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Abstract

Many mechanisms for the emergence and maintenance of altruistic behavior in social dilemma
situations have been proposed. Indirect reciprocity is one such mechanism, where other-regarding
actions of a player are eventually rewarded by other players with whom the original player has
not interacted. The upstream reciprocity (also called generalized indirect reciprocity) is a type
of indirect reciprocity and represents the concept that those helped by somebody will help other
unspecified players. In spite of the evidence for the enhancement of helping behavior by upstream
reciprocity in rats and humans, theoretical support for this mechanism is not strong. In the present
study, we numerically investigate upstream reciprocity in heterogeneous contact networks, in which
the players generally have different number of neighbors. We show that heterogeneous networks
considerably enhance cooperation in a game of upstream reciprocity. In heterogeneous networks,
the most generous strategy, by which a player helps a neighbor on being helped and in addition
initiates helping behavior, first occupies hubs in a network and then disseminates to other players.
The scenario to achieve enhanced altruism resembles that seen in the case of the Prisoner’s Dilemma
game in heterogeneous networks.

1 Introduction

The mechanism for evolution and maintenance of altruism when egoistic behavior is apparently more
advantageous has been a target of intensive studies. Among the many viable mechanisms proposed, we
focus on indirect reciprocity, which refers to the concept that a cooperative player is helped by others
with whom she/he has not interacted. Cooperative behavior is indirectly rewarded by way of chains of
helping behavior of various players. There are two types of indirect reciprocity: downstream reciprocity
and upstream reciprocity (Nowak and Sigmund, 2005). In downstream reciprocity, a player witnesses
the behavior of other players as a third party. The observing player will assign a good reputation to
player X if player X helps others. When a situation arises where this observer interacts with player X
in the future, the observer will probably help X if and only if X has a good reputation. A player must
establish a good reputation by helping others prior to being helped by other anonymous players. The
downstream reciprocity is observed in behavioral experiments (Wedekind and Milinski, 2000; Milinski
et al., 2002) and is firmly based on the theory of evolutionary games (Nowak and Sigmund, 1998a;
Nowak and Sigmund, 1998b; Leimar and Hammerstein, 2001; Brandt and Sigmund, 2004; Ohtsuki
and Iwasa, 2004; Ohtsuki and Iwasa, 2006).

In upstream reciprocity, the players first get help from other players. If the recipient complies
with upstream reciprocity, then she/he helps another unspecified player. Theoretically, evolution of
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cooperation based on upstream reciprocity is considered to be difficult. In numerical simulations,
cooperation is achieved only when the size of the interaction group is small (Boyd and Richerson,
1989; Pfeiffer et al., 2005). An analytical study showed that upstream reciprocity enables evolution
of cooperation only in combination with another mechanism such as direct reciprocity (i.e., repeated
interaction between the same players) or spatial reciprocity (i.e., interaction between players on a one-
dimensional lattice) (Nowak and Roch, 2007). However, upstream reciprocity has been observed in
behavioral experiments conducted on humans. A player that has received a help from another player
has increased the propensity to help an anonymous partner in variants of the trust game (Dufwenberg
et al., 2001; Greiner and Levati, 2005; Stanca, 2009). Those who are helped by somebody in advance
tend to help another partner filling in a tedious survey in laboratory behavioral experiments (Bartlett
and DeSteno, 2006). Upstream reciprocity has also been observed in rats. Rats trained to pull a
stick to deliver food tend to pull the stick to help another rat after receiving food via a help from a
conspecific (Rutte and Taborsky, 2007). Therefore, theoretically assessing the conditions under which
upstream reciprocity is feasible will help us gain a better understanding of the evolution of cooperation
in social dilemma situations.

In this study, we examine the effect of a property of contact networks on upstream reciprocity. A
fundamental characteristic of many social networks is that the number of contacts of a node, which we
call the degree, has a right-skewed distribution. In particular, scale-free networks, i.e., networks with
power-law degree distributions are widely found (e.g., Newman, 2003). In social networks relevant to
evolutionary games, scale-free networks have been found in, for example, email social networks (Ebel
et al., 2002; Newman et al., 2002). Although other social networks do not exhibit degree distributions
that are as right skewed as the power-law distribution, their degree distributions are considerably
heterogeneous (Eubank et al., 2004; Lusseau and Newman, 2004; Kossinets and Watts, 2006; Onnela
et al., 2007). We investigate the effect of heterogeneous degree distributions on the possible evolution
of cooperation based on upstream reciprocity.

We show that upstream reciprocity enhances altruistic behavior of players that are placed in
heterogeneous contact networks such as scale-free networks. The mechanism found in our study has
resemblance to that for enhanced cooperation shown in the Prisoner’s Dilemma in heterogeneous
networks (Duran and Mulet, 2005; Santos and Pacheco, 2005; Santos et al., 2006; Santos and Pacheco,
2006), which we will discuss in Sec. 4.

2 Model

2.1 Networks

Consider a contact network with a population of N = 10000 players. As a model of heterogeneous
network, we use the scale-free network generated by the Barabási–Albert algorithm (Barabási and
Albert, 1999) (Fig. 1A). To generate the scale-free network, we start with the complete graph of
2m + 1 nodes (i.e., each pair of nodes is connected by an edge). Then, we add nodes with degree m
one-by-one according to the so-called linear preferential attachment; the probability that an already
existing node vi forms an edge with a newly introduced node is proportional to the degree ki. Multiple
edges (i.e., more than one edge connecting a pair of nodes) are disallowed. In the generated network,
the degree follows the power-law distribution p(k) ∝ k−3 with a lower cutoff at k = m and the mean
degree of 〈k〉 = 2m (Barabási and Albert, 1999). We use 〈k〉 = 8, i.e., m = 4, unless otherwise stated.
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For comparison, we also use four other types of networks. One is the regular random graph,
which is constructed from the configuration model (Newman, 2003) (Fig. 1B). To generate a network,
we attach 〈k〉 stubs, or half edges, to each node. Then, we randomly select two nodes with the
equal selection probability and connect them. These two nodes consume one stub each. We repeat
this procedure until all stubs are exhausted at all nodes. If the generated network is disconnected
or contains self-loops or multiple edges, we discard the network and start the entire procedure all
over again. Although its mean degree is small, the regular random graph represents a well-mixed
population in which cooperation is not easily enhanced by upstream reciprocity (Boyd and Richerson,
1989; Nowak and Roch, 2007).

In the square lattice, N = 10000 nodes are placed on the square with a linear length of
√

N = 100.
Each node is connected to eight nodes situated in a so-called Moore neighborhood (Fig. 1C). We adopt
the periodic boundary condition.

The extended cycle is a one-dimensional network, where the nodes are placed on a ring. Each node
is connected to 〈k〉 /2 nearest nodes on each side, as shown in Fig. 1D.

The scale-free network, the regular random graph, the square lattice, and the extended cycle have
〈k〉 = 8 unless otherwise stated. Therefore, we can compare the effects of different types of networks
without having to account for the possible influence of 〈k〉. We also set 〈k〉 = 6 and 〈k〉 = 14 in some
of the following numerical simulations to confirm the robustness of the results with respect to 〈k〉.

The final type of network used is the cycle in which each node on a ring is connected to a single
nearest node on each side such that 〈k〉 = 2 (Fig. 1E). We use the cycle to compare our numerical
results with the previously reported theoretical results (Nowak and Roch, 2007). In contrast to the
well-mixed population, the infinite one-dimensional chain network with 〈k〉 = 2 enables upstream
reciprocity because it exhibits spatial reciprocity. Spatial reciprocity is a general mechanism for
evolution of cooperation in social dilemma games; cooperative players are clustered in a network to
help each other and resist the invasion by egoistic players (Axelrod, 1984; Nowak and May, 1992).
Such clustering is possible when the size of the boundary of a cluster is small relative to the number of
players in the cluster. This situation is expected the most in the cycle and to a certain extent in the
extended cycle and the square lattice; however, it is not expected in the Barabási–Albert scale-free
network and the regular random graph.

2.2 Game of upstream reciprocity: rule and payoff

A single game of upstream reciprocity (Nowak and Roch, 2007), which is motivated by experimental
evidence and previous theoretical work explained in Sec. 1, is described as follows. First, a player vi

(1 ≤ i ≤ N) is selected. Player vi may initiate a chain of helping behavior. If vi does so, vi bears
the cost c and selects one of its neighbors at an equal selection probability of 1/ki, where ki is the
degree of vi. The selected neighbor, denoted by vj , receives the payoff b. We assume b > c > 0 so that
the game represents a social dilemma; a single act of help increases the average payoff of the entire
population by (b − c)/N , while each player is better off by not helping other players. Without loss of
generality, we set c = 1.

vj may not continue the chain of helping behavior. In such a case, the chain of cooperation
terminates, and the payoffs for vi, vj, and vi′ (i′ �= i, j) are equal to −c, b, and 0, respectively.
However, if vj does pass on the helping action, vj selects one of its neighbors at a probability of 1/kj

and bears the cost c. The selected neighbor receives b. The chain of helping behavior continues until a
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recipient of help terminates the chain. Note that a chain of cooperation may traverse the same players
more than once.

2.3 Strategies

On the basis of a previous study (Nowak and Roch, 2007), we specify the strategy of each player vi

(1 ≤ i ≤ N) using two parameters. The first parameter pi (0 ≤ pi ≤ 1) denotes the probability that vi

passes on the helping action to a randomly selected neighbor after receiving it from a neighbor. The
second parameter qi (0 ≤ qi ≤ 1) denotes the probability that vi initiates the helping action. A larger
pi or qi implies that player vi is more cooperative.

We consider the following four strategies that were introduced by Nowak and Roch (2007):

• Classical defector (CD) is defined by pi = 0 and qi = 0. CD neither initiates nor passes on the
help. It is the most egoistic strategy.

• Classical cooperator (CC) is defined by pi = 0 and qi = 1. CC spontaneously initiates the chain
of helping behavior but does not react to the cooperation that it receives from a neighbor. CC
does not contribute to upstream reciprocity, even though CC is cooperative to some extent.

• Generous cooperator (GC) is defined by pi = 0.8 and qi = 1. GC initiates the helping behavior
and passes on the helping action with a high probability. It is the most cooperative strategy.
We are concerned with the possibility that heterogeneous networks enhance the fraction of GCs
in a population.

• Passer-on (PO) is defined by pi = 0.8 and qi = 0. PO does not initiate the helping behavior but
passes on the helping action with a high probability. Although PO is less cooperative than GC,
it contributes to the upstream reciprocity.

In the case of GC and PO, we set pi = 0.8 instead of pi = 1. This is to prevent a chain of helping
behavior from continuing indefinitely if the population consists of only GC and PO. This choice of pi

is arbitrary. To verify the robustness of our results with respect to the value of pi, we will carry out
some of the following numerical simulations with pi = 0.7 and pi = 0.9.

2.4 Update rule

We principally use the deterministic update rule, which is described in the following. The numerical
results do not qualitatively change on using relatively realistic stochastic rules, as shown in Secs. 3.1
and 3.4.

We refer to time in the evolutionary dynamics as a round and denote it by t (= 0, 1, 2, . . .). One
round consists of N chains of helping behavior, and one chain is initiated by each player. Note that
a chain is considered to be empty if the initial player does not help a neighbor, which occurs for CD
and PO. The one-round payoff of player vi is defined as the sum of the payoffs gained by vi in N
chains of cooperation. The payoff that vi gains in a round is equal to b× (the frequency at which the
chains are brought to vi) − c× (the frequency at which the chains are passed from vi without being
terminated).
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At the end of each round, the strategies of Nu out of the N = 10000 players are updated syn-
chronously. Unless otherwise stated, we set Nu = 200. We also set Nu = 20 and Nu = 2000 in some
of the following numerical simulations to examine the robustness of the results with respect to Nu.
We randomly and independently select Nu players from the population with equal probability. In the
deterministic update rule that we mostly use in this paper, for each selected player vi, the neighbor
with the largest payoff, which is denoted by vj , is selected. If the payoff of vj is larger than that of vi,
vi will copy the strategy of vj . If there are more than one neighbors with the same largest payoff, we
select one of them randomly with equal probability. After tentatively determining Nu copying events,
we replace the strategies of the selected nodes simultaneously. We do not assume mutation. This
marks the end of one round.

One run lasts until a quasistationary state is attained or the unanimity of one strategy is almost
achieved. Specifically, we set the number of rounds to 20000 in the case of the scale-free network, the
regular random graph, and the square lattice. In the case of the extended cycle and the cycle, the
number of rounds is equal to 140000.

3 Results

3.1 GC versus CD

When a player passes on the received help to a neighbor, a neighbor is randomly selected as recipient
with equal probability. A chain of helping behavior is equivalent to a simple random walk with random
termination. If pi = 1 (1 ≤ i ≤ N), the random walk may continue forever. In this hypothetical
situation, the payoff that player i receives is proportional to the stationary density of the random
walk. In any undirected network, the stationary density of the simple random walk is proportional to
the degree (e.g., Noh and Rieger, 2004). This relation roughly holds true for uncorrelated networks
even in the presence of some absorbing nodes at which the random walk terminates (Noh and Rieger,
2004). Therefore, we expect that the number of times that the chain of helping behavior reaches a
given node is roughly proportional to the degree. Because a single passage of chain contributes to the
payoff b − c > 0, the payoff per round for each player is roughly proportional to the degree.

To verify this prediction, we carry out Monte Carlo simulations of the game of upstream reciprocity
on the scale-free network with a random mixture of GCs and CDs. We set b = 1.5. The probability
that each player is initially GC or CD is 0.5. Figure 2A shows the dependence of the payoff per round
on the degree of the player, just before the first update (i.e., t = 0). Each data point corresponds to
the payoff per round averaged over all players having the same degree and same strategy. For each
strategy, the payoff per round is roughly proportional to the degree. CDs generally gain larger payoffs
than GCs, because CDs exploit GCs in the neighborhood.

However, from Fig. 2A, it cannot be concluded that CD takes over GC in the evolutionary time
course. The same statistics are plotted at t = 200 in Fig. 2B. As in the case of Fig. 2A, CD gains more
than GC at the same degree. At this stage, however, most hubs are occupied by GCs for the following
reason. There are usually some GCs in the neighborhood of a GC hub, which is also the case under
random initial condition. Then, the GC hub tends to gain a large payoff because GC neighbors help
the GC hub. As a result of evolution, GC will spread from the hub to the neighbors, which further
increases the payoff of the GC hub. Suppose a situation where CDs invade neighbors of the GC hub
and exploit it. Because the degrees of these CDs are generally not large, the CDs cannot be helped
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by many players even if the neighborhood is occupied by GCs. Therefore, the CDs would not gain
the payoff per round as large as that of the GC hub. Accordingly, GC tends to be stabilized at the
hub. In contrast, if CD spreads from the hub to the neighbors, the CD hub will obtain a small payoff.
Then, a GC in the neighborhood of the CD hub may take over the hub; CDs occupying hubs are not
stabilized. GCs gradually spread from hubs to players having small degrees (Fig. 2C), and the entire
network is eventually occupied by GCs after sufficient rounds (Fig. 2D).

The time courses of the mean degree of GCs and that of CDs corresponding to the run shown in
Fig. 2A–D are plotted in Fig. 2E. First, the mean degree of GCs grows until most hubs are occupied
by the GCs. It then relaxes to 〈k〉 = 8. The mean degree of the CDs is considerably smaller than
〈k〉 = 8 throughout the run.

The time courses of the average payoff per round of GCs and that of CDs, corresponding to the
same run as above, are shown in Fig. 2F. Initially, the two average payoffs decrease because CDs
replace GCs. Then, GCs are stabilized at hubs, and the GCs begin to disseminate to increase the
average payoff of both GCs and CDs. At any t, CDs earn more than GCs on an average. However,
this does not imply that CD invades GC macroscopically. As shown in Fig. 2B–C, the players with
the largest payoffs are GC hubs rather than CDs. A player is chosen as a potential parent to be
mimicked by other players with the probability proportional to its degree (Newman, 2003; Noh and
Rieger, 2004). In the scale-free network, a neighbor of an arbitrary player tends to be a hub, and
then GC hubs are imitated by relatively many players. Therefore, while the average payoff of CDs is
maintained at a larger value than that of GCs, the fraction of CDs gradually decreases until the CD
becomes extinct. The relative strength of a strategy in reproduction is determined not by the average
payoff of the players using that strategy but by the degree-weighted average payoff of these players.

The scenario of evolution of helping behavior described above requires heterogeneous degree dis-
tribution. To compare different networks, at a given value of b, we generate five realizations of the
network and carry out 10 runs on each network for the scale-free network and the regular random
graph, which are generated from stochastic algorithms. For the other three deterministic networks,
we carry out 50 runs on the network. The average of the final fraction of GC, obtained from the 50
runs, is plotted against b in Fig. 3. In all the networks, except the regular random graph, the fraction
of GC increases with b. In fact, the fraction jumps from unanimity of CD to that of GC at a threshold
value of b. The threshold value of b above which GCs survive is considerably smaller in the scale-free
network than in the other networks. Heterogeneous networks promote the evolution of helping behav-
ior. Among the other networks, the threshold value of b is the smallest in the cycle. The next smallest
value is the extended cycle and then the square lattice. The threshold value of b in the random graph
is greater than the upper limit shown in Fig. 3 (i.e., b = 10). Unlike the Barabási–Albert scale-free
network and the regular random graph, the other three networks, i.e., the cycle, the extended cycle,
and the square lattice, are capable of spatial reciprocity. This fact explains why these three networks
accommodate more GCs as compared to the regular random graph. However, the effect of spatial
reciprocity is smaller than the effect of the scale-free networks, at least under the present parameter
regime.

We confirm that the results are qualitatively the same for some variations of the model. First, we
change the mean degree to 〈k〉 = 6 (Fig. 4A) and 〈k〉 = 14 (Fig. 4B). The results are qualitatively the
same as those for 〈k〉 = 8. Quantitatively, GC survives more easily for a smaller 〈k〉, which coincides
with the results for the Prisoner’s Dilemma on regular random graph (Ohtsuki et al., 2006). Second, we
change pi for GC and PO to 0.7 (Fig. 5A) and 0.9 (Fig. 5B). The results are qualitatively the same as
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those for pi = 0.8. Quantitatively, a larger value of pi yields a larger fraction of GC. Third, we change
the number of players updated in one round to Nu = 20 (Fig. 6A) and Nu = 2000 (Fig. 6B). The results
are qualitatively the same as those for Nu = 200. Fourth, we show the effect of different stochastic
update rules. In the imitation rule (Ohtsuki et al., 2006), at the end of each round, potentially updated
player vi selects a potential parent out of the ki + 1 players, i.e., vi and the ki neighbors of vi. The
probability that a node is selected as the parent is proportional to the payoff. When the payoff is
negative, we set this probability to zero. In the Fermi rule (e.g., Szabó and Tőke, 1998; Traulsen et
al., 2006), vi selects a potential parent vj out of the ki neighbors with equal probability and copies the
strategy of vj with probability [1 + exp(β((payoff of player vi) − (payoff of player vj)))]

−1. Otherwise,
vj copies the stragegy of vi. The results for the imitation rule and those for the Fermi rule with
β = 0.2 are shown in Figs. 7A and 7B, respectively. The results resemble those for the deterministic
update rule. Although the one-dimensional chain allows for GC at small values of b, as comparable or
even smaller than the values for the scale-free network, our main result that heterogeneous networks
enhances generous cooperators as compared to homogeneous networks is not violated.

In the case of the cycle, the threshold value of b above which the GC survives the invasion by
CD has been obtained for a different update rule in the limit of weak selection (Nowak and Roch,
2007). The survival of the GC is possible when b/c > f(p), where f(p) =

[
8 + 2p + 8

√
1 − p2

] /
[
3 + 4p +

√
1 − p2

]
. Because we set c = 1 and p = 0.8, the theoretical threshold in this case is equal

to f(0.8) = 2.12. Figure 3 indicates that the GC survives when b is larger than approximately 2.6
in the numerical simulations; this value is not too far from the theoretical value. The discrepancy
between the theoretical and numerical results is probably attributed to the use of different update
rules (stochastic versus deterministic), the difference in selection pressure (weak selection versus strong
selection), and/or the difference in the boundary condition of the network (open end versus periodic
boundary condition).

3.2 GC versus CC

Next, we examine the case in which GCs and CCs are initially present. Although GC and CC are
both cooperative in a classical sense, the GC is more cooperative than the CC in a game of upstream
reciprocity. Similar to the case considered in Sec. 3.1, we start each Monte Carlo simulation using an
equal fraction of GCs and CCs. In contrast to a population composed of GCs and CDs, in this case,
the unanimity of GC or that of CC, instead of a mixture of GC and CC, is reached very often in the
final round of runs in the scale-free network and the square lattice. This unanimity is attained even
if the number of rounds is set to a small value. If all runs end up at unanimity, the fraction of GC is
equal to the fraction of runs in which unanimity of the GC is reached. This quantity is discretized by
the number of runs. Therefore, we carry out 100 runs in the scale-free network and the square lattice
to overcome the discretization effect. In the other networks, we carry out 50 runs as in the previous
case.

The final fraction of the GC in different networks is shown in Fig. 8. The scale-free network
enhances the evolution of the GC to a greater extent than the other networks, except at large values
of b. This result and the ordering of the five networks according to the threshold value of b above
which the GC evolves are consistent with those obtained in the case of the population of GCs and
CDs (Sec. 3.1). The threshold value of b in the random graph is greater than the upper limit shown
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in Fig. 8 (i.e., b = 10).
In the case of the cycle, it has been theoretically shown for the original model that the GC survives

the invasion by CC when b/c > f(0.8) = 2.12 (Nowak and Roch, 2007). In Fig. 8, the GC survives
in the cycle when b/c ≥ 3.0, which is of the same order as the theoretically predicted value for the
original model.

3.3 GC versus PO

In this section, we investigate the population composed of GCs and POs. Recall that, even though
PO is cooperative in that it passes on helping behavior to a neighbor, the GC is more cooperative in
comparison because it initiates a chain of helping behavior and PO does not.

The final fractions of the GC obtained from 50 runs in different networks are compared in Fig. 9.
Similar to the results reported in Secs. 3.1 and 3.2, the scale-free network yields the largest fraction
of the GC. The ordering of the five networks according to the threshold value b is also consistent with
those obtained in the population of GCs and CDs (Sec. 3.1) and that of GCs and CCs (Sec. 3.2).

Theoretically, GC survives for the original model in the cycle when b/c > g(p), where g(p) =[
p

(
3 + 3p +

√
1 − p2

)]/ [
(1 + 2p)

(
1 + p −

√
1 − p2

)]
(Nowak and Roch, 2007). In our simulations,

the threshold is estimated to be g(0.8) = 1.54. Figure 9 suggests that the threshold is about 1.5,
which is close to the theoretical value for the original model.

3.4 Populations comprising four strategies

We examine the dynamics of a population in which all four strategies are initially present. Each
player is assumed to adopt either strategy independently with probability 1/4. Similar to the case
of the population of GCs and CCs, most runs end up at unanimity of one strategy in the scale-free
network and the extended cycle. Therefore, we carry out 100 runs for these two networks to enhance
the precision in the computed fraction of different strategies. For the other networks, we carry out 50
runs.

The final fraction of each strategy in the five networks is shown in Fig. 10. In the scale-free
network (Fig. 10A), CD and PO do not survive for any value of b. The fraction of GC increases with
the value of b. In the regular random graph, the GC does not survive, and the network is almost
entirely inhabited by the least cooperative players, i.e., CDs (Fig. 10B). For GC to survive, the value
of b larger than 10, which is the upper limit of b examined in Fig. 10B, is required. In the square
lattice (Fig. 10C), the extended cycle (Fig. 10D), and the cycle (Fig. 10E), GC takes over CD at a
sufficiently large value of b. The lowest to highest threshold value of b above which the GC survives
follows the order of the scale-free network, the cycle, the extended cycle, the square lattice, and the
regular random graph.

The results are robust against various changes of the model, such as the value of 〈k〉 (Figs. 4C and
D), the value of pi (Figs. 5C and D), the value of Nu (Figs. 6C and D), and the update rule (Figs. 7C
and D). The results in this section including the robustness results are consistent with those obtained
for the populations that comprise two strategies (Secs. 3.1, 3.2, and 3.3).
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4 Discussion

We have shown that heterogeneous networks enhance cooperative behavior in a game of upstream
reciprocity. Based on the property of the simple random walk on networks, chains of helping behavior
traverse hub players more often than players having small degrees. Then, hubs tend to gain a larger
payoff. The most cooperative strategy (i.e., GC) is stable once it inhabits hubs, from where it spreads
to the entire network. From a quantitative point of view, the impact of heterogeneous networks on
enhancing altruism can be much more than that of spatial reciprocity in most cases. Our results are
robust against variation in some parameters of the model (〈k〉, pi, and Nu) and variation in update
rules.

The route to altruism in the game of upstream reciprocity proposed in this study is similar to that
in the Prisoner’s Dilemma on heterogeneous networks (Santos and Pacheco, 2005; Duran and Mulet,
2005; Santos et al., 2006; Santos and Pacheco, 2006). In this framework, each player is assumed to
either cooperate with or defect against all neighbors in a round. Once a cooperator occupies a hub and
some surrounding nodes, the hub gains a large payoff and is likely to disseminate its offspring (i.e.,
cooperators) to the neighbors. This event further increases the payoff of the hub, and the cooperation
on the hub is stabilized. In contrast, defection on a hub is not stable because the hub does not gain a
large payoff if the defector hub disseminates its offspring to the neighbors. Cooperators are propagated
from hubs to the entire network. In the game of upstream reciprocity in networks, suppose that a GC
hub disseminates its offspring to the neighbors. This hub will gain a larger payoff in the subsequent
rounds because the neighbors will tend to pass on the chains of helping behavior. Then, the GC hub
will receive helping behavior more often than typical players such that its payoff increases, and the
GC is stabilized on the hub. This positive feedback is weaker in the case of the PO and absent in the
case of the CD and CC.

When player X with a small degree copies the strategy of a successful hub neighbor Y , X may not
gain a large payoff because X is not a hub. In the Prisoner’s Dilemma on networks, many previous
studies assumed that selection is based on the summed payoff; in this, each player sums up the payoff
obtained by playing against all neighbors to determine the payoff per round (Santos and Pacheco,
2005; Duran and Mulet, 2005; Santos et al., 2006; Santos and Pacheco, 2006). However, it may be
advantageous for X not to copy the strategy of Y , because X is not as connected as Y . It may be
more profitable for X to copy the strategy of a neighbor that earns a larger payoff per edge. This
update rule corresponds to the selection based on the average payoff, i.e., the summed payoff divided
by the degree. The average payoff scheme does not enhance cooperation in the Prisoner’s Dilemma
on heterogeneous networks (Santos and Pacheco, 2006; Tomassini et al., 2007). This argument is
also applicable to the game of upstream reciprocity in scale-free networks. The evolution of helping
behavior is likely to be hampered if the selection is based on average payoff. This is a major limitation
of the present study. The update rule that we have adopted, as well as the rule based on additive
payoff used in the Prisoner’s Dilemma, may represent a situation in which players are unaware of the
degree of their neighbors.

In the game of upstream reciprocity, hubs gain relatively large payoffs because a simple random
walker visits hubs relatively often. This is true for an eternally lasting random walk on arbitrary
undirected networks (Noh and Rieger, 2004). However, in our model, the random walk terminates
in finite time. Then, the random walker may visit specific non-hub nodes more frequently than it
visits hubs, as in the case of the random walk in networks with an absorbing boundary (Noh and

9



Rieger, 2004; Newman, 2005). For heterogeneous networks in which populations are not well mixed,
perhaps with degree correlation between adjacent nodes or global structure of networks, our results
may be modified. The GC may spread from specific non-hub players. In directed networks, the
frequency of visit of the random walker to nodes can also deviate from the predicted value based on
the degree (Donato et al., 2004; Masuda and Ohtsuki, 2009). Roughly speaking, however, the random
walk tends to visit more connected players under all discussed cases. Therefore, we expect that our
results qualitatively hold true for general heterogeneous networks.
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Dufwenberg, M., Gneezy, U., Güth, W., van Damme, E., 2001. Direct vs indirect reciprocity: an
experiment. Homo Oecono. 18, 19–30.

Durán, O., Mulet, R., 2005. Evolutionary prisoner’s dilemma in random graphs. Physica D 208,
257–265.

Ebel, H., Mielsch, L.-I., Bornholdt, S. 2002. Scale-free topology of e-mail networks. Phys. Rev. E, 66,
035103(R).

Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.,
2004. Modeling disease outbreaks in realistic urban social networks. Nature 429, 180–184.

Greiner, B., Levati, M.V., 2005. Indirect reciprocity in cyclical networks—An experimental study. J.
Econ. Psychol. 26, 711–731.

Kossinets, G., Watts, D.J., 2006. Empirical analysis of an evolving social network. Science 311, 88–90.

Leimar, O., Hammerstein, P., 2001. Evolution of cooperation through indirect reciprocity. Proc. R.
Soc. London B 268, 745–753.

10



Lusseau, D., Newman, M.E.J., 2004. Identity of the role that animals play in their social networks.
Proc. R. Soc. London B (Suppl.) 271, S477–S481.

Masuda, N., Ohtsuki, H., 2009. Evolutionary dynamics and fixation probabilities in directed networks.
New J. Phys. 11, 033012.

Milinski, M., Semmann, D., Krambeck, H.-J., 2002. Reputation helps solve ‘the tragedy of the
commons’. Nature 415, 424–426.

Newman, M.E.J., Forrest, S., Balthrop, J., 2002. Email networks and the spread of computer viruses.
Phys. Rev. E 66, 035101(R).

Newman, M.E.J., 2003. The structure and function of complex networks. SIAM Rev. 45, 167–256.

Newman, M.E.J., 2005. A measure of betweenness centrality based on random walks. Soc. Netw. 27,
39–54.

Noh, J.D., Rieger, H., 2004. Random walks on complex networks. Phys. Rev. Lett. 92, 118701.

Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial chaos. Nature 359, 826–829.

Nowak, M.A., Sigmund, K., 1998a. Evolution of indirect reciprocity by image scoring. Nature 393,
573–577.

Nowak, M.A., Sigmund, K., 1998b. The dynamics of indirect reciprocity. J. Theor. Biol. 194, 561–574.

Nowak, M.A., Sigmund, K., 2005. Evolution of indirect reciprocity. Nature 437, 1291–1298.

Nowak, M.A., Roch, S., 2007. Upstream reciprocity and the evolution of gratitude. Proc. R. Soc. B
19, 605–609.

Ohtsuki, H., Iwasa, Y., 2004. How should we define goodness?—Reputation dynamics in indirect
reciprocity. J. Theor. Biol. 231, 107–120.

Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M. A. 2006. A simple rule for the evolution of
cooperation on graphs and social networks. Nature, 441, 502–505.

Ohtsuki, H., Iwasa, Y., 2006. The leading eight: social norms that can maintain cooperation by
indirect reciprocity. J. Theor. Biol. 239, 435–444.
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Figure 1: Architecture of networks. (A) Scale-free network, (B) regular random graph, (C) square
lattice, (D) extended cycle, and (E) cycle.
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Figure 2: Payoff per round for each strategy as a function of degree at (A) t = 0, (B) t = 200, (C)
t = 800, and (D) t = 2400. (E) Time course of mean degree for GC and CD. (F) Time course of
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Figure 3: Final fractions of GC in various networks when players initially adopt either GC or CD. We
set 〈k〉 = 8, pi = 0.8, and Nu = 200.
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Figure 4: Results for different values of 〈k〉. (A, B) Final fractions of GC in various networks when
players initially adopt either GC or CD. We set (A) 〈k〉 = 6 and (B) 〈k〉 = 14. (C, D) Final fractions
of four strategies when players initially adopt either GC, CD, CC, or PO in the scale-free network.
We set (C) 〈k〉 = 6 and (D) 〈k〉 = 14.
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of four strategies when players initially adopt either GC, CD, CC, or PO in the scale-free network.
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Figure 7: Results for different update rules. (A, B) Final fractions of GC in various networks when
players initially adopt either GC or CD. We use (A) imitation update rule and (B) Fermi update rule.
(C, D) Final fractions of four strategies when players initially adopt either GC, CD, CC, or PO in the
scale-free network. We use (C) imitation update rule and (D) Fermi update rule.
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Figure 8: Final fractions of GC in various networks when players initially adopt either GC or CC.
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Figure 9: Final fractions of GC in various networks when players initially adopt either GC or PO.
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Figure 10: Final fractions of four strategies when players initially adopt either GC, CD, CC, or PO
in (A) scale-free network, (B) regular random graph, (C) square lattice, (D) extended cycle, and (E)
cycle. We set 〈k〉 = 8, pi = 0.8, and Nu = 200.
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