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Abstract

We consider the numerical integration of the Degasperis–Procesi equation, which
was recently introduced as a completely integrable shallow water equation. For the
equation, we propose nonlinear and linear finite difference schemes that preserve two
invariants associated with the bi-Hamiltonian form of the equation at a same time. We
also prove the unique solvability of the schemes, and show some numerical examples.
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1 Introduction

In this paper, we consider numerical methods for the Degasperis–Procesi equation:

ut − uxxt = uuxxx + 3uxuxx − 4uux, x ∈ R, t > 0, (1)

where the subscript t (or x, respectively) denotes the differentiation with respect to time
variable t (or x). This equation was found in a study by Degasperis and Procesi [12],
where they considered asymptotic integrability of a family of the third order dispersive
nonlinear equations:

ut − α2uxxt + γuxxx + c0ux = (c1u
2 + c2u

2
x + c3uuxx)x.

The parameters α, γ, c0, c1, c2, c3 are constants, and Degasperis and Procesi concluded that
under only three special choices of them the equation becomes integrable; namely, the KdV
equation: ut + uux + uxxx = 0, the Camassa–Holm (CH) equation:

ut − uxxt = uuxxx + 2uxuxx − 3uux, (2)

and the DP equation (1). As for the KdV and the CH, the structure of solutions has been
studied in detail so far, and also considerable effort has been devoted to their numerical
treatment. In contrast to this, there seems to have been relatively few studies on the DP,
and much remains to be investigated both mathematically and numerically. In view of this
background, this paper is intended to provide a good numerical scheme for the equation.

At this point, some readers might feel that due to the apparent similarity between the
DP and CH (actually they only differ in two coefficients), we can naturally extend the
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knowledge on the CH to the DP, and nothing special is left to be investigated separately. In
fact, the DP is quite similar to the CH in the following senses. They both were discovered
in the context of integrable systems (CH [15], DP [12]), and can be viewed as models of
shallow water waves (CH [3, 4], DP [20, 10]). They both have bi-Hamiltonian structures,
are completely-integrable, and thus have infinitely many conservation laws. They have
peakon (peaked soliton) solutions (CH [3],DP [12, 11]).

Nevertheless, the DP and CH are in some aspects truly different. From the perspective
of PDE theory, the solutions of the CH basically belong to H1(R) (the first order Sobolev
space), while the DP can develop shock solutions which should be understood as entropy
solutions [6, 7, 22] (see also Yin [30, 32] for smoother solutions). Furthermore there are
differences in invariants and bi-Hamiltonian structures. The CH has the following two
invariants:

H̃2 = −u3 + uux
2

2
,

d

dt

∫
R
H̃2dx = 0, H̃1 = −u2 + ux

2

2
,

d

dt

∫
R
H̃1dx = 0,

which define the associated bi-Hamiltonian structure:

mt = (∂x − ∂x
3)
δH̃2

δm
= (m∂x + ∂xm)

δH̃1

δm
, m = (1− ∂2

x)u. (3)

(The symbol ∂x denotes ∂/∂x.) For the DP, the first two invariants are

H−1 = −1

6
u3,

d

dt

∫
R
H−1dx = 0,

H0 = −9

2
(u− uxx),

d

dt

∫
R
H0dx = 0,

and the bi-Hamiltonian structure is

mt = B0
δH−1

δm
= B1

δH0

δm
,

where B0,B1 are the skew-symmetric operators:

B0 = ∂x(1− ∂x
2)(4− ∂x

2), B1 = m
2
3∂xm

1
3 (∂x − ∂x

3)−1m
1
3∂xm

2
3 .

As can be easily seen, the invariants and the bi-Hamiltonian structures are substantially
different. Considering all the differences above, now researchers believe that the equations
are essentially different, and there is no simple transformation that casts the DP into the
CH and vice versa (see the introductions of [32, 13]).

The mathematical differences also make the numerical treatment of the DP inevitably
different. Before precisely stating this point, we first like to recall a fact that for conserva-
tive PDEs such as the CH and DP, numerical methods preserving the invariants are often
advantageous, and in the last two decades much effort has been devoted in this topic to
finally find out several general frameworks. For example, Furihata–Mori [17] and Celle-
doni et al. [5] proposed frameworks in finite-difference context (see also related references
in [27]), and Matsuo [23] devised a Galerkin framework. With these frameworks, some
conservative schemes for the CH have been already proposed based on the bi-Hamiltonian
structure: H̃1-preserving finite difference schemes [1, 28, 29] and a Galerkin scheme [24]
based on the second form of (3); and H̃2-preserving finite difference schemes [28, 29] and
a Galerkin scheme [26] based on the first form. Obviously similar study is expected for
the DP equation, but to the best of the authors’ knowledge, none has been done yet.
Main reason of this may be simply because the DP is quite new, but our attention should
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also go to the fact that, as mentioned above, the bi-Hamiltonian structures are very dif-
ferent, which causes several difficulties in the DP case. The first difficulty is caused by
the complex skew-symmetric operators B0 and B1; they are much more complicated than
those in the CH (see (3)), and due to this, the general Galerkin framework [23] cannot be
applied. Thus, whether a conservative Galerkin scheme for the DP can be constructed or
not remains an open question, as of writing this paper (we will come back to this point in
the end of this paper). In contrast, the finite-difference frameworks can be applied, but
here arises a second difficulty that, even in the finite-difference framework, the operator
B1 is too cumbersome, and it is quite unlikely that the resulting H0-preserving scheme is
numerically efficient in practice. This is in sharp contrast to the CH case where both of
the bi-Hamiltonian representations were fully utilized for efficient H̃2- and H̃1-preserving
schemes.

Taking these backgrounds into account, in this paper we propose conservative finite-
difference schemes based on the first form of the bi-Hamiltonian structure. More precisely,
we propose two finite-difference schemes. The first scheme is a nonlinear scheme derived
with the general framework [17] (which is now called the “discrete variational derivative
method”), and the second is its linearized version based on a linearization technique [25].
Both schemes conserve H−1 (or its approximation), and furthermore, it turns out that
fortunately they also conserve H0 at a same time. This means we can preserve H0 without
the second form of the bi-Hamiltonian structure; this happens thanks to the fact that H0

is a linear invariant. This is an interesting property in that, as far as the authors know,
this is the first scheme that preserves both invariants associated with a bi-Hamiltonian
structure. We also prove the unique existence of the solutions of the proposed schemes,
and show several numerical examples.

Finally, we like to briefly mention the existing numerical schemes. Operator splitting
schemes were devised in [8, 14], and a particle method based on the multi-shockpeakon
solutions was exploited in [19]. These numerical methods were mainly intended to capture
shock solutions, and does not conserve H−1 (actually H−1 becomes less important in such
a situation; it is no longer conserved when the solution develops a shock [22]). In this sense,
these schemes and our conservative schemes (which mainly focus on smoother solutions)
seem to complement each other. We will mention this point again in the end of this paper.

In view of numerical computation, hereafter let us choose the periodic boundary con-
dition:

u(x+ L, t) = u(x, t), t ≥ 0, x ∈ R. (4)

We denote the periodic first-order Sobolev space by H1(S) where S is the torus of the
length L. Global existence of the smooth solutions in H1(S) was proved in [30]. It is
straightforward to confirm that the invariants mentioned above are also invariants under
the periodic boundary condition.

This paper is organized as follows. In Section 2 notation and useful lemmas are intro-
duced. In Section 3 the proposed schemes are presented, and its properties are discussed.
In Section 4 some numerical results are provided. Concluding remarks and comments are
given in Section 5.

2 Preliminaries

In this section, we prepare notation and useful lemmas. Numerical solution is denoted by

U
(n)
k ≃ u(k∆x, n∆t), where N is the number of the spatial grids (i.e., ∆x = L/N), and ∆t

is the time mesh size. We often write this as a vector: U (n) = (U
(n)
0 , U

(n)
1 , . . . , U

(n)
N−1)

⊤. In
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order to treat the periodic boundary condition (4), we consider {U (n)
k }∞k=−∞, an infinitely

long vector, and then its N -dimensional restriction by the discrete periodic boundary

condition U
(n)
k = U

(n)
k mod N (∀k ∈ Z). We denote the latter space by R(N), and define its

inner product by (a, b) =
∑N−1

k=0 akbk∆x. The norm ∥ · ∥ is defined accordingly. They
are the natural discretization of L2(S). For a, b ∈ R(N), we define the operator ∗ :
R(N) × R(N) → R(N) by a ∗ b := (a0b0, a1b1, . . . , aN−1bN−1)

⊤. It is easy to see ∥a ∗ b∥ ≤
∥a∥ ∥b∥/

√
∆x.

The standard central difference operators that approximate ∂x, ∂
2
x are denoted by

δ
⟨1⟩
k , δ

⟨2⟩
k respectively:

δ
⟨1⟩
k U

(n)
k :=

U
(n)
k+1 − U

(n)
k−1

2∆x
, δ

⟨2⟩
k U

(n)
k :=

U
(n)
k+1 − 2U

(n)
k + U

(n)
k−1

∆x2
.

We often write them in matrix form; for example, D⟨1⟩a := (δ
⟨1⟩
0 a0, δ

⟨1⟩
1 a1, . . . , δ

⟨1⟩
N−1aN−1)

⊤

for a ∈ R(N).
The following estimates are useful. Although they are well known, we here show

a rough proof for readers’ convenience. We note that (1 − ∂x
2)−1 has a meaning as

(1− ∂x
2)−1 : L2(S) → H2(S) [2].

Lemma 2.1. For D⟨1⟩, D⟨2⟩ : R(N) → R(N),

∥D⟨1⟩∥ ≤ 1

∆x
, ∥D⟨2⟩∥ ≤ 4

∆x2
,

∥∥∥∥(I −D⟨2⟩
)−1

∥∥∥∥ = 1

hold, where I is the identity mapping, Ia = a.

Proof. We first prove the statement for ∥D⟨1⟩∥. Since for every v ∈ R(N),

∥D(1)
k v∥2 =

N−1∑
k=0

(
vk+1 − vk−1

2∆x

)2

∆x ≤ 1

(∆x)2

N−1∑
k=0

v2k+1 + v2k−1

2
∆x =

1

(∆x)2
∥v∥2

holds, we get ∥D⟨1⟩∥ ≤ 1/∆x. The statements for D⟨2⟩ and
(
I −D⟨2⟩)−1

can be shown
by eigenvalue arguments. Let us introduce a cyclic matrix B whose subdiagonal and
superdiagonal elements are 1 (note that B1.N = BN,1 = 1 by periodicity). Then the
eigenvalues of the matrix are 2 cos(2jπ/N) (j = 0, . . . , N − 1). This immediately implies
∥D⟨2⟩∥ ≤ 4/∆x2, since D⟨2⟩ = (B − 2I)/∆x2 (note that we defined the norm by the
two-norm). Next eigenvalues of matrix I −D⟨2⟩ = I − (B − 2I)/∆x2 are

1− 2

(∆x)2

{
cos

(
2jπ

N

)
− 1

}
, j = 0, 1, . . . , N − 1,

thus
(
I −D⟨2⟩)−1

exists because all eigenvalues of I−D⟨2⟩ is greater than or equal to 1 (in-

dependent of ∆x). Then
∥∥∥(I −D⟨2⟩)−1

∥∥∥ = 1 holds because all eigenvalues of
(
I −D⟨2⟩)−1

is less than or equal to 1.

As for the difference operators, the following summation-by-parts formulas hold [16]:

N−1∑
k=0

Uk

(
δ
⟨1⟩
k Vk

)
∆x+

N−1∑
k=0

(
δ
⟨1⟩
k Uk

)
Vk∆x =

[
UkVk−1 + Uk−1Vk

2

]N
k=0

, (5)

N−1∑
k=0

Uk

(
δ
⟨2⟩
k Vk

)
∆x−

N−1∑
k=0

(
δ
⟨2⟩
k Uk

)
Vk∆x =

[
Uk

(
δ
⟨1⟩
k Vk

)
−
(
δ
⟨1⟩
k Uk

)
Vk

]N
k=0

, (6)
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where [Uk]
N
k=0 = UN −U0. Under the discrete periodic boundary condition, the boundary

terms are automatically canceled.
Next we prepare a useful lemma on the discrete operators. In this paper, we use the

discrete versions of ∂x (1−∂x
2)−1∂x(4−∂x

2), (4−∂x
2), and (1−∂x

2)−1. Obviously they are
skew-symmetric or symmetric, and the following lemma shows that difference operators
inherit the symmetries.

Lemma 2.2. With respect to the inner product of R(N), δ
⟨1⟩
k ，(1− δ

⟨2⟩
k )−1δ

⟨1⟩
k (4− δ

⟨2⟩
k ) are

skew-symmetric, and (4− δ
⟨2⟩
k )，(1− δ

⟨2⟩
k )−1 are symmetric operators.

Proof. The skew-symmetry of δ
⟨1⟩
k and symmetry of δ

⟨2⟩
k are obvious form (5) and (6).

Accordingly (4 − δ
⟨2⟩
k ) and (1 − δ

⟨2⟩
k )−1 are symmetric. Combining these symmetries, we

see that (1− δ
⟨2⟩
k )−1δ

⟨1⟩
k (4− δ

⟨2⟩
k ) is skew-symmetric.

3 H−1, H0-conserving schemes

In this section we propose two finite difference schemes (nonlinear and linear) that conserve
both H−1 and H0. For comparison, we also show the standard Crank–Nicolson scheme.

3.1 The first form expressed in u

As noted above, we consider the first form of the bi-Hamiltonian structure. Although it
is possible to directly apply the framework [17] to the first form (in the variable m), it is
more convenient to rewrite it with u, in view of the fact that the initial data is given by
u(x, 0) and the final solution is demanded also in the form of u(x, t). We then see

(
1− ∂x

2
)
ut = ∂x

(
4− ∂x

2
) δH−1

δu
. (7)

This still keeps the H−1 conservation law.

d

dt

∫ L

0
H−1dx =

∫ L

0

∂H−1

∂u
utdx =

∫ L

0

δH−1

δu

{
(1− ∂x

2)−1∂x(4− ∂x
2)
δH−1

δu

}
dx = 0.

The first equality is just the chain rule. The second equality follows from (7). The third
equality is from the skew-symmetry of (1− ∂x

2)−1∂x(4− ∂x
2). Also the H0 conservation

follows from (7):

d

dt

∫ L

0
H0dx = −9

2

∫ L

0
∂x(4− ∂x

2)
δH−1

δu
dx = −9

2

[
(4− ∂x

2)
δH−1

δu

]L
0

= 0.

The final equality is from the periodic boundary condition.

Remark 1. We here like to make additional comments on the H0 conservation. Above we
showed it based on the u expression (7), but the property itself is more easily seen by the
original m expression. Actually, if we rewrite it to mt−((1−∂x

2)(4−∂x
2)δH−1/δm)x = 0,

it is in the so-called “conservation law” form, and the conservation of
∫
m dx is immediate.

This implies that, although the second form of the DP states an important mathematical
fact that the invariant H0 can generate the equation, it is not so relevant for the (proof of
the) preservation of H0. This happens since H0 is a linear invariant. Below we show that
based on the same principle, the H−1 conservative schemes based on the discrete version
of the first form fortunately conserve H0 as well.
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3.2 A H−1, H0-conserving nonlinear scheme

Now we present a nonlinear scheme preserving both H−1 and H0. We define a discrete ver-
sion of H−1 = −u3/6, and accordingly a “discrete variational derivative” that approximate
δH−1/δu = −u2/2 as

(H−1)
(n)
k := −

(U
(n)
k )3

6
,

δH−1

δ(U (n+1),U (n))k
:= −

(U
(n+1)
k )2 + U

(n+1)
k U

(n)
k + (U

(n)
k )2

6
.

(8)

Due to the restriction of space, the detail of the concept of “discrete variational derivative,”

and the derivation of its concrete form from the discrete Hamiltonian (H−1)
(n)
k is skipped;

interested readers may refer to the general framework: the “discrete variational derivative
method” [17]. For the purpose of this paper, it is sufficient to note the key equality:

N−1∑
k=0

(H−1)
(n+1)
k ∆x−

N−1∑
k=0

(H−1)
(n)
k ∆x =

N−1∑
k=0

{
δH−1

δ(U (n+1),U (n))k
(U

(n+1)
k − U

(n)
k )

}
∆x,

(9)

which can be easily checked with the concrete forms in (8). We also define the discrete
H0 as

(H0)
(n)
k := −9

2
(1− δ

⟨2⟩
k )U

(n)
k .

Now we are in a position to define the nonlinear finite difference scheme.

Scheme 1 (H−1,H0-conserving nonlinear finite difference scheme). We define the initial

approximate solution by U
(0)
k = u(0, k∆x) (k = 0, . . . , N − 1). Then for n = 1, 2, . . .,(

1− δ
⟨2⟩
k

) U
(n+1)
k − U

(n)
k

∆t
= δ

⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n))k
, k = 0, . . . , N − 1. (10)

Obviously (10) corresponds to (7). Numerical solutions by Scheme 1 conserve both

(H−1)
(n)
k and (H0)

(n)
k under the discrete periodic boundary condition.

Theorem 3.1 (Scheme 1 : conservation laws). Under the discrete periodic boundary
condition, the numerical solution by Scheme 1 conserves both H−1 and H0:

N−1∑
k=0

(H−1)
(n)
k ∆x =

N−1∑
k=0

(H−1)
(0)
k ∆x, n = 1, 2, . . . ,

N−1∑
k=0

(H0)
(n)
k ∆x =

N−1∑
k=0

(H0)
(0)
k ∆x, n = 1, 2, . . . .

Proof. We first prove the discrete H−1 conservation law.

1

∆t

(
N−1∑
k=0

(H−1)
(n+1)
k ∆x−

N−1∑
k=0

(H−1)
(n)
k ∆x

)

=
N−1∑
k=0

{
δH−1

δ(U (n+1),U (n))k

U
(n+1)
k − U

(n)
k

∆t

}
∆x

=

N−1∑
k=0

{
δH−1

δ(U (n+1),U (n))k

}{(
1− δ

⟨2⟩
k

)−1
δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n))k

}
∆x

=0.

6



The first equality is from (9), the second is from (10), and the third is from the skew-

symmetry of the operator
(
1− δ

⟨2⟩
k

)−1
δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

)
(Lemma 2.1). Next we prove the

discrete H0 conservation law.

1

∆t

(
N−1∑
k=0

(H0)
(n+1)
k ∆x−

N−1∑
k=0

(H0)
(n)
k ∆x

)

=− 9

2

N−1∑
k=0

(
1− δ

⟨2⟩
k

) U
(n+1)
k − U

(n)
k

∆t
∆x

=− 9

2

N−1∑
k=0

δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n))k
∆x

=− 9

4

[(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n))k
+
(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n))k−1

]N
k=0

=0.

The second equality is from (10). By substituting V = (1, 1, . . . , 1)⊤ into (5), we obtain
the third equality. The final is from the discrete periodic boundary condition.

Since Scheme 1 is nonlinear, it requires nonlinear solvers in each time step. The next
theorem states that if we set time step ∆t adequately based on U (n), unique existence of
the solution is guaranteed. Note that even if the time mesh size ∆t is changed, Theorem 3.1
still holds.

Theorem 3.2 (Unique solvability of Scheme 1). Let U (n) be given. If ∆t satisfies

2∆t

3∆x3/2
<

2
√
3− 3

3∥U (n)∥
,

Scheme 1 has a unique numerical solution U (n+1).

To prove this theorem, we make some preparations. First we transform (10) into

U
(n+1)
k = U

(n)
k − ∆t

6

(
1− δ

⟨2⟩
k

)−1
δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

){(
U

(n+1)
k

)2
+ U

(n+1)
k U

(n)
k +

(
U

(n)
k

)2}
.

(11)

Then for a,v ∈ R(N), we define ϕa : R(N) → R(N) as

ϕa(v) := a− ∆t

6

(
I −D⟨2⟩

)−1
D⟨1⟩

(
4−D⟨2⟩

)
(v ∗ v + v ∗ a+ a ∗ a). (12)

If we substitute a = U (n),v = U (n+1) into (12), (12) is equivalent to (11). Therefore, in
order to prove the unique solvability of Scheme 1, it is sufficient to prove the existence of
a fixed point of the map ϕa.

Proof. (Theorem 3.2). We first define a ball Ka := {v ∈ R(N) | ∥v∥ ≤ pra}, where
ra := ∥a∥, p = 1+

√
3. The proof will be done in the following two steps. (i) ϕa is a map

from Ka to Ka if ∆t is sufficiently small. (ii) Then ϕa is a contraction mapping.
(i) We will use following inequality:∥∥∥∥(I −D

(2)
k

)−1 (
4−D

(2)
k

)∥∥∥∥ =

∥∥∥∥I + 3
(
I −D

(2)
k

)−1
∥∥∥∥ ≤ ∥I∥+ 3

∥∥∥∥(I −D
(2)
k

)−1
∥∥∥∥ ≤ 4.
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Then for every v ∈ Ka,

∥ϕa(v)∥ ≤ ∥a∥+ ∆t

6

∥∥∥∥(I −D
(2)
k

)−1 (
4−D

(2)
k

)∥∥∥∥ ∥D(1)
k ∥ (∥v ∗ v∥+ ∥v ∗ a∥+ ∥a ∗ a∥)

≤ ∥a∥+ ∆t

6
· 4 · 1

∆x
·
(
∥v∥2 + ∥v∥ ∥a∥+ ∥a∥2√

∆x

)
≤ ra +

2∆t

3∆x3/2
(p2 + p+ 1)r2a.

Thus if ∆t satisfies

ra +
2∆t

3∆x3/2
(p2 + p+ 1)r2a ≤ pra ⇔ 2∆t

3∆x3/2
≤ p− 1

ra(p2 + p+ 1)
=

2
√
3− 3

3ra
,

ϕa is a map from Ka to Ka.
(ii) If ∆t satisfy the above condition, for every v1,v2 ∈ Ka,

∥ϕa(v1)− ϕa(v2)∥

≤∆t

6

∥∥∥∥(I −D
(2)
k

)−1 (
4−D

(2)
k

)∥∥∥∥ ∥D(1)
k ∥

(
∥v1 + v2∥ ∥v1 − v2∥+ ∥a∥ ∥v1 − v2∥√

∆x

)
≤ 2∆t

3∆x3/2
(∥v1 + v2∥+ ∥a∥)∥v1 − v2∥

≤ 2∆t

3∆x3/2
(2p+ 1)ra∥v1 − v2∥

holds. Thus if ∆t satisfies

2∆t

3∆x3/2
(2p+ 1)ra < 1 ⇔ 2∆t

3∆x3/2
<

1

(2p+ 1)ra
=

2
√
3− 3

3∥U (n)∥
,

ϕa is a contraction mapping from Ka to Ka, and hence ϕa has a unique fixed point on
Ka by the contraction mapping theorem.

3.3 A H−1, H0-conserving linear finite difference scheme

Next we propose aH−1, H0-conserving linear finite difference scheme. We define (H−1)
(n+ 1

2
)

k

and
δH−1/δ(U

(n+1)
k ,U

(n)
k ,U

(n−1)
k ) that approximate H−1 = −u3/6 and δH−1/δu = −u2/2 as

(H−1)
(n+ 1

2
)

k := −
U

(n+1)
k U

(n)
k (U

(n+1)
k + U

(n)
k )

12
,

δH−1

δ(U (n+1),U (n),U (n−1))k
:= −

U
(n)
k (U

(n+1)
k + U

(n)
k + U

(n−1)
k )

6
.

Here, we utilized the linearization technique in [25] (again we skip the detail of this). We
can easily check the following key equality:

N−1∑
k=0

(H−1)
(n+ 1

2
)

k ∆x−
N−1∑
k=0

(H−1)
(n− 1

2
)

k ∆x =

N−1∑
k=0

{
δH−1

δ(U (n+1),U (n),U (n−1))k

U
(n+1)
k − U

(n−1)
k

2

}
∆x.

(13)

Using the above discrete variational derivative, we define the linear finite difference scheme
as follows.
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Scheme 2 (H−1,H0-conserving linear finite difference scheme). We define the initial

approximate solution by U
(0)
k = u(0, k∆x) (k = 0, . . . , N − 1), and compute a starting

value U (1) by Scheme 1. Then, for n = 1, 2, . . .,(
1− δ

⟨2⟩
k

) U
(n+1)
k − U

(n−1)
k

2∆t
= δ

⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n),U (n−1))k
, k = 0, . . . , N − 1.

(14)

Obviously (14) corresponds to (7). We note that since Scheme 2 is a multistep scheme,
we need not only the initial value U (0) but also a starting value U (1). In Scheme 2 we
set U (1) by Scheme 1, but also other schemes can be used if ∆t is chosen appropriately
small such that the invariants are kept with enough accuracy. The numerical solution

by Scheme 2 satisfies (H−1)
(n+ 1

2
)

k , (H0)
(n)
k conservation laws under the discrete periodic

boundary condition.

Theorem 3.3 (Scheme 2 : conservation laws). Under the discrete periodic boundary
condition, the numerical solution by Scheme 2 conserves H−1 and H0:

N−1∑
k=0

(H−1)
(n+ 1

2
)

k ∆x =
N−1∑
k=0

(H−1)
( 1
2
)

k ∆x, n = 1, 2, . . . ,

N−1∑
k=0

(H0)
(n)
k ∆x =

N−1∑
k=0

(H0)
(0)
k ∆x, n = 1, 2, . . . .

Proof. We first prove the discrete H−1 conservation law.

1

∆t

(
N−1∑
k=0

(H−1)
(n+ 1

2
)

k ∆x−
N−1∑
k=0

(H−1)
(n− 1

2
)

k ∆x

)

=

N−1∑
k=0

δH−1

δ(U (n+1),U (n),U (n−1))k

U
(n+1)
k − U

(n−1)
k

2∆t
∆x

=
N−1∑
k=0

δH−1

δ(U (n+1),U (n),U (n−1))k

{(
1− δ

⟨2⟩
k

)−1
δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n),U (n−1))k

}
∆x

=0.

The first equality is from (13), the second is from (14), and the third is from the skew-

symmetry of the operator
(
1− δ

⟨2⟩
k

)−1
δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

)
(Lemma 2.1). Next we prove the

discrete H0 conservation law. To this end, we note the following identity:

1

∆t

(
N−1∑
k=0

(H0)
(n+1)
k ∆x−

N−1∑
k=0

(H0)
(n−1)
k ∆x

)

=− 9
N−1∑
k=0

(
1− δ

⟨2⟩
k

) U
(n+1)
k − U

(n−1)
k

2∆t
∆x

=− 9

N−1∑
k=0

δ
⟨1⟩
k

(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n),U (n−1))k
∆x

=− 9

2

[(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n),U (n−1))k
+
(
4− δ

⟨2⟩
k

) δH−1

δ(U (n+1),U (n),U (n−1))k−1

]N
k=0

=0.
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The second equality is from (14). By substituting V = (1, 1, . . . , 1)⊤ into (5), we ob-
tain the third equality. The final is from the discrete periodic boundary condition. From

the identity,
∑

k(H0)
(n+2)
k ∆x =

∑
k(H0)

(n)
k ∆x (n = 0, 1, 2, . . .). Since in the scheme

we demanded the first time step to be conservative:
∑

k(H0)
(1)
k ∆x =

∑
k(H0)

(0)
k ∆x,∑

k(H0)
(n)
k ∆x =

∑
k(H0)

(0)
k ∆x holds for every n.

As for Scheme 2, the unique existence of the solution is guaranteed if the time mesh
size is sufficiently small as the next theorem states.

Theorem 3.4 (Unique solvability of Scheme 2). For n ≥ 1, let U (n−1),U (n)be given.
Then if ∆t > 0 is sufficiently small, Scheme 2 has a unique numerical solution U (n+1).
For example, a sufficient condition is

∆t <
3∆x3

4∥U (n)∥(1 + ∆x2)
. (15)

Proof. Scheme 2 can be rewritten as follows:[
I −D⟨2⟩

2
+ ∆t

{
D⟨1⟩(4I −D⟨2⟩)

U (n)

6

}]
U (n+1) = F (U (n),U (n−1)).

where U (n) = diag(U
(n)
0 , . . . , U

(n)
N−1), and F denotes the remaining terms withU (n),U (n−1).

Let us consider the coefficient matrix of the left hand side. Since I −D⟨2⟩ is nonsingular,
the coefficient matrix should be nonsingular for sufficiently small ∆t by the continuity of
the determinant. The sufficient condition can be checked by noting that if∥∥∥∥∥∥

(
I −D⟨2⟩

2

)−1
∥∥∥∥∥∥ ·
∥∥∥∥∥∆t

{
D⟨1⟩(4I −D⟨2⟩)

U (n)

6

}∥∥∥∥∥ < 1, (16)

then the coefficient matrix is nonsingular [18, Theorem 2.3.4]. With the estimates:∥∥∥∥∥∥
(
I −D⟨2⟩

2

)−1
∥∥∥∥∥∥ = 2

∥∥∥∥(I −D⟨2⟩
)−1

∥∥∥∥ = 2,

∥∥∥∥∥∆t

{
D⟨1⟩(4I −D⟨2⟩)

U (n)

6

}∥∥∥∥∥ ≤ ∆t

6
∥D⟨1⟩∥ ·

∥∥∥4I −D⟨2⟩
∥∥∥ · ∥U (n)∥

≤ ∆t

6

1

∆x

(
4 +

4

∆x2

)
∥U (n)∥

=
2∆t(1 + ∆x2)∥U (n)∥

3∆x3
,

we get (15).

3.4 Crank–Nicolson scheme

For comparison, we employ the standard Crank–Nicolson Scheme constructed based on
the (

1− ∂x
2
)
ut = ∂x(−2u2 + ux

2 + uuxx). (17)

We can also easily check that the Crank–Nicolson scheme preserves H0. This scheme is a
nonlinear scheme, like as Scheme 1.

10



Scheme 3 (H0 conservative Crank–Nicolson scheme). We define the initial solution by

U (0) as U
(0)
k = u(0, k∆x) (k = 0, . . . , N − 1). Then, for n = 0, 1, . . .,

(
1− δ

⟨2⟩
k

)(U
(n+1)
k − U

(n)
k

∆t

)
= δ

⟨1⟩
k

−2

(
U

(n+1)
k + U

(n)
k

2

)2

+

{
δ
⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)}2

+

(
U

(n+1)
k + U

(n)
k

2

)
δ
⟨2⟩
k

(
U

(n+1)
k + U

(n)
k

2

)]
, k = 0, . . . , N − 1.

The numerical solution by Scheme 3 conserves H0 (but not H−1).

Theorem 3.5 (Scheme 3 : conservation law). Under the discrete periodic boundary con-
dition, the numerical solution by Scheme 3 conserves H0.

N−1∑
k=0

(H0)
(n)
k ∆x =

N−1∑
k=0

(H0)
(0)
k ∆x, n = 0, 1, . . . .

Proof. As noted in Remark 1, it is obvious from the summation-by-parts formula (6) and
the periodic boundary condition.

4 Numerical examples

In this section, we test Scheme 1 and 2 numerically. For comparison, we also show the
results by Scheme 3. Computation environment is CPU Xeon(3.00GHz), 16GB memory,
Linux OS. We used MATLAB (R2007b), and nonlinear equations in Scheme 1 and 3 are
solved by “fsolve” in MATLAB with tolerance TolX = 10−16.

First we compare Scheme 1, 2, and 3 for 2-peakon interaction. It is known that the
DP has a solution called “multi-peakon” solutions [11]:

u(t, x) =

n∑
i=1

pi(t)e
−|x−qi(t)|.

The parameters are set as follows: n = 2, x ∈ [0, 40], t ∈ [0, 100],∆x = 40/28 = 0.15625,∆t =
0.05, and the initial value is u(0, x) = exp(−|x− 10.43|) + 0.5exp(−|x− 20.66|).

Fig. 1, 2 show the evolutions of H−1 and H0. According to Theorem 3.1, 3.3, and 3.5,
Scheme 1 and Scheme 2 conserve both H−1 and H0, but Scheme 3 conserves only H0.
Fig. 2 indicates that all scheme conserve H0 as these theorems show. On the other hand,
Fig. 1 shows that Scheme 3 actually does not conserve H−1, and the deviation (10% or
more) is observed.

Fig. 3, 4, and 5 show the numerical solutions by Scheme 1, 2, and 3. We observe
that, compared to the conservative schemes 1 and 2, the numerical solution by Scheme 3
(Crank–Nicolson) is oscillating and unstable. Thus proposed schemes (Scheme 1 and 2)
are better in the sense of qualitative behavior. We also note that Scheme 1 and the Crank–
Nicolson scheme are both nonlinear schemes, and requires almost the same computational
cost. This implies that Scheme 1 is preferred than the Crank–Nicolson scheme.

Next we compare Scheme 1 and 2 in detail. Here we set the space mesh size ∆x =
40/29 = 0.078125, and tried three time mesh sizes: ∆t = 4/56 ≃ 0.109, ∆t = 0.1, and
∆t = 0.01. Initial value was set to u(0, x) = 1.5exp(−|x − 20.1|). Fig. 6 and 7 are the

11



-0.138

-0.136

-0.134

-0.132

-0.13

-0.128

-0.126

-0.124

-0.122

-0.12

 0  20  40  60  80  100

H
-1

Time

Scheme1
Scheme2
Scheme3

Figure 1: Evolution of H−1.
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Figure 3: The numerical solution obtained by Scheme 1 (H−1,H0-conserving nonlinear
scheme) with ∆x = 40/28 and ∆t = 0.05.
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Figure 4: The numerical solution obtained by Scheme 2 (H−1,H0-conserving linear
scheme) with ∆x = 40/28 and ∆t = 0.05.
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Figure 5: The numerical solution obtained by Scheme 3 (H0-conserving Crank–Nicolson
scheme) with ∆x = 40/28 and ∆t = 0.05.
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numerical solutions by Scheme 1 and 2 at t = 50. In case of ∆t = 0.01, the numerical
solution by Scheme 1 and Scheme 2 are both fine. But as ∆t gets large, the results by
Scheme 2 become slightly worse. In fact, when ∆t = 0.1, unstable oscillations appear in
the result of Scheme 2 in the whole spatial interval (Fig. 7). We also find tiny oscillation
in Scheme 1 (Fig. 6), but that is limited to the initial peak position. (The small oscillation
seems to be caused by the singular initial solution; this phenomena is often observed in
other peakon simulations.) For ∆t = 0.109, oscillations in Scheme 2 get even worse. We
observed that these oscillations grew bigger with time. Therefore we conclude that, from
the perspective of numerical stability, Scheme 1 is the best among the three schemes.
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Figure 6: The numerical solution of 1-peakon solution obtained by Scheme 1: (left) ∆t =
0.109, (center) ∆t = 0.1, (right) ∆t = 0.01.
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Figure 7: The numerical solution of 1-peakon solution obtained by Scheme 2: (left) ∆t =
0.109, (center) ∆t = 0.1, (right) ∆t = 0.01.

Finally we compare the computation time. Table 1 shows the computation times of
Scheme 1 and 2 required to proceed for 20 time steps for various ∆x. We set other
parameters and the initial value to those employed in the above example. In contrast to
Scheme 2, Scheme 1 costs much more when the space mesh size ∆x is small. The increase
of computation time in Scheme 2 is much more moderate. Furthermore, the increase is
mainly due to the first step where we used Scheme 1; this can be relaxed by replacing
Scheme 1 with other cheap integrators.

Summing up all the information above, we see that there is a trade-off between stability
and computation time; the nonlinear scheme (Scheme 1) is highly stable, but as its price,
it requires much computational effort. The linear scheme (Scheme 2) is far cheaper, but it
can be slightly unstable (although still it is better than general non-conservative schemes,
as the first example illustrates). This is a quite typical trade-off often observed in general
structure-preserving methods, and it seems difficult to say conclusive thing on the choice;
it depends on the nonlinear solver and its implementation, and the property of the solution
we consider.
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Table 1: Computation time in scheme 1, 2.
∆x 40/25 40/26 40/27 40/28 40/29 40/210

scheme1 0.14498s 0.37947s 1.18499s 6.36891s 67.4376s 1144.05s

scheme2 0.01262s 0.02674s 0.07658s 0.42090s 4.07037s 64.9714s

5 Concluding remarks

We have proposed two finite difference schemes for the DP equation preserving both H−1

and H0. We also proved the unique existence of the numerical solutions for the schemes.
Numerical examples on 2-peakon solution indicated that proposed schemes are more stable
than the standard Crank–Nicolson scheme. Between Scheme 1 (nonlinear) and 2 (linear),
there was a trade-off that Scheme 1 was better in stability, while Scheme 2 was far cheaper.

Our future works include the followings.

• In this paper, we proved the unique solvability of the proposed schemes, but we did
not mention the theoretical stability in terms of ∥U (n)∥∞, nor the convergence of
the schemes. This is partly because of the restriction of space, and more essentially
due to the fact that the DP can develop discontinuous entropy solutions, and even
in the original continuous DP equation, it is not easy to bound ∥u∥∞. Now we are
trying to establish such estimates for sufficiently smooth global solutions, and the
result will be presented in the near future elsewhere.

• In this paper, we derived conservative schemes in the finite-difference context us-
ing the general framework (the discrete variational derivative method) [17]. How-
ever, it is difficult to do the same thing based on the Galerkin version [23]. As
mentioned in the introduction, this is caused by the substantial difference in the
bi-Hamiltonian structures between the CH and DP (it is much more complicated in
the DP). Whether conservative Galerkin schemes can be constructed for the DP or
not is an interesting research topic, and we are now working on this as well.

• In this paper, we focused on sufficiently smooth (at least continuous) solutions, for
which H−1 and H0 conservation laws hold without any problems. But generally
for these integrable equations, conservation laws can become meaningless as the
solution loses smoothness. In the CH case, the two invariants (out of infinitely many
invariants) that derive the bi-Hamiltonian structure is proved to be conserved even
for peakon solutions [9], but to the best of the authors’ knowledge, it is not yet
known whether the other invariants are also kept or not. For the DP, H−1 and∫
udx were proved to make sense and in fact remain constant for peakon solutions,

but other invariants are yet to be investigated (note that the latter is not H0). Even
worse, the DP has entropy solutions; for instance, when peakon and antipeakon
solutions collide, the solution inevitably becomes an entropy solution, and in such
a circumstance, invariants of the DP are no longer preserved [22]. Whether under
such circumstances conservative schemes make any sense or not is still an open
question. In this sense, in the DP case, there seems to be another trade-off between
conservative schemes like Scheme 1 and 2 (which should work better for smooth
solutions) and those focusing on entropy solutions (better for singular solutions).
Whether we can construct a “hybrid” scheme that inherits both of the advantages
or not is also an interesting point.
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