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Abstract
Collective dynamics result from interactions among noisy dynamical components. Examples

include heartbeats, circadian rhythms, and various pattern formations. Because of noise in each
component, collective dynamics inevitably involve fluctuations, which may crucially affect function-
ing of the system. However, the relation between the fluctuations in isolated individual components
and those in collective dynamics is unclear. Here we study a linear dynamical system of networked
components subjected to independent Gaussian noise and analytically show that the connectivity
of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in
general directed networks including scale-free networks, the fluctuations decrease more slowly with
the system size than the standard law stated by the central limit theorem. They even remain finite
for a large system size when global directionality of the network exists. Moreover, such nontrivial
behavior appears even in undirected networks when nonlinear dynamical systems are considered.
We demonstrate it with a coupled oscillator system.

1 Introduction

Understanding fluctuations in dynamically ordered states and physical objects, which consist of net-
works of interacting components, is an important issue in many disciplines ranging from biology to
engineering. When each constituent component of a system is noisy due to, e.g., thermal fluctuations,
it generally occurs that the entire system collectively fluctuates in time. Such collective fluctuations
may be advantageous or disadvantageous in functioning of the systems depending on situations. For
example, reduction in noise is likely to improve information processing in retinal neural networks [1–4].
Precision of biological circadian clocks [5–8] may be improved by reduction in collective fluctuations
(i.e., fluctuations in collective activities). On the other hand, maintaining a certain amount of fluctu-
ations in an ordered state is advantageous for stochastic resonance [9] and Brownian motors [10].

Despite the relevance of collective fluctuations in a variety of systems, theoretical frameworks that
formulate collective fluctuations are missing. The central limit theorem states that, if the dynamical
order is simply the averaged activity of noisy components, the standard deviation of the collective
fluctuation would decrease with the number N of noisy components as N−1/2. However, scaling is
unclear in systems of interacting components. Clarifying the property of collective fluctuations in
such systems will give us insights into the mechanisms and design principles underlying the regulation
of noise in, for example, living organisms and chemical reactions, and also into possible controls of
fluctuations in collective dynamics.

In this study, we analyze an ensemble of components subjected to independent Gaussian noise
that interact on general networks, including complex networks and regular lattices. We first consider
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a linear dynamical system, which can be regarded as linearization of various systems, such as networks
of periodic or chaotic oscillators [11, 12], the overdamped limit of elastic networks [13], a consensus
problem treated in control theory [14]. We show that collective fluctuations are determined by the
connectivity of networks. It turns out that the scaling N−1/2 is the tight lower bound, which is
obtained for undirected networks. General directed networks yield a slower or nonvanishing decay of
collective fluctuations with an increase in N . We then argue such nontrivial behavior appears even in
undirected networks when nonlinear systems are considered. In particular, we show that linearization
of coupled nonlinear oscillator systems on undirected media yields linear dynamics on asymmetric
networks, such that the slow decay of the collective fluctuation is relevant.

2 Model and analysis

Consider a network of N components obeying

ẋi =
N∑

j=1

wij(xj − xi) +
√
Diξi(t), (1 ≤ i ≤ N), (1)

where xi is the state (or the position) of the ith component,
√
Di is the intensity of noise, ξi is

the independent Gaussian (generally colored) noise, and wij is the intensity of coupling and can be
also regarded as originating from the Jacobian matrix of underlying nonlinear dynamical systems
such as coupled oscillator systems that we consider later. We allow negative weights and asymmetric
coupling; wij can be negative or different from wji. Equation (1) is a multivariate Ornstein-Uhlenbeck
process [15,16].

For convenience, we represent Eq. (1) as

ẋ = −Lx + p, (2)

where x ≡ (x1 . . . xN )> (> denotes the transpose), p ≡ (
√
D1ξ1 . . .

√
DNξN )>, and L = (Lij) is

the asymmetric Laplacian defined by Lij = δij
∑

i′ 6=iwii′ − (1 − δij)wij [17, 18]. L always has a zero
eigenvalue with the right eigenvector u ≡ (1 . . . 1)>, i.e., Lu = 0. This eigenvector is associated
with a global translational shift in state x and corresponds to the fact that such a shift keeps Eq. (1)
invariant. We assume the stability of the ordered state represented by x1 = . . . = xN in the absence
of the noise (i.e., Di = 0 for all i); the system relaxes to the ordered state from any initial condition.
This is equivalent to assuming that the real parts of all the eigenvalues of L are positive except for
one zero eigenvalue, i.e., 0 ≡ λ1 < Reλ2 ≤ . . . ≤ ReλN . This is a nontrivial condition for general
networks with negative weights. However, for networks with only non-negative weights, i.e., wij ≥ 0
(1 ≤ i, j ≤ N), this property holds true when the network is strongly connected or all the nodes are
reachable by a directed path from a single node [17,19,20].

We are concerned with collective fluctuations in dynamics given by Eq. (1). To quantify their
intensity, we decompose x as

x(t) = y(t)u + ρ(t). (3)

y(t) describes the one-dimensional component along u, and ρ(t) is the (N −1)-dimensional remainder
mode. Note that y(t) = vx(t), where the row vector v ≡ (v1 . . . vN ) is the left eigenvector of L
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corresponding to the zero eigenvalue, i.e., vL = 0, and is normalized as vu = 1, i.e.,
∑N

i=1 vi = 1 (see
Appendix A for detailed descriptions). We call y(t)u the collective mode. In the absence of noise, the
dynamical equation for y(t) is given by

ẏ = vẋ = −vLx = 0. (4)

Therefore, y(t) is a conserved quantity of the dynamics. The remainder mode ρ(t) is associated with
relative motions among the components. Because of the stability assumption, ρ(t) asymptotically
vanishes with characteristic time (Re λ2)−1. Therefore, all the values of xi (1 ≤ i ≤ N) eventually go
to the same value y that is determined by the initial condition, i.e., y = vx(0).

In the presence of noise, we obtain

ẏ = vẋ = v(−Lx + p) = vp =
N∑

i=1

vi

√
Diξi(t). (5)

Because ξi is the independent Gaussian noise, this equation reduces to

ẏ(t) =

√√√√
N∑

i=1

v2
iDiξ(t) ≡ σξ(t), (6)

where ξ(t) is the Gaussian noise having the same statistical property as that of each ξi(t). Thus,
y(t) performs the Brownian motion with effective noise strength σ and is unbounded. The remainder
mode ρ(t) fluctuates around zero because of its decaying nature. Therefore, the long-time behavior
of xi(t) = y(t) + ρi(t) is approximately described by a single variable y(t) for any i. We denote as
σ, which depends on the structure of the network, the intensity of collective fluctuations. σ can be
calculated for given network.

In practice, the average activity of the population, x̄ ≡ ∑N
i=1 xi/N , but not the activity at indi-

vidual nodes, may be observed. Because x̄ = y +
∑N

i=1 ρi/N and
∑N

i=1 ρi/N can be neglected in a
long run, σ also characterizes the fluctuations of x̄.

3 Collective fluctuations in various networks

3.1 General properties

We assume for simplicity that Di = 1 (1 ≤ i ≤ N) so that σ =
√∑N

i=1 v
2
i . It is straightforward to

extend the following results to the case of heterogeneous Di. The vector v is uniform, i.e., vi = 1/N
(1 ≤ i ≤ N) if and only if kin

i = kout
i (1 ≤ i ≤ N), where kin

i ≡ ∑N
j=1wij and kout

i ≡ ∑N
j=1wji are

indegree and outdegree, respectively [18]. Undirected networks satisfy this condition. In this case,
we obtain σ = N−1/2, which agrees with the central limit theorem. The normalization condition∑N

i=1 vi = 1 guarantees that σ ≥ N−1/2 for any v. Therefore, undirected networks are the best for
reducing collective fluctuations. In the case of directed or asymmetrically weighted networks, vi is
generally heterogeneous, and σ > N−1/2. We will show later that this is also the case for nonlinear
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systems on undirected networks. When the weight wij is nonnegative for any i and j, the Perron–
Frobenius theorem guarantees that vi is nonnegative for all i [21]. In this case, we obtain

1√
N
≤ σ ≤ 1. (7)

The case σ = 1 is realized by a feedforward network, in which a certain component i0 has no inward
connection (i.e., kin

i0
= 0). Then, vi0 = 1 and vi = 0 for i 6= i0, which yields σ = 1 irrespective of N ;

the collective fluctuations are not reduced at all with an increase in N . When negative weights are
allowed, some elements of v may assume negative values. Then, σ may be larger than 1, in which case
collective fluctuations are larger than individual noise.

We note that σ2 is the so-called inverse participation ratio [22]. σ−2 can be interpreted as the
effective number of components that participate in collective activities; the remaining components are
slaved.

3.2 Directed scale-free networks

We demonstrate our theory by using some example networks. First, we consider directed scale-free
networks, schematically shown in Fig. 1(a) in which kin

i and kout
i independently follow the distributions

p(kin) ∝ k−γin and p(kout) ∝ k−γout , respectively. By assuming that the values of vi of adjacent nodes
are independent of each other, we obtain

N∑

j=1

wjivj ≈
N∑

j=1

wjiv̄ = kout
i v̄, (8)

where

v̄ ≡
∑N

i=1 vi

N
=

1
N
. (9)

Therefore,

vi =

∑N
j=1wjivj∑N
j=1wij

≈ kout
i /kin

i∑N
j=1

(
kout

j /kin
j

) . (10)

This approximation is sufficiently accurate for uncorrelated networks [18]. For p(kin) ∝ k−γin and
p(kout) ∝ k−γout , we obtain

vi ≈ kout
i /kin

i

N 〈kout〉 〈(kin)−1〉 (11)

and

σ ≈

√√√√√√

〈
(kout)2

〉 〈
(kin)−2

〉

N 〈kout〉2
〈
(kin)−1

〉2 , (12)

where 〈·〉 is the ensemble average. When γout < 2, a winner-take-all network is generated [23,24], and
there exists a node i such that kout

i = O(N) and vi = O(1). When γout ≥ 2, the extremal criterion
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results in the maximum degree increasing with N as N1/(γout−1) (γout ≥ 2) in many networks [24,25].
Then, we obtain [26]

〈
kout

〉 ∝




N2−γout , (γout < 2),
lnN, (γout = 2),
O(1), (γout > 2),

(13)

〈(
kout

)2
〉
∝





N−γout+3, (γout < 2),
N (−γout+3)/(γout−1), (2 ≤ γout < 3),
lnN, (γout = 3),
O(1), (γout > 3),

(14)

and 〈(
kin

)−1
〉
,
〈(
kin

)−2
〉

= O(1). (15)

Therefore, we obtain

σ ∝





1, (γout < 2),
1/ lnN, (γout = 2),
N−1+(γout−1)−1

, (2 ≤ γout < 3),
N−1/2(lnN)1/2, (γout = 3),
N−1/2, (γout > 3).

(16)

The fairly heterogeneous case γout < 2, in which the average outdegree diverges as N →∞, effectively
yields a feedforward network. The case γout ≥ 3, where the second moment of the outdegree converges
for N →∞, reproduces the central limit theorem. The latter result is shared by the directed version
of the conventional random graph. The case 2 ≤ γout < 3 yields a nontrivial dependence of σ on N .
In Fig. 2(a), we compare the scaling exponent β, where σ ∝ N−β obtained from the theory (solid
line; Eq. (16)) and numerical simulations of the configuration model [23,27] with the power-law degree
distribution with minimum degree 3 (open circles). The fitting procedure is explained in Fig. 2(b).
Equation (16) roughly explains numerically obtained values of β.

3.3 Directed lattices

The second example is the directed one-dimensional chain of N nodes depicted in Fig. 1(b). We set
wi+1,i = 1 (1 ≤ i ≤ N − 1), wi−1,i = ε (2 ≤ i ≤ N), and wj,i = 0 (j 6= i− 1, i+ 1). For this network,
by solving vL = 0, we analytically obtain

vi =
(1− ε)εi−1

1− εN
, (1 ≤ i ≤ N) (17)

and

σ =

√
1− ε

1 + ε

1 + εN

1− εN
. (18)

Values of σ for various ε and N are plotted by solid lines in Fig. 3(a). Interestingly, for ε 6= 1,
limN→∞ σ =

√
(1− ε)/(1 + ε); σ is nonvanishing. We have also analytically derived σ for directed d-

dimensional lattices (see Appendix B). The results for the two-dimensional lattice depicted in Fig. 1(c)
are plotted by solid lines in Fig. 3(b). To confirm our theory, we also carried out direct numerical
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simulations of Eq. (1) with Gaussian white noise for these directed lattices. The results indicated by
circles in Fig. 3 indicate an excellent agreement with our theory.

A similar result is obtained for the Cayley tree (see Appendix C).

4 Oscillator dynamics

As an application of our theory to nonlinear systems, we examine noisy and rhythmic components. As
a general, tractable, yet realistic model, we consider a network of phase oscillators [11, 28, 29], whose
dynamical equation is given by

φ̇i = ωi +
N∑

j=1

Aijf(φj − φi) +
√
Diξi(t), (1 ≤ i ≤ N), (19)

where φi ∈ [0, 2π) and ωi are the phase and the intrinsic frequency of the ith oscillator, respectively, Aij

is the intensity of coupling, and f(·) is a 2π–periodic function. We assume that, in the absence of noise,
all the oscillators are in a fully phase-locked state, i.e., φi(t) = Ωt+ψi, where Ω and ψi are the constants
derived from φ̇i = Ω (1 ≤ i ≤ N). Under sufficiently weak noise, we can linearize Eq. (19) around the
phase-locked state. Letting xi = φi − (ψi + Ωt), we obtain Eq. (1), where wij = Aijf

′(ψj − ψi) is the
effective weight. The validity of linearizing Eq. (19) for small noise intensity is tested by carrying out
direct numerical simulations of Eq. (19) with ωi = ω (1 ≤ i ≤ N) and f(φ) = sinφ. The relationship

σ ≈
√∑N

i=1Div2
i is satisfied in the directed one- and two-dimensional lattices, as shown in Fig. 4(a)

and (b), respectively.
When there is some dispersion in ψi in a phase-locked state, the relation σ ≈ N−1/2 may be

violated even in undirected networks. This is because the effective weight is generally asymmetric (i.e.,
wij 6= wji) unless f(·) is an exact odd function. In reality, f(·) is usually not an odd function [11,29–31].
As an example, we consider target patterns (i.e., concentric traveling waves), which naturally appear
in spatially extended oscillator systems [11,32]. We carry out direct numerical simulations of Eq. (19)
on the two-dimensional undirected lattice with linear length

√
N = 50, f(φ) = sin(φ− α) + sinα, and

α = π/4. Such a function may be analytically derived from a general class of coupled oscillators [11],
and it approximates a variety of real systems [29, 31, 33]. We set ωi = ω0 + ∆ω (∆ω ≥ 0) for 4 × 4
pacemaker oscillators in the center and ωi = ω0 for the other oscillators, where ω0 is arbitrary and set
to 1. A target pattern is formed when there is sufficient heterogeneity in the intrinsic frequency [11].
A region with high intrinsic frequency acts as a pacemaker. A snapshot for ∆ω = 0.3 is shown in
Fig. 5(a). As observed, the radial phase gradient is approximately constant, which makes the effective
network similar to the directed two-dimensional lattice depicted in Fig. 1(c). Therefore, as shown in
Fig. 5(b), vi calculated numerically decreases almost exponentially with the distance from the center.
We find that the dependence of σ on N , shown in Fig. 5(c), is similar to that for directed lattices.

We emphasize that the network is undirected (i.e., Aij = Aji). We have also theoretically confirmed
that our results are valid for the continuous oscillatory media under spatial block noise, which models
chemical reaction–diffusion systems (see Appendix D).
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5 Conclusions

In summary, we have obtained the analytical relationship between collective fluctuations and the
structure of networks. In undirected networks, the fluctuations decrease with the system size N as
N−1/2; this result agrees with the central limit theorem. In general directed networks, the collective
fluctuations decay more slowly. For example, in directed scale-free networks, we obtain N−β with
0 < β < 1/2. In networks with global directionality, the fluctuations do not vanish for a large system
size. We have also demonstrated that such nontrivial dependence appears even in undirected networks
when nonlinear systems are considered. We have focused on systems of nonleaky components. Results
for coupled leaky components will be reported elsewhere.

Our results are distinct from earlier results demonstrating the breach of the central limit theorem
due to heavy-tailed noise [34] or the correlation between the noise in different elements [35,36].

Finally, because our theory is based on a general linear model, it can be tested in a variety
of experimental systems. An ideal experimental protocol is provided by photo-sensitive Belousov-
Zhabotinsky reaction systems, in which the heterogeneity, noise intensity, and system size can be
precisely controlled by light stimuli [32]. Experiments with coupled oscillatory cells, such as cardiac
cells and neurons under an appropriate condition, would be also interesting.

Acknowledgments

We thank Istvan Z. Kiss, Norio Konno, Yoshiki Kuramoto and Ralf Tönjes for their valuable dis-
cussions. N.M. acknowledges the support through the Grants-in-Aid for Scientific Research (Nos.
20760258 and 20540382) from MEXT, Japan.

Appendix A: Derivation of the collective mode

To derive the collective mode y(t)u, we note that there exists a nonsingular matrix P such that
L̃ ≡ P−1LP is its Jordan canonical form [17, 21]. We assume that L̃11 = λ1 = 0 and L̃1i = L̃i1 = 0
(2 ≤ i ≤ N) without loss of generality. The submatrix (L̃ij) (2 ≤ i, j ≤ N) corresponds to the
N − 1 modes with the eigenvalues λ2, . . . , λN . Because the first column of LP = PL̃ is equal to
(0 . . . 0)>, the first column of P is equal to the right eigenvector of L corresponding to λ1 = 0,
i.e., u = (1 . . . 1)>. Because the first row of P−1L = L̃P−1 is equal to (0 . . . 0), the first row of
P−1 is equal to the left eigenvector of L corresponding to λ1 = 0, i.e., v = (v1 v2 . . . vN ). The
normalization is given by

∑N
i=1 vi = 1. Under the variable change (y yr) ≡ P−1x ∈ RN , where

y ∈ R and yr ∈ RN−1, the coupling term is transformed into −L̃(y yr). Then, in the absence of the
dynamical noise, y =

∑N
i=1 vixi is a conserved quantity, which is the collective mode. ρ(t) in Eq. (3)

is given by Pryr, where Pr is the N by N − 1 matrix satisfying P = (u Pr).

Appendix B: Collective fluctuations in regular lattices with arbitrary
dimensions

Consider a directed two-dimensional square lattice with a root node. As depicted in Fig. 1(c), the
edges descending from the root node and those approaching the root node in terms of the graph-
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theoretic distance are given weight 1 and ε (0 ≤ ε ≤ 1), respectively. We define layers such that the
layer ` (≤ `max) is occupied by the nodes whose distance from the root node is equal to `. Layer
0 contains the root node only, and layer ` (≥ 1) contains 4` nodes. We consider the lattice within
a finite range specified by ` ≤ `max. Note the difference from the case of the one-dimensional chain
examined in the main text (Fig. 1(b)), where the root node is located at the periphery of the chain.
However, the scaling of σ is not essentially affected by this difference.

The symmetry guarantees that the four nodes in layer 1 have the same value of vi. Consider a
node in Fig. 1(c) that is labeled 2 and adjacent to two nodes labeled 1. There are four such nodes.
The equation in vL = 0 corresponding to this node is given by (2 + 2ε)v2 = 2εv1 + 2v3. The other
four nodes labeled 2 in Fig. 1(c) yield a different equation (1 + 3ε)v2 = εv1 + 3v3. Similarly, we
obtain (2 + 2ε)v` = 2εv`−1 + 2v`+1 for all but four nodes in layer `. The other four nodes satisfy
(1 + 3ε)v` = εv`−1 + 3v`+1. Despite this inhomogeneity, v` ∝ ε` satisfies all these equations. By
counting the number of nodes in each layer, the properly normalized solution is given by

v` =
[
T

(2)
`max

(ε)
]−1

ε`, (0 ≤ ` ≤ `max), (S.20)

and

σ =

√
T

(2)
`max

(ε2)

T
(2)
`max

(ε)
, (S.21)

where

T
(2)
`max

(z) = 1 + 4
`max∑

`=1

`z`

=
(1 + z)2 − 4[1 + `max(1− z)]z`max+1

(1− z)2
. (S.22)

The difference between the one- and two-dimensional cases lies in the number of nodes in each layer,
which affects the normalization of v` and hence the value of σ. In the limit of a purely feedforward
network, σ is independent of the system size, i.e., limε→0 σ = 1. In the case of undirected networks,
the central limit theorem is recovered, i.e., limε→1 σ = N−1/2. In the limit of infinite space, we obtain

lim
`max→∞

σ =
(1− ε)(1 + ε2)

(1 + ε)3
. (S.23)

For a general dimension d, layer 0 has a single root node, and layer ` (1 ≤ ` ≤ `max) has

N
(d)
` ≡

∑̀

d′=1

d!
d′!(d− d′)!

(`− 1)!
(d′ − 1)!(`− d′)!

2d′

nodes. d′ is the number of coordinates among the d coordinates to which nonzero values are assigned,
and the factor 2d′ takes care of the fact that reversing the sign of any coordinate does not change the
layer of the node. Similar to the case of the two-dimensional lattice, the value of vi for any node in
layer ` in a d-dimensional lattice, denoted by v(d)

` , is given by

v
(d)
` =

[
T

(d)
`max

(ε)
]−1

ε`, (0 ≤ ` ≤ `max), (S.24)
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where

T
(d)
`max

(z) = 1 +
`max∑

`=1

N
(d)
` z` (S.25)

From Eq. (S.24), we obtain

σ =

√
T

(d)
`max

(ε2)

T
(d)
`max

(ε)
. (S.26)

Note that limε→0 σ = 1 and limε→1 σ = N−1/2. In the limit `max →∞, Eq. (S.25) becomes

lim
`max→∞

T
(d)
`max

(z) = 1 +
∞∑

d′=1

d!
d′!(d− d′)!

2d′
∞∑

`=d′

(`− 1)!
(d′ − 1)!(`− d′)!

z`

= 1 +
∞∑

d′=1

d!
d′!(d− d′)!

2d′
(

z

1− z

)d′

=
(

1 + z

1− z

)d

. (S.27)

Substituting Eq. (S.27) into Eq. (S.26) yields

lim
`max→∞

σ =

[
(1− ε)

(
1 + ε2

)

(1 + ε)3

]d/2

. (S.28)

Appendix C: Collective fluctuations in the Cayley tree

Consider a Cayley tree with degree k and a specific root node. We assume that the maximum distance
from the root node is equal to `max. The edges descending from the root node and those approaching
the root node are assigned weight 1 and ε, respectively. The exact value of vi in layer `, denoted by
v` without confusion, is obtained via

[1 + (k − 1) ε] v` = εv`−1 + (k − 1) v`+1, (` ≥ 1). (S.29)

By solving Eq. (S.29), we obtain

v` =
1− (εk)

1− (εk)`max+1
ε`, (0 ≤ ` ≤ `max). (S.30)

From Eq. (S.30), we obtain

σ =
1− (εk)

1− (εk)`max+1

√
1− (ε2k)`max+1

1− (ε2k)
. (S.31)

Note that limε→0 σ = 1 and limε→1 σ =
√

(1− k)/(1− k`max+1) = N−1/2. The infinite-size limit exists
only when εk < 1, and it is equal to

lim
`max→∞

σ =
1− εk√
1− ε2k

. (S.32)
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Appendix D: Target patterns in continuous media under spatial block
noise

We show that our results for the coupled oscillator system in the d-dimensional lattice are also valid
for that in the continuous Euclidean space. We assume that Gaussian spatial block noise is applied.
This type of noise has been used in experiments [32].

We consider the d-dimensional nonlinear phase diffusion equation given by

∂tφ(r, t) = ω + ν∇2φ+ µ (∇φ)2 + s(r), (S.33)

where r ∈ Rd is the spatial coordinate, ω > 0 is the intrinsic frequency, ν > 0 is the diffusion constant,
and µ > 0 is the coefficient of the nonlinear term [11]. The term s(r) represents the localized
heterogeneity, which is positive near the origin and vanishing otherwise.

The synchronous solution corresponding to the target pattern is written as φ(r, t) = Ωt + ψ(r),
where Ω and ψ(r) satisfy

Ω = ω + ν∇2ψ + µ (∇ψ)2 + s(r). (S.34)

Let x(r, t) be a small deviation from the target pattern defined by x ≡ φ − (Ωt + ψ). Linearizing
Eq. (S.33) using x(r, t), we obtain ∂tx(r, t) = Lx, where the linear operator L is given by

Lx = ν∇2x+ 2µ (∇ψ) · (∇x) . (S.35)

We define the inner product as

[x1(r), x2(r)] =
∫
dr x1(r)x2(r). (S.36)

We define the adjoint operator L† as [x1,Lx2] = [L†x1, x2], i.e.,

L†x = ν∇2x− 2µ∇ · (x∇ψ) . (S.37)

Note that L is self-adjoint when ∇ψ = 0.
Because of the translational symmetry in Eq. (S.33) with respect to φ, L has one zero eigenvalue.

Let the right and left eigenfunctions of L corresponding to the zero eigenvalue be u(r) and v(r),
respectively, i.e., Lu = 0 and L†v = 0. Trivially, u(r) = 1. The normalization condition [v(r), u(r)] =
1 then implies that

∫
dr v(r) = 1.

Now, we introduce the perturbation to Eq. (S.33) as follows:

∂tφ(r, t) = ω + ν∇2φ+ µ (∇φ)2 + s(r) +
√
D ξ(r, t), (S.38)

where ξ(r, t) represents a weak perturbation to the target pattern. Similarly to Eq. (3), we decompose
x into

x(r, t) = y(t)u(r) + ρ(r, t), (S.39)

where y(t)u(r) is the collective mode. The dynamical equation for y is then obtained as

ẏ =
√
D

∫
dr v(r)ξ(r, t). (S.40)
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Let us assume that ξ(r, t) is the Gaussian spatial block noise characterized by

ξ (r, t) = ξ` (t) , r ∈ Rd(`), (S.41)
〈
ξ` (t) ξ`′

(
t′
)〉

= δ`,`′C
(∣∣t− t′

∣∣) , (S.42)

where ` is the vector index for the block Rd(`). Using Eq. (S.41), Eq. (S.40) is transformed into

ẏ =
√
D

∑

`

v` ξ`(t), (S.43)

where
v` =

∫

Rd(`)
dr v(r). (S.44)

From Eq. (S.43), we find that the intensity of the collective fluctuation is given by

σ =
√
D

∑

`

v2
` . (S.45)

Note that v` satisfies the normalization condition as follows:

∑

`

v` =
∑

`

∫

Rd(`)
dr v(r) =

∫
dr v(r) = 1. (S.46)
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Figure 1: Schematic of (a) directed scale-free network, (b) directed chain, and (c) directed two-
dimensional lattice. The numbers in (b) indicate the indices of the nodes, while those in (c) indicate
the layer index.
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Figure 2: (a) Scaling exponent β for σ ∝ N−β in scale-free networks with γin = γout. The solid line
is the theoretical prediction given by Eq. (16). The open circles are obtained numerically as follows.
For each network, we calculate the eigenvector v to obtain σ. Then, β is determined from the best
linear fit between β and N on the logarithmic scale, as described in (b). (b) Determination of β. Data
points are generated as an average value of β for each of N = 100, 200, 400, . . ., 12800. The results
obtained from the direct numerical simulations are shown by circles. For demonstration, the results
for γin = γout = 2.05, 2.5, 3, 3.5, and 4 are shown. By assuming σ ∝ N−β, we regress log σ against
logN by the best linear fit (solid lines). The slope gives an estimate of −β. The Pearson correlation
coefficient is large (> 0.99) for each value of γout analyzed in (a).
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Figure 3: Collective fluctuations for (a) the directed one-dimensional chain and (b) the directed two-
dimensional lattice for various N and ε. The solid lines and the circles represent the theoretical and
the numerical results, respectively. In (b), `max is the maximum distance from the center of the
lattice. For both networks, we set Di = 1 (1 ≤ i ≤ N) and simulate Eq. (1) with the initial condition
xi(t = 0) = 0 (1 ≤ i ≤ N). We measured σ as the standard deviation of x̄(t = 10200) − x̄(t = 200)
obtained by conducting 2000 trials, which is then normalized by

√
10000. We disregard the first 200

time units as transient.

15



 0.01

 0.1

 1  10  100

σ

N

(a) one-dimensional

ε = 0.0
ε = 0.2
ε = 0.4
ε = 0.6
ε = 0.8

ε = 1.0

theoretical
numerical

 0.01

 0.1

 1  10

σ

lmax

(b) two-dimensional

Figure 4: Collective fluctuation for coupled phase oscillators in (a) directed one-dimensional chain
and (b) directed two-dimensional lattice. The solid lines represent the theoretical results, and the
circles represent the numerical results obtained by the direct numerical simulations of Eq. (19) with
f(φ) = sinφ. We set Di = 0.01 (1 ≤ i ≤ N) and start with xi = 0 (1 ≤ i ≤ N). We measure σ as
the standard deviation of x̄(t = 10200)− x̄(t = 200) obtained by conducting 2000 trials, which is then
normalized by

√
10000.
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Figure 5: (color online) Numerical results of the coupled oscillators on the two-dimensional undirected
lattice. (a) Snapshot of sinφi and (b) eigenvector v (log scale) for ∆ω = 0.3, where r1 and r2 denote
the spatial coordinates. (c) The dependence of σ on system size N .
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