follows:

w1(e) =
∑

e∈A⊆E

y1A, w2(e) =
∑

e∈A⊆E

y2A. (2)

Then we have the following result.

Theorem 2.1 (Edmonds [1]). Let J be an optimal solution of the matroid intersection problem.
Then it is a maximum independent set of Mi with respect to wi, i = 1, 2.

By definition of w1 and w2, we have w1(e) + w2(e) ≥ w(e) for any e ∈ E, and the comple-
mentary slackness implies that

xe > 0 =⇒ w1(e) + w2(e) = w(e) (∀e ∈ E),

yiA > 0 =⇒ x(A) = ri(A) (∀A ⊆ E, i = 1, 2).
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3 Robust Matroid Intersection

In this section, we prove the following theorem.

Theorem 3.1. Let M1 = (E, I1) and M2 = (E, I2) be two matroids. For any weight function
w : E → R+ and k ≥ 1, let J be a maximum common independent set of M1 and M2 with
respect to wk, i.e.,

wk(J) = max{wk(I) | I ∈ I1 ∩ I2}.

Then J is a min{2(1/k)−1, 2−1/k}-robust independent set for the matroid intersection (E, I1∩I2).

Since the matroid intersection problem is polynomially solvable, as a corollary (k = 2), we
have the following result.

Corollary 3.2. The matroid intersection problem admits a 1√
2
-robust solution, and further-

more, it can be computed in polynomial time.

Let J be a maximum common independent set of M1 and M2 with respect to wk. For p ≥ 1,
we show that w(J(p)) ≥ 2(1/k)−1 · w(I(p)) if |J | ≤ |I(p)|, and w(J(p)) ≥ min{2(1/k)−1, 2−1/k} ·
w(I(p)), otherwise.

3.1 The case when |J | ≤ |I(p)|

Let q = |I(p)| − |J | ≥ 0. To make the discussion clear, let us modify the problem instance by
adding q new elements F = {f1, . . . , fq} to E:

E := E ∪ F,

Ii := {I ∪ F ′ | I ∈ Ii, F ′ ⊆ F},
w(fj) := 0 (j = 1, . . . , q),

J := J ∪ F.

We furthermore truncate the two matroids by |I(p)|:

Ii := {I ∈ Ii | |I| ≤ |I(p)|}.

It is not difficult to see that after this transformation, M1 and M2 are still matroids, J and
I(p) are common bases (i.e., maximal independent sets for both M1 and M2). Hence it suffices
to show w(J(p)) = w(J) ≥ 2(1/k)−1 · w(I(p)). We show this by proving

w(J \ I(p)) ≥ 2(1/k)−1 · w(I(p) \ J).

For a common base B and a common independent set L of M1 and M2, let us construct a
bipartite graph G(B,L) = (V,A = A1 ∪A2) as follows.

V = (B \ L) ∪ (L \B),

Ai = {(x, y) | x ∈ B \ L, y ∈ L \B, (B \ {x}) ∪ {y} ∈ Ii} (i = 1, 2).
(3)

For a vertex x ∈ V and for X ⊆ V , we define

δi(x) = {v ∈ V | (x, v) ∈ Ai},

δi(X) =
∪
x∈X

δi(x) (i = 1, 2).
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Lemma 3.3. For any X ⊆ L \B, (B \ δ1(X)) ∪X ∈ I1 and (B \ δ2(X)) ∪X ∈ I2.

Proof. Assume a contrary that (B \ δ1(X)) ∪ X /∈ I1, that is, there exists an M1-circuit
C1 ⊆ (B \ δ1(X)) ∪ X. Then we have C1 ∩ X ̸= ∅, since B is independent. Furthermore,
|C1 ∩ X| ≥ 2 holds by the definition of δ1(X). For e ∈ C1 ∩ X, let C2 be the unique circuit
included in B ∪ {e}. Since e ∈ C1 ∩ C2 and C1 ̸= C2, by the circuit axiom of matroids, there
exists an M1-circuit C

′
1 ⊆ (C1 ∪C2) \ {e}. This C ′

1 satisfies |C ′
1 ∩X| < |C1 ∩X|. By repeatedly

applying the above argument to C ′
1, we can obtain an M1-circuit C ⊆ (B \ δ1(X)) ∪ X with

|C∩X| ≤ 1, which contradicts the definition of δ1(X). Hence (B\δ1(X))∪X isM1-independent.
Similarly, it can be shown that (B \ δ2(X)) ∪X is M2-independent.

The following lemma follows from Lemma 3.3 and Hall’s theorem.

Lemma 3.4. Bipartite graph G(B,L) has two matchings Mi ⊆ Ai (i = 1, 2) which cover L\B.

Proof. Recall Hall’s theorem for bipartite matchings, i.e., an undirected bipartite graph G =
(V1 ∪ V2, E) has a a matching which covers V1 if and only if |δ(X)| ≥ |X| holds for all X ⊆ V1,
where δ(X) denotes the set of neighbors of X.

Note that B is a common base, and Lemma 3.3 shows that

∀X ⊆ L \B, |δ1(X)| ≥ |X|, |δ2(X)| ≥ |X|,

which together with Hall’s theorem proves the lemma.

Let us now consider the bipartite graph G(J, I(p)). Since J and I(p) are common bases,
Lemma 3.4 implies that G(J, I(p)) contains two perfect matchings M1 ⊆ A1 and M2 ⊆ A2.
Therefore, each connected component of M1 ∪M2 forms an alternating cycle with A1 and A2.
Consider one of these cycles with vertices e1, f1, . . . , ed, fd, e1 such that ej ∈ J \I(p), fj ∈ I(p)\J ,
(ej , fj) ∈ A1 (j = 1, . . . , d), (fj , ej+1) ∈ A2 (j = 1, . . . , d− 1), and (fd, e1) ∈ A2. For every such
cycle, we shall show ∑d

j=1w(ej)∑d
j=1w(fj)

≥
∑d

j=1(w1(ej) + w2(ej))
1/k∑d

j=1(w1(fj) + w2(fj))1/k
≥ 2(1/k)−1, (4)

where w1 and w2 are weight functions constructed by an optimal dual solution for LP formulation
(1) of the matroid intersection problem with respect to the weight wk (see (2)). This completes
the proof for the case in which |J | ≤ |I(p)|.

Note that the first inequality in (4) holds by w1(e) + w2(e) ≥ wk(e) for every e ∈ E and
the complementary slackness (i.e., w1(e) +w2(e) = wk(e) for every e ∈ J). To show the second
inequality in (4), we introduce 4d variables x0, . . . , x2d−1, y1, . . . , y2d, where x2j−1, x2j−2, y2j−1

and y2j (j = 1, . . . , d) correspond to w1(ej), w2(ej), w1(fj) and w2(fj), respectively. Since
(ej , fj) ∈ A1, by Theorem 2.1, we have w1(ej) ≥ w1(fj) (j = 1, . . . , d). Similarly, we have
w2(ej+1) ≥ w2(fj) (j = 1, . . . , d−1), and w2(e1) ≥ w2(fd). Therefore, we consider the following
optimization problem to prove (4).

minimize Z =
(x0 + x1)

1/k + (x2 + x3)
1/k + · · ·+ (x2d−2 + x2d−1)

1/k

(y1 + y2)1/k + (y3 + y4)1/k + · · ·+ (y2d−1 + y2d)1/k

subject to xj ≥ yj ≥ 0 (j = 1, . . . , 2d− 1)

x0 ≥ y2d ≥ 0

the denominator of Z is positive.
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Since Z is clearly minimized when xj = yj (1 ≤ j ≤ 2d − 1) and x0 = y2d, it is consequently
enough to prove

minimize Z(x) =
(x0 + x1)

1/k + (x2 + x3)
1/k + · · ·+ (x2d−2 + x2d−1)

1/k

(x1 + x2)1/k + (x3 + x4)1/k + · · ·+ (x2d−1 + x0)1/k

subject to xj ≥ 0 (j = 0, . . . , 2d− 1) (5)

the denominator of Z(x) is positive

is at least 2(1/k)−1. Let us consider the following operation REDUCE(j) which transforms a
nonnegative x without increasing Z(x).

REDUCE(j)

If x2j−2 + x2j−1 ≥ x2j + x2j+1, then x2j−1 := x2j−1 + x2j and x2j := 0.
Otherwise, x2j := x2j−1 + x2j and x2j−1 := 0.

Here we define x2d = x0 and x2d+1 = x1. Note that for any nonnegative a, b and c with
a ≥ b ≥ c, we have

a1/k + b1/k ≥ (a+ c)1/k + (b− c)1/k

by the concavity of function f(x) = x1/k for k ≥ 1. Thus REDUCE(j) creates a new feasible
solution x to (5) without increasing Z(x). By repeatedly applying REDUCE(j), j = 1, . . . , d,
we obtain x with at least one 0 for each pair of (x1, x2), (x3, x4), . . . , (x2d−1, x0). Then, by
removing variables of value 0, Z(x) can be represented as

Z(x) =

∑
j∈J1(x2j + x2j+1)

1/k +
∑

j∈J2 x
1/k
2j +

∑
j∈J3 x

1/k
2j+1∑

j∈J1

(
x
1/k
2j + x

1/k
2j+1

)
+

∑
j∈J2 x

1/k
2j +

∑
j∈J3 x

1/k
2j+1

≥ min

{
min
j∈J1

(x2j + x2j+1)
1/k

x
1/k
2j + x

1/k
2j+1

, 1

}
.

for some sets J1, J2, J3 ⊆ {1, . . . , d}. Since we have (a+b)1/k

a1/k+b1/k
≥ (a+b)1/k

((a+b)/2)1/k+((a+b)/2)1/k
= 2(1/k)−1

for any positive a and b, we can conclude that Z(x) ≥ 2(1/k)−1.

3.2 The case when |J | > |I(p)|

Let J be a maximum common independent set of M1 and M2 with respect to wk. we shall
show that w(J(p)) ≥ min{2(1/k)−1, 2−1/k} · w(I(p)) if |J | > |I(p)|.

Let us construct a set K ⊆ J such that |K| = |I(p)| and

w(K \ I(p)) ≥ min{2(1/k)−1, 2−1/k} · w(I(p) \K), (6)

which completes the proof.
Similarly to the case in which |J | ≤ |I(p)|, we truncate matroids Mi (i = 1, 2) by |J |:

Ii := {I ∈ Ii | |I| ≤ |J |}.

Note that J becomes a common base by this transformation. Consider a bipartite graph
G(J, I(p)) = (V,A1 ∪A2) defined as (3). By Lemma 3.4, G(J, I(p)) has two matchings M1 ⊆ A1

and M2 ⊆ A2 that both cover I(p) \ J . M1 ∪M2 consists of alternating cycles and paths, where
each path starts and ends with vertices in J \ I(p). Let V1, . . . , Vq denote the vertex set of
connected components of M1 ∪ M2. Note that

∪
ℓ Vℓ contains I(p) \ J . For each component,
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define Kℓ by Kℓ = Vℓ ∩ J if it forms a cycle; otherwise, Kℓ = Vℓ ∩ (J \ {e}), where e denotes a
vertex in Vℓ ∩ J with the minimum w(e). We then define K = (I(p) ∩ J)∪

∪
ℓKℓ. We note that

K ⊆ J and |K| = |I(p)|. In order to prove (6), we show

w(Kℓ) ≥ min{2(1/k)−1, 2−1/k} · w(Vℓ \Kℓ) for all ℓ. (7)

If the connected component forms a cycle, then (7) holds by a similar argument to the case
where |J | ≥ |I(p)|. On the other hand, if it forms a path e1, f1, . . . , ed, fd, ed+1, where ei ∈ J \I(p)
and fi ∈ I(p) \ J , then (7) can be restated as∑d+1

j=1 w(ej)−min1≤j≤d+1w(ej)∑d
j=1w(fj)

≥ min{2(1/k)−1, 2−1/k}. (8)

Let w1 and w2 denote weight functions constructed by an optimal dual solution for LP formu-
lation (1) of the matroid intersection problem with respect to the weight wk (see (2)). Then
the left-hand-side of (8) is at least∑d+1

j=1(w1(ej) + w2(ej))
1/k −min1≤j≤d+1(w1(ej) + w2(ej))

1/k∑d
j=1(w1(fj) + w2(fj))1/k

,

which follows from the dual feasibility and complementary slackness. By Theorem 2.1, we have
w1(ej) ≥ w1(fj) ≥ 0 and w2(ej+1) ≥ w2(fj) ≥ 0 for all j (1 ≤ j ≤ d) and w1(ed+1), w2(e1) ≥ 0.
Thus it is sufficient to consider the case in which w1(ed+1) = w2(e1) = 0, and w1(ej) = w1(fj)
and w2(ej+1) = w2(fj) for j = 1, . . . , d. Namely we consider the following optimization problem:

minimize Z(x) =
x
1/k
1 + (x2 + x3)

1/k + · · ·+ (x2d−2 + x2d−1)
1/k + x

1/k
2d − s

1/k
min

(x1 + x2)1/k + (x3 + x4)1/k + · · ·+ (x2d−1 + x2d)1/k

subject to xj ≥ 0 (j = 1, . . . , 2d) (9)

the denominator of Z(x) is positive,

where smin = min{x1, x2+x3, . . . , x2d−2+x2d−1, x2d} and x2j−1 and x2j , respectively, correspond
to w1(ej) = w1(fj) and w2(ej+1) = w2(fj). We prove by induction on d that the optimal value
of problem (9) is at least min{2(1/k)−1, 2−1/k}.

If d = 1, then the claim is true, since

Z(x) =
(max{x1, x2})1/k

(x1 + x2)1/k
≥

(
1

2

)1/k

for any x1, x2 ∈ R+ with x1 + x2 > 0.
Supposing that the claim is true for any d′ ≤ d− 1, we consider the claim for d > 1. Define

sj (1 ≤ j ≤ k + 1) by sj = x1 if j = 1, x2j−2 + x2j−1 if 2 ≤ j ≤ d, and x2d if j = d+ 1. Then,
we have

Z(x) =

∑d+1
j=1 s

1/k
j − s

1/k
min∑d

j=1(x2j−1 + x2j)1/k
.

We first show the following case.

Lemma 3.5. If smin = sj for some j with 2 ≤ j ≤ d, then we have Z(x) ≥ min{2(1/k)−1, 2−1/k}.

7



Proof. Let sh = smin (2 ≤ h ≤ d). Then we have

Z(x) =

∑h
j=1 s

1/k
j − s

1/k
h +

∑d+1
j=h s

1/k
j − s

1/k
h∑h−1

j=1 (x2j−1 + x2j)1/k +
∑d

j=h(x2j−1 + x2j)1/k
.

If
∑h−1

j=1 (x2j−1 + x2j)
1/k = 0, then Z(x) =

∑d+1
j=h s

1/k
j −s

1/k
h∑d

j=h(x2j−1+x2j)1/k
. By the inductive hypothesis, this

implies the claim. Similarly, we can prove the claim if
∑d

j=h(x2j−1 + x2j)
1/k = 0. On the other

hand, if
∑h−1

j=1 (x2j−1 + x2j)
1/k,

∑d
j=h(x2j−1 + x2j)

1/k ̸= 0, we obtain

Z(x) ≥ min

{ ∑h
j=1 s

1/k
j − s

1/k
h∑h−1

j=1 (x2j−1 + x2j)1/k
,

∑d+1
j=h s

1/k
j − s

1/k
h∑d

j=h(x2j−1 + x2j)1/k

}
.

By the inductive hypothesis, this again implies the claim.

By the lemma, we assume without loss of generality that s1 = smin, and separately consider
two cases: (1) sj−1 ≥ sj ≤ sj+1 for some j, and (2) s1 ≤ · · · ≤ sj ≥ · · · ≥ sd+1 for some j.

Lemma 3.6. If there exists some j (2 ≤ j ≤ d) with sj−1 ≥ sj ≤ sj+1, then we have Z(x) ≥
min{2(1/k)−1, 2−1/k}.

Proof. Let us modify x as follows.

If x2j−2 ≥ x1, then x2j−3 := x2j−3 + x2j−2 − x1, x2j−2 := x1,
x2j := x2j−1 + x2j , and x2j−1 := 0.

Otherwise, x2j := x2j−2 + x2j−1 + x2j − x1 and x2j−1 := x1 − x2j−2.

After this operation, we have s1 = sj = smin without increasing Z(x). By Lemma 3.5, we have
Z(x) ≥ min{2(1/k)−1, 2−1/k}.

For case (2), we further separate it to the following three cases.

(2a) j ≥ 3 (i.e., s1 ≤ s2 ≤ s3),
(2b) j = 2 and d ≥ 3 (i.e., s1 ≤ s2 > s3 ≥ · · · ≥ sd+1),
(2c) d = 2 (i.e., s1 ≤ s3 ≤ s2).

Case (2a): we consider the following modification of x without increasing Z(x).

If x2 ≥ x1, then x4 := x3 + x4 and x3 := 0.
Otherwise, x4 := x2 + x3 + x4 − x1 and x3 := x1 − x2.

If x2 < x1, we have s2 = s1 = smin. It follows from Lemma 3.5 that Z(x) ≥ min{2(1/k)−1, 2−1/k}.
Otherwise (i.e. x2 ≥ x1), we have x3 = 0 and s1 = smin. Since x3 = 0, it holds that

Z(x) =
x
1/k
2 +

∑d+1
j=3 s

1/k
j

(x1 + x2)1/k +
∑d

j=2(x2j−1 + x2j)1/k
.

If (x1 + x2)
1/k ̸= 0 and

∑d
j=2(x2j−1 + x2j)

1/k ̸= 0, then

Z(x) ≥ min

{
x
1/k
2

(x1 + x2)1/k
,

∑d+1
j=3 s

1/k
j∑d

j=2(x2j−1 + x2j)1/k

}
,

which is at least min{2(1/k)−1, 2−1/k} by x2 ≥ x1 and the inductive hypothesis. Similarly, we
can deal with the case when (x1 + x2)

1/k = 0 or
∑d

j=2(x2j−1 + x2j)
1/k = 0.
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Case (2b): In this case, transform x by

x2d−1 := x2d−1 + x2d − x1 and x2d := x1.

By this transformation, we have sd+1 = s1 = smin and sd ≥ sd+1. Thus, if sd−1 ≥ sd holds,
then by symmetry to Case (2a), we can obtain the claim. Otherwise (i.e., sd−1 < sd), if d = 3,
we have s1 ≤ s2 ≤ s3, which implies the claim by Case (2a). On the other hand, if d ≥ 4, we
have sd−2 ≥ sd−1 ≤ sd, which again implies the claim by Lemma 3.6.

Case (2c): We prove the claim by a direct calculation. In this case,

Z(x) =
(x2 + x3)

1/k + x
1/k
4

(x1 + x2)1/k + (x3 + x4)1/k
.

If we fix the values of s2 = x2 + x3 and x4, then Z(x) is minimized when x1 = x4 and x2 = x3,
because of 0 ≤ x1 ≤ x4 and the concavity of f(x) = x1/k. Thus, it suffices to consider the
minimum value of

(2x2)
1/k + x

1/k
4

2(x2 + x4)1/k

under the condition 2x2 ≥ x4 ≥ 0. By setting x := x4/x2, this is equal to the minimal value of

g(x) =
21/k + x1/k

2(1 + x)1/k

under the condition 2 ≥ x ≥ 0. Since

g′(x) =
1

2k
(1 + x)−1−(1/k)(x(1/k)−1 − 21/k),

g is minimized either when x = 0 or x = 2. In the former case, g = 2(1/k)−1, and in the latter
case, g = (2/3)1/k(≥ 2−1/k), which completes the proof of Case (2c).

4 Complexity of α-Robust Matching

In this section, we study the time complexity of the following problem.� �
α-ROBUST-MATCHING

Instance: A graph G = (V,E) and a weight w(e) ∈ Z+ for each e ∈ E.

Question: Is there an α-robust matching in G ?� �
Theorem 4.1. α-ROBUST-MATCHING is NP-complete when 1√

2
< α < 1, and it is polyno-

mially solvable when α ≤ 1√
2
or α = 1.

Note that the polynomial result for α ≤ 1√
2
is given in [5]. This theorem gives us a sharp

border for the complexity of α-ROBUST-MATCHING. The proof of Theorem 4.1 consists of

the following three parts. In Sections 4.1 and 4.2, we deal with the cases when 2+
√
2

4 < α < 1

and 1√
2
< α ≤ 2+

√
2

4 , respectively. A polynomial-time algorithm for α = 1 is presented in

Section 5.1 (see Theorem 5.1).
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We also show that when α is a part of the input, detecting an α-robust matching is NP-
complete in the strong sense. For a precise description, we introduce the following problem.� �
ROBUST-MATCHING

Instance: A graph G = (V,E), a weight w(e) ∈ Z+ for each e ∈ E, and positive integers
α1 and α2.

Question: Is there an α1
α2
-robust matching in G ?� �

Theorem 4.2. ROBUST-MATCHING is NP-complete in the strong sense, that is, it is NP-
complete even if the size of the input is Θ(|V |+ |E|+ w(E) + α1 + α2).

The proof of Theorem 4.2 is given in Section 6.

4.1 NP-hardness for α-Robust Matching when 2+
√
2

4
< α < 1

In this subsection, we deal with the case when 2+
√
2

4 < α < 1. For a concise description, we
first discuss the case when α = 7

8 , and then show how to modify the reduction for a general α

with 2+
√
2

4 < α < 1.
Our proof of Theorem 4.1 is based on the NP-completeness of PARTITION. For a finite

set S and a function f : S → R+, PARTITION is the problem to find a partition (A,B) of S
with f(A) = f(B), and it is one of Karp’s NP-complete problems [7]. By NP-completeness of
PARTITION, we can see that the following problem is also NP-complete.� �
PARTITION′

Instance: A finite set S and a non-negative number f(e) for each e ∈ S.

Question: Is there a partition (A,B) of S such that |A| = |B| and f(A) = f(B) ?� �
Proposition 4.3. PARTITION′ is NP-complete.

Proof. PARTITION′ is obviously in NP. Given an instance S of PARTITION, construct an
instance of PARTITION′ by adding |S| new elements e with f(e) = 0 to S. Then it is not difficult
to see that S has a solution if and only if so does the corresponding instance of PARTITION′,
which implies that PARTITION′ is NP-hard.

In what follows, we show that there exists a polynomial-reduction from PARTITION′ to
7
8 -ROBUST-MATCHING.

Suppose a set S with |S| = n and a function f : S → R+ are an instance of PARTITION′.
We construct an instance of 7

8 -ROBUST-MATCHING as follows. Let G = (V,E) be a graph
defined by

V = {vi,j | i = 1, 2, 3, 4, j ∈ S},
E = {ei,j | ei,j = (vi,j , vi+1,j), i = 1, 2, 3, j ∈ S}.

Let L be a large enough integer relative to f(S) (for example, L = 7f(S) + 1) and define the
weights of edges as

w(e1,j) = 7(L+ f(j)),

w(e2,j) = 12(L+ f(j)),

w(e3,j) = 9(L+ f(j))
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for j ∈ S.
For a maximal matching M ⊆ E, we define a partition (A,B) of S by

A = {j | j ∈ S, e1,j ∈ M, e3,j ∈ M}, (10)

B = {j | j ∈ S, e2,j ∈ M}. (11)

Conversely, a partition (A,B) of S defines a maximal matching M in G in a similar way. We
say that such a maximal matching M corresponds to a partition (A,B) of S. Recall that M(p)

is a set of heaviest min{p, |M |} edges of M and M (p) is a maximum p-matching.

Lemma 4.4. If a maximal matching M in G is 7
8 -robust, then its corresponding partition (A,B)

of S satisfies that |A| = |B| = n
2 and f(A) = f(B).

Proof of Lemma 4.4. Suppose that M is a 7
8 -robust matching of G. Since

w(M(n)) = 9|A|L+ 9f(A) + 12|B|L+ 12f(B),

w(M (n)) = 12nL+ 12f(S),

it holds that

w(M(n))−
7

8
w(M (n)) = 3

(
|B|L+ f(B)− 1

2
nL− 1

2
f(S)

)
≥ 0. (12)

On the other hand, since

w(M(2n)) = 16|A|L+ 16f(A) + 12|B|L+ 12f(B),

w(M (2n)) = 16nL+ 16f(S),

it holds that

w(M(2n))−
7

8
w(M (2n)) = −4

(
|B|L+ f(B)− 1

2
nL− 1

2
f(S)

)
≥ 0. (13)

By (12) and (13), we have |B|L + f(B) − 1
2nL − 1

2f(S) = 0. Since L is large enough, this
means that |B| = 1

2n and f(B) = 1
2f(S), which shows the present lemma.

For a set T = {j1, j2, . . . , j|T |} ⊆ S with f(j1) ≥ f(j2) ≥ · · · ≥ f(j|T |) and for 0 ≤ p ≤ |T |,
define T(p) by

T(p) = {j1, j2, . . . , jp}. (14)

Lemma 4.5. If a partition (A,B) of S satisfies that |A| = |B| and f(A) = f(B), then its
corresponding maximal matching M in G is 7

8 -robust.

Proof of Lemma 4.5. Suppose that |A| = |B| = n
2 and f(A) = f(B). It suffices to show that

w(M(p)) ≥ 7
8w(M

(p)) for any 1 ≤ p ≤ 2n. We consider the following cases:

Case 1: When p = n or p ≥ 2n, by the same calculation as the proof of Lemma 4.4, we have
w(M(p)) =

7
8w(M

(p)).

Case 2: When 1 ≤ p ≤ n
2 , we have w(M(p))− 7

8w(M
(p)) = 12pL+12f(B(p))− 21

2 pL− 21
2 f(S(p)),

which is at least 3
2pL− 21

2 f(S(p)) > 0.
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Case 3: When n
2 + 1 ≤ p ≤ n − 1, it holds that w(M(p)) − 7

8w(M
(p)) = w(M(n)) − 9(n −

p)L − 9f(A \ A(p−n
2
)) − 7

8

(
w(M (n))− 12(n− p)L− 12f(S \ S(p−n

2
))
)
, which is at least

3
2(n− p)L− 9f(A \A(p−n

2
)) > 0.

Case 4: When n + 1 ≤ p ≤ 3
2n, it holds that w(M(p)) − 7

8w(M
(p)) = w(M(n)) + 7(p −

n)L+ 7f(A(p−n))− 7
8

(
w(M (n)) + 4(p− n)L+ 4f(S(p−n))

)
, which is at least 7

2(p− n)L−
7
2f(S(p−n)) > 0.

Case 5: When 3
2n+1 ≤ p ≤ 2n−1, we have w(M(p))− 7

8w(M
(p)) > w(M(2n))− 7

8w(M
(2n)) = 0.

Therefore, w(M(p)) ≥ 7
8w(M

(p)) for any p, which shows the lemma.

Since it suffices to deal with maximal matchings in 7
8 -ROBUST-MATCHING, Lemmata 4.4

and 4.5 imply that there exists a partition (A,B) of S such that |A| = |B| and f(A) = f(B) if
and only if G has a 7

8 -robust matching with respect to the weight function w. This shows that
PARTITION′ can be reduced to 7

8 -ROBUST-MATCHING, and hence 7
8 -ROBUST-MATCHING

is NP-hard.
In order to show the NP-hardness of α-ROBUST-MATCHING for a general number α with

2+
√
2

4 < α < 1, define the weight of the edges of G as

w(e1,j) = a(L+ f(j)),

w(e2,j) = b(L+ f(j)),

w(e3,j) = c(L+ f(j)),

where 0 < a < c < b < a+ c,
a+ b+ c

2(a+ c)
=

b+ c

2b
= α,

and L is a large enough integer relative to f(S). For example, a = 4α(1− α), b = 2α− 1, and

c = (2α− 1)2 satisfy the above conditions if 2+
√
2

4 < α < 1. By the same argument as the case

α = 7
8 , we obtain the NP-hardness for α-ROBUST-MATCHING when 2+

√
2

4 < α < 1.

4.2 NP-hardness for α-Robust Matching when 1√
2
< α ≤ 2+

√
2

4

In this subsection, we modify the proof in the previous subsection to apply the case when
1√
2
< α ≤ 2+

√
2

4 .

As with the previous subsection, we reduce an instance of PARTITION′ to the problem.
Let a set S with |S| = n and f : S → R+ be an instance of PARTITION′. We construct an
instance of α-ROBUST-MATCHING as follows.

Let G = (V,E) be a graph defined by

V = {vi,j | i = 1, 2, 3, 4, j ∈ S} ∪ {u1, u2, u3, u4, u5},
E = {ei,j | ei,j = (vi,j , vi+1,j), i = 1, 2, 3, j ∈ S}

∪ {(u1, u2), (u2, u3), (u3, u4), (u4, u5)}.

Define the weight of the edges of G as

w(e1,j) = a(L+ f(j)),

w(e2,j) = b(L+ f(j)),

w(e3,j) = c(L+ f(j)),
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for j ∈ S, and

w(u1, u2) = w(u3, u4) = N(nL+ f(S)),

w(u2, u3) = (
1

α
+ ϵ)N(nL+ f(S)),

w(u4, u5) = (
√
2− 1

α
− ϵ)N(nL+ f(S)),

where 0 < ϵ <
√
2 − 1

α , 0 < a < c < b < a + c, N > 0, w(u4, u5) > w(ei,j) for every i, j, L is
large enough relative to f(S), and

√
2N + (a+ b+ c)/2

2N + (a+ c)
=

√
2N + (b+ c)/2

2N + b
= α.

For example, a = 2α, b = 10, c = 11− 2α, ϵ =
√
2−1/α
2 , and N = 21−22α

4α−2
√
2
satisfy the conditions

if n is large enough. Then we can show that S has a desired partition if and only if G has an
α-robust matching.

If a matching M does not contain (u2, u3), then

w(M(1)) ≤ N(nL+ f(S)) < αw(u2, u3) = αw(M (1)),

and hence M is not α-robust. Thus, when we detect an α-robust matching, we only consider
matchings containing (u2, u3). Furthermore, we may assume that the matchings contain (u4, u5).

In the same way as the previous subsection, we define by (10) and (11) the correspondence
between a maximal matching M containing both (u2, u3) and (u4, u5) in G and a partition
(A,B) of S. In order to show the equivalence of the instance of PARTITION′ and that of
α-ROBUST MATCHING, we use the following proposition.

Proposition 4.6. Let M be a maximal matching in G containing (u2, u3) and (u4, u5), and
(A,B) be a partition of S corresponding to M . Then, M is α-robust if and only if |A| = |B| = n

2
and f(A) = f(B).

Proof. We only show the “only if” part of the proposition. The “if” part is obtained from a
simple case analysis in the same way as the proof of Lemma 4.5.

Suppose that M is an α-robust matching of G. Since

w(M(n+2)) =
√
2N(nL+ f(S)) + c|A|L+ cf(A) + b|B|L+ bf(B),

w(M (n+2)) = 2N(nL+ f(S)) + bnL+ bf(S),

it holds that

w(M(n+2))− αw(M (n+2)) = (b− c)

(
|B|L+ f(B)− 1

2
nL− 1

2
f(S)

)
≥ 0. (15)

On the other hand, since

w(M(2n+2)) =
√
2N(nL+ f(S)) + (a+ c)|A|L+ (a+ c)f(A) + b|B|L+ bf(B),

w(M (2n+2)) = 2N(nL+ f(S)) + (a+ c)nL+ (a+ c)f(S),

it holds that

w(M(2n+2))− αw(M (2n+2)) = −(a+ c− b)

(
|B|L+ f(B)− 1

2
nL− 1

2
f(S)

)
≥ 0. (16)

By (15) and (16), we have |B|L + f(B) − 1
2nL − 1

2f(S) = 0. Since L is large enough, this
means that |B| = 1

2n and f(B) = 1
2f(S), which shows the “only if” part of the proposition.

By this proposition, PARTITION′ can be reduced to α-ROBUST-MATCHING, which shows

Theorem 4.1 when 1√
2
< α ≤ 2+

√
2

4 .
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5 k-th power algorithm

As shown in the previous section, α-ROBUST-MATCHING is NP-complete when 1√
2
< α < 1.

However, it is known [5] that every graph has a 1√
2
-robust matching which can be computed by

the k-th power algorithm.� �
k-th power algorithm

Step 1. For a weight function w : E → Z+, define wk : E → Z+ by wk(e) = {w(e)}k.

Step 2. Find a matching (or an independent set) M maximizing wk(M), and output M .� �
In this section, we analyze the performance of the k-th power algorithm.

5.1 1-robust matching

When k = 1 and k = 2, the k-th power algorithm finds an ordinary maximum matching and
a 1√

2
-robust matching, respectively. In this section, we show that when k is large enough, the

k-th power algorithm finds a 1-robust matching, if one exists.

Theorem 5.1. Let (E, I) be an independent system. Suppose that k is large enough to satisfy
wk(e) > |E|wk(e′) if w(e) > w(e′). If (E, I) has a 1-robust independent set, then it can be
found by the k-th power algorithm.

Proof. Let F = {f1, f2, . . . , fs} be a 1-robust independent set for (E, I), and G = {g1, g2, . . . , gt}
be output by the k-th power algorithm, where w(f1) ≥ w(f2) ≥ · · · ≥ w(fs) and w(g1) ≥
w(g2) ≥ · · · ≥ w(gt). Note that w(I(p)) = w(F(p)) holds for any p by the definition of the

1-robustness, where I(p) denotes a maximum p-independent set. Assume that w(I(p−1)) =
w(G(p−1)) and w(I(p)) > w(G(p)) for some p (≥ 1). Then we have

wk(I(p))− wk(G(p)) = wk(fp)− wk(gp)

> (|E| − 1)wk(gp)

>
∑

j≥p+1

wk(gj),

which implies wk(I(p)) > wk(G). This contradicts the maximality of wk(G). Thus, wk(I(p)) =
wk(G(p)) holds for every p.

As a corollary of Theorem 5.1, for sufficiently large k, the k-power algorithm compute in
polynomial time a 1-robust matching and a 1-robust common independent set of two matroids,
for example.

We remark that, instead of using the k-th power of the original weight, we can use any weight
function w′ that satisfies w′(e1) > |E| ·w′(e2) for all pairs of edges e1 and e2 with w(e1) > w(e2).

For example, when we have t different weights w1 < w2 < · · · < wt, let f(wi) = (|E| + 1)i

and w′(e) = f(w(e)). Then w′(e) satisfies this condition. We can find a 1-robust independent
set (if exists) by finding a maximum independent set with respect to the weight function w′.

5.2 Negative results

We have already seen that the k-th power algorithm outputs a meaningful solution when k =
1, 2,+∞, and so it might be expected that by choosing an appropriate parameter k depending on
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an instance, the k-th power algorithm outputs a good approximate solution for the robustness.
However, in this subsection, we give a result against this expectation.

We consider the following optimization problem corresponding to α-ROBUST-MATCHING.� �
MAX-ROBUST-MATCHING

Instance: A graph G = (V,E) and a weight w(e) ∈ Z+ for each e ∈ E.

Find: The maximum α such that G has an α-robust matching.� �
Since this problem is NP-hard by Theorem 4.1, we consider approximation algorithms for

the problem. For an instance of MAX-ROBUST-MATCHING whose maximum value is α∗ and
for 0 < β < 1, a matching M in G is β-approximately robust if M is (α∗β)-robust. Obviously,
for any instance of the problem, the k-th power algorithm finds a 1√

2
-approximately robust

matching when k = 2. The following theorem shows that 1√
2
is the best approximation ratio of

the k-th power algorithm.

Theorem 5.2. For any ϵ > 0, there exists an instance of MAX-ROBUST-MATCHING such

that the k-th power algorithm does not output
(

1√
2
+ ϵ

)
-approximately robust matching for any

k.

Proof. It suffices to show that for any small ϵ′ > 0, there exists an instance of MAX-ROBUST-
MATCHING satisfying the following conditions:

(A) There exists a (1− ϵ′)-robust matching.

(B) For any k, the output of the k-th power algorithm is not
(

1√
2
+ ϵ′

)
-robust.

We consider the following instance of the problem. Define γ = 1√
2
for a concise description,

and let L be an integer such that L > 5
ϵ′ . Let S0, S1, . . . , SL be finite sets with |S0| = L and

|St| = ⌊(
√
2)t⌋ for t = 1, 2, . . . , L2. Let G = (V,E) be a graph defined by

V0 = {vi,j | i = 1, 2, j ∈ S0},
Vt = {vi,j | i = 1, 2, 3, 4, j ∈ St} for t = 1, 2, . . . , L2,

V =

 L2∪
t=0

Vt

 ∪ {u1, u2, u3, u4},

E0 = {(v1,j , v2,j) | j ∈ S0},
Et = {ei,j | ei,j = (vi,j , vi+1,j), i = 1, 2, 3, j ∈ St} for t = 1, 2, . . . , L2,

E =

 L2∪
t=0

Et

 ∪ {(u1, u2), (u2, u3), (u3, u4)}.

Define a weight function w : E → R+ by

w(e) =



√
2− ϵ′ if e = (u2, u3),

1 if e ∈ E0 ∪ {(u1, u2), (u3, u4)},
γt if e = e2,j for j ∈ St,

γt+1 if e = e1,j or e = e3,j for j ∈ St,
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for t = 1, 2, . . . , L2.
Then, (A) and (B) hold in this instance by Lemmata 5.3 and 5.5 below, which yields Theo-

rem 5.2.

Lemma 5.3. There exists a (1− ϵ′)-robust matching in G.

Proof. We show that a matching M = {(u2, u3)} ∪ E0 ∪ {e1,j , e3,j | j ∈ S1 ∪ S2 ∪ · · · ∪ SL2} is
(1− ϵ′)-robust. It is obvious that w(M(p)) = w(M (p)) for p = 1, 2, . . . , L+ 1.

For p ≥ L+ 2, we use the following claim.

Claim 5.4. Let p and t be integers with p ≥ L+ 2 and 1 ≤ t ≤ L2 − 3. If there exist t′ ≥ t+ 3
and j ∈ St′ such that e2,j is contained in a maximum p-matching M (p), then e2,j ̸∈ M (p) for
any j ∈ St.

Proof of Claim 5.4. Assume that e2,j1 , e2,j2 ∈ M (p) for j1 ∈ St and j2 ∈ St′ . Then,

w(e2,j1) + w(e2,j2) ≤ w(e1,j1) + w(e3,j1),

because 1 + γ3 ≤ 2γ. This contradicts the maximality of w(M (p)).

By this claim, it holds that

M (p) \M ⊆ {(u1, u2), (u3, u4)} ∪ {w(e2,j) | j ∈ St ∪ St+1 ∪ St+2}

for some t, and hence

w(M (p) \M) ≤ 2 + γt(
√
2)t + γt+1(

√
2)t+1 + γt+2(

√
2)t+2 ≤ 5.

Since w(M (p)) > L for p ≥ L+ 2, we have

w(M (p))− w(M(p)) ≤ 5 < ϵ′w(M (p)),

and hence, M is (1− ϵ′)-robust.

Lemma 5.5. For any k, the output of the k-th power algorithm in G is not
(

1√
2
+ ϵ′

)
-robust.

Proof. Suppose that a matching M does not contain (u2, u3). Then, (
1√
2
+ ϵ′)M (1) > 1 ≥ M(1),

which means that M is not
(

1√
2
+ ϵ′

)
-robust. Thus, it suffices to consider the case when the

algorithm outputs a matching containing (u2, u3).
By the definition of the k-th power algorithm, if the output of the algorithm contains (u2, u3),

then it coincides with M∗ = {(u2, u3)} ∪ E0 ∪ {e2,j | j ∈ S1 ∪ S2 ∪ . . . SL2}. Then, we have

w(M∗
(|E|)) = w(u2, u3) + w(E0) +

L2∑
t=1

w(M∗ ∩ Et)

< L+
√
2 +

L2∑
t=1

γt(
√
2)t < L2 + L+ 2.

On the other hand,

w(M (|E|)) = w(u1, u2) + w(u3, u4) + w(E0)

+ 2
∑

{w(e1,j) + w(e3,j) | j ∈ S1 ∪ S2 ∪ · · · ∪ SL2}

≥ L+ 2 +

L2∑
t=1

2γt+1((
√
2)t − 1) >

√
2L2 + L− 2.
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Hence, (
1√
2
+ ϵ′

)
w(M (|E|)) > L2 + ϵ′L2 > w(M∗

(|E|)),

which means that M∗ is not
(

1√
2
+ ϵ′

)
-robust.

6 Proof of Theorem 4.2

In this section, we give a proof of Theorem 4.2.

Theorem 4.2. ROBUST-MATCHING is NP-complete in the strong sense, that is, it is NP-
complete even if the size of the input is Θ(|V |+ |E|+ w(E) + α1 + α2).

ROBUST-MATCHING is obviously in NP. In order to show the NP-hardness in the strong
sense, we consider the following problem.� �
3-PARTITION

Instance: A set S with |S| = 3m, a bound B ∈ Z+, a size f(j) ∈ Z+ for each j ∈ S such
that f(S) = mB.

Question: Can S partitioned into m disjoint sets S1, S2, . . . , Sm such that |Sp| = 3 and
f(Sp) = B for each 1 ≤ p ≤ m ?� �

3-PARTITION is known to be NP-complete in the strong sense [4], that is, 3-PARTITION is
NP-complete even if the size of the input is Θ(|S|+ f(S)).

In what follows in this section, we show that 3-PARTITION can be reduced to ROBUST-
MATCHING.

6.1 Reduction to ROBUST-MATCHING

Given an instance of 3-PARTITION with m ≥ 6, we construct an instance of ROBUST-
MATCHING as follows.

As shown in Fig. 1, let G = (V,E) be a graph given by V =
∪

j∈S Vj and E =
∪

j∈S Ej ,
where

Vj =

m∪
i=1

{si,j , ti,j , ui,j , vi,j} ∪ {rj} (j ∈ S),

Ej =

m∪
i=1

{(rj , si,j), (si,j , ti,j), (ti,j , ui,j), (ui,j , vi,j)} (j ∈ S),

For i = 1, . . . ,m, let ki be an integer defined by

km = m2 and ki =

⌊(
1 +

4

m

)
ki+1

⌋
(i = 1, . . . ,m− 1).

Define the weight of the edges by

w(rj , si,j) = (m2 − 5)ki(L+ f(j)),

w(si,j , ti,j) = (m2 + 2m− 7)ki(L+ f(j)),

w(ti,j , ui,j) = (m2 + 3m− 4)ki(L+ f(j)),

w(ui,j , vi,j) = (m2 + 3m− 5)ki(L+ f(j)),
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Figure 1: Construction of Vj and Ej .

where L = 2m3k1f(S) which is a large enough integer. Note that w(e) is an integer for every
e ∈ E. Define α1 and α2 as α1 = m2 + 4m− 1 and α2 = m2 + 4m, and let α(m) = α1

α2
.

Then we can see the following proposition.

Proposition 6.1. The input size of the instance of ROBUST-MATCHING defined above is a
polynomial of m and f(S).

Proof. Since

ki ≤
(
1 +

4

m

)m−i

km < e4m2

for i = 1, . . . ,m, there exists a polynomial of m, L, and f(S) which is greater than w(E). Since
L is a polynomial of m and f(S), the result follows.

Now we show that the instance of ROBUST-MATCHING defined as above is equivalent to
the original instance of 3-PARTITION.

6.2 Correctness

In this section, we show the equivalence of the instance of ROBUST-MATCHING defined in
Section 6.1 and the original instance of 3-PARTITION when m ≥ 6.

First, we observe the following.

Lemma 6.2. Let m ≥ 6 be an integer. For j ∈ S and for i = 1, . . . ,m− 1, w(ti+1,j , ui+1,j) <
w(rj , si,j).

Proof. It suffices to show that (m2 + 3m − 4)ki+1 < (m2 − 5)ki for i = 1, . . . ,m − 1. Since
m2 + 3m− 3 <

(
1 + 4

m

)
(m2 − 5) for m ≥ 6, we have that

(m2 − 5)ki = (m2 − 5)

⌊(
1 +

4

m

)
ki+1

⌋
> (m2 + 3m− 4)ki+1,

which completes the proof.

When we detect an α(m)-robust matching it suffices to deal with maximal matchings. Fur-
thermore, we may assume that

18



(C) a maximal matching M contains one of {(ti,j , ui,j)} and {(si,j , ti,j), (ui,j , vi,j)} for i =
1, . . . ,m and for j ∈ S,

because w(rj , si,j) < w(si,j , ti,j). For a maximal matching M ⊆ E, define a set Si ⊆ S by

Si = {j | j ∈ S, (ti,j , ui,j) ∈ M}

for i = 1, . . . ,m. In this case, we say that M corresponds to the subsets S1, . . . , Sm of S.
Conversely, if subsets S1, . . . , Sm of S are mutually disjoint, then S1, . . . , Sm define a maximal
matching M in G satisfying (C) uniquely, that is, M contains {(ti,j , ui,j), (rj , si,j)} for every
j ∈ Si andM contains {(si,j , ti,j), (ui,j , vi,j)} for every j ∈ S̄i, where S̄i = S\Si for i = 1, . . . ,m.

Lemma 6.3. If a maximal matching M in G satisfying (C) is α(m)-robust, then its correspond-
ing subsets S1, . . . , Sm of S satisfy that |Si| = 3 and f(Si) = B for i = 1, . . . ,m and S1, . . . , Sm

are mutually disjoint.

Proof. Suppose that M is an α(m)-robust matching. Since

w(M(3m)) = k1
{
(m2 + 3m− 5)(|S|L+ f(S)) + |S1|L+ f(S1)

}
,

w(M (3m)) = k1(m
2 + 3m− 4)(|S|L+ f(S)),

it holds that

k1
m

{
− |S|L− f(S) +m(|S1|L+ f(S1))

}
= w(M(3m))− α(m)w(M (3m)) ≥ 0. (17)

On the other hand, since

w(M(6m)) ≤ k1
{
(2m2 + 5m− 12)(|S|L+ f(S))− (2m− 3)(|S1|L+ f(S1))

}
,

w(M (6m)) = k1(2m
2 + 5m− 12)(|S|L+ f(S)),

by Lemma 6.2, it holds that

k1(2m− 3)

m
{|S|L+ f(S)−m(|S1|L+ f(S1))} ≥ w(M(6m))− α(m)w(M (6m)) ≥ 0. (18)

By (17) and (18), we have |S|L+ f(S)−m(|S1|L+ f(S1)) = 0, and (rj , s1,j) ∈ M for every
j ∈ S1. Since L is large enough, this means that |S1| = 1

m |S| = 3 and f(S1) = 1
mf(S) = B.

Note that it also holds that

w(M(6m))− α(m)w(M (6m)) = 0.

Now we show that

|Si| = 3, (19)

f(Si) = B, (20)

(rj , si,j) ∈ M for every j ∈ Si, and (21)

w(M(6im))− α(m)w(M (6im)) = 0 (22)

for i = 1, 2, . . . ,m by induction on i. The above arguments show that these conditions hold for
i = 1.

Assume that (22) holds for i− 1, that is,

w(M(6(i−1)m))− α(m)w(M (6(i−1)m)) = 0.
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Then, by a similar calculation as the case i = 1, we have

ki
m

{
− |S|L− f(S) +m(|Si|L+ f(Si))

}
= w(M(6(i−1)m+3m))− α(m)w(M (6(i−1)m+3m)) ≥ 0, (23)

ki(2m− 3)

m
{|S|L+ f(S)−m(|Si|L+ f(Si))}

≥ w(M(6im))− α(m)w(M (6im)) ≥ 0. (24)

By (23) and (24), we have |S|L + f(S) − m(|Si|L + f(Si)) = 0 and (rj , si,j) ∈ M for
every j ∈ Si. Hence, we also have |Si| = 1

m |S| = 3, f(Si) = 1
mf(S) = B, and w(M(6im)) −

α(m)w(M (6im)) = 0.
Therefore, (19), (20), (21), and (22) hold for i = 1, 2, . . . ,m by induction on i. Since (21)

implies that S1, . . . , Sm are mutually disjoint, we complete the proof.

Lemma 6.4. If mutually disjoint subsets S1, . . . , Sm of S satisfy that |Si| = 3 and f(Si) = B for
i = 1, . . . ,m, then its corresponding maximal matching M in G satisfying (C) is α(m)-robust.

Proof. Suppose that |Si| = 3 and f(Si) = B for i = 1, . . . ,m. Recall that for a set T ⊆ S,
T(p) is a subset of T defined as (14). It suffices to show that w(M(p)) ≥ α(m)w(M (p)) for any
1 ≤ p ≤ 6m2. We consider the following cases:

Case 1: When p = 6(q − 1)m+ 3m or p = 6qm for q = 1, . . . ,m, by the proof of Lemma 6.3,
we have w(M(p)) = α(m)w(M (p)).

Case 2: Suppose that p = 6(q − 1)m+ p′ with 1 ≤ p′ ≤ 3 and 1 ≤ q ≤ m. Since

w(M(p)) = w(M(6(q−1)m)) + (m2 + 3m− 4)kq(p
′L+ f((Sq)(p′))),

w(M (p)) = w(M (6(q−1)m)) + (m2 + 3m− 4)kq(p
′L+ f(S(p′))),

it holds that

w(M(p))− α(m)w(M (p)) ≥ (m2 + 3m− 4)kq

{
p′

m2 + 4m
L− α(m)f(S(p′))

}
> 0.

Case 3: Suppose that p = 6(q − 1)m+ p′ with 4 ≤ p′ ≤ 3m− 1 and 1 ≤ q ≤ m. Since

w(M(p)) = w(M(6(q−1)m+3m))− (m2 + 3m− 5)kq((3m− p′)L+ f(S̄q \ (S̄q)(p′−3))),

w(M (p)) = w(M (6(q−1)m+3m))− (m2 + 3m− 4)kq((3m− p′)L+ f(S \ S(p′))),

it holds that

w(M(p))− α(m)w(M (p))

≥ kq

{
1

m
(3m− p′)L− (m2 + 3m− 5)f(S̄q \ (S̄q)(p′−3))

}
> 0.

Case 4: Suppose that p = 6(q − 1)m+ p′ with 3m+ 1 ≤ p′ ≤ 6m− 3 and 1 ≤ q ≤ m. Since

w(M(p)) = w(M(6(q−1)m+3m)) + (m2 + 2m− 7)kq((p
′ − 3m)L+ f((S̄q)(p′−3m))),

w(M (p)) = w(M (6(q−1)m+3m)) + (m2 + 2m− 8)kq((p
′ − 3m)L+ f(S(p′−3m))),
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it holds that

w(M(p))− α(m)w(M (p))

≥ kq

{
2m− 2

m
(p′ − 3m)L− (m2 + 2m− 8)α(m)f(S(p′−3m))

}
> 0.

Case 5: Suppose that p = 6(q − 1)m+ p′ with 6m− 2 ≤ p′ ≤ 6m− 1 and 1 ≤ q ≤ m. Since

w(M(p)) = w(M(6qm))− (m2 − 5)kq((6m− p′)L+ f(Sq \ (Sq)(p′−6m+3))),

w(M (p)) = w(M (6qm))− (m2 + 2m− 8)kq((6m− p′)L+ f(S \ S(p′−6m+3))),

it holds that

w(M(p))− α(m)w(M (p))

≥ kq

{
2m2 − 4m+ 2

m
(6m− p′)L− (m2 − 5)f(Sq \ (Sq)(p′−6m+3))

}
> 0.

Therefore w(M(p)) ≥ α(m)w(M (p)) for any 1 ≤ p ≤ 6m2, which completes the proof.

Lemmata 6.3 and 6.4 imply that there exists a partition (S0, S1, . . . , Sm) of S such that
|Si| = 3 and f(Si) = B for i = 1, . . . ,m if and only if G has an α(m)-robust matching with
respect to the weight function w. This shows that the instance of ROBUST-MATCHING
defined in Section 6.1 is equivalent to the original instance of 3-PARTITION.

Combining this result and Proposition 6.1, we obtain Theorem 4.2.

7 Concluding Remarks

In the present paper, we show that for any α with 1√
2
< α < 1, α-ROBUST-MATCHING is

NP-complete (Theorem 4.1) and that detecting an α-robust matching is NP-complete in the
strong sense when α is a part of the input (Theorem 4.2). It is still open whether detecting an
α-robust matching is NP-complete in the strong sense when α is fixed.

We also investigate the performance of the k-th power algorithm. In particular, we give an
algorithm to find a 1-robust matching, and show the hardness to find a β-approximately robust
matching when 1√

2
< β ≤ 1. It is open whether other algorithms can find a β-approximately

robust matching for some 1√
2
< β ≤ 1 in polynomial time.
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