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ON INTERSECTION LATTICES OF HYPERPLANE
ARRANGEMENTS GENERATED BY GENERIC POINTS

HIROSHI KOIZUMI, YASUHIDE NUMATA, AND AKIMICHI TAKEMURA

ABSTRACT. We consider hyperplane arrangements generated by generic points
and study their intersection lattices. These arrangements are known to be
equivalent to discriminantal arrangements. We show a fundamental structure
of the intersection lattices by decomposing the poset ideals as direct products
of smaller lattices corresponding to smaller dimensions. Based on this decom-
position we compute the Mobius functions of the lattices and the characteristic
polynomials of the arrangements up to dimension six.

1. INTRODUCTION

Consider a set of n (> d) generic points P = { p1,...,p, } in a d-dimensional
vector space V. = K¢ over a field K of characteristic zero. For X C P let Hx
denote the affine hull of X. Let

A={Hx | X CP#X=d)}

be the set of all hyperplanes defined by Hx for some X C P, #X = d. Here we
assume that points py, ..., p, are generic in the sense of Athanasiadis [1999]. Then
combinatorial properties of the arrangement A does not depend on the points. Since
in this paper we are interested only in the combinatorial properties of A, we denote
the arrangement by A,, 4. We decompose the poset ideals of the intersection lattice
of A, 4 into direct products of smaller lattices corresponding to smaller dimensions.
Based on this decomposition we give an explicit description of the Mdbius functions
and the characteristic polynomials of the intersection lattices for d < 6 and for all
n>d.

By Theorem 2.2 of Falk [1994], A,, 4 is equivalent to the discriminantal arrange-
ment B(n,n —d — 1) of Manin and Schechtman [1989]. Relevant facts on the dis-
criminantal arrangement are given in Section 5.6 of Orlik and Terao [1992], Bayer
and Brandt [1997] and Athanasiadis [1999]. We prefer to work with A, 4 because
we utilize the recursive structure of A,, 4 with respect to d.

The organization of this paper is the following. In Section 2 we set up our
definition and notation. In particular following Athanasiadis [1999] we interpret
the intersection lattice of our arrangement in set theoretical terminology. We also
give illustrations for d < 3. In Section 3, we show the fundamental structure of
the intersection lattice of A, 4, which is the main result of this paper. Based on
the main result, in Section 4 we compute the Mobius function of the intersection
lattice, the number of elements of a particular type of the intersection lattice, and
the characteristic polynomials of the arrangements up to d = 6 and for all n > d.
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2. DEFINITION AND NOTATION

We denote the intersection lattice of A, 4 by
L(An,d) :{HlﬂmHk | Hl,...,Hk EAn7d},

where the sets are ordered by reverse inclusion. Contrary to the usual convention,
here we consider that 0 = (N, ,x_, Hx belongs to L(A; q), so that L(A,q) is
not only a poset but also a lattice (cf. Proposition 2.3 of Stanley [2007]). In usual
convention, this corresponds to the coning cA, 4 of A, 4, except that we do not
add a coordinate hyperplane. The reason for this unconventional definition is that
0 € L(A,,q4) plays an essential role for recursive description of L(A,, q).

We now follow Athanasiadis [1999] to give an interpretation of L(A,, q) in set
theoretical terminology.

Definition 2.1. For a finite set X, we define
codimg(X) =d+1— #X.
For distinct finite sets T, ..., T}, we define
pa({T1,...,T; }) = codimg T} + - - - 4+ codimgy T},
Dy({T1,..., T }) = codimg(Th N---NT}) — pa({ T1,...,T1 }).
We also define pq(0) = pa({ }) = 0.
Remark 2.2. By definition, it follows that
(1) Da{Th,.... ) =—-(1-D)d+ V) +#T1 +- -+ #T) —#(T1 N---NT).
In particular for 17 # Ty,
(2) Da({Th, 12 }) = #(Th UT) — (d+1).
Remark 2.3. For Y C X, codimy_xy (X \'Y) = codimgy(X). This implies the
following fact. Let U C Ty N ---NT;. Then
pa-xv({T\U,...., TI\U}) = pa({ T3, ..., Ti }),
Dy_pv({TW\U,..., T1\U}) =Dy({ T1,...,T1 }).
Definition 2.4. For d > 0 and n > d, we define L(n,d) to be the set of T' C
o{Ln} gatisfying the following two conditions:

1) Dg(T") > 0 for all ' C T with #T" > 1.
2) 0<#T; <dforall T; € T.

Moreover we define the partial ordering < on L(n, d) by

T) < pa(T’ d
VT; € T, 3T} € T' such that T} C T;.
Let P = { p1,...,pn } be a collection of generic points in V' in the sense of Section

1. For X C {1,...,n}, 0 <#X <d, define Hx to be the affine hull H,, |;ex}-
Since n > d, there exists a subset X’ C {1,...,n} such that X’ N X = @ and
#(XUX')=d+ 1. Hence

Hx = H{pil,...,pil }
= [ Hipiexox nipm € L(Ana).
keX!

This mapping induces a map from L(n,d) to L(A, q), or equivalently, T € L(n,d)
corresponds to H(T) = (g, cp Hr, € L(A;4). By this correspondence, L(n,d) is
isomorphic to L(A,, q) as lattices (Athanasiadis [1999], Falk [1994]).
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Remark 2.5. L(n,d) is a graded poset with the rank function pg. @ = { } is the
minimum element of L(n,d) with pg(0) =0 and {0} (0 C {1,...,n}) is the max-
imum element of L(n,d) with pg({0}) = d + 1. In the one-to-one correspondence
between L(n,d) and L(A,4), H0) =V = K¥and H({0}) = 0 (C K%). In the
case d = 0, the condition 2) in Definition 2.4 implies #7T; = 0 for T; € T' € L(n,0).
Hence L(n,0) is the poset of two elements

L(n,0) = {0,{0}}

independent of n.

Let d be a nonnegative integer. We call a weakly-decreasing sequence § =
(01,92, ...) of nonnegative integers such that >, 0; = d a partition of d. We write
0 F d to say that § is a partition of d. We also regard a partition as a multiset
of positive integers. For example, {3} ={(3),(2,1),(1,1,1) }, and {0 F 0} is
the set consisting of the unique partition of zero, which is denoted by (0).

Definition 2.6. Let T'={T1,...,T; } € L(n,d). Without loss of generality assume
#T1 < --- < #T;. We call

Ya(T') = (codimy(T1), . . ., codimy(T})) F pa(T)
the type of T.
Ezample 2.7. For any d, v4(0) = (0) and v({0}) = (d+ 1).
Definition 2.8. For T' € L(n,d), we define Z,, 4(T') to be the poset ideal generated
by T, ie., I, 4(T)={S€L(nd) | S<T}.

Finally we define the Mdbius function py, g of the poset L(n,d), which will be
studied in Section 4. Define pi,, ¢ by

pna(T,T) =1, > pna(T,8) =0, T<T.
5: T<S<T
We write pn q(T) = pin,a(0,T). The characteristic polynomial x, 4(t) of the poset
L(n,d) (cf. Section 3.10 of Stanley [1997]) is defined by
(4) Xd) = Y pna(T)EPD),
TeL(n,d)

Note that the usual characteristic polynomial x (A, 4,t) of the non-central ar-
rangement A, 4 is given as

Wit = Y (e = Xedl) Zna(0)
TeL(n,d), T#{0} t

Conversely from x (A, 4, t) we can evaluate i, ({0 }) = —x(An,a, 1) since x;, a(1) =
0. Equivalently

() pn.a({0}) = — > pin,a(T).-

TeL(n,d), T#{0}

2.1. Illustration of the posets up to dimension three. We illustrate the above
definitions with d = 0,...,3. For d = 0 we already saw L(n,0) = {0,{0}}. In
particular u, o({0}) = —1.

Let d = 1. In L(n,1), in addition to the minimum ) and the maximum {0 },
there are n rank one elements { {¢} }, i =1,...,n, with g, 1 ({ {¢} }) = —1. Hence
X(Ap1,t) =t —n. The value p, 1({0}) =n — 1 is relevant for d > 1.

The case d = 2 is already discussed in Section 7 of Manin and Schechtman
[1989] and Section 5.6 of Orlik and Terao [1992]. However we present it here from
our viewpoint. As shown in Figure 1, each line (rank one element) is labeled
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FIGURE 1. Arrangement for dimension two

by a pair of points, such as T' = {{4,5} }, which is a line connecting points p;
and p;. There are two types of points (rank two elements). The first type is an
element of type (2) F 2. Each element {{i}} of type (2) F 2 corresponds to
an original point in P. The second type is an element of type (1,1) - 2. Each
element T = {{4,5},{k,l}} of type (1,1) corresponds the intersection of two
lines, depicted by a white circle in Figure 1. The Mobius function is evaluated as

pnp({{i}}) =n—2and pno({{i,j} {k1}}) =1

Remark 2.9. In this paper we are assuming that n > d so that A, 4 is a non-
central arrangement. We usually think of n as “sufficiently large” compared to d.
Relevant quantities are polynomials in n and these polynomials are determined by
sufficiently large n. However our polynomials hold for all n > d with appropriate
qualifications. For example, the second type {{i,j},{k,l}} of L(n,2) exists if
and only if n > 4. Aslong as n >4, pn2({{%,7},{k,1}}) = 1. In general, when
we write T € L(n,d), this T has to exist in L(n,d). Actually we are interested
in the existence of some T’ with the same type as T, i.e. v4(T") = v4(T). The
existence implies that n has to be larger than or equal to some specific value, say
N, (1), depending on the type of T'. As shown in Section 4.2, n,, () is the minimum
n such that the number of elements of L(n,d) of the type vq4(T") is positive.

We now count the number of elements of L(n,2). This is also needed to evaluate
fn2({0}). There are (g) lines. There are n points of the first type and

() (57 =) n

points of the second type. As discussed in Remark 2.9, this 3( 4) is positive if and
only if n > 4.
Therefore for n > 3
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FIGURE 2. Rank two elements for dimension three

A11,23,{34,51}

{H{1.2}}

FIGURE 3. Rank three element for dimension three of type (2,1) F 3

These quantities are polynomials in n and we prefer to write these polynomials as
integer combinations of binomial coefficients (}). Note that, in view of Remark 2.9,
(}) = 0 for integer k > n.

We now discuss the case of d = 3.

We first look at rank two elements (lines) of A, 3. There are two types of
elements. The first type is an element of type (2) F 2. Each element of type (2), such
as T = {{1,2}}, corresponds to the line connecting two points as in the leftmost
picture of Figure 2. {{1,2}} is understood as the intersection of all hyperplanes
{{1,2,i}}, i =3,...,n. The second type is an element of type (1,1) - 2. Each
elements of type (1,1) corresponds to an intersection of two hyperplanes, such as
H({{1,2,3}})nH({{4,5,6}}). As shown in the rightmost picture in Figure 2,
two points (ps and p4 in the picture) may overlap in this case without violating 1)
of Definition 2.4. This type of element exists for n > 5 (cf. Remark 2.9).

Finally we look at rank three elements (points) of A, 3. We will not repeat
remarks on existence of these elements of L(n,3). There are three types of rank
three elements, corresponding to three partitions of 3. Each element {{i}} of
the first type (3) F 3, corresponds to an original point in P. Each element the
second type (2,1) F 3 corresponds to an intersection of a line of type (2) F 2 and
a hyperplane, e.g. H{{1,2}}) n H({{3,4,5}}) as shown in Figure 3.  The
third type is (1,1,1) 3, corresponding to an intersection of three hyperplanes as
depicted by a white circle in Figure 4. Without violating 1) of Definition 2.4, there
are four patterns of overlaps of points.

As will be proved in Section 4, the Mobius function depends only on the above
types (i.e. the overlaps of points do not affect the Mobius function) and it is given
as follows.

(7) ,Lang({ { 1,2 } }) = 7Nn,3({ { 1,2 } ) { 3,4,5 } }) = ,un—2,1({ 0 })

=n-3,

pns({{1}}) = pn12({01)
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5
4 O=1{{1,2.3},{2,5,6}.{7.8,9}}
O ={{1,2.3},{2,5.6},13.8.9}}
6 2 O ={{1.2.3},{2,5,6}.13,6,9}}
T1.2.315{4,5,6},{7.8,9}} \ ; ; /
o

ooy

FIGURE 4. Rank three elements for dimension three of type
(1,1,1) -3

TABLE 1. Number of elements for d = 3

(1) | (2) (L1) 3) | 1) (LL1)
(2) [10() +15(;) [ » [ 10(5) [ 280(5) +840(5) + 630(7) + 120(g)

n—1 n—1
=-3 — -2
()2
and i, 3(T) = (=1)?3(T) for all other T, T # {0 }.
We need the numbers of elements of L(n,3) to evaluate p, 3({0}). These are
tabulated in Table 1. An element of a particular type exists if and only if the
number of elements is positive in Table 1. For example, T of type (1,1) | 2 exists

if and only if 10(}) + 15(%) > 0, i.e. n > 5. From Table 1 and (7) we obtain (for
n >4)

(e 50 () ()

~[n- () <§)+35<>+180<6>+630<:>
coft) )

pns({0}) = —1+n—<) ()+20< +170<g>+630<’;>
Cwfl el

3. MAIN RESULT

o 3

In this section we show the following main theorem.

Theorem 3.1. Let T € L(n,d), T # 0. Then the ideal I,, 4(T') is isomorphic to the
direct product [ [ 1, - Zn,a({Ti}) as posets. They are also isomorphic to [ [, cp L(n—
#Ti,d — #15).

The second part of this theorem is a consequence of the following lemma.

Lemma 3.2. For {1\ } € L(n,d), I, 4({T1}) is isomorphic to L(n—#T1,d—#T1)
as posets.

Proof. Suppose that S = {S1,...,5} € Z,4({T1 }). Then {S1,...,S} <{T1},
so S; D Ty, Vi, by (3). Hence {S1\T1,...,Si\T1} € L(n — #T1,d — #T1) by
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Remark 2.3. Therefore we have a map
In,d({Tl }) > {517...,Sl}|—> {Sl\Tl,...,Sl\Tl}EL(TL—#Thd—#Tl),

which is seen to be one-to-one and onto, and preserves the partial order. O

To prove the first part of Theorem 3.1, we show one proposition and three
lemmas.

Proposition 3.3. Let T < T' € L(n,d). For each T; € T, there uniquely exists
TJf € T’ such that Tj( cT;.

Proof. Tt suffices to show the uniqueness. Let T; € T and T},7;, € T", j # k,
satisfy 77,7, C T;. This means T; U T}, C T;. Since Dq({ T},T}, }) > 0, by (2),
#T; > #(T7 U TY) > d+ 1. This conflicts with #7; < d. O

Lemma 3.4. Let T = {Ty,...,T;} and S = {S1,..., S }. If T; C S; for all i,
then Dd(S) 2 Dd(T)

Proof. Let S, = S; \ T;. Then by (1)

l

Da(S) = Da(T) = _(#S: — #T) +#ﬂT #ﬂs

i=1 i=1 i=1
l l l
=D #S +H# (T —#() S
i=1 i=1 i=1
Since ﬂz Si = ﬂl(sz/UTz) = (ﬂiTi)U(Siﬂﬂj Sj)U(Séﬂﬂj Sj)U' ’ 'U(Sl/mﬂj Sj)’

l l l l
#()Si<# T+ #6510 [ S) +- +#(S(N [ 5)):
=1

i=1 i=1 j=1

This implies

l l l l l
Da(S) = Da(T) > S #Si+# (T —# [ Ti = D_#(Sin () S))
i=1 i=1 i=1 i=1 j=1
l l l
=D #Si=Y #(Sin[]5)
i=1 i=1 j=1
l !
=Y #SIN(5)).
i=1 j=1

Hence Dg(S) — Dg(T) > 0. O

Lemma3.5. LetT = {Th,....T; }, SO = { SW st } 5@ — { SP s }
, S0 = {S%”,...,S%)l }, and S = SDU...uUSV. Assume T; C Sj(i) for all

i,7. If Dg(T) > 0 and Dg(S®) > 0 for all i, then Dg(S) > 0.

Proof. Let m = 22:1 m;. Then

l
—(m—-1)(d+1)==(1-1)(d+1)=> (m;—1)(d+1).
i=1
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Hence
Dy(S)
I my I my
=—m-Dd+1)+> 3 #S —# (S,
=1 j=1 1=17=1
l I m; I m;
—0=D@+ 1) =Y m =@+ )+ 303 #Y - # () 8)”
i=1 i=1 j=1 i=1j=1
l
Z = 1)(d+1) +Z#s” —(l=1)(d+1)— #ﬂﬂs
=1 Jj=1 i=1j=1

Since Da(S®) + # My S5 = = (m; = 1)(d+1) + S, #817,

Zpd (1—1)(d+1) +Z#ﬂs‘“ #ﬂﬂsm

1=17=1

! mi my
— ZDd(S(i)) +Dd( m SJ(;)’“.’ ﬂ SJ(_;) )
Jj=1 j=1

i=1

Since T; ()}, S1"), it follows from Lemma 3.4 that

l
Da(S) 2> Da(SY) + Da(T) > 0.
=1
O

Lemma 3.6. Let T € L(n,d), Ty € T and T" = T\{Th }. ThenZ,,({T1}) x
L, a(T") and Z,, q(T) are isomorphic as posets.

Proof. Let T € L(n,d), Ty € T and T" =T\ {T1 }. For (S,5") € Z,4({T1 }) x
Z,a(T"), let us define p(S,5") = SUS’. Then ¢(S,S5") € L(n,d) by Lemma
3.5. By definition ¢(S5,5’) < T. Hence ¢ is a map from Z, 4({ T1 }) X Z,,.a(T")
to Z,, ¢(T). Moreover, if (S,5’) and (S”,S5") satisfy S < §” and §' < §", then
©(S5,5") < (8”,5"). On the other hand, we can define the following map ¢ from
Zna(T) to Lya({Th }) X Zpp a(T"):

PO)={Si | Th C S}, {Si|Th & Si}),

which is the inverse map of ¢. Hence 7, 4({ T1 }) X Z,,.4(T") and Z,, 4(T) are iso-
morphic as posets. U

Applying Lemma 3.6 recursively, we have Theorem 3.1.

4. COMPUTATION OF MOBIUS FUNCTION AND THE CHARACTERISTIC
POLYNOMIAL

In this section we apply Theorem 3.1 to compute the Mobius function and the
characteristic polynomial of the intersection lattice L(n,d) for d < 6. This section
is divided into four subsections.

In Section 4.1 we derive an explicit formula for the value of the Mobius function
of L(n, d) and show that it only depends on the type of T € L(n, d). Next in Section
4.2 we derive a formula for the number of elements of the same type as T' € L(n, d).
Then in Section 4.3 we derive some identities for these numbers, which are useful for
checking the results of computations by computer. Finally in Section 4.4 we present
lists of the numbers of elements and the characteristic polynomials for d < 6.
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4.1. Mobius function of the intersection lattice. We first obtain the value of
Mbobius function of L(n,d).

Proposition 4.1. For T € L(n,d), T # 0,
pna(T) = ] pn—sria-s1.({0}).

T; €T

Note that for T' = () we have p,, 4(0)) = 1. Also, as discussed at the beginning of
Section 2.1, pin—gr, a—pr,({ 0 }) = —1if d = #T;.

Proposition 4.1 is an immediate consequence of Theorem 3.1 and the following
well-known lemma.

Lemma 4.2 (Proposition 3.8.2 of Stanley [1997]). Let P and P’ be posets, and
P x P’ the direct product of posets P and P’'. Then pup(S,T) - up (S, T") =
upxp ((S,9), (T, T") for S,T € P and S',T" € P’, where u denotes the Mobius
function for each poset.

Proposition 4.1 shows that the M&bius function of L(n,d) is completely deter-
mined by the values of p,4k—arx({0}), 0 < k < d. In particular for T # {0 },
n,a(T) is a product of fi4x—a k({0 }) for k smaller than d. As seen in the exam-
ples of Section 2.1, i, @ ({ @ }) is a polynomial in n'. Hence puy, 4(T), T # {0}, can
be immediately obtained from g,/ ¢ ({0 }) for d’ < d. Therefore for the recursion
on d, the essential step is to compute g, q({0}) by (5), which will be discussed in
the next subsection.

As a corollary to Proposition 4.1 we have the following result.

Corollary 4.3. Let T ={Ty,...,T; } € L(n,d) and T' ={T},...,T] } € L(n,d’)

S
satisfy codimy(T;) = codimg (T}) for each i. Define fiy a(T) = pagru,a(T), w > 1.
Then

P, d(T) = fa,ar (T7).

In this sense the value of the Mobius function depends only on the multiset
of codimensions, i.e., the type v4(T) of T. Therefore from now on we denote

pn,d(T) = pin,a(y) if va(T) = 7.

4.2. Number of elements of the intersection lattice. The results of the pre-
vious subsection implies that the terms of the summations in (4) and (5) can be
grouped into different types. Then the question is how to obtain the number of
elements of the same type in L(n,d), denoted by A, 4(7) below. In this subsection
we give an explicit expression for A, 4() in Proposition 4.7.

Let

And(y) = #{T € L(n,d) | 7a(T) = v}
denote the number of T' € L(n, d) of type . Then (4) and (5) are written as follows.

(8) Xn,d() ;“nd {0} +Zz)‘nd Mnd )td+1_ia

=0 ~yk3

(9) Mnd{w} ZZ/\nd ,U'nd )

=0 yki

For stating Proposition 4.7 we need some more definitions. For a partition
v = (Y1,...,7) of a nonnegative integer let

Stabg, (v {O’GS[‘% ’yo(i),’iZI,...,l}
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denote the stabilizer of the symmetric group .S5; fixing «v. Then we have

# Stabg, (v) = [ [ ma ()",
k

where my () denotes the multiplicity #{i|v; =k} of k€ {1,...,d} in 4.
Denote the elements of 2{ 1t} as

ALl =0 {1}, {0 {2, L Yy ={ L, I )

where I1 = (0. Let N(n,d;v), v = (y1,---,7), | > 1, denote the set of maps v from
the power set 2{ 11} to the set N of nonnegative integers satisfying the following:

D) > evd)=d+1—v foralli=1,...,1L
2) Yo pcpv’) <d41=3%, ;v for all I such that #1I > 2.

Ezample 4.4. Tn the case when v = (d 4 1), v is a map from 2{1} =
to N. By the condition 1), ;. ., ¥(I) = v({1}) = 0. Hence, by 3),
N(n,d;(d+ 1)) consists of this v only.

{0.{1}}
v(0) = n.

Remark 4.5. Consider the elements of {1,...,n} as “symbols”. Each T; in T =
{Ty,...,T; } isasubset of { 1,...,n } and therefore contains #7; symbols. Also call
T; a “block”. We can think of T'= {T3,...,T; } as putting symbols 1,...,n in the
blocks T, ...,T;. Some symbol appears in several blocks. For I C {1,...,1}, v(I)
denotes the number of symbols commonly contained in T3, i € I, but not contained
in any other T;, i ¢ I. The condition 3) on v means that n symbols 1,...,n are
classified by the blocks containing them. The condition 1) on v corresponds to
the size of each block #T; = d + 1 — 7;. The condition 2) on v is essential and
corresponds to 1) of Definition 2.4.

Ezample 4.6. First let us consider the case when v = (7). In this case
n

10 An = .

(10) aenn =, 1)

Next let us consider the case when v = (v1,72). Let t;, =d+1—+;,i = 1,2. For
an element T'= { Ty, T } of type v, by (2),

0 < H#(T1NTo) = #T1 + #Tp — #(T1 UTs)
S#T1+#T2—d—2:t1+ﬁ2—d—2=d—’yl—’72.

It also follows by definition that #(T} N T2) < min(ty,t2). Write v = #(T1 N Tz).
If 41 > 72, then (codim(7Ty), codim(7})) # (t1,t2) as ordered pairs. Hence, for the
case y1 > 72,

min(ty,te,d—y1—"72) n n—vuv n—t
11 An Y2)) = )
(11) a((11.72)) ; () (tl _ y> <t2 - >

On the other hand, if 41 = 72, then (codim(7%),codim(T})) = (y1,72) as ordered
pairs for all elements T' = { T1,T» } of type . Since T} # Ty, for the case v; = 7o,

1 min(t1,ta,d—vy1—72) n\ (n—v\[(n—t
12 =3 '
( ) )\n7d((71772)) 2 Z (y) (tl — l/) (tz — 1/)

v=0

Now we present the following proposition.
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Proposition 4.7. For -y # (0), Ay.a(7) is given as follows.

(13)
1 n!
An,d(7) = m VEN%:’(M) v(I)Ww(I)! - v(Iy)!
- (v(Lo) + - + v(Iy))! ( n >
HZ:l mk(/y)' veN(n,d;y) V(IQ)'V(IQZ)' V(IZ) ++V(Igl) ’

Before giving a proof of this proposition, we give some explanation on the range
of summation in (13). We can consider (v(I),...,v(Ix)) as a 2!-dimensional vector
of non-negative integers. The equalities and the inequalities in 1),2),3) for v specify
a polytope. Hence N(n,d;v) can be identified with the set of integer points in a
polytope in R?'. Since the dimension 2! of the vector increases exponentially with
[, the number of terms in (13) increases doubly exponentially in [. In our compu-
tation for d = 6 and v = (1,1,1,1,1,1), #N(n,6;(1,1,1,1,1,1)) = 109719496370.
Computing a sum of this many polynomials is quite heavy.

The equalities and inequalities in 1),2) for v concern only v(I), I # (), and the
bounds for these nonnegative integers are given in terms of v and d only. Therefore
the range for v(I),I # 0, in N(n,d;~) does not depend on n. n only appears
through 3):

v(0) =v(h) =n—(w(l2) + - +v(lx)).
Therefore in the right-hand side of (13) the sum is a finite sum not depending on
n and n only appears in the binomial coefficient (u(12)+~7?+u(12,))'

Now we give a proof of Proposition 4.7.

Proof of Proposition 4.7. Let us consider I-tuples (171, ...,7;) of subsetsof { 1,...,n }.
We define L(n, d;~) to be the set of I-tuples (T1,...,T}) of subsets in {1,...,n}
satisfying the following:

H {Ty,...,T; } € L(n,d).

2) codimy T; = ; for each i.
Let (Ty,...,T;) € L(n,d;~). Then, since {T},...,T; } € L(n,d), by (2), #(T; U
T;) > d for i # j. Since #T; and #1T} are less than or equal to d + 1, we obtain
T; # Tj. Therefore, for (Ty,...,Ti) € L(n,d;v) and o € Stabg, (), we have

(T17 s 71—2) # (T0(1)7 s 7Ta(l)) € .Z/(?’L,d, 7)
if o is not the identity. This implies
(14) #L(n,d; ) = An.a(7) - # Stabs, (7) = An.a(7) - [[me(2)".
k

For T = (Ty,...,T}) € L(n,d;~) and a subset I C {1,...,1}, define 7(T,I) by
T(T,)={t|teTl;, < iel}
= ﬂ T; \ U T;.
i€l igl
Moreover, for v € N(n,d;~) let us define L(n, d;~,v) by
Lin,diy,v) = { T € Lin,din) | VI € {1,...,0} (1) = #7(T, 1) }.
Then, by definition, we have the following decomposition of L(n, d;~):

Lin,div) = [ Lndivw).
vEN (n,d;y)
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Now note that
n!

(Il)'l/(fg)' . 'V(IQZ)!.

#L(n,d;y,v) =
12

Therefore |
- n!
#L(n,d;7) = Y BT T
VN (din) v(I)w(I)! - v(Iy)!
This together with (14) proves the proposition. O

4.3. Identities for the number of elements. We have coded the finite sum
in (13) in a computer program and evaluated A, q(7) up to d = 6. In the next
subsection we present our computational results. However the range of summation
in (13) is somewhat complicated and our code was error-prone. Therefore it is
desirable to have some way of checking our results. Here we present some identities
among A, ¢(y)’s, which can be used for checking purposes.

Again we need some more definitions for stating the identities. Let T; be a
subset of {1,...,n} of size d = #7T;. Then H({T; }) is a hyperplane of A, 4. By
abuse of terminology, we also call {T; } itself a hyperplane. Let {71 },...,{Tm }
be m distinct hyperplanes. Consider the intersection H({T1 }) N ---N H{ T\ })
of corresponding hyperplanes of A, 4, or equivalently the join of these hyperplanes
{T1},....{Tmn} in L(n,d):

{Th}v---v{Ty,} € L(n,d).
It seems hard to explicitly describe Si, ..., Sy such that S = {S1,..., S0} ={T1 }Vv
-V {T, }. However we can count the number of {T1,..., Ty, }, (#T; = d, Vi),
such that {T1 }V---V{T,, } is an element of a particular type of L(n,d). This will
give us the desired identities.

For a particular T' € L(n,d) define

Kn,d(m,T)
_ {Th},...,{Tm } : distinct hyperplanes,
~#{ (B T T={T}v--V{T,) ’
which is the number of ways of choosing m distinct hyperplanes such that their join

is T. By Theorem 3.1, Ky, q(m,T) only depends on the type v4(T") of T'. Hence we
can write

ﬂn,d(maT) = K:n.,d(mvﬁy) if de(T) =7

Note that there are ((1%)) ways to choose m distinct hyperplanes from {1,...,n}.
Therefore we have the following identity:

d
n
(15) (")) = k101 + 35 M) nam. ).

m i=0 ki
If we can compute ky, q(m,y), these identities for various m can be used to check
computations of A, 4(7v). Hence it remains to show how to evaluate x, 4(m,~),
which is again based on recursion on d.

First we consider &, q4(m, ) for some special . Write (1*) = (1,1,...,1). Then
——
h

Kima(m, (1")) = 6,
where 6,,, is Kronecker’s delta. Also note that
Kfn,d(mvT) =0 if Pd(T) > m.

In particular
Kna(m,{0}) =0 for 1<m<d.
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Based on these observations, there are two uses of (15). For m = 1,...,d, we can
use (15) to check Ay q(7y) for v i < d. With m > d, (15) gives the values of
Fonsa(m, {0}).

Now we show how &y, 4(m,~) is evaluated from &, g (m,{0}) with &’ < d. We
list kp,q(m,{0}) for d =0,1,2. For d = 0 we define £, o(m,{0}) =1. For d =1,

since the intersection of more than one point is empty, rn1(m,{0}) = () for

m > 1. For d = 2, the intersection of m > 2 lines is non-empty if and only if they
contain a common point p;. Therefore for m > 2,

Kn2(m, {0}) = (%?) n(”m1>.

Finally as another consequence of the main theorem we have the following propo-
sition. It allows us to evaluate £, q(m, ) recursively from k,, ¢(m,{0}), d’ < d.

Proposition 4.8. For T = {Ty,...,T;} € L(n,d), T # {0}, and a positive

integer m, define

m; > codimgy(T3), Vi.
Mm,T)=1q (my,...,my) € Zl>0 m; = 1 for codimy(T;) = 1.
m=mq+---+my.

Then

1
Kn,a(m,T) = Z H Kn—s1y,d—pr, (Mi, {0 }).

(m1,....m))EM(m,T) =1

Note that in the product a term with d = #7T; does not contribute to the product
since ki 0(m, {0}) = 1. We omit a detailed proof of the proposition.

4.4. Number of elements and the characteristic polynomial up to dimen-
sion six. In this section we present our computational results for 4 < d < 6, since
the cases d < 3 were already discussed in Section 2.1. We just recall

Mmo({@}) =-1, Nn,l({@}) =n-—1,

2 ({0}) = —3(’4‘) - (g) S

From now on, to save space, we use the following abbreviated notation.

()

Then, for example, p, 3({0}) is displayed as
tn3({0}) =—14+n—ng+ns+ 20n5 + 170ne + 630n7 + 840ng + 280ng.

We now present the computational results for d = 4. Because of (10), (11),
(12), we only show A, 4((m1,...,v)) where { > 3. Also, for further notational
simplification, we omit the subscripts and write e.g. A(1, 1) instead of A, 4((1,1)).

A(1,1,1) = 15n6 + 1470n7 + 11340ns + 30240n9 + 37450n10 + 23100n11 + 5775012,
A(2,1,1) = 1260n7 + 10080ns + 23940n9 4+ 21000110 + 5775111,
A(1,1,1,1) = 2100n7 4+ 120855ns 4+ 1640520n9 + 9585450n10 + 29799000711
+ 54365850n12 + 60660600113 4+ 41166125n14 + 15765750115 4 26276251 16.
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X(Ana,t) = gt [ —n3 +4ny + 45ng + 7T0n7 + 35ng] 12
+ [ — N + 3n3 — 6n4 — 180n6 — 199517 — 11620ns — 302401
— 37450m10 — 23100m11 — 5775n12]t

+ [ —n 4+ 2n9 — 3ns + 4ns + 250n¢6 + 89957 + 184835ng + 187362019
49963100110 + 30070425111 + 54435150n12 4+ 60660600713

+ 41166125114 + 15765750115 + 26276257116} .

pna({0}) = —=1+n—n2+n3 —ns — 115ns — 7070n7 — 173250ns — 1843380ny
— 9925650110 — 30047325111 — 54429375112 — 60660600113
— 41166125114 — 15765750n15 — 2627625n16.

The results for d = 5 are as follows.

A(1,1,1) = 105n7 + 9240ng + 102060n9 + 453600n10 + 1089550111 + 1561560712
+ 1336335113 + 630630n14 + 126126115,

A(2,1,1) = 105n7 + 15960ng + 170100n9 + 642600n10 + 1166550111 + 1136520m12
+ 585585n13 + 126126n14,

A(1,1,1,1) = 42000ng + 2796255n9 + 52475850n1¢ + 464829750n11 + 2391764760n12

+ 7945667730n13 + 18019621620n14 + 28608004425n 15
+ 31876244400n16 + 244592998651 17 + 12318095790n 18
+ 3666482820m19 + 488864376n20,

A(3,1,1) = 3360ns + 37800ng + 138600m10 + 219450111 + 15246012 + 36036n13,
A(2,2,1) = 5040ng + 56700ng + 201600119 + 300300111 + 194040112 + 45045113,
A(2,1,1,1) = 47040ng + 3859380ng + 77275800n10 + 682882200111 + 3311930160n12
+ 9818128320m13 + 18834816000m14 + 23991267300m15

+ 20272652400mn16 + 10985154180n17 + 3473510040118 + 488864376119,
A(1,1,1,1,1) = 70560ng + 28259280ng + 1892400300m10 + 4937229990071 1

+ 678800152800n12 + 5726202381900n13 + 32397151296510m14

+ 129991147035750n15 + 383340007050000m16 + 849257881311840n17

+ 1429769976354720n18 + 1833899747359680n19 + 1780941069507600n2¢

+ 1287845979720300n21 + 672060801181770n22 + 239171396233770n23

+ 51946728593760n24 + 5194672859376n25.

X(An s, t) = > —nsth + [— na + 5n5 + 105n7 + 280ns + 315n9 + 126n10]t3
+ [ —n3 + 4ng — 10n5 — 630n7 — 11760ng — 105084ng9 — 454860119
— 1089550111 — 156156012 — 1336335013 — 630630114 — 126126n15]t2
+ [ — i + 3ng — 6n4 + 105 + 154007 + 112371ng + 373917600 + 57660120110

+ 47915560011 + 2413802160n12 + 7965127170113 + 18028954944n14
+ 28609896315n15 + 318762444001 16 + 24459299865n17 + 1231809579018

+ 3666482820119 + 4888643767120]15

+ [ —n+2n2 — 3ns + 4ng — 5ns — 172907 — 444808ng — 51417954ng

— 2407629420n10 — 54882065700n11 — 712167312780n12 — 5852028673491n13
— 32709595374456n14 — 130517797815405m15 — 383948623858800n16
— 849734640219465n17 — 1430012864760480mn18 — 1833972588151704n19
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— 1780950846795120n20 — 1287845979720300n21 — 672060801181770n22
— 239171396233770n23 — 51946728593760n24 — 51946728593767125] .

tn5({0}) = —1+n—n2+ng —ng + ns + 7ldny + 343917ng + 47783547ng
+ 2350424034n10 + 54403999650n11 + 709755072180n12
+ 5844064882656m13 + 32691567050142n14 + 130489188045216n15
+ 383916747614400n1¢6 + 849710180919600m17 + 1430000546664690m.18
+ 1833968921668884n19 + 1780950357930744n20 + 1287845979720300n21
+ 672060801181770n22 4+ 239171396233770n23 + 51946728593760n24
+ 5194672859376n25.

Finally the results for d = 6 are as follows.

A(1,1,1) = 420ng + 40600ng + 620550110 + 4158000111 + 16046800712 + 39399360n13
+ 63588525n14 + 67267200n15 + 44900856116 + 17153136117 + 2858856m18,
A(2,1,1) = 840ng + 105210n9 + 148680010 + 8339100n11 + 25225200112 + 46576530713
+ 54444390n14 + 39414375115 + 16144128n16 + 2858856m17,
A(1,1,1,1) = 105ng + 388080ng + 32389875n1¢ + 847573650111 + 11095663425n12
+ 88232164020m13 + 470574214110n14 + 1778211935500n15 + 4911176169900m16
+ 10078325056800n 17 + 15457185789045n 18 + 17651874149910n19
+ 14793239711250n20 + 8833453364736n21 + 3557221631964 122
+ 865778809896m23 + 96197645544n24,
A(3,1,1) = 210ng + 45360n9 + 642600n10 + 3326400n11 + 8523900112 + 12132120m13
+ 9900891114 + 4414410115 + 840840n 16,
A(2,2,1) = 280ng + 65520n9 + 919800110 + 4596900111 + 11226600112 + 15315300m13
+ 12192180n14 + 5360355115 + 1009008716,
A(2,1,1,1) = 892080n9 + 83349000119 + 2170822500n11 + 26591796000712
+ 189359450280n 13 + 8760557806001 14 + 2806801697700n15
+ 6458643391200n16 + 10866964308200n17 + 134161109082007 15
+ 12029730132420n19 + 7626284265600m2¢ + 3240681948504n21
+ 828136252944n22 + 96197645544n23,
A(1,1,1,1,1) = 1829520n9 + 81701676010 + 72235270800m11 + 2647690791900712
+ 53345363951880n13 + 682682216596380m14 + 6039039035429400m 15
+ 38946366176117400n16 + 189638773413289200n17 + 713826716560797840n 18
+ 2110340393930648880m.19 + 4950304696313776800n2¢
+ 9265441477593100800121 + 13857900072549583050722
+ 16518003442667606880n23 + 15574944975706176060n24
+ 11462658924203487000n 25 + 6442333859931445476n26
+ 2669265333214159680n27 + 7681622490802260007m28
+ 137087416758932640n29 + 11423951396577720n30,
A(4,1,1) = 7560n9 + 113400110 + 589050111 + 1432200n12 + 1747746113
+ 10090087114 + 210210m 15,
A(3,2,1) = 30240ng9 + 453600110 + 2263800111 + 5128200n12 + 5765760113
+ 3111108114 + 630630n15,
A(3,1,1,1) = 181440n9 + 20594700n10 + 585169200n11 + 7466867100n12 + 53238345160n 13
+ 236878922280n14 + 7001002008007 15 + 1424183961200n16
+ 2028644217600n17 + 2026021217220n18 + 1394893019520m19
4 633079366920n209 + 171102531600n21 + 20912531640n22,
A(2,2,2) = 7560ng9 + 113400n1¢ + 554400111 + 1201200112 + 1261260n13
+ 63063014 + 126126115,
A(2,2,1,1) = 430920ng + 48365100119 + 1342768350n11 + 165952710001 12 + 114090786810n13
+ 489169180500m14 + 1396656261000n15 + 2757820665600m 16
+ 3836191659300n17 + 3764834613540n15 + 2561038249770n19
+ 1152905153400n2¢ + 309695582196n21 + 37642556952n22,
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A(2,1,1,1,1) = 2872800n¢ + 1676581200010 + 164904790050m11 + 6298213521600n12

+ 126458717144760n13 + 1557569654921280n14 + 12897279885364875n15
+ 76164200116804800m16 + 333794628241774700n 7
+ 1115520582743887320m1 5 + 2894974312598468100n.1¢
+ 5900420897320950000n2¢ + 9496944246098058750721
+ 12073014477589665600n2 + 12056810514853269165n.23
+ 9346203461860705440n24 + 5507792588210012100n25
+ 2383822869473725680n26 + 714306478210645320n27
+ 132360264456900480n25 + 11423951396577720n29,

A(1,1,1,1,1,1) = 4011840ng + 11413776150n10 + 3444031510920n11 + 341035483477150m 15
+ 16334107213023600n13 + 458689729433265330n14
+ 8450977741650944500m1 5 + 109792467460902806580m.1¢
+ 1056347419381332078000n17 + 7792389750829016643310n 15
+ 45197004798213378970860n10 + 209996223288982641611100m2¢
+ 792475775069757320141600n; + 2453913578583257706865950n52
+ 6280395970196377852122300n23 + 13348940867374682005436000n24
+ 23623379361553534532970000m.25 + 34820458479536167782093750m.2¢
+ 42668658867461724953856000m27 + 43277385167426660997596850m28
+ 36064655494545316433394600n.29 + 24416711436628708549852500m.30
+ 13209334741333731036156120n3; + 5572094138384063443144992n52
+ 1765284170332337557943040n33 + 394963790210911659497760n34
+ 55628702846607275985600n35 + 3708580189773818399040n36.

X(An.,t) = t° — ngt® + [ — ns + 6ng + 210n5 + 840ng + 1575n10 + 1386n11 + 462n12]t4

+ [ — ng4 + 5ns5 — 15ng — 1750ng — 49420n9 — 638190n10 — 4174170111
— 16052344n12 — 39399360113 — 63588525114 — 6726720015 — 44900856116

~ 17153136n.7 — 2858856m15 | ¢*

+ [ —n3 + 4ng — 10n5 + 20ng + 6545ng + 808269ng + 40056051119 + 907650744111
+ 11350086517n12 + 88888289490n13 + 471662471280n14 + 1779383330725n15
+ 4911968241180n16 + 10078630954392n17 + 15457237248453n18
+ 17651874149910n19 + 14793239711250n20 + 8833453364736n21

+ 3557221631964n22 + 865778809896m23 + 9619764554477,24] t?

+ [ — ngo + 3ng — 6ng + 10n5 — 15ng — 12992ng — 6922440ng — 1253314020119

— 85462425510m11 — 2844981329190n12 — 55072066969920n 13

— 692509356770231n14 — 6077776702187190n15 — 39056313885629040716

— 189868515062882656n17 — 714183552466036653n18 — 2110751767192248180n19

— 4950652071117753000n20 — 9265650239791905960n21 — 13857984617732497242n22
— 16518024125161398840n23 — 15574947284449669116n24 — 11462658924203487000n25
— 6442333859931445476n26 — 2669265333214159680n27 — 768162249080226000n28

— 137087416758932640n29 — 11423951396577720n30]t

+ [ —n 4 2ny — 3nz + 4ng — 5ns 4 6ng + 13020ng 4 30306276n9 + 21482580105n1¢

+ 4476460758924n11 + 385724720114965n12 + 17372731634141884n13

+ 473573588684378182n14 + 8594435149519438219n15 + 110777945174652868112n16
+ 1061369389494699244960n17 + 7811915116061435525146n15

+ 45256066666226567391240n19 + 210137040306764298507780n20

+ 792742452459639413305574n21 + 2454315914651904858849294n22

+ 6280878741810399702094119n23 + 13349398508879560267264124n24

+ 23623717675088602759587900n25 + 34820649359673839255319726m26

+ 42668738231115243168001080n27 + 43277408079933868947476370n 25

+ 36064659595743867804796080mn29 + 24416711779347250447184100mn30

+ 13209334741333731036156120m31 + 5572094138384063443144992n32
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+ 1765284170332337557943040n33 + 394963790210911659497760n34

+ 55628702846607275985600n35 + 37085801897738183990407135] .

pne({0}) =—14+mn—nz2+mn3g —ng+ns —ng — 5033ng — 24143525n9 — 20268685521n19
— 4391901811374n11 — 382891072820410mn12 — 17317748416062094n 13
— 472881550926490706mn14 — 8588359152133314554n 15
— 110738893772690579396n16 — 1061179531058250163560m 17
— 7811200947966203878090n18 — 45253955932111249292970n19
— 210132089669486420466030mn20 — 792733186818233074764350m21
— 2454302056670844347984016n22 — 6280862223787140319505175n23
— 13349382933932372015240552n24 — 23623706212429678556100900m25
— 34820642917339979323874250n26 — 42668735561849909953841400n27
— 43277407311771619867250370n28 — 36064659458656451045863440n29
— 24416711767923299050606380n30 — 13209334741333731036156120n3,
— 5572094138384063443144992n32 — 1765284170332337557943040n33
— 394963790210911659497760n34 — 55628702846607275985600n 35
— 3708580189773818399040n36 .
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