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Efron’s curvature of the structural gradient model

Tomonari SEI∗

Abstract

The structural gradient model is a multivariate statistical model in order
to extract various interactions of given data set. In this note, we show that
Efron’s statistical curvature of the structural gradient model is less than that
of a competitive mixture model under a null hypothesis.
Keywords: Efron’s curvature, Exponential family, Information geometry, Mul-
tivariate model, Structural gradient model.

1 Introduction

Exponential families are important in statistical modeling. For example, the Gaus-

sian family and its subfamilies are often used in multivariate analysis, time-series

analysis, geostatistics and any other areas that deal with quantitative data. Using

the exponential family is reasonable because it is derived from the maximum entropy

criterion (see e.g. Cover and Thomas (2006)). It is also compatible with regression

problem, that is, the generalized linear models (McCullagh and Nelder (1989)). A

comprehensive book on exponential families is Barndorff-Nielsen (1978).

A drawback of exponential families is that the probability density function is

sometimes not explicitly expressed due to the normalizing constant. For example, if

one would try to find three-dimensional interaction of given data, a corresponding

exponential family is not available in explicit form. Although the Markov Chain

Monte Carlo procedure is available, it requires some adjustment for convergence.

As an attempt to overcome the difficulty, Sei (2010) suggested a new parametric

family called a structural gradient model (SGM) for multivariate quantitative data.

SGM is numerically shown to have a desirable performance for such a purpose.

However, it is not known whether SGM is close to an exponential family or not. In

this paper, we give a partial answer to this problem.

A measure of closeness to an exponential family is Efron’s statistical curvature

γ2, refered to the Efron curvature below. It is defined in terms of the second-order

∗School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-
Ku, Tokyo, 113-8656, Japan.
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derivative of the log-likelihood function. See Section 2 for the precise definition.

Efron (1975) showed that information loss of the maximum likelihood estimator is

asymptotically expanded as γ2 + o(1) if the sample size N goes to infinity. It is

known that γ2 vanishes if the model is an exponential family. Furthermore, γ2 is an

intrinsic quantity, that is, independent of the parameterization of the model.

Consider two statistical modelsM1 andM2, and assume that they have a common

density p0 and a common score vector at p0. The Fisher information matrix at p0 is

common in both models. Then we can say that, without subjectivity, the model M1

is closer to exponential family at p0 than M2 if the Efron curvature of M1 is smaller

than M2.

We compare the Efron curvature of SGM and MixM, which is a competitive model

with SGM. MixM is an abbreviation of the structural mixture model. Here we briefly

describe SGM and MixM. For details, refer to Section 3 and Sei (2010). SGM is a

statistical model on hypercube represented by Fourier-expanded optimal transport

between the target density and the uniform density. Here the Fourier coefficients

are the unknown parameter. The model is related to the optimal transport theory.

See Villani (2003) and Villani (2009) for the optimal transport theory. MixM is

represented by Fourier expansion of the probability density function itself. Both

SGM and MixM do not need computation of normalizing constants, in contrast to

the exponential family. We show that the curvature of SGM is less than MixM

under the common null hypothesis. In other words, SGM is closer to exponential

family than MixM. This motivates to use SGM rather than MixM for analyzing

complicated dependency of given data.

The paper is organized as follows. We recall the definition of the Efron curvature

in Section 2 and define SGM and MixM in Section 3. Then we state the main result

of this paper in Section 4. We give some discussion in Section 5. Proofs are given

in Section 6.

2 Efron’s statistical curvature

We recall the Efron curvature of a general statistical model according to Efron

(1975), Reeds (1975) and Amari (1985). Intuitively, the Efron curvature is the

residual when the second derivative of the log-likelihood is projected onto the linear

space spanned by the score functions and the constant function.

Consider a parametric family of density functions p(x|θ) with respect to a base

measure dx indexed by a parameter vector θ = (θu)u∈U , where U is a finite set.

Typically U = {1, . . . , d} with some d ≥ 1, but we will consider other case in the
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next section. The parameter space Θ of θ is an open subset of RU , where RU denotes

the set of all real vectors (θu)u∈U indexed by U . Without loss of generality, we assume

0 ∈ Θ and define the curvature at θ = 0.

Denote the first and second derivative of the log-likelihood function by

Lu = Lu(x) =
∂

∂θu
log p(x|θ)

∣∣∣∣
θ=0

,

Luv = Luv(x) =
∂2

∂θu∂θv
log p(x|θ)

∣∣∣∣
θ=0

for u, v ∈ U . Define the Fisher information (Juv)u,v∈U and the e-connection coeffi-

cients (Γuv,w)u,v,w∈U and (Γw
uv)u,v,w∈U by

Juv =

∫
p(x|0)LuLvdx, Γuv,w =

∫
p(x|0)LuvLwdx, Γw

uv =
∑
s∈U

Γuv,sJ
sw,

where (Jsw) is the inverse matrix of (Jsw). We define a fourth-order tensor by

Quv,wz =

∫
p(x|0)

(
Luv + Juv −

∑
s∈U

Γs
uvLs

)(
Lwz + Jwz −

∑
t∈U

Γt
wzLt

)
dx.

Finally, we define the Efron curvature by

γ2 =
∑

u,v,w,z∈U

Quv,wzJ
uwJvz. (1)

The Efron curvature is a non-negative scalar quantity independent of parameteriza-

tion of p(x|θ).
The Efron curvature is related to the exponential family and information loss

as stated in Section 1. Precise statements are as follows. Recall that a statistical

model p(x|θ) is called an exponential family (in canonical form) if it is written

as p(x|θ) = exp(
∑

u∈U θutu(x) − ψ(θ)) with the sufficient statistics tu(x) and the

normalizing function ψ(θ).

Lemma 1. Let Θ be an open subset of RU . Then the Efron curvature vanishes over

Θ if and only if p(x|θ) is an exponential family.

Lemma 2. Let (x1, . . . , xN) be an i.i.d. sample from a density p(x|θ). Then, under
some regularity conditions, the information loss of the maximum likelihood estimator

θ̂N is asymptotically

J (x1,...,xN )
uv − J θ̂N

uv =
∑
w,z

Quw,vzJ
wz + o(1)
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as N → ∞, where JT
uv denotes the Fisher information matrix of a statistic T . Note

that J
(x1,...,xN )
uv = NJuv. In particular, averaged information loss is given by∑

u,v∈U

Juv
(
J (x1,...,xN )
uv − J θ̂N

uv

)
= γ2 + o(1).

For the proof, refer to Efron (1975), Reeds (1975) and Amari (1985).

3 SGM and MixM

We prepare some notations to define SGM and MixM. Let m be a positive integer.

Denote the gradient operator and Hessian operator on Rm by D = (∂/∂xi)
m
i=1 and

D2 = (∂2/∂xi∂xj)
m
i,j=1, respectively. The determinant and trace of a square matrix

A are denoted by detA and trA, respectively. For square matrices A and B, if

A − B is non-negative definite, we write A ≽ B. Let Z and Z≥0 be the set of all

integers and all non-negative integers, respectively. Let (Zm
≥0)

+ = Zm
≥0 \ {0} be the

set of all m-dimensional non-negative integer vectors except for zero vector. Define

∥u∥ = (
∑m

j=1 u
2
j)

1/2 for u ∈ Zm. The vectors are considered as column vectors unless

otherwise stated.

We give the definition of SGM and MixM. Examples are given later.

Definition 1 (SGM). Let U be a finite subset of (Zm
≥0)

+. The structural gradient

model (SGM) is a set of probability densities on the hypercube [0, 1]m with parameter

vector θ = (θu) ∈ RU defined by

p(sgm)(x|θ) = det(D2ψ(x|θ)), ψ(x|θ) =
1

2
x⊤x−

∑
u∈U

θu
π2

m∏
j=1

cos(πujxj). (2)

The parameter vector θ is said to be feasible if D2ψ(x|θ) ≽ 0 for every x ∈ [0, 1]m.

Definition 2 (MixM). Under the same notation as SGM, define

p(mix)(x|θ) = 1 +
∑
u∈U

θu∥u∥2
m∏
j=1

cos(πujxj). (3)

The set of p(mix)(x|θ) is called MixM in this paper. The parameter vector θ is feasible

if p(mix)(x|θ) ≥ 0 for all x ∈ [0, 1]m.

Remark that both p(sgm)(x|θ = 0) and p(mix)(x|θ = 0) are the uniform density.

Define a matrix Hu(x) by

Hu(x) := D2

(
−π−2

m∏
j=1

cos(πujxj)

)
. (4)
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In particular,

trHu(x) = ∥u∥2
m∏
j=1

cos(πujxj).

Then we can rewrite (2) and (3) as

p(sgm)(x|θ) = det

(
I +

∑
u∈U

θuHu(x)

)
, p(mix)(x|θ) = 1 +

∑
u∈U

θutrHu(x). (5)

We state a fundamental lemma. For completeness, we prove it in Section 6. We

denote the indicator function of a set A by 1A.

Lemma 3 (Sei (2010) Lemma 3). The score vector at θ = 0 of both SGM and

MixM is (trHu(x))u∈U . The common Fisher information matrix J = (Juv)u,v∈U at

θ = 0 is Juv = ∥u∥42−|σ(u)|1{u=v}, where σ(u) = {j ∈ {1, . . . ,m} | uj > 0} and |σ(u)|
denotes the cardinality of σ(u). In particular, Juv is diagonal.

We give a few examples, where we write (u1, . . . , um) instead of (u1, . . . , um)
⊤ for

simplicity.

Example 1. Let m = 2 and U = {(1, 1)}. We abbreviate θ(1,1) as θ for simplicity.

Then we have

p(sgm)(x|θ) = det

(
1 + θ cos(πx1) cos(πx2) −θ sin(πx1) sin(πx2)
−θ sin(πx1) sin(πx2) 1 + θ cos(πx1) cos(πx2)

)
= 1 + 2θ cos(πx1) cos(πx2) + θ2{cos2(πx1) + cos2(πx2)− 1}

and p(mix)(x|θ) = 1 + 2θ cos(πx1) cos(πx2). SGM is feasible if and only if |θ| ≤ 1.

MixM is feasible if and only if |θ| ≤ 1/2.

Example 2. Let m = 3 and U = {(1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (1, 1, 1)}. Then
the diagonal part Ju := Juu of the Fisher information matrix is

J(1,0,0) =
1

2
, J(2,0,0) = 8, J(1,1,0) = 1, J(2,1,0) =

25

4
, J(1,1,1) =

9

8
.

4 Main result

Consider a finite subset U of (Zm
≥0)

+. Let (γ2U)
(sgm) and (γ2U)

(mix) be the Efron

curvature (1) of SGM and MixM at θ = 0, respectively. For each i ∈ {1, . . . ,m}, we
set Zi = {u ∈ (Zm

≥0)
+ | uj = 0 if j ̸= i}.

Our main result is the following theorem.
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Theorem 4. For any finite U ⊂ (Zm
≥0)

+, the following inequality holds:

0 < (γ2U)
(sgm) ≤ (γ2U)

(mix). (6)

Equality holds if and only if there is some i ∈ {1, . . . ,m} such that U ⊂ Zi. If the

equality holds, then the two models coincide.

We give more explicit expression of the two quantities. We prepare some addi-

tional notations. For a vector U = (Ui) ∈ Zm, its component-wise absolute value

is denoted by abs(U) = (|Ui|). For two vectors U = (Ui) and V = (Vi), their

component-wise product (Hadamard product) is denoted by U ◦ V = (UiVi). Let

β = (βi) ∈ {−1, 1}m be a Bernoulli sequence, that is, βi independently takes the

value ±1 with probability 1/2 each. For a Bernoulli sequence β and a vector u ∈ U
we call the vector U = β ◦ u Bernoulli randomization of u. The expectation with

respect to U (inherited from β) is denoted as EU . If Bernoulli randomization of two

or more (possibly the same) vectors are considered, then they are assumed to be

independent. Recall that ∥u∥ = (
∑m

j=1 u
2
j)

1/2 and σ(u) = {j | uj > 0}.
The explicit expression of the Efron curvature is given in the following theorem.

The inequality (6) is obtained as a corollary.

Theorem 5. The Efron curvature of SGM and MixM at θ = 0 is given by

(γ2U)
(sgm) =

∑
u,v∈U

EU,V,Ũ ,Ṽ

[
ωU(U, V, Ũ , Ṽ )2|σ(u)|+|σ(v)| (U

⊤V )2(Ũ⊤Ṽ )2

∥u∥4∥v∥4

]
, (7)

(γ2U)
(mix) =

∑
u,v∈U

EU,V,Ũ ,Ṽ

[
ωU(U, V, Ũ , Ṽ )2|σ(u)|+|σ(v)|

]
, (8)

where U, V, Ũ , Ṽ are Bernoulli randomization of u, v, u, v, respectively, and

ωU(U, V, Ũ , Ṽ ) = 1{U+V+Ũ+Ṽ=0, abs(U+V )/∈U∪{0}}.

In particular, (γ2U)
(sgm) and (γ2U)

(mix) are rational numbers.

Table 1 shows the Efron curvature for several specific cases of U . Let ei =

(1{j ̸=i})
m
j=1, the i-th unit vector.

We end with an asymptotic property. For the first three examples in Table 1, it

is easily confirmed that (γ2U)
(sgm)/(γ2U)

(mix) converges to 0 as m→ ∞. This property

holds in a more general setting. We define two sets M(U) and N(U) by

M(U) =
{
(u, v) ∈ U2 | u+ v ̸∈ U

}
,

N(U) =
{
(u, v) ∈ U2 | σ(u) ∩ σ(v) ̸= ∅

}
.

We denote cardinality of a set A by |A|.
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Table 1: The Efron curvature for several cases of U .

U (γ2U)
(sgm) (γ2U)

(mix)

{fei}1≤f≤d,1≤i≤m 2−2d(d+ 1)m 2−2d(d+ 1)m+ d2m(m− 1)
{ei + ej}1≤i<j≤m 2−5m(m− 1)(m+ 2) 2−3m(m− 1)(2m2 − 6m+ 9)
{ei + ei+1}m−1

i=1 2−4(7m− 10) 2−2(4m2 − 3m− 5)
{e1 + ei}mi=2 2−5(m− 1)(3m+ 2) 2−2(m− 1)(6m− 7)

Theorem 6. Let Um be a finite subset of (Zm
≥0)

+ for each m ∈ {1, 2, . . .}. Assume

that maxu∈Um |σ(u)| is bounded over m. Further assume |N(Um)|/|M(Um)| → 0 as

m→ ∞. Then (γ2Um
)(sgm)/(γ2Um

)(mix) → 0 as m→ ∞.

Let µ(U) be the set of maximal elements of U , that is,

µ(U) = {u ∈ U | ∀v ∈ U \ {u}, ∃i ∈ {1, . . . ,m} s.t. vi < ui} .

Corollary 7. Let Um be a finite subset of (Zm
≥0)

+ for each m ∈ {1, 2, . . .}. Assume

that maxu∈Um |σ(u)| is bounded over m. Further assume |N(Um)|/|µ(Um)|2 → 0 as

m→ ∞. Then (γ2Um
)(sgm)/(γ2Um

)(mix) → 0 as m→ ∞.

Table 2 shows the numbers |N(U)| and |µ(U)| for the examples in Table 1. It

is consistent with Corollary 7, that is, |N(U)|/|µ(U)|2 → 0 only for the first three

cases.

Table 2: The numbers |N(U)| and |µ(U)|.

U |N(U)| |µ(U)|
{fei}1≤f≤d,1≤i≤m d2m m
{ei + ej}1≤i<j≤m 2−1m(m− 1)(2m− 3) 2−1m(m− 1)
{ei + ei+1}m−1

i=1 3m− 5 m− 1
{e1 + ei}mi=2 (m− 1)2 m− 1

5 Discussion

We evaluated the Efron curvature of SGM and MixM (Theorem 5) and used it to

show that SGM has smaller curvature than MixM (Theorem 4). Here we give some

unsolved problems.

In Table 1, we listed explicit formulas of the Efron curvature for specific U ’s by

using (7) and (8). It is challenging to derive formulas for more practical sets, such
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as

U =
{
u ∈ (Zm

≥0)
+ | ∥u∥1 ≤ 3, ∥u∥∞ ≤ 2

}
, ∥u∥1 =

m∑
j=1

uj, ∥u∥∞ = max
j
uj.

Sei (2010) used this set to analyze multivariate datasets. For each small m, we

can evaluate the curvature by direct computation. However, the computation needs

exponential complexity with respect to the dimension m as long as one uses (7) and

(8). Combinatorial methods may solve the problem.

We studied the averaged curvature γ2. Instead, one can consider a tensor Huv :=∑
w,z Quw,vzJ

wz appearing in Lemma 2, which is called the embedding e-curvature

(Amari (1985)). Although an inequality H
(sgm)
uv ≼ H

(mix)
uv is conjectured by numerical

study, it could not be proved.

In this paper, we only considered the curvature at the origin θ = 0. The reason

that we restrict comes from two different kinds of difficulty. One is conceptual diffi-

culty: the probability densities (and score vectors) of SGM and MixM are different

except at θ = 0. An approach may be to consider a local mixture model of SGM

at each point θ (Marriott (2002)). The another kind of difficulty is computational

one. The expression of the Efron curvature at θ ̸= 0 of SGM seems complicated.

Even the Fisher information matrix Juv is not written in elementary functions in

general. However, the expression is written at least in terms of integration of multi-

dimensional rational functions because p(x|θ) is a polynomial of θu and zj = eiπxj .

Algebraic methods on integration may be helpful.

6 Proofs

6.1 Proof of Lemma 3 and Theorem 5

We calculate the Efron curvature of SGM and MixM step-by-step.

For SGM, we denote the quantities Luv(x), Γuv,w, Γ
w
uv, Quv,wz, γ

2 in Section 2 by

L
(sgm)
uv (x), Γ

(sgm)
uv,w , (Γw

uv)
(sgm), Q

(sgm)
uv,wz, (γ2)(sgm), respectively. Similarly, for MixM, we

denote L
(mix)
uv (x), Γ

(mix)
uv,w , (Γw

uv)
(mix), Q

(mix)
uv,wz, (γ2)(mix). We use Lu(x) and Juv without

superscripts because they are common in both models. Recall that a random matrix

Hu = Hu(x) is defined by (4).

Lemma 8. For any u, v ∈ U , the following equality holds:

Lu(x) = trHu, L(sgm)
uv (x) = − tr(HuHv) L(mix)

uv (x) = −(trHu)(trHv).
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Proof. By (5), the log-likelihood of SGM and MixM are expanded around θ = 0 as

log p(sgm)(x|θ) =
∑
u∈U

θu trHu −
1

2

∑
u,v∈U

θuθv tr(HuHv) + O(∥θ∥3),

log p(mix)(x|θ) =
∑
u∈U

θu trHu −
1

2

∑
u,v∈U

θuθv(trHu)(trHv) + O(∥θ∥3).

Then the result follows.

Since the random variables Lu(x), L
(sgm)
uv (x) and L

(mix)
uv (x) are written in terms of

Hu, it is valuable to consider moment formulas of Hu.

Lemma 9. Let u ∈ U . Let U be Bernoulli randomization of u. Then Hu is written

as Hu = EU [e
iπU⊤xUU⊤]. Furthermore, the random variable x can be replaced with

a random variable ξ uniformly distributed on [−1, 1]m, when any moment of tr(Hu)

and tr(HuHv) is evaluated.

Proof. By Euler’s formula cosϕ = (eiπϕ + e−iπϕ)/2, we obtain

m∏
j=1

cos(πujxj) = EU [e
iπU⊤x].

Therefore Hu = EU [e
iπU⊤xUU⊤]. Next we consider moments. Consider, for example,

expectation of tr(HuHv). The other moments are similarly evaluated. Let β̃ be a

Bernoulli sequence, which is independent of x and any other Bernoulli sequences.

Put ξ = β̃ ◦ x. Then ξ has the uniform distribution on [−1, 1]m, and

Eξ[tr(Hu(ξ)Hv(ξ))] = Eξ,U,V [e
iπU⊤ξeiπV

⊤ξ tr(UU⊤V V ⊤)]

= Eξ,U,V [e
iπU⊤ξeiπV

⊤ξ(U⊤V )2]

= Ex,β̃,U,V [e
iπ(U◦β̃)⊤xeiπ(V ◦β̃)⊤x(U⊤V )2]

= Ex,Ũ ,Ṽ [e
iπŨ⊤xeiπṼ

⊤x(Ũ⊤Ṽ )2]

= Ex[tr(Hu(x)Hv(x))],

where we put Ũ = U ◦ β̃ and Ṽ = V ◦ β̃, and used an identity Ũ⊤Ṽ = U⊤V .

From Lemma 9, we simply write Hu = EU [e
iπU⊤ξUU⊤] below and the expectation

with respect to x is replaced with the expectation with respect to ξ. Note that

Eξ[e
iπa⊤ξ] = 1{a=0} for any a ∈ Zm.

9



Now the Fisher information matrix is evaluated as

Juv = Eξ[trHu trHv]

= Eξ,U,V [e
iπ(U+V )⊤ξ∥u∥2∥v∥2]

= EU,V [1{U+V=0}∥u∥2∥v∥2]

= Eβ,β̃[1{β◦u=−β̃◦v}]∥u∥
2∥v∥2

= Eβ,β̃

[
m∏
i=1

{1{ui=vi=0} + 1{ui=vi>0,βi=−β̃i}}

]
∥u∥2∥v∥2

= 1{u=v}2
−|σ(u)|∥u∥4,

where β and β̃ are Bernoulli sequences. This proves Lemma 3. By similar compu-

tation, we have the following lemma.

Lemma 10. Let U, V, S be Bernoulli randomization of u, v, s ∈ U . Then

(Γw
uv)

(sgm) = −EU,V [1{abs(U+V )=w}(U
⊤V )2∥w∥−2],

(Γw
uv)

(mix) = −EU,V [1{abs(U+V )=w}∥u∥2∥v∥2∥w∥−2],

Proof. We first calculate Γ
(sgm)
uv,s . By Lemma 8 and Lemma 9, we have

Γ(sgm)
uv,s = −Eξ[tr(HuHv) trHs]

= −Eξ,U,V,S

[
eiπ(U+V+S)⊤ξ(U⊤V )2∥s∥2

]
= −EU,V,S

[
1{U+V+S=0}(U

⊤V )2∥s∥2
]
.

By using the expression of Γ
(sgm)
uv,s and Jsw, we have

(Γw
uv)

(sgm) =
∑
s∈U

Γ(sgm)
uv,s J

sw

= −
∑
s∈U

EU,V,S

[
1{U+V+S=0}(U

⊤V )2∥s∥2
]
1{s=w}2

|σ(s)|∥s∥−4

= −EU,V,W

[
1{U+V+W=0}(U

⊤V )2∥w∥−22|σ(w)|]
= −EU,V,β

[
1{abs(U+V )=w}1{U+V=β◦w}(U

⊤V )2∥w∥−22|σ(w)|] ,
= −EU,V

[
1{abs(U+V )=w}(U

⊤V )2∥w∥−2
]
,

where β is a Bernoulli sequence. The expression of Γ
(mix)
uv,s and (Γw

uv)
(mix) is obtained

similarly.

Lemma 11. The curvature tensor of SGM and MixM at θ = 0 is

Q(sgm)
uv,wz = EU,V,W,Z

[
ωU(U, V,W,Z)(U

⊤V )2(W⊤Z)2
]
,

Q(mix)
uv,wz = EU,V,W,Z

[
ωU(U, V,W,Z)∥u∥2∥v∥2∥w∥2∥z∥2

]
,
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respectively, where U, V,W,Z are Bernoulli randomization of u, v, w, z and

ωU(U, V,W,Z) = 1{U+V+W+Z=0, abs(U+V )/∈U∪{0}}.

Proof. We only derive the expression of Q
(sgm)
uv,wz. The expression of Q

(mix)
uv,wz is obtained

similarly. We first prove

R(sgm)
uv (x) := L(sgm)

uv (x) + Juv −
∑
s∈U

(Γs
uv)

(sgm)Ls(x)

= −EU,V

[
1{abs(U+V )/∈U∪{0}}e

iπ(U+V )⊤ξ(U⊤V )2
]
. (9)

The last term of R
(sgm)
uv (x) is

−
∑
s∈U

(Γs
uv)

(sgm)Ls =
∑
s∈U

EU,V,S

[
1{abs(U+V )=s}e

iπS⊤ξ(U⊤V )2
]

=
∑
s∈U

EU,V,β

[
1{abs(U+V )=s}e

iπ(β◦(U+V ))⊤ξ(U⊤V )2
]

= EU,V,β

[
1{abs(U+V )∈U}e

iπ(β◦(U+V ))⊤ξ(U⊤V )2
]

= EU,V

[
1{abs(U+V )∈U}e

iπ(U+V )⊤ξ(U⊤V )2
]
,

where β is a Bernoulli sequence. For the first and second term of R
(sgm)
uv (x), we have

L(sgm)
uv = −EU,V

[
eiπ(U+V )⊤ξ(U⊤V )2

]
,

Juv = EU,V

[
1{U+V=0}(U

⊤V )2
]
= EU,V

[
1{abs(U+V )=0}e

iπ(U+V )⊤ξ(U⊤V )2
]
.

Hence (9) is obtained. Now the tensor Q
(sgm)
uv,wz is calculated as follows:

Q(sgm)
uv,wz = Eξ[R

(sgm)
uv R(sgm)

wz ]

= Eξ,U,V,W,Z

[
1{abs(U+V )/∈U∪{0},abs(W+Z)/∈U∪{0}}e

iπ(U+V+W+Z)⊤ξ(U⊤V )2(W⊤Z)2
]

= EU,V,W,Z

[
1{U+V+W+Z=0,abs(U+V )/∈U∪{0}}(U

⊤V )2(W⊤Z)2
]

Therefore we obtain the desired expression.

We finally prove Theorem 5. Since the Fisher information matrix is diagonal, we

have

(γ2)(sgm) =
∑

u,v,w,z∈U

Q(sgm)
uv,wzJ

uwJvz

=
∑
u,v∈U

Q(sgm)
uv,uvJ

uuJvv

=
∑
u,v∈U

EU,V,Ũ ,Ṽ

[
ωU(U, V, Ũ , Ṽ )(U⊤V )2(Ũ⊤Ṽ )2

] 2|σ(u)|+|σ(v)|

∥u∥4∥v∥4
.

Thus (7) is proved. (8) is shown similarly.
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6.2 Proof of Theorem 4

We prove Theorem 4 by using the explicit expression (7) and (8) of the Efron

curvature. We abbreviate γ2U as γ2.

We prove the first inequality in (6). By the expression (7), it is sufficient to

show that ωU(u, u,−u,−u) = 1 for some u ∈ U . Let u be an element such that

∥u∥1 = maxv∈U ∥v∥1. Then we have u + u − u − u = 0 and u + u /∈ U ∪ {0}, and
hence ωU(u, u,−u,−u) = 1.

The second inequality in (6) follows from equations (7), (8), and

(U⊤V )2(Ũ⊤Ṽ )2 ≤ ∥U∥2∥V ∥2∥Ũ∥2∥Ṽ ∥2 = ∥u∥4∥v∥4.

We now consider the equality condition. First assume U ⊂ Zi. Then (U⊤V )2(Ũ⊤Ṽ )2

in (7) is equal to (uivi)
2(uivi)

2, which is equal to ∥u∥4∥v∥4. Therefore (γ2)(sgm) =

(γ2)(mix). Conversely, assume (γ2)(sgm) = (γ2)(mix). Since U is a non-empty finite

subset, there exist some u ∈ U and some i ∈ {1, . . . ,m} such that

ui > 0 and ui ≥ wi (∀w ∈ U).

Fix such u and i. We show u ∈ Zi. Define an integer vector ū ∈ Zm by ūi = ui

and ūj = −uj for j ̸= i. Since |ui + ūi| = 2ui > ui, we have abs(u + ū) /∈ U ∪ {0}
and therefore ωU(u, ū,−u,−ū) = 1. Let {U(k)}4k=1 be four independent Bernoulli

randomization of u. Note that each U(k) takes u (resp. ū) with probability at least

2−m. We evaluate

0 = (γ2)(mix) − (γ2)(sgm)

≥ EU(1),U(2),U(3),U(4)

[
ωU(U(1), U(2), U(3), U(4))

(
1−

(U⊤
(1)U(2))

2(U⊤
(3)U(4))

2

∥u∥8

)]

≥ 2−4mωU(u, ū,−u,−ū)
(
1− (u⊤ū)4

∥u∥8

)
≥ 0.

This implies |u⊤ū| = ∥u∥2. By equality condition of the Cauchy-Schwarz inequality,

there is a real number ρ such that u = ρū. This implies u ∈ Zi. Now, by contradic-

tion, assume that there exists some v ∈ U \ Zi. We further assume vi ≥ wi for any

w ∈ U \ Zi without loss of generality. Since ui + vi > vi and u+ v /∈ Zi, we deduce

u+ v /∈ U ∪ {0}. Hence ωU(u, v,−u,−v) = 1. Then we have

0 = (γ2)(mix) − (γ2)(sgm) ≥ 2−4mωU(u, v,−u,−v)
(
1− (u⊤v)4

∥u∥4∥v∥4

)
≥ 0.

This implies |u⊤v| = ∥u∥∥v∥. By equality condition of the Cauchy-Schwarz inequal-

ity, there is a real number ρ̃ such that v = ρ̃u. This implies v ∈ Zi and contradict

the definition of v. Thus we have U ⊂ Zi.
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6.3 Proof of Theorem 6 and Corollary 7

We first prove Theorem 6. Put d = maxmmaxu∈Um |σ(u)| < ∞. We abbreviate Um

by U below. It is sufficient to prove that (γ2U)
(sgm) ≤ |N(U)| and (γ2U)

(mix) ≥ c|M(U)|
with a positive constant c. If (u, v) /∈ N(U), then U⊤V = 0 in (7). Hence

(γ2U)
(sgm) ≤

∑
(u,v)∈N(U)

EU,V,Ũ ,Ṽ

[
ωU(U, V, Ũ , Ṽ )

(U⊤V )2(Ũ⊤Ṽ )2

∥u∥4∥v∥4

]
≤ |N(U)|.

We next evaluate (8). If (u, v) ∈ M(U), then ωU(u, v,−u,−v) = 1. Since u has at

most d non-zero elements, the event U = u happens with probability at least 2−d,

where U is a Bernoulli randomization of u. Therefore

(γ2U)
(mix) ≥

∑
(u,v)∈M(U)

EU,V,Ũ ,Ṽ

[
ωU(U, V, Ũ , Ṽ )

]
≥ 2−4d|M(U)|.

This proves Theorem 6.

Next we prove Corollary 7. Assume |N(U)|/|µ(U)|2 → 0. Note that |µ(U)| → ∞
since |N(U)| ≥ |U| ≥ 1. From the definition ofM(U) and µ(U), the set {(u, v) ∈ U2 |
u, v ∈ µ(U), u ̸= v} is a subset ofM(U). Then we have |M(U)| ≥ |µ(U)|(|µ(U)|−1).

Thus
|N(U)|
|M(U)|

≤ |N(U)|
|µ(U)|2(1− |µ(U)|−1)

→ 0

and the proof is completed.
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