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Abstract

Self-organization of hexagonal population distributions from uniformly
inhabited state is predicted by group-theoretic bifurcation theory, and its ex-
istence is demonstrated by computational bifurcation analysis. A system
of places periodically distributed on an infinite two-dimensional domain is
modeled using core—periphery models and by an infinite-periodic domain
assumption. Computationally obtained distributions represent those envis-
aged by central place theory in economic geography based on a normative
and geometrical approach, and were inferred to emerge by Krugman (1996)
in new economic geography for his core—periphery model in two dimensions.
The missing link between central place theory and new economic geography
has been provided in light of bifurcation theory, and the horizon of core—
periphery models has been extended.
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1 Introduction

Self-organization of hexagonal population distributibfrem a uniformly inhab-
ited state was envisioned by central place theory in economic geography based
on a normative and geometrical approach. It was inferred to emerge by Krug-
man (1996) in the new economic geography for core—periphery models in two
dimensions. Herein, we verify the existence of such distributions for these models
theoretically and demonstrate their existence computationally based on an interdis-
ciplinary study synthesizing three independent mainstreams: central place theory,
new economic geography, and group-theoretic bifurcation theory.

In central place theory of economic geograplself-organization of hexago-
nal market areas of three kinds shown in Fig. 1 was proposed by Christaller (1966)
based on market, tfizc, and administrative principles. The assemblage of hexago-
nal market area with ffierent sizes is expected to produce hierarchical hexagonal
distributions of the population of places (cities, towns, villages, etc.). Yet these are
based on a normative and geometrical approach; they are not derived from market
equilibrium conditions, as stated by Fujita et al. (1999, p.27):

Unfortunately, as soon as one begins to think hard about central place
theory one realizes that it does not quite hang together as an economic
model. ... Christaller suggested the plausibility of a hierarchical struc-
ture; he gave no account of how individual actions would produce such
a hierarchy ...

In new economic geography, based on a full-fledged general nonlinear market
equilibrium approach, Krugman (1991) has developed a core—periphery fodel,
and demonstrated that bifurcation serves as a catalyst to engender agglomeration of
population out of uniformly distributed state. Thereafter, new economic geography
models sprung up worldwideThe hexagonal patterns in central place theory have
yet to be found for core—periphery models as statgoKrugman (1996; P91):

| have demonstrated the emergence of a regular lattice only for a one-
dimensional economy, but | have no doubt that a better mathematician

1See Clarke and Wilson (1985), Munz and Weidlich (1990) and others for early studies on self-

organizing patterns.
2For books and reviews for central place theory, see, for examptg (1954), Valavanis (1955),

Lloyd and Dicken (1972), Isard (1975), Beavon (1977), King (1984), Dicken and Lloyd (1990), and

Allen (2004).
3This model expressed the microeconomic underpinning of the spatial economic agglomeration,

introduced the Dixit—Stiglitz (1977) model of monopolistic competition into spatial economics, and
provided a new framework to explain interactions occurring among increasing returns, transportation

costs, and factor mobility.
4These models are explained in several books, such as Fuijita et al. (1999), Brakman et al., (2001),

Fujita and Thisse (2002), Baldwin et al. (2003), Henderson and Thisse (2004), Combes et al. (2008),

and Glaeser (2008).
5This statement is based on the study of a racetrack economy among a system of places (cf., Fujita

et al., 1999). A racetrack economy uses a system of identical places spread uniformly around the
circumference of a circle; see, e.g., Krugman (1993,1996), Fujita et al. (1999), Picard and Tabuchi
(2009), Akamatsu et al. (2009), Tabuchi and Thisse (2010), and lkeda et al. (2010).
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Figure 1: Three systems predicted by Christaller (the area of a circle indicates the
amount of population)

could show that a system of hexagonal market areas will emerge in
two dimensions.

It is the belief of the present authors that core—periphery models themselves
have inherent capability to express those hexagonal patterns, but their adequacy has
been investigated mainly against two places and sometimes against the racetrack
economy with an overly simplified geomefhit is important to note that central
place theory is developed for an infinite domain with infinite number of places;
however, core—periphery models are developed fundamentally for a finite number
of places in a finite domain. Krugman’s statement might be interpreted as “a proper
mathematical procedure to define an infinite uniform domain could show that a
system of hexagonal market areas will emerge in two dimensions.”

The objective of this paper is to demonstrate by group-theoretic bifurcation
theory the self-organization of hexagonal market areas for core—periphery mod-
els in two dimensions. Infinite-periodic-domain approximation that is commonly
used in the study of pattern formation (cf., Golubitsky et al., 1988; and lkeda and
Murota, 2010) is employed to express infinite number of places in the framework
of core—periphery models; we consider a rhombic domain with periodic bound-
aries comprising uniformly distributed x n places that are connected by roads
of the same length forming a regular-triangular mesh. To show model indepen-
dence of computational results, we employ core—periphery models of two kinds
(cf., Section 3 and Appendix A). Hexagonal distributions of population that give

5Behrens and Thisse (2007) stated: in multi-regional systems the so-called “thredfaetis e
enters the picture and introduces complex feedbacks into the models, which significantly complicates
the analysis. Dealing with these spatial interdependencies constitutes one of the main theoretical and
empirical challenges NEG and regional economics will surely have to face in the future.
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Christaller’s three systems in Fig. 1 and a set of nested hexagons are predicted us-
ing group-theoretic bifurcation thedrand are found by computational bifurcation
analysis for those core—periphery models. Although there are bifurcation points of
various kinds, those which produce the hexagonal patterns are identified by that
theory. Consequently, this paper presents a step toward uniting central place the-
ory and core—periphery models in light of group-theoretic bifurcation theory.

This paper is organized as follows: A system of places that is uniformly spread
on an infinite hexagonal lattice in two dimensions is modeled in Section 2. Sec-
tion 3 introduces core—periphery models and predicts its bifurcation mechanism
producing hexagonal distributions by group-theoretic bifurcation theory. Compu-
tational bifurcation analysis afx n places on the rhombic domain is conducted to
find bifurcated patterns that represent hexagonal market areas in Section 4. Details
of the core—periphery models are given in Appendix A. Mathematical details of
group-theoretic bifurcation analysis are given in Appendices B-D.

2 System of places on a hexagonal lattice

Although an infinite two-dimensional domain is used in the study of the self-
organization of hexagonal market areas in central place theory, such domain is
incompatible with a naive analysis for the core—periphery models, which are for-
mulated for a finite number of places. As a remedy, we introduce a rhombic do-
main with periodic boundaries comprising a system of uniformly distribated

places, and prescribes groups expressing the symmetry of this domain. As a spatial
configuration of a system of places, we use a hexagonal ftieeause it is geo-
metrically consistent with the hexagonal market ared@s¢h, 1954, p.133-134).

2.1 Hexagonal lattice and rhombic domain

Figure 2 portrays the hexagonal lattice, which comprises regular triangles and
which covers an infinite two-dimensional domain. A place is allocated at each
node of this lattice, expressed by

p= nll’l + n2f2, (nl, Np € Z),

wheref; = (d,0)" and#, = (-d/2,d+V/3/2)" are oblique basis vectord {s the
length of these vectorsy; is the set of integers.

To express the infiniteness of the hexagonal lattice in Fig. 2, we consider a
rhombic domain that is cut out from the hexagonal lattice and is endowed with
periodic boundary conditions: an example of this domain witk 2 places is

"The emergence of hexagons out of uniformity is widely observed for various physical systems.
It is explained by group-theoretic bifurcation theory (cf., Buzano and Golubitsky, 1983; Golubitsky
et al., 1988; Melbourne, 1999; Dionne and Golubitsky, 1992; Judd and Silber, 2000; Golubitsky and
Stewart, 2002; and Ikeda and Murota, 2010). In particular, the hexagonal lattice is employed in the
description of convection of fluids and nematic liquid crystals (cf., Peacock et al., 1999; Golubitsky

and Stewart, 2002; and Chillingworth and Golubitsky, 2003).
8Planar lattices of five kinds exist: rhombic, square, hexagonal, rectangular, and oblique (cf.,

Golubitsky and Stewart, 2002).
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shown by the dashed lines in this figure. A systemmof n places in a rhombic
domain is modeled as follows:

¢ Allocate places in an x n two-dimensional lattice

p= nlt’1+n2£2, (nl,nZ:O,l,---,n—l).

e Connect neighboring places by roads (line segments) of the same tetagth
form regular-triangular meshes.

e Introduce periodic boundaries on the four borders of the domain. This is
equivalent to saying that the rhombic domain is repeated spatially and neigh-
boring domains are connected by roads of equal leddth., Fig. 3(b)).

2.2 Two-dimensional periodicity and hexagonal distributions

If the population distribution of a system of places (i.e., a subset of nodes) has
two-dimensional periodicity, then we can set a pair of independent vectors

(t1, t2), 1)

called the spatial period vectors, such that the system remains invariant under the
translations associated with these vectors. The spatial pefieds,| are defined
as

Ti=tll, (=12)

The tilted angley betweery; andt; is defined as

sing = m )
[Itall

Although the choice of the vectorg;(t,) is not unique;T; andT, must be chosen
to be as small as possible, and then to choose the smallest non-negative

Among possible doubly-periodic distributions, we specifically examine a hexag-
onal distribution that is described by

ty = aby+Blo, tr=-Pli+(a-P)2 (a.BeZ), 3

for which Ty = To(= T) is satisfied and the angle betwegrandt;, is 2r/3. The
associated normalized spatial period is given by

T/d= y(a-BI27 + (BV3/2P = \Ja? —ap + . @)

We consider a positive integer

k=a’-aB+p>

which can take some specific integer values, such as 1, 3, 4,,7nd rewrite the
normalized spatial period in (4) as

T/d = vk, (5)
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Figure 4: Hexagonal distributions on the hexagonal lattice

which lies in the range kX T/d < n and take some specific values, suchik

V3, V4, VT, ... We refer to the hexagonal distribution floe= 1 as the unifrom
distribution (cf., Fig. 4(a)) and those for otHewalues ak = 3, 4, 7,... systems.
The values of ¢, B) for these systems are not unique in general but are given, for
example, are

(1,0) :  uniform distribution kK = 1),
_} (21): k=3system
(@) = (2,0): k=4 system
(3,1): k=7system

Among these systems, we are particularly interested in the three systems associated
with k = 3, 4, and 7, which correspond to Christallet’s= 3, 4, and 7 systems,
as depicted in Fig. 4(b)—(d). These three systems are observed in computational
bifurcation analysis in Section 4.

With reference to the tilted angle defined by (2), we can classify hexagonal
distributions into

hexagons of type M ¢ = /6, (6)

hexagons oftypeV ¢ =0,
tilted hexagons otherwise
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in which “V” signifies that the vertices of the hexagons are located orxies
and “M” denotes that midpoints of sides of the hexagons are located onékis.
The hexagonal distributions fér= 3, 4, and 7 systems can be classified as

k=3: hexagon of type M
k=4: hexagon of type V
k=7: tilted hexagon

2.3 Groups expressing the symmetry

For the study of the agglomeration pattern of population distribution on the rhom-
bic domain, we use group-theoretic bifurcation theory: an established mathemat-
ical tool for investigating pattern formation (cf., Subsection 3.3). In this theory,
the symmetries of possible bifurcated solutions are determined with resort to the
group that labels the symmetry of the system. In this sense, it is the first step of the
bifurcation analysis to identify the underlying group.

Symmetry of then x n rhombic domain is characterized by invariance with
respect to:

e r: counterclockwise rotation about the origin at an angle /&
o s reflectiony — -y.

e p1: periodic translation along thg-axis (i.e., thex-axis).

e p: periodic translation along thi-axis.

Consequently, the symmetry of the domain is described by the group

G =(r,s p1, P2), (7)

where(---) denotes a grofpgenerated by the elements therein, with the funda-
mental relations given by

e = S=(rs)?=p"=p"=¢
rpr = pip2r, rpz2=pif, SPL=P1S Sk =P1P2S P2P1 = P1pP2,

wheree is the identity element. Each element@®tan be represented uniquely in
the form of

sr™pi'py), i,jef0,...,n-1}); 1€{0,1}; me{0,1,...,5).

The groupG contains the dihedral groupgD= (r, s) and cyclic group<,, =
(p1) andZn = {p2) as its subgroups. Moreover, it has the structure of semidirect
product of Iy by Z,, x Z,,, which is denoted as

or G = Dg X (Zn X Zn).10

®For more account of group theory, see, e.g., Curtis and Reiner (1962) and Serre (1977).
1%The former symbol{) is used, for example, in Golubitsky et al. (1988).



Among many subgroups @ = (r, S, p1, P2), expressing partial symmetries,
we search for those containing the elemeand the following elements

p; andp3 for k = 4 system, (8)

p?pz andp;tp, for k = 3 system,
p;pz andp;tps for k = 7 system,

which express hexagonal distributions. The correspondence in (8) reveals the com-
patibility condition on the siza of the rhombic domain fdk = 3, 4, and 7 systems.
Fork = 3 system we have

(P2p2) % (prp2) ™ = 3,

which represents a translation in the direction of £y@xis at the length of &
accordingly,n must be a multiple of 3. Fdt = 4 system, the symmetry q:ﬁ and
p3 implies thatn is a multiple of 2. Fok = 7 system we have

(P3p2)? x (prips) ~t = pi,

from which follows thatn is a multiple of 7. Accordingly, we use the sine= 3
for k = 3 systemn = 16 fork = 4 system, anch = 7 for k = 7 system in the
computational bifurcation analysis in Section 4.

3 Core—periphery models and bifurcation

In this section, we present multi-regional core—periphery models. The group-
equivariance of the governing equation of the system of places for this model is
introduced and the mechanism of bifurcation producing hexagonal distributions is
studied.

3.1 Core—periphery models

To demonstrate model independence of our results, we employ core—periphery
models of two kinds:

i) FO model (Forslid and Ottaviano, 2003) that replaces the production func-
tion of Krugman with that of Flam and Helpman (1987).

i) Pfmodel (Pfliger, 2004) that replaces, in addition to the production function,
the utility function of Krugman with that of the international trade model of
Martin and Rogers (1995).

In these models, the economy is composel glaces (labeled= 1,...,K),
two factors of production (skilled and unskilled labor), and two sectors (manu-
facture M and agriculture A). Theré] skilled andL unskilled workers consume
two final goods: manufactural-sector goods and agricultural-sector goods. Workers
supply one unit of each type of labor inelastically; herés a constant expressing
the total number of skilled workers. Skilled workers are mobile across places.

H"The equalityH = 3X, h; is satisfied by any solution of (9) becaugg, Pi(h,7) = 1 by (10).



The number of skilled workers in pladeis denoted byh;. Unskilled workers
are immobile and equally distributed across all places with the unit density (i.e.,
L = 1 x K). Hence the population in placés equal toh; + 1.

Although the details of the models are given in Appendix A, the governing
equation of these models is formulated in a standard form of static equilibrium as

F(h,7) = HP(h) - h =0. 9

Thereinh = (h;) € RX is aK-dimensional vector expressing the population distri-
bution of the skilled workerst € R is a (bifurcation) parameter corresponding to
the transport parameter, afid RK x R — RK is a suficiently smooth nonlinear
function inh andr; P = (P;) € RX is aK-dimensional vector given by

explpvi(h, 7)]

Pi(h,7) = ,
(7= S5 exploi(h. ]

=1,...,K, (10)

whereg is a constant representing the inverse of variance of the idiosyncratic tastes,
andvi(h,7) (i = 1,...,K) are nonlinear functions representing the components of
an indirect utility function vectov(h, 7).

3.2 Exploiting symmetry of core—periphery models by group-theoretic
bifurcation theory

For investigation of the patterns of the bifurcated solutions, it is crucial to formu-
late the symmetry that is inherent in the governing equation. In group-theoretic
bifurcation theory, the symmetry of the equation for the system>ofi places on

the rhombic domain is described as

T(@F(h,7) = F(T(gh.7). geG, (11)

in terms of an orthogonal matrix representatibrof groupG = (r, s, p1, p2) in
(7) on theK-dimensional spacBX. The condition (or property) (11) is called the
equivariance of(h, ) to G. The most important consequence of the equivariance
(11) is that the symmetries of the whole set of possible bifurcated solutions can be
obtained and classified.

In our study of a system afx n places in the rhombic domain, each elenmggnt
of G acts as a permutation among place numbers (1K) for K = n? and hence
eachT(g) is a permutation matrix. Then we can show the equivariance (11) to
G = (1, s p1, p2) of the core—periphery models presented above as below.
Proof. By expressing the action gfe G asg: i — i* for place numbersandi*,
we havevi(T(g)h, 7) = vi-(h, ) andP;i(T(g)h, 7) = P;-(h, 7) by (10) for anyg € G.
Therefore, we have

Fi(T(9)h,7) = HPi(T(g)h,7) - hi
= HP(h,7) - h;-
= Fi(h,7).
This proves the equivariance (11). O

10



According to group-theoretic bifurcation theory the (bifurcation) analysis pro-
ceeds as follows. Consider, to be specific, a critical pdigi#c) of multiplicity
M (= 1), at which the Jacobian matrix 6fhasM zero eigenvalues.

Using a standard procedure called ttiapunov—Schmidt reduction with sym-
metry(Sattinger, 1979; Golubitsky et al., 1988), the full system of equations

F(h,7) =0 (12)

in h € RK (cf., (9)) is reduced, in a neighborhood df.(7c), to a system oM
equations (called bifurcation equations)

Fw,7) =0 (13)

inw e RM, whereF : RM x R — RM is a function and = t — 7. denotes the
increment ofr. In this reduction process the equivariance of the full system, which
is formulated in (11), is inherited by the reduced system (13) in the following form:

TOFW7) = F(T@@w,7), geG, (14)

whereT is the subrepresentation @fon the M-dimensional kernel space of the
Jacobian matrix. It is this inheritance of symmetry that plays a key role in deter-
mining the symmetry of bifurcating solutions (cf., Appendices B-D).

The reduced equation (13) is to be solvedvioasw = w(t), which is often
possible by virtue of the symmetry & described in (14). SinceyT) = (0,0)
is a singular point of (13), there can be many solutians w(7) with w(0) = 0,
which gives rise to bifurcation. Eaetuniquely determines a solutidnof the full
system (12).

The symmetry oh is represented by a subgroup®tefined by

Z(h;G,T)={ge G| T(gh = h},

called the isotropy subgroup bof The isotropy subgroup(h) can be computed in
terms of the symmetry of the correspondings

*(h;G,T) = =(W; G, T), (15)

where _ _
2w, G, T)={ge G| T(gw = w}.

The relation (15) enables us to determine the symmetry of bifurcated soliitions
through the analysis of bifurcation equationsin
In association with repeated bifurcations, one can find a hierarchy of subgroups

G=G0—>G1—>Gz—>---

that characterizes the hierarchical change of symmetries. Herdenotes the
occurrence of symmetry-breaking bifurcation @d1 is a subgroup of5; (i =
0,1,..)).

11



Table 1: Number of irreducible representations @f{¥n x Z)

n\d 1 2 3 4 6 12

N1 N> N3 Ns Ng Nio| XNg
n=3 4 4 1 2 11
n=7 4 2 12 1 19
n=161| 4 2 4 28 14 52

3.3 Theoretically predicted hexagonal distributions

It is to be noted first that uniformly distributed population of the skilled workers
associated with the pre-bifurcation solution is the simplest hexagonal distribution
(cf., Remark 3.1 below). Possible bifurcated solutions of the governing equation
(9), or (12), representing hexagonal distributions are predicted by group-theoretic
bifurcation theory:?

The multiplicity M of critical points (i.e., the dimension of the kernel space of
the Jacobian matrix o in (12) at bifurcation points) is generically either 1, 2,

3, 4, 6, or 12, which is a natural consequence of the group-theoretic fact that the
dimensiond of an irreducible representation of the gro@ps eitherd = 1, 2, 3,

4, 6, or 12. For some values af(treated in Section 4), the numbexy of the
d-dimensional irreducible representations are listed in Table 1.

In the remainder of this section, we present a possible bifurcation mechanism
that can produce hexagonal distributions (cf., Subsection 2.2) of population of
skilled workers associated with Christalleks= 3, 4, and 7 systems. Such mech-
anism is confirmed in Section 4 by the computational bifurcation analysis of the
rhombic domain with various sizes

Remark 3.1. The governing equation (9) of the systenmof n places is satisfied

by the state of uniformly distributed population of the skilled workers that is ex-
pressed by = --- = hz = 1/n°. This is the trivial solution that is existent for any
value of the transport parameterwhich serves as the bifurcation parameter. The
spatial period vectors in (1) for the uniformly distributed population are given by
(t1, t2) = (€4, £2) with the shortest spatial period @f/d = T;/d = T,/d = 1 and
with no tilting with ¢ = 0. O

3.3.1 k=3system

Whennis a multiple of 3, hexagonal patterns for the 3 system occur generically
as a branch from a double bifurcation point that is associated with the irreducible

12The bifurcation from the uniform state of the hexagonal lattice has been investigated using
group-theoretic bifurcation theory to show the emergence of hexagonal patterns (cf., Golubitsky
and Stewart, 2002 and references therein); bifurcated solutions for the rhombic domainwgth 2
systems of places are investigated extensively and classified (Ikeda and Murota, 2010, Chapter 16).

12



representation d& given by

1 O 10 cos /3 -sin2r/3
T = ( 0 -1 ) T = ( 01 ) T(Pa) = T(P2) = ( sin2t/3  cos/3 |’
(16)
This corresponds to one of the four two-dimensional irreducible representations
(cf., Table 1). Standard results for bifurcation at a double bifurcation point for the
dihedral group symmetty can be adapted, as described in Appendix B. There is
a bifurcated path with symmetry

(r,s, pIP2, P P2) = (1, +(PEP2, Py P2) = (r, H(PEP2, P3) = De+(Zn X Zny3),
17)
which expresses the symmetry of the hexagon of type M foktke3 system in
Fig. 4(b); note thap;p, = pZp, x (p3)~1.
For example, fon = 3, the population distributioh for thek = 3 system is
given uniquely as
h=(ab,b;b,b,a;b,ahb)’, (18)
which is invariant to the group in (17), where,b) = (1/9 + 26,1/9 — 6) with
-1/18 < § < 1/9. The population distributioil for n = 3m(m = 2,3,...) can
be arrived at by spatially repeating the distribution in (18) farbj = (1/n® +
26,1/n? — §) with —1/(2n?) < 6 < 1/n?. It is pertinent in the computational
bifurcation analysis to know such a special form.
This is a hexagonal distribution with the spatial period vectors

(t]_, tz) = (Zfl + €, —€1 + (72),

which corresponds tax(8) = (2,1) in (3). The symmetriepipz and pilpz are
apparent from this expression. The spatial period elongates as

T/d=1- V3 (19)
in agreement with central place theory (cf., (20) kot 3 in Remark 3.2).

Remark 3.2. In central place theory, the spatial periddin (5) can be inter-
preted as the distance between the first-level centers with the largest population.
Christaller'sk = 3, 4, and 7 systems are hexagonal distributions with the normal-
ized spatial period

T/d= vk, (k=347), (20)

which hasvk-times as large as the spatial peribd = 1 for the state of uniform
population. O

3.3.2 k=4system

Whenn is a multiple of 2, hexagonal patterns for tke= 4 system are predicted
using group-theoretic bifurcation analysis to branch from a triple bifurcation point

13See, e.g., Sattinger (1979) and Ikeda and Murota (2010, Chapter 8) for analysis of the bifurcation
point of this type.

13



that is associated with the irreducible representatio@ given as

010 100
T(r):[o 0 1], T(s)=[0 0 1]; (21)
100 010
1 0 0 -1 0 O
T(p1)=[0 -1 o], T(pz)z[ 01 o]. (22)
0 0 -1 00 -1

This corresponds to one of the four three-dimensional irreducible representations
(cf., Table 1). By a slight extension of the pre-existing re$tiis worked out in
Appendix C, there is a bifurcated solution with the symmetry

(r,s, P2, p3) = (r, 9+(p2, p3) =~ De+(Zny2 X Zny2), (23)

which expresses the symmetry of the hexagon of type V fokteed system in
Fig. 4(c).
For example, fon = 2, the population distributioh for thek = 4 system is
given uniquely as
h=(ab;bb)T, (24)

which is invariant to the group in (23), where,b) = (1/4 + 36,1/4 — 6) with
-1/12 < § < 1/4. The population distributioh for n = 2m(m = 2,3,...) can
be arrived at by spatially repeating the distribution in (24) farbf = (1/n® +
36,1/n? — 6) with —1/(3n?) < 6 < 1/r?.

This is a hexagonal distribution with the spatial period vectors

(t1, t2) = (201, 2£2),

which corresponds tay 8) = (2, 0) in (3). The symmetriep? and p3 are apparent

from this expression. The spatial period elongateB/a= 1 — V4, in agreement
with central place theory (cf., (20) fé&r= 4 in Remark 3.2 above).

3.3.3 k=7system

Whenn is a multiple of 7, hexagonal patterns for= 7 system are predicted to
branch by group-theoretic bifurcation analysis for the growp @, x Z,) at a
bifurcation point of multiplicity 12 associated with a 12-dimensional irreducible
representation, as worked out in Appendix D. There is a bifurcated solution with
the symmetry

(r, P3p2, prip2) = (NHP3p2, PLEPa) = (NHP3P2, PLy = Co+(Zn X Znj7), (25)

which expresses the symmetry of the tilted hexagon forkthe 7 system in
Fig. 4(d); note thatp;*ps = (p3p2)? x (p))™L. By (8), this solution is associ-
ated with the tilted hexagon fde = 7 system, which is also demonstrated in the
computational bifurcation analysis far= 7 in Subsection 4.3.

1This irreducible representation is denoted&s" in Ikeda and Murota (2010, Chapter 16). The
flower mode solution there corresponds to the present solution.
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For example, fon = 7, the population distributioh for thek = 7 system is
given uniquely as

h = (ab,b bbb b;bb b ab,b,b;
b,b,b,b,b,b,a;b,b,a,b,b,b,b;
b,b,b,b,b,a,b;b,a b,b,b,b,b;
b,b,b,b,a,b,b)",

which is invariant to the group in (25), whera b) = (1/49 + 66, 1/49 — §) with
-1/294 < 6 < 1/49. The population distributioh forn = 7m(m = 2,3,..))
can be arrived at by spatially repeating the distribution in (18)dob) = (1/n° +
66,1/n° — 8) with —=1/(6n%) < 6 < 1/n?.

This is a hexagonal distribution with the spatial period vectors

(26)

(tg, t2) = (3f1 + €2, -1 + 2¢5),

which corresponds ta(8) = (3,1) in (3). The symmetrieg:p, and p;p3 are
apparent from this expression. The spatial period elongates as

T/d=1- V7, (27)

in agreement with central place theory (cf., (20) kot 7 in Remark 3.2 above).

3.3.4 Successive bifurcations producing a set of nested hexagons

Successive bifurcations repeatedly elongate the spatial pEriwtiich starts from
the shortest period/d = 1 for the uniform population solution and ends up with
the longest spatial periotl/d = n; a loss of local symmetry is often encountered.

In particular, forn = 2™ (mis a positive integer), there are successive bifurca-
tions associated with a hierarchy of subgroups

— De+(Za x Z) — Dg+(Z1 x Z1) = De, (28)
where— means the occurrence of bifurcation. These successive bifurcations pro-

duce a set of nested hexagons (cf., computational analysis in Subsection 4.2). The
spatial period doubles successively as

T/d=1—-2—--->n/2->n, (29)

which is called period-doubling bifurcation cascade. The spatial periods that ap-
pear in (29) are in agreement with central place theory (cf., (31) in Remark 3.3).

Remark 3.3. The formula (20) in central place theory is extended to a hierarchy
of spatial periods (cf., &sch (1954, p.131))

Td= vk Vik2, Vi3, ..., (k=3.47). (30)

For example, fok = 4 andn = 2™, (30) becomes
T/d=2 2225 ..., 2"=n (31)
0
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4 Computationally obtained distribution patterns

In this section, we examine spatial agglomeration patterns of the population of
skilled workers among a system of places spread uniformly on a two-dimensional
domain. Computational bifurcation analysis is conducted to obtain bifurcated solu-
tions from the uniformly distributed state of population of the skilled workers for a
system o x n place on the rhombic domain. We respectively nse3, 16, and 7
to obtaink = 3, 4, and 7 systems. As core—periphery models (cf., Subsection 3.1),
the FO model and the Pf model are used.

We employ the following parameter values:

e The lengthd of the road connecting neighboring placedis 1/n.

e The constant expenditure sharen industrial varieties ig = 0.4 (cf., Ap-
pendix A.1).

e The constant elasticity of substitution between any two varietiesris= 5.0
(cf., Appendix A.1).

e The inversed of variance of the idiosyncratic tastesds= 1000 (cf., Ap-
pendix A.3).

e The total numbeH of skilled workers is chosen &3 = 1, except for the
analysis of 16< 16 places for the Pf model, in whidh = 16 is used since
no bifurcation is observed fdid = 1.

4.1 Agglomeration of3 x 3 places:k = 3 system

We use a system of 8 3 places on the rhombic domain withe®(Z3 x Z3)-
symmetry to explain the basic properties of perigd-times bifurcation that pro-
duces a population distribution for Christallek's= 3 system.

For the system of X 3 places on the rhombic domain, bifurcated solutions
at a bifurcation point for the uniform population distribution are obtained. Fig-
ure 5 depicts equilibrium paths (the maximum populahggx versus the transport
parameterr curves) for the FO and Pf models, whdrgax = maxy,..., hk)

(K = 3x 3). The typical population distribution for each solution is presented on
the hexagonal domaifin Fig. 5; the area of a circle is proportional to the popu-
lation of the skilled workers. The two models display quantitativefedént but
qualitatively identical behaviors: for example, the location of the bifurcation point
A is different, but the bifurcated paths have the same symmetry. The following
argument, accordingly, is applicable to both models.

The uniform population solution corresponds to the horizontal path OAB, which
is stable during OA (shown by the solid line). The point A on this path corresponds
to the double bifurcation point wit{r, s, p% p2)-symmetrid® bifurcated paths of the
form (18) producing a hexagon of type M studied3.1. These bifurcated paths
with the same symmetry havefliirent agglomeration properties:

15The hexagonal domain used for this illustration is cut from the infinite domain that is obtained
by repeating the & 3 rhombic domain spatially (cf., the dotted hexagon in Fig. 2).
15The group(r, s, p2p,, p3) in (17) reduces tar, s, p?p,) becausep? = eforn = 3.
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Figure 5: Bifurcation at the first bifurcation point A for a system ef38places and
associated population distributions (Solid curve: stable, dashed curve: unstable)
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(a) Hexagonal distribution (b) Enlargement of market area

Figure 6: Enlargement of market area and hexagonal distribution observed on the
bifurcated path ACD at the first bifurcation point A

e For path ACD, which is stable during CD, the first-level center with the
largest population at the center of the hexagonal domain (depicted by the
large circle) is surrounded by six regular-hexagonal second-level centers
with the second-largest population (depicted by the small circles). The popu-
lation at the first-level center grows along path CD; at point D, the population
at the second-level centers almost disappears.

e For path AE, which is unstable throughout, the second-level center with
small population is surrounded by six regular-hexagonal first-level centers.
However, the presence of a greater number of first-level centers than the
second-level centers is incompatible with an implicit understanding in cen-
tral place theory.

As depicted in Fig. 5, the spatial period becorfigd = /3 on bifurcated solutions
ACD and AE, in agreement with (19) fé&r= 3 system. This is the spatial period
V/3-times bifurcation associated with

T/d: 1 - V3
(t1,t2) : _ (€1, 82) = (21 + 6,1+ )
group :  Dy+(Z3 X Zg) = (I, S, p1, P2) — (r,s, pip2)

path : OA - ACD

Although the solution curves in Fig. 5 for the FO and Pf models are apparently
different, a bifurcated solution with the population distribution forkhke3 system
branches at the bifurcation point A in each model, in agreement with the theoretical
prediction by group-theoretic bifurcation theory§i8.3.1. This result demonstrates
that the emergence of tlke= 3 system, which is predicted theoretically, is a general
phenomenon that is independent of individual models. Such model independence
is also demonstrated fdr = 4 andk = 7 systems in Subsections 4.2 and 4.3,
respectively.

The hexagonal distribution for the stable bifurcated path CD is repeated spa-
tially to form a distribution depicted in Fig. 6(a), which agrees with the Christaller’'s
market principle fok = 3 system:

In a system of central places developed according to the marketing
principle, the great long-distance lines necessarily by-pass places of

18



considerable importance, ... (cf., Christaller (1966, p.74) and Dicken
and Lloyd (1990, Chapter 1)).

For the stable bifurcated path CD, the market area, in the sense of Remark 4.1
below, of the first-level center is the regular hexagon with the radius of 1 depicted
at the right of Fig. 6(b) by the dashed lines. The ratio of the nuniheof the
first-level centers to the numbbk of the second-level centers is equal to

Ni:No=1:2;

since each of the six second-level center is shared by three neighboring market
areas; in fect, §3 = 2 second-level centers exist in the market area. This is in
agreement with the formula (32) fé&r= 3 of central place theory in Remark 4.2
below. Consequently, some commonality exists between the computation for the
core—periphery models and the prediction by central place theory, although they
are based on fferent underpinnings. Geometry might be the source of this com-
monality; these core—periphery models undergo bifurcations that change geometry
of population distribution, and central place theory is based on a geometrical ap-
proach.

Remark 4.1. For the core—periphery model, the concept of market area is fictitious
because the degrees of freedom are allocated only at the nodes of the hexagonal lat-
tice and goods are transported beyond this area. Yet, in this paper, this concept is
used for convenience in the description of the progress of agglomeration. Exam-
ination of the transportation of goods among places for core—periphery models of
various kinds is a topic for future investigation. O

Remark 4.2. A hierarchy of places with dierent levels exists in the market area
governed by the highest-level center. Such a hierarchy is often called, metropolis,
city, town, village, and hamlet or A-level center, B-level center, and so on (Dicken
and Lloyd, 1990, Chapter 1). The numidrof the jth-level centers dominated by

the highest-order center is expressed as (cf., Dicken and Lloyd, 1990, Chapter 1):

Ni=1, Nj=k1-Kk2 (j=23..), (32)

which is applicable t& = 3 and 4 systems; its extensibility to othevalues is a
topic for future. O

4.2 Agglomeration of16 x 16 places:k = 4 system

In this section, we demonstrate the emergence okthet system for @+(Z16 x
Z1g)-symmetric 16x 16 places on the rhombic domain that undergoes period-
doubling bifurcations repeatedly. The agglomeration pattern is shown to display
Christaller'sk = 4 system and the number offidirent level centers is studied in
light of central place theory.
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4.2.1 Period-doubling bifurcation cascade

The equilibrium paths depicted in Fig. 7 are obtained using the computational bi-
furcation analysis for the 18 16 places for the FO and Pf models. Again the two
models display qualitatively identical behaviors; accordingly, the following argu-
ment applies to both models. We plot only the bifurcated paths branching from the
triple bifurcation points that produce the hexagonal patterns related to +hd
system (cf.§3.3.2); bifurcated paths branching at other bifurcation points, such as
points A, C, D, F, and G of multiplicity 6, need not be obtained, as it is possible to
show that the associated bifurcated patterns are not related ko-tlesystem by
group-theoretic analysis similar to the one conducted in Appendix C. The infor-
mation about the symmetries of bifurcated solutions thus is vital in the search for
thek = 4 system.

From the uniform population solution OA of this system, we found a hierarchy
of bifurcated paths:

OAB — BCDE — EFGH — HIJ (33)

branching at a series of triple bifurcation points B, E, and H.

These triple bifurcation points are those which are studied theoretically in
§3.3.2. The population distribution of these four paths are labeled, respectively,
by DG-}-(Z]_G X Zlﬁ), D6-|-(Zg X Zg), DG-.F(Z4 X Z4), and D;-i-(Zz X Zz). This is the
spatial period-doubling cascade, in which the spatial pefias doubled repeat-
edly as

T/d: 1 - 2 - 22 - 23

(t1, t2) : (1, 62) —  (201,20)  —  (2%01,2%05) —  (2%€4,2%¢0))
group : DS‘-"(ZlG X Z]_G) - DG-.i-(Zg X Zg) - DG-.i-(Z4 X Z4) - D5-.|-(Z2 X Zz)
path : OA - CD - FG - 1J

This hierarchy is in agreement with the theoretically predicted hierarchy (28) and
(29) forn = 16.

The stable parts OA, CD, FG, and IJ of these paths, which are not continu-
ous but which are existent for most values of the parametaright serve as an
economically feasible process of agglomeration. As depicted by the hexagonal
windows in Fig. 7, the agglomeration of population progresses in association with
this hierarchy of bifurcations in (33), and produces a set of nested hexagons. The
hexagonal distributions for these paths are all of type V.

The pattern for CD is Christallerk = 4 system with two-level hierarchy.

As depicted in Fig. 7(a), two neighboring first-level centers are connected by a
straight road that passes one second-level center. This configuration agrees with
Christaller’s trdfic principle fork = 4:

The trdfic principle states that the distribution of central places is most
favorable when as many important places as possible lie on dfie tra
route between two important towns, the route being as straightly and
as cheaply as possible (cf., Christaller (1966, p.74) and Dicken and
Lloyd (1990, Chapter 1)).
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4.2.2 Number of diferent level centers

We investigate the computed distributions offelient level centers in market ar-
eas in Fig. 8(a), in comparison with those predicted by central place theory in
Fig. 8(b). Although the computation for the core—periphery models and the predic-
tion by central place theory are based offietient underpinnings, we can find some
commonality.

In central place theory, the ratio of the numib&rof the first-level centers, the
numbem, of the second-level centers, and so on, is given by the following formula
(cf., the recurrence (32) fde= 4 in Remark 4.2 above):

One-level hierarchy : Nr=1, N;p=1,

Two-level hierarchy : Ny =22, Ni:N>=1:3

Three-level hierarchy : Nt =42, Ni:N>:N3=1:3:12
Four-level hierarchy : Nt =82, N;:N>:N3:Ns=1:3:12:48

(34)

in which Nt = }},_1 N; denotes the total number of places in each market area.
As portrayed in Fig. 8(b), for example, for the two-level hierarchy, the first-level
center at the center of the market area is surrounded by six second-level centers
at the borders of the market area; since each second-level center is shared by two
neighboring market areas, there are, fieet, 2 = 3 second-level centers in the
market area.

In the computed distributions in Fig. 8(a), with regard to the total nurhkenf
places in each market area for each bifurcated path, we can see a strong correlation
with central place theory as follows:

Nt | Computed results Central place theory
1 | Uniform solution OA One-level hierarchy
22 | Direct bifurcated path CD Two-level hierarchy
42 | Secondary bifurcated path FGThree-level hierarchy
8% | Tertiary bifurcated path IJ | Four-level hierarchy

The ratio of diferent level centers for the computed distributions shows agree-
ment with (34) for the uniform population solution OA with single-level hierarchy
with N; = 1, for the direct bifurcated solution CD with two-level hierarchy with

N; : N2 = 1 : 3, and for the secondary bifurcated solution FG with three-level hi-
erarchy’ with Ny : No : N3 = 1 : 3: 12. See Remark 4.3 below for the bifurcation
mechanism to produce such recurrence. Yet such agreement is not observed for the
tertiary bifurcated path 1J: we hawy : N> : N3 = 1: 3 : 60. It will be a topic for

future to investigate the commonality between agglomeration for core—periphery
models and that in central place theory so as to extend the horizon of these models.

Remark 4.3. By the period doubling bifurcation cascade, under the assumption
that first-level centers are predominantly large, we see that at the onset of each
bifurcation one-fourth of the pre-bifurcation first-level centers has increasing pop-
ulation and remains first-level centers, but three-fourths of the pre-bifurcation first-
level centers have decreasing population and become second-level centers. This

17Although six of the 12 third-level centers have slightly larger population than the other six, they
are considered to be identical herein.
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preserves the ratio of the number of first-level centers to that of the second-level
centers ad\; : N> = 1 : 3, in agreement with the ratio observed for the bifurcated
solutions OA, CD, and FG. O

4.3 Agglomeration of7 x 7 places: k = 7 system

We demonstrate the emergence of khe 7 system for @+(Z7 x Z7)-symmetric

7 x 7 places on the rhombic domain. Figure 9 depicts equilibrium paths of this
system for the FO and Pf models, particularly addressing the bifurcated solutions
branching at bifurcation points of multiplicity 12. Again the two models display
qualitatively identical behaviors; accordingly, the following argument applies to
both models. We plot only the bifurcated paths branching from the bifurcation
point B of multiplicity 12 that produce the hexagonal patterns relatekl o 7
system (cf.,§3.3.3); bifurcated paths branching at other bifurcation points, such
as the point A of multiplicity 6, need not be obtained, as it is possible to show
that the associated bifurcated patterns are not relaté&d=to7 system owing to
group-theoretic analysis similar to the one conducted in Appendix D.

At bifurcation point B with multiplicity of 12 on the path OABC (for uniform
population solution), we found a bifurcated solution BDEF of the form (26) with
(r, p3p2)-symmetry® producing the tilted hexagon studied§8.3.3. The spatial
period become3/d = V7 on the bifurcated solution BDEF, in agreement with
(27). This is the spatial period/7-times bifurcation associated with

T/d: 1 N V7
(t, t2) : _ (61, €2) — (31— o, -1+ 20)
group :  Dy+(Z7 X Z7) =(I,S p1, P2) — (r. p3p2)

path : OABC - BDEF

Each hexagonal window contains seven market areas, as portrayed in Fig. 9.
Each market area contains one first-level center surrounded by six second-level
centers with the same population. This agrees with Christaller's administrative
principle fork = 7 system:

The ideal of such a spatial community has the nucleus as the capi-
tal (a central place of a higher rank), around it, a wreath of satellite

places of lesser importance, and toward the edge of the region a thin-
ning population density—and even uninhabited areas (cf., Christaller
(1966, p.77)). Lower-order centers are entirely within the hexagon of

the higher-order center (cf., Dicken and Lloyd, (1990, Chapter 1)).

The ratio of the numbéX; of the first-level centers to the numkey of the second-
level centers is equal td; : N, = 1 : 6. This shows a possible extensibility of the
formula (32) of central place theory ko= 7.

BWe have(r, p2p,, p;rp3) = (1, pipy) for n = 7 by p;*p3 = p§p3 = (p3p2)%.
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5 Conclusion

For a two-dimensional system modeled by twéetent core—periphery models,
self-organization of hexagonal population distributions for Christaller’s three sys-
tems in central place theory is predicted by group-theoretic bifurcation theory, and
its existence is verified by computational bifurcation analysis. It demonstrates in-
herent model-independent capability of the core—periphery models to express those
systems provided with pertinent spatial platforms. Moreover, it confirms the pre-
diction by Krugman (1996; P91) of the emergence of a system of hexagonal mar-
ket areas in two dimensions, thereby paving the way for cross-fertilization between
central place theory and new economic geography.

In central place theory, the three systems are explained based on mafket, tra
and administrative principles. In contrast, the present analysis using the core—
periphery models based on microeconomic underpinning engenders a hierarchy of
different levels of centers without resort to these principles. The results obtained
using central place theory must be reconsidered in light of economic geographical
modeling to extend the horizon of core—periphery models.

Bifurcations are highlighted as a catalyst to break uniformity to engender the
patterns. Group-theoretic bifurcation theory has displayed its usefulness to pre-
dict possible agglomeration patterns among a system of places in two dimensions,
often associated with successive elongation of spatial periods. Information about
symmetries of bifurcated solutiongfered by this theory is important in choosing
a bifurcation point that produces hexagonal distributions of interest. We computed
three hexagons corresponding to the three smallest possible market areas in the
sense of Bsch (1954); it will be a topic for future to address other solutions ex-
pressing larger hexagons in view of pre-existing results of group-theoretic bifurca-
tion theory.
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A Appendix: Core-Periphery models

Details of the pair of core—periphery models (FO and Pf models) in Section 3 are
presented. After presenting basic assumptions, we describe the short-run equilib-
rium and define the long-run equilibrium and its stability.

A.1 Basic Assumptions

Preferenced) over the M- and A-sector goods are identical across individuals,
where M signifies manufacture and A stands for agriculture. The utility of an
individual in place is

[FOmodety uEcM,ct)=uinCM+@-pInCh? (O<p<1l), (Ala)
[Pfmodel]  UECM,ct)=uincM+ch (u > 0), (A.1b)

whereyu is the constant expenditure share on industrial varieﬁésis the con-
sumption of the A-sector product in plat;andci'\" is the manufacturing aggregate
in placei and is defined as

n o/(c-1)
c E[Z | q,-«k)“‘”“dk] ,
j

whereq;i(K) is the consumption in placeof a varietyk e [0, n;] produced in
placej, n;j is the continuum range of varieties produced in plaagften called the
number of available varieties, amd > 1 is the constant elasticity of substitution
between any two varieties. The budget constraint is given as

i+ ) [ putoaak=. (A2)
]

wherepiA is the price of A-sector goods in placepji(K) is the price of a varietk
in placei produced in place andY; is the income of an individual in plage The
incomes (wages) of the skilled worker and the unskilled worker are represented,
respectively, by, andvviL. We denote b the number of places, and therefore
andj run through 1 tcK.

An individual in placei maximizes (A.1) subject to (A.2). This yields the
following demand functions:

v Y prey M
[FO model] Cf* = (1—M)E, cM = ﬂ;i, d;i (k) = MW (A.33)
A_ Y Y -
[Pfmodel] Ci* = E -pu, G = ,UE, gji(k) = ,UW, (A.3b)

1%We take logarithms of the Forslid and Ottaviano (2003) type (i.e., Cobb-Douglas-type) utility
function to facilitate the analysis. This transformation has no influence on the properties of the
model.
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wherep; denotes the price index of theflidirentiated product in pladewhich is

N 1/(1-0)
pi=[§j] | pji(k)l-f’dk] . (A4)

Since the total income and population in plaagew; hi+wiL andh;+1, respectively,
we have the total demar@@;i (k) in placei for a varietyk produced in placg:

oy

[FO model] Qji(k) = u (wihi +wk), (A.5a)
pji (K)”
proy

[Pfmodel]  Q;(K) = pji/zk)‘f (hi + 1). (A.5b)

The A-sector is perfectly competitive and produces homogeneous goods under
constant returns to scale technology, which requires one unit of unskilled labor
in order to produce one unit of output. For simplicity, we assume that the A-
sector goods are transported freely between places and that they are chosen as the
numeraire. These assumptions mean that, in equilibrium, the wage of an unskilled
workerw!- is equal to the price of A-sector goods in all places (.= w- = 1
foreachi=1,...,K).

The M-sector output is produced under increasing returns to scale technol-
ogy and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input re-
quirement ofe units of skilled labor and a marginal input requiremengBainits
of unskilled labor. Given the fixed input requirementthe skilled labor market
clearing implies that, in equilibrium, the number of firms in plaég determined
by ni = hij/e. An M-sector firm located in placechooses§ij(k) | j = 1,...,K)
that maximizes its profit

() = > pi(9Qi; () - (@wi +Bx(K),

J

wherex;(K) is the total supply. The transportation costs for M-sector goods are
assumed to take the iceberg foffiThat is, for each unit of M-sector goods trans-
ported from place to placej # i, only a fraction J¢i; < 1 arrives. Consequently,
the total supplyx;(K) is given as

Xi(K) = Z $ij Qij (K). (A.6)
j

To put it concretely, we define the transport apgtbetween the two placesnd
as

¢ij = exp@Dij), (A7)

wherer is the transport parameter abg} represents the shortest distance between
places andj.

20This is a standard term in economics; see, for example, Samuelson (1952).
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Since we have a continuum of firms, each firm is negligible in the sense that
its action has no impact on the market (i.e., the price indices). Therefore, the first-
order condition for profit maximization gives

i 9 = gy (A8)

This expression implies that the price of the M-sector product does not depend on
varietyk, so thatQj; (k) andx;(k) do not depend ok. Therefore, we describe these
variables without the argumekt Substituting (A.8) into (A.4), we have the price
index

1/(1-0)

: (A.9)

of |1

whered;i = ¢.1i“7 is a spatial discounting factor between plagasdi; from (A.5)
and (A.9),d;i is obtained asj Qji)/(pi Qii), which means thad; is the ratio of
total expenditure in placefor each M-sector product produced in placto the
expenditure for a domestic product.

A.2  Short-run Equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial
distribution f = (h;) € RX) is assumed to be given. The short-run equilibrium
conditions consist of the M-sector goods market clearing condition and the zero-
profit condition because of the free entry and exit of firms. The former condition
can be written as (A.6). The latter condition requires that the operating profit of a
firm is absorbed entirely by the wage bill of its skilled workers:

Wi(h,T):C_];{Z pijQij(h,T)—ﬁXi(h,T)}- (A.10)
j

Substituting (A.5), (A.6), (A.8), and (A.9) into (A.10), we have the short-run equi-
librium wage:

[FO model] wi(h,7) = £ Z Y (h )(wj(h .)h) + 1), (A.11a)
u
[Pfmodel] wi(h.7) = = Z,: Y (h’T) (h; + 1), (A.11b)

whereAj(h,7) = X dkjhe denotes the market size of the M-sector in place
Consequentlyd;j /Aj(h, 7) defines the market share in plag®f each M-sector
product produced in plade

The indirect utilityvi(h, 7) is obtained by substituting (A.3), (A.9), and (A.11)
into (A.1):21

[FO model] vi(h,7) = Si(h,7) + In[wi(h, 7)], (A.12a)
[Pfmodel]  vi(h,7) = Si(h,7) + wi(h, 7), (A.12b)

2ye ignore the constant terms, which have no influence on the results below.
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where
Si(h,7) = p(o — 1)t InAi(h, 7).

For convenience in conducting the following analysis, we express the indirect util-
ity function v(h, 7) in vector form, using the spatial discounting matbx= (d;),
as

[FO model] v(h,7) = S(h, 7) + In[w(h, 7)], (A.13a)
w(h,7) = (ﬁr [1 = W(h, )] 2w (h, 1), (A.13b)
[Pf model] v(h,7) = S(h, ) + w(h, 1), (A.13c)
w(h.7) = £ [w(hn) + wh(h. 7). (A.13d)

where
S(th,7) = [S1(h,7),....Sk(h, DT, In[w] = [INwe, InWa, ..., Inwi] 7,
| is a unit matrix, andV(h, 7), W), wb) andM are defined as
= gMdiag[h], wH = Mh, w® = M1, (A.143)
M= DAY A=diag[D"h], 1=[1,...,1]". (A.14b)

A.3 Adjustment Process, Long-run Equilibrium and Stability

In the long run, the skilled workers are inter-regionally mobile. They are assumed
to be heterogeneous in their preferences for location choice. That is, the indirect
utility for an individual sin placei is expressed as

VO(h,7) = vi(h,7) + €.

In this equationgi(s), which is distributed continuously across individuals, denotes
the utility representing the idiosyncratic taste for residential location,

We present the dynamics of the migration of the skilled workers to define the
long-run equilibrium and its stability with respect to small perturbations (i.e., local
stability). We assume that at each time petidtie opportunity for skilled workers
to migrate emerges according to an independent Poisson process with arrival rate
A. That is, for each time intervat,|t + dt), a fractionAdt of skilled workers have
the opportunity to migrate. Given an opportunity at timeach worker chooses
the place that provides the highest indirect util'rﬁ)(h,r), which depends on the
current distributiorh = h(t). The fraction of skilled workers who choose pldce
under distributiorh is P;(v(h), 7), where

Pi(v,7) = Privi® > W9, vj ],
Therefore, we have
hi(t + dt) = (1 — Adt)h;(t) + AdtHP;(v(h(t)), 7).

By normalizing the unit of time so that= 1, we obtain the following adjustment
process:

h(t) = F(h(t),7) = HP(V(h(t)),7) — h(t), (A.15)
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whereh(t) denotes the time derivative ¢i(t), and P(v(h), ) = (P;(v(h), 7)). For
the specific functional form d®; (v, 7), we use the logit choice function:

explpvi]
X exppvil’

wheref € (0, o) is the parameter denoting the inverse of variance of the idiosyn-
cratic tastes. This implies the assumption that the distributioré%)":{ are Gum-
bel distributions, which are identical and independent across places (e.g., McFad-
den, 1974; Anderson et al., 1992). The adjustment process described by (A.15)
and (A.16) is the logit dynamics, which has been studied in evolutionary game the-
ory (e.g., Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2007; Sandholm,
2010).

Next, we define the long-run equilibrium and its stability. The long-run equi-
librium is a stationary point of the adjustment process of (A.15).

Pi(v,7) = (A.16)

Definition A.1. The long-run equilibrium is defined as the distributibh that
satisfies

F(h*,7) = HP((h"),7) — h* = 0. (A.17)

The heterogeneous worker case includes the conventional homogeneous worker
case. Indeed, wheth — oo, the condition given in (A.17) reduces to that for the
homogeneous worker case:

V¥ —vi(h*,7) =0 if h'>0,
V¥ —vi(h*,7) >0 if hi=0,
whereV* denotes the equilibrium utility.

We restrict our concern to the neighborhoodbdfand define the stability df*
in the sense of asymptotic stability, the precise definition of which is the following.

Definition A.2. A long-run equilibriumh* is asymptotically stablé, for any e >
0, there is a neighborhodd(h*) of h* such that, for everiig € N(h*), the solution
h(t) of (A.15) with an initial valueh(0) = hg satisfieg|h(t) — h*|| < € for any time
t > 0, and lim- h(t) = h*. It is unstableif equilibrium h* is not asymptotically
stable.

In dynamic system theoryy* is asymptotically stable if all the eigenvalues of
the Jacobian matrixF(h, 7) = (0Fi(h, 7)/0h;) of the adjustment process of (A.15)
have negative real parts; otherwibg is unstable (see, for example, Hirsch and

Smale, 1974). Therefore, the asymptotic stability can be assessed by examining
the following Jacobian matrix:

VE(h,7) = HI(v(h), 7)Vv(h, 7) - I, (A.18)

whereJ(v, 7) andVv(h, ) areK-by-K matrices, thei( j) entries of which are, re-
spectivelydP;i(v, )/dv; andovi(h, t)/dh;. For the logit choice function of (A.16),
it is easily verified that the former Jacobian matiify, 7) is expressed as

J(v, 7) = 6{diag[P(v, 7)] — P(v,7)P(v,7)"}. (A.19)
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The latter Jacobian matr&v(h, 7) is given as

[FO model] Vv(h,7) = VS(h, ) + diagiw(h, 7)]"*vw(h, 7), (A.20a)
vw(h, 1) = g [ = W(h, 7)) v (h, 7) + vw (h, 7)},
(A.20b)

[Pfmodel] Vv(h,7) = VS(h, 1) + ’é {vw(h, 7) + v (h, 1)}, (A.20c)

where the matrice8S(h, 7), VWM (h, 1), vwH)(h, ) andvwY (h, 7) are obtained
as

vS(h,7) = u(o — 1) *M7, (A.21)
vWw(h, 7) = Mdiagfw(h, 7)] - Mdiagjw(h, 7)]diag[h]M T, (A.22)
vw(h,7) = M — Mdiagh]MT, (A.23)
w(h,7) = —-MMT. (A.24)
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B Bifurcated solutions at group-theoretic bifurcation point
of multiplicity 2 for Dg+(Zn X Zn)

We derive bifurcated solutions at a group-theoretic bifurcation point of multiplicity
2 for De+(Zn X Zy) that are given in Subsection 3.3. We assumerthsaidivisible
by 3.

B.1 Irreducible representations

A two-dimensional irreducible representation of the gréaip= (r, s, p1, p2) =
De+(Zn X Zy) is given by (16) as

1 0 10 cos /3 -sin2t/3
T =( 0 -1 ) T :( 01 ) TP =T(P) =| §inor/3  cosz/3 )
(B.1)
The action given in (B.1) on two-dimensional vectors, say, {(v2), can be
expressed for complex variables: w; + iw, as

r: Z 7 (B.2)
S: zZH Z (B.3)
PL.P2: ZP wz (B.4)

wherew = exp(i2r/3).

B.2 Equivariance of bifurcation equation

The bifurcation equation for the group-theoretic bifurcation point of multiplicity 2
is a two-dimensional equation ovRr. This equation can be expressed as a two-
dimensional complex-valued equation in complex variables as

Fzz7)=F(zz1)=0, (B.5)

where €,z,7) = (0,0,0) is assumed to correspond to the bifurcation point. We
often omitr in the subsequent derivation.

Since the group B+(Zn x Zy) is generated by the four elements, p1, p2, the
equivariance of the bifurcation equation to the groug-Z, x Zy) is identical to
the equivariance to the action of these four elements. Therefore, the equivariance
condition (14) of the bifurcation equation (B.5) can be written as

r: F(z2) = F(z 2, (B.6)
S: F(z2 = F(z 2, (B.7)
PL. P20 wF(z2) = F(wz w2). (B.8)
We expand- as
Fzzn)=) > AwnZ?. (B.9)
a=0 b=0

The equivariance condition (B.6) with respectrtgives Agp = Aap, i.€., Agp are
real. ForAy, # 0 in (B.9), condition (B.8) gives

a-b-1=3p, peZ.
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Using this relation in (B.9), we obtain the bifurcation equation (B.5) as
Fzz21) = ) Awia(t)772°
a=0

7 [Par1apal®) 2 P2% 4 Mg 1,35 (1) 225 = 0,

p=1a=0
(B.10)

Therein,Aa;1.a(7), Aar1+3pa(7), andAq a_143p (7) are real and generically distinct
from zero (because no reason exists for the disappearance of these terms).
Becausez z 1) = (0, 0,0) corresponds to the double critical point, we have

Ag(0)=0, A(0)=0, Aoi(0)=0. (B.11)

Therefore, we have
Aio(1) = At (B.12)

for some constam, which is generically nonzero.

B.3 Bifurcated solutions

The equation (B.10) has the trivial solutipe: 0 since each term in (B.10) vanishes
if z=2z = 0. The nontrivial solution of (B.10) is determined frdfiz = 0. If we
put

Ep.0.7) = F(o exp/(ole()a,x,r;z;()p(—le),r) ( _ g)
using the polar coordinates= w; + iw, = p exp(¥) (o = 0), then we have
ReF) = D Aaia(m)p®
a=0
£ 2 Aaisapa@p™ P + Ao 1iap (1) P& P cos(3p0),
p=1a=0
Im(lf) = Z Z [Aa+1+3p,a(7')p2a+3p - Aa,a—1+3p (7) p2(a—l)+3p 1sin(3péo).

p=1a=0

Then the nontrivial solution of (B.10) is determined from Rp& Im(F) = 0.
Equation ImE) = 0 is satisfied by

a:—n%l, (k=1,...,6).

for which sin(3p) = sin(-p(k — 1)7) = 0 and
cos(3) = cosEp(k — 1)r) = (~1)PED), (B.13)
By (B.13), Ref) = O is given as

Z Agi1a(1)p%
a=0

+ Z Z(—l)p(k_l) [Aas143pa(P)p? 3P + Aga113p (1) p?@ D3P] = 0,(B.14)
p=1a=0
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By A1o(7) ~ At in (B.12), the leading part of this equation is
AT + (=1)Ag2(0)p = O,

whereAp2(0) # 0 (generically). Consequently, a solution of the fgpm= O(r)
exists, which we set

_ | At/A02(0), (k=1,3,5),
P=\ —At/A(0),  (k=24,86).

From the actions (B.2)—(B.4), we can determine the symmetry of the solutions
z=pfork=1andz=-pfork=4as

(2 = (r,S P2p2, PrP2)s

which simplifies to(r, s, p§p2> for n = 3. Since other solutions are obtainable from
zasT(py)zor T(pf)z, the symmetry of the other solutions is

pL-2@-ph PPE@ - Pl
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C Bifurcated solutions at group-theoretic bifurcation point
of multiplicity 3 for Dg+(Zn X Zp)

We derive bifurcated solutions at a group-theoretic bifurcation point of multiplicity
3 for De+(Zn X Zy) that are given in Subsection 3.3. We assumerthaidivisible
by 2.

C.1 lIrreducible representations

A three-dimensional irreducible representaffoaf the groupG = (r, s, p1, p2) =
De+(Zn x Zn) is given by (21) and (22) as

010 100
T(r)=[0 0 1], T(s):[O 0 1]; (C.1)
100 010
1 0 0 -1 0 O
T(p1)=[0 -1 o], T(p2)=[ 01 0]. (C.2)
0 0 -1 00 -1

For this irreducible representation, the actio®of (r, s, p1, p2) onw = (Wy, Wo, W3) "
is given as

r. Wy W, W2 = W3, W3 = Wy,
S: Wi+ Wq, Wo — W3, W3 = Wo,
P1: W1 Wy, W > —Wp, W3 > —W3,
P2 Wit —Wp, W2 Wy, W3 = —W3.

C.2 Equivariance of bifurcation equation

The bifurcation equation for the group-theoretic bifurcation point of multiplicity 3
is a three-dimensional equation oWr This equation can be expressed as

F1(wi, Wo, Wa, 7) = Fa(Wi, Wo, W3, T) = F3(W1, Wo, W3, 7) = 0. (C.3)

It is assumed that, wo, ws, 1) = (0, 0,0, 0) corresponds to the triple bifurcation
point. We often omitr in the subsequent derivation.

Since the group B+(Zn x Zy) is generated by the four elementss, p1, p2, the
equivariance of the bifurcation equation to the groug-(Z., x Zp) is identical to
the equivariance to the action of these four elements. Therefore, the equivariance
condition (14) of the bifurcation equation (C.3) can be written as

Fi(wi, Wz, W3) = Fi(wg, —Wa, —w3), (C.4)
—Fa(wi, w2, w3) = Fp(-wy, Wy, —W3), (C.5)
Fa(wi, wo,wg) = Fp(wi, ws, Wa), (C.6)
Fa(wi, W, W) = Fp(wa, ws, W), (C.7)
Fa(wi, Wz, W3) = Fa(ws, wi, Wa). (C.8)

22This irreducible representation corresponds to that denoted Hsidkeda and Murota (2010).
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We expand-; as
Fa(we, Wo, Ws, 7) = > 3" " A )W W, wa. (C.9)
a=0 b=0 c=0

For the nonzero terms in (C.9), conditions (C.4) and (C.5) give
( l)b+C ( 1)a+c— 1,

which means thata( b, ¢) = (odd eveneven) or (even, odd, odd). Therefore,

reduces to
Z Z Z AandT) WP, wis

a:odd>1 b:evere0 cieverr0

+ Z Z Z Aabc(T) Wi W2

aever=0 b:odd>1 c:odd>1

2a,,,.2b,,, 2C
Wy Z Z Z Aza1.2b.2¢(T) W1 W2 W3

a=0 b=0 c=0

+ WoWs3 Z Z Z Aga 2b+1.20+1(7) W12 Pw3 (C.10)

a=0 b=0 c=0

F1(w, W, wa, 7)

The condition (C.6) gives

Aabd7) = Aach(7).
The expressions in (C.7) and (C.8) with the formd=gfin (C.10) giveF, and

F3 as
2a,,, 2by,, 2
Wo Z Z Z A2ar1,2b,2¢(T) Wo w3y =

a=0 b=0 c=0

+ WaWyq Z Z Z Agazb+1.20+1(7) W2?PwWa?Pwy %, (C.11)
a=0 b=0 c=0

W3 Z Z Z Poar1.262¢(7) WaPwy 2w, %

a=0 b=0 c=0

2., 2
+ WiWo Z Z Z Agaab+1.20+1(7) Wa2Pw1 PPwp?. (C.12)
a=0 b=0 c=0

Fa(w1, W, W, 7)

Fa(Wi, Wa, Wa, 7)

Becausews, W, w3, 7) = (0,0, 0, 0) corresponds to the triple critical point and
the Jacobian matrix
(OFi/ow; |1, j=1,2,3)

at this point is equal té\1(0)l3, we have
A100(0) = 0.

Therefore, we have
A1o0(7) ~ At (C.13)

for some constam, which is generically nonzero.
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From (C.10), (C.11), and (C.12), the system of bifurcation equation is ex-
pressed as

2a,,,.2b,,, 2C
Fi(wy, Wo,Ws,7) = Wy Z Z Z Aoai1,20,2¢(T) W1 =W W3
a=0 b=0 c=0

2a,,, 2b.,, 2
+ W3 Z Z Z Aza 2b+1,2¢+1(T) W1 PWo w3 = 0, (C.14)
a=0 b=0 c=0

Wo Z Z Z Aoar1.20.20(7) W2 222wy
a=0 b=0 c=0
2a,,, 2b,, 2¢ _
+ WaWg Z Z Z Aga 2b+1.2¢+1(T) W2 Pw3™w, ¢ = 0, (C.15)
a=0 b=0 c=0
W3 Z Z Z Aas1.26,26(7) W22y 2w,

a=0 b=0 c=0

+ WiWo Z Z Z Agazbi1.20+1(T) Wa2wy P, = 0. (C.16)
a=0 b=0 c=0

Fa(wq, Wo, Wa, 7)

Fa(w1, W, Wa, 7)

C.3 Bifurcated solutions

For the bifurcation equations (C.14)—(C.16) above, we seek solutiongwy]tk:
[wo| = |wsg|, which have(p%, p%)— or higher symmetry by (C.2). Those bifurcated
solutions are relevant for our purpose since they possess symmetry corresponding
to Christaller'sk = 4 system.

With |wy| = [wp| = |wjg|, the bifurcation equations in (C.14)—(C.16) become
identical and read as

Z Z Z Agas1.2b.20(7) Wy 2@P+0)

a=0 b=0 c=0

+ alwy| Z Z Z Poa2bi1.20+1(7) W 2P = O, (C.17)

a=0 b=0 c=0
wherea = signfviwows). By (C.13), the leading part of (C.17) is
At + aPo11(0)wy| = O,

whereAp11(0) # 0 (generically). Consequently, a solution of the fonm= O(r)
to the equation (C.17) exists, which we set

D1(7) fora =1,
W1 =
Dy(1) fora =-1.

Four bifurcated paths—eight half-branches—exist, which are associated with

(W1, W, W)

= (@1(7), ©1(7), 1(7)),
(=@1(7), =@1(7), P1(7)), (=P1(7), P1(7), =P1(7)), (P1(7), ~P1(7), —Da(7)),
(=02(7), ~D2(7), ~P2(7)),
(@2(7), @2(7), —D2(7)), (D2(7), —D2(7), D2(7)), (—D2(7), 2(7), D2(7)).

For symmetry of the solutions, we have

(W) = (r, s, p2, p3)
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for w = +(®i(7), ®j(r), ®i(7)) " (i = 1,2). Since other solutions are obtainable from
wasT(p1)w, T(p2)w, or T(p1p2)w, the symmetry of the other solutions is obtained
as

pr-X(W) - prt, P2 Z(W) - pyt, pupz- Z(W) - (pp2)

By starting with the assumptidi,| = |ws| = |wg|, we have not excluded the
possibility of solutions of other types witliywows # O.

42



D Bifurcated solutions at group-theoretic bifurcation point
of multiplicity 12 for Dg+(Zn X Zn)
We derive bifurcated solutions at a group-theoretic bifurcation point of multiplicity

12 for Dg+(Zn X Zn) that are given in Subsection 3.3.

D.1 lIrreducible representations

The group B+(Zn x Zp), with n > 6, has 12-dimensional irreducible representa-
tions. We can designate them by {) with

1<¢<k-1, 2k+¢<n-1, (D.1)

where the irreducible representatidg{) is defined as

S |
S |
S |
TRO(r) = s , T,O(s) = i , (D.2)
S I
S |
RX Rf
RL” R—k—t’
Rkt RX
T®0(py) = = TEO(py) = =
R R
Rkt RC
(D.3)
with

sin2t/n  cosZr/n 0 -1

The action givenin (D.2) and (D.3) on 12-dimensional vectors, say; (- , Wi2),
can be expressed for complex variat#es Woj_1 +iwpj (j =1,...,6) as

=(00527/n —sin2zr/n) S:(l O)

z Z3 z Z
V) 2y V) Zs
z3 23 z3 Z
2 Zs5 4 Al
Z5 Z5 i3 2
T N , S AN , (D.4)
Al Z3 V4] 2
2} z 23 Z5
Z3 Vi) Z3 Z
Z Z5 Z 2y
Zs5 Zs Z5 Z
Zs Z Zs Z3




1 w7 V4] w
V) w’ Yiy) Z a)_k_€ Vi)
z3 w iz Z3 W23
7 WKz Z4 wklz
Zs ;ui Zs Zs CUI;ZS
S R I R T I R L)
Z (/.)_[ Z Z wk+€ 7
2—3 wk+€ Z 2—3 w—k 2—3
2—4 w—k Z z wk+f Z
% w's Z w s
z cUk+t’ z z w—f Z

wherew = exp(i2r/n).

D.2 Equivariance of bifurcation equation

We consider a 12-dimensional bifurcation equation associated with the irreducible
representationk( ¢) of the group R+(Zn x Z,). Our main concern lies in the case
wheren is a multiple of 7, i.e.n = 7mfor an integem > 1, and the irreducible
representation isk(¢) = (2m,m). We treat generah and §, ¢) to the greatest
degree possible.

The bifurcation equation for the group-theoretic bifurcation point of multiplic-
ity 12 is a 12-dimensional equation oM&r This equation can be expressed as a
6-dimensional complex-valued equation in complex variables as

F(z,...,2,21,...,28,7) = Fi(&, ..., 26,22, ...,26,7) = O, i=1,...,6,
(D.6)
where
(z1,....%,20,...,25,7) = (0,...,0)

is assumed to correspond to the bifurcation point. We often onmtthe subse-
quent derivation.

Since the group B+(Zn X Zy) is generated by the four elementss, p1, p2, the
equivariance of the bifurcation equation to the group-(Z., x Zp) is identical to
the equivariance to the action of these four elements. Therefore, the equivariance
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condition of the bifurcation equation (D.6) can be written as

r: Fs(z,- -
Fi(za, -
Fa(za, - -
Fs(za, - - -
Fo(za, - - -
Pt %)

F3(21, .
F1(21, .
FZ(Zl, ce
F5(Zl’ ce
F6(Zla ce
F4(Z]_, e

s: Fiw(z, -

Fi(z, - ,26) = Fis3(za, 25, 26, 21, 22, 73, 74, 75, Z5, 71, 22, Z3),

Fisa(z1, -+ . Z6) = Fi(za, 25, 25, 21, 22, 73, 74, 75, Z5, 71, 22, Z3),
Fi(z, - . 28) = Fiva(za, 25, 2, 21, 22, 23, %, 75, 75, 71, 22, Z3),
i=123;
P wijiFi(z, -, %) = Fil(wjiz, ..., wjeZs, Wj1Z, - - - , Wj626),
j=12i=1,...,6,
where
(@11, .., w16) = (W, 0, 0™, WX W W),
(@21, - -, w2g) = (', W™ W 0™ WK ).

We expand; as

Fi(z, - . Z)

PIDININIININININININI

a=0 b=0 ¢=0 d=0 e=0 g=0 h=0 i=0 j=0 s=0 t=0 u=0

AsbedehiistT) A BB ERE"% B %% 2.

responds to the bifurcation point of multiplicity 12, we have

A000000000000) = O,
A1000000000060) = A0100000000060) = - - = A00000000000§0)-

The equivariance conditions (D.7)—(D.9) with respeat tove

Fi(z, - . 7Z)
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from which we see thaf\g,.1y are real. TherF,, ---, Fg are obtained from the
equivariance conditions (D.7)—(D.18) and (D.19) with respectands as

Fo(za, - .26) = Fi(22.23,21,26,24,25, 25, 23,71, 25, 21, Z5),  (D.24)
Fa(ze, - .2) = Fizs 21,20,25,25, 24,73, 71,22, 75, 25, 24),  (D.25)

Fa(ze, - .Z) = Fu(2,25.26,20,22.23, 74,75, 26,721, 22, Z3),  (D.26)
Fs(z1,- - .26) = Fi(z6.24,25,20,23,21,26, 24,75, 22, 73, 71),  (D.27)

FG(Z].’ Y z) = F]_(ZS, Z5,24,23, 21, 22, 25, 25, 24, 23, 21, ZZ)- (D28)

For the index 4, b, ...,t,u) of a nonvanishing cdBcient Agy..wu, the equivari-
ance conditions (D.20) with respectpg and p, yield

k@a-h)y+éb-i)—(k+)(c—j)+k(d-9) +t(e-t)—(k+)(g—u)

=k+np, p ez, (D.29)
f@-h)y—(k+O)b-i)+kc—j)—(k+)(d-s)+ke-t)+(g-u)
=(+nq, q €Z. (D.30)

In what follows, we assume thatis a multiple of 7, i.e.n = 7mfor an integer
m > 1, and the irreducible representationksé) = (2m, m). The condition (D.1)
is met by k, £) = (2m,m). Then (D.29) and (D.30) above reduce to

2@-h)+(b-i)-3Cc-j)+2d-9 +(e-t)-3(@-u=2+7p, p €z,
(D.31)

(@-h-3b-N)+2c-j)-3d-9+2e-t)+(g-w=1+7, d €Z,
(D.32)

which are equivalent to

(D.31)x3+(D.32)x2: (@-h)—-3b-i)+2c-j)=1+7p, peZ,(D.33)
(D.31)-(D.32)x 2: d-9-3€-t)+2(@-u)=79, qeZ.(D.34)

Accordingly, we define

P
Q

where “” denotes the inner product of vectors. It is noteworthy that

{(a,b,c,hi,j)](1,-3,2)-(a-h,b—i,c—j)=1 mod %, (D.35)
{(d,e,g,st,u)|(1,-3,2)- (d-se-t,g—uwy=0 mod %,(D.36)

(0,0,0,0,0,0) ¢ P. (D.37)
Use of (D.33) and (D.34) in (D.21) yields
Fi(z, - ,%) = F(z, -+, %), (D.38)
in which

Flz, - .7Z) = Z Z AabedeghijstT) B BE4ER L% 2°%'7",  (D.39)
P Q
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where the summation is taken over allf, c, h,i, j) € Pand @d,e,g,s,t,u) € Q.
Use of (D.38) in (D.24)—(D.28) then gives the bifurcation equation

Fi(zs,--+.%) = F(&1,22.23,2,%,%,21.%,%, %, %,%) = 0, (D.40)
Foz, . %) = F(z.23.21,2%,24.2,%,%3,71,%.,2%,%) = 0, (D.41)
Fs(z, .%) = F(za21,2.2%,%,24,%,2,2%.,%.,%,2) = 0, (D.42)
Faz, %) = F(z.2.%,21,2.,23,7,%,%,2.2%,%) = 0, (D.43)

Fs(zi,--+.%) = F(Z6,24.%5,2,2,21,%.%,%5,2,%,2) = 0, (D.44)
Fo(z,---.%) = F(z5.26.24.23,21, 22,75, 25,72, 23, 21, 22) = 0.  (D.45)

D.3 Bifurcated solutions

For the bifurcation equation (D.40)—(D.45) above, we show the presence of bifur-
cated solutions such that

|zl = |2l = |z3l, za=25=125=0. (D.46)

Such solutions havép3 p,, p;1p3)- or higher symmetry by (D.5). As their conju-
gate solutions, there also exist bifurcated solutions with

271=2=2=0, |zl=|zl=]|zl (D.47)

which have(p;p3, pZp,*)- or higher symmetry. Although we do not exclude the
possibility of other bifurcated solutions, those bifurcated solutions afffecigunt
for our purpose since they possess the symmetry that corresponds to Christaller’s
k = 7 system.

We first search for solutions of the form| = |z| = |z3landzs = z5s =25 = 0
in (D.46). Such solutions satisty, = F5 = Fg = 0 since, by (D.37), we have
(a,b,c, hi,j) # (0,0,0,0,0,0) in the expression (D.39) fd¥, which implies, by
(D.43)—(D.45), that each term &4, F5, andFg containsz, zs, zs, Zs, Zs, Or Zg.

To find the solutions foF; = F»> = F3 = 0, we set

zj =pexp()). (j=12.3).
Then from (D.40)—(D.42) with (D.39), we obtain

Fi = ZAabcoomijooo(T)Z?Zngz_lhz_ziij
P

Z Aabomijooo()p* M+ expii[(61, 62, 63) - (@a- h,b—i,c - j)],
P

Fo Z Aaboocnijood N BAZE "2 77
P

Z Aabomijooo()p* M+ expiif(62, 63, 61) - (@- h,b—i,c - j)],
P

Z Aaboomijooo V) BEE%" 7 2!
P

Z Aabocnijooo( D)™+l expi[(gs, 61, 62) - (@a— h,b—i,c - j)].
P

Fs
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If we choose
k
wb@ﬁgzﬁ}araa, (k=0,1,...,6), (D.48)
then we have

(915 92, 93)(a_h7 b_|7 C_J) = ZﬂTk(l’ _39 2)(a_ha b_i’ C_J) = 271-7k = 91 mOd ZT

by (D.35). Therefore,

atb+c+h+i+j-1

F1 = pexp(1) Z Aaboocnijooo(T)e
(a,b,ch,i,j)eP

For F»> we note

(-3)x (1,-3,2) = (-3,9,-6) = (-3,2,1) mod 7

to obtain
(02,63,61) - (@—h,b—1i,c—j)
= 2ﬂ7|(x(—3,2,1)-(a—h,b—i,C— j)
= 27T7k x (-3)x[(1,-3,2)- (a—h,b—i,c—j)]
= 2ﬂ7k X (-3)=62 mod 2r.
Therefore,

F2 = pexp(ib2) Z AachO(hijOOO(T)pa+b+C+h+i+j_l,
(ab,chii,j)eP

Similarly, for F3 we note

2% (1,-3,2)=(2,-6,4)= (2,1,-3) mod 7

to obtain
(63,61,62) - (@—h,b—i,c—j)
= 2ﬂTK><(2,1,—3)-(a—h,b—i,c— i)
= 2ﬂ7k x2x[(1,-3,2)-(@-hb-i,c— )]
EZJTTKXZ:% mod 2r.
Hence N
F3 = pexp(b3) Z AadeO(hijooo(T)pa+b+C+h+'+J_l.
(ab,c,h,i,j)eP
Therefore,

pexp(0) ~ pexp(6s)  pexpBa) A

Aabgomijooo(7)p eI
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and the related bifurcated solution curve is determined from

Aabgomijooo(T)p* eI~ = o, (D.49)
(@b.Chij)eP

The leading terms of (D.49) are given as

A1000000000060)7 + Ao2000000000(0)0 = O, (D.50)

where A’ 40000000060) Means the derivative &000000000067) With respect tor,
evaluated atr = 0. The expression (D.50) can be derived from the following
observations forg, b, c, h,i, j) € P (cf. (D.33), (D.35)):

a+b+c+h+i+j>1 Y(a,b,c, h,i, ) eP,
a+b+c+h+i+j=1 < (ab,ch,i,j)=(0000,0),
a+b+c+h+i+j=2 < (ab,ch,i,j)=(020,000),

combined with (D.23). Both ,,0000000060) @NdAo200000000000) are generically
distinct from zero. Therefore, the equation (D.50) has a solution of thedctrar
for somec # 0, which shows the generic existence of bifurcated solutions for all
(61,02, 03) in (D.48).

To reveal the symmetry of the bifurcated solutions, we first consider the case
of (61,62,603) = (0,0,0) in (D.48). Therey = 2 = 723 = p € R, whereazy = z5 =
zs = 0. This solution, denoted?, is invariant to the action afby (D.2). Then the
isotropy subgroufz(Z?) representing the symmetry of this solution contains
By (D.5) with (k, £) = (2m, m) andn = 7m, this solution has additional symmetry
of the form p‘l’pg if and only if (a, B) satisfies

20+p3=0, a-38=0, -3a+28=0 mod 7
which condition is equivalent to

((l’,ﬁ) = p(3’ 1) + Q(—l, 2)7 p.ge Z.

This shows(2?) 2 (p3py, p;1pd). Ittherefore follows thaE(Z?) 2 (r, p3py, prtp2),
where it can be verified that the inclusion is in fact equality, i.e.,

2(Z9) =<1, pip2. Py P3)- (D.51)

Let ZY denote the solution correspondingktin (D.48), where 1< k < 6. We
can see from
(1,-3,2)= (2,1,-3)— (L, -3,2) mod 7

and (D.5) that is obtained frome® by the transformation withgg p; ), which
we designate ag® = (pip,1)* - Z%. Then the isotropy subgroup af? is a
conjugate subgroup of that 2P, i.e.,

(@) = (pupH) - (D) - ()7~

This means, in particular, that the solutiaf§ for k > 1 are fundamentally (or
geometrically) equivalent t8?.
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A bifurcated solution of the form of (D.47), withy = zo = zz = 0 and|zy| =
5| = |z, can be obtained from® by transformingd®) with s. The isotropy group
representing the symmetry of this solutisnZ? is obtained as

S-(r, Pop2, Prips) - st = (r 7L p2pst, prips2) = (r pipst pipdy.  (D.52)

It is noted, however, such conjugate solutions should be identified from a geomet-
rical point of view.
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