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Oscillation Pattern Analysis

for Gene Regulatory Networks

with Negative Cyclic Feedback

Yutaka HORI∗, and Shinji HARA†

October 5th, 2010

Abstract

Negative cyclic feedback has been considered to be a core circuit to
produce sustained oscillations in gene regulatory networks. In this pa-
per, we investigate quantitative properties of the periodic oscillations
observed in cyclic gene regulatory networks with negative feedback,
and we provide analytic estimates of frequency, phase and amplitude.
We employ the harmonic balance method, which is one of the frequency
domain techniques to examine nonlinear oscillatory behaviors by ap-
proximating with bias and first order harmonic components. We then
solve the harmonic balance equations by utilizing the structure of gene
expression dynamics. The presented estimates are analytically written
only in terms of essential biochemical parameters proposed in authors’
previous work, and hence they can be easily applied to large-scale cyclic
gene regulatory networks involving any number of genes. Our results
are demonstrated with illustrative numerical examples, and some novel
biological insights are presented.

1 INTRODUCTION

Oscillatory gene expression in gene regulatory networks has been receiving
much attention in recent years, since it has begun to be understood that the
periodic oscillations of the transcription proteins regulate rhythmic bodily
functions, such as circadian rhythms [1]. Recently, it has been revealed that
the period of the oscillations ranges from minutes to hours depending on the
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role of the transcription proteins [2], and that the phase of the oscillations
also plays an important role in producing the circadian clock (see [1] and
references therein). Thus, it is one of the interesting and essential problems
to unravel the quantitative properties of the periodic oscillations observed
in gene regulatory networks. Specifically, it is desirable to develop a unified
analysis scheme that can investigate the relation between the biochemical
parameters of gene regulatory networks and the oscillation profiles such as
frequency, phase and amplitude of the periodic oscillations.

Although the network motifs of the existing gene regulatory networks
in living organisms are complicated, it is known that a simple loop motif
illustrated in Fig. 1, which we refer to as cyclic feedback, can also show the
periodic oscillations of protein concentrations. In particular, it is interesting
that recent theoretical study proved that the cyclic feedback structure plays
a key role to produce sustained oscillations in gene regulatory networks, and
the other interactions increase its robustness [3]. Therefore, better under-
standing of dynamical properties of cyclic gene regulatory networks becomes
the first key step to reveal the whole picture of large-scale complicated gene
regulatory networks.

One of the pioneering experimental studies of cyclic gene regulatory net-
works was performed in Elowitz and Leibler [4], where three repressor genes
were artificially implemented in Escherichia Coli as shown in Fig. 1 (center)
so that the resulting gene regulatory network exhibits periodic oscillations.
Inspired by this work, Samad et al. [5] numerically examined oscillation fre-
quency of the protein levels in the cyclic gene regulatory networks. The idea
was based on Rapp [6], where a harmonic balance technique was applied to
the Goodwin oscillator [7]. However, the phase of the oscillations, which is
one of important factors in gene regulatory networks associated with circa-
dian rhythms, was not argued in these works. Although qualitative relation
of the phase of the oscillations and the regulatory network pattern was stud-
ied in [8], it is difficult to obtain general knowledge of oscillation profiles and
biological insight from the numerical simulations presented in these previous
works.

Hence, the objective of this paper is to systematically unravel the quanti-
tative relation between the biochemical parameters and the profiles of oscil-
lations in large-scale cyclic gene regulatory networks. Specifically, we obtain
analytic estimates of frequency, phase and amplitude of periodic oscillations
based on the harmonic balance method [9], which is one of the classical
frequency domain techniques to examine nonlinear oscillatory behaviors by
approximating the waveform with bias and first order harmonic components.
In particular, we use the idea that the above estimation problem can be re-
duced to an eigenvalue/eigenvector problem [10], and we show that it can
be greatly simplified by using the dynamical properties of the cyclic gene
regulatory networks. The developed estimates have distinctive features that
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Figure 1: Gene regulatory networks with negative cyclic feedback. The sym-
bols → and ⊣ represent activation and repression of transcription, respec-
tively. (Left) activator-repressor motif, (Center) successive repressor motif,
or Repressilator motif [4], (Right) generic negative cyclic motif considered
in this paper.

(i) they can be applied to gene regulatory networks consisting any number
of genes, and (ii) they are expressed in analytic form. Thus, we can easily
gain quantitative insights on the oscillation profiles.

This paper is organized as follows. In Section 2, the dynamical model
of the cyclic gene regulatory networks is introduced. Section 3 formulates a
framework for estimating the oscillation profiles by using multivariable har-
monic balance. In Section 4, the oscillation profiles are analytically derived,
and we will demonstrate our main results with an illustrative example and
give novel biological insights based on the main results in Section 5. Section
6 is devoted to discuss the accuracy of our estimation. Finally, Section 7
concludes this paper.

2 Model description and Existence of Periodic os-

cillations

2.1 Modeling of cyclic gene regulatory networks

The gene regulatory networks where each protein activates or represses an-
other transcription in a cyclic way as illustrated in Fig. 1, are called cyclic
gene regulatory networks. The dynamics of mRNA and protein concentra-
tions in the cyclic gene regulatory networks consisting of N genes is modeled
as, for i = 1, 2, · · · , N ,

ṙi(t) = −airi(t) + βifi(pi−1(t)),
ṗi(t) = ciri(t) − bipi(t),

(1)

where ri ∈ R+(:= {x ∈ R | x ≥ 0}) and pi ∈ R+ denote the normalized
concentrations of the i-th mRNA and its corresponding protein synthesized
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in the i-th gene, respectively [4, 5] 1. Let p0(t) := pN (t) and r0(t) := rN (t)
for the sake of notational simplification. Positive constants ai, bi, ci and βi

represent the followings: ai and bi denote the degradation rates of the i-
th mRNA and protein, respectively; ci and βi denote the translation and
transcription rates, respectively. A monotonic function fi(·) : R+ → R+ rep-
resents either activation or repression of the transcription: it is defined for
repression as fi(0) = 1 and fi(∞) = 0 (monotonically decreasing), whereas
for activation as fi(0) = 0 and fi(∞) = 1 (monotonically increasing). In
practical applications, the following Hill function is often introduced to de-
scribe biochemical characterization:

fi(pi−1) =















1

1+pν
i−1

(=:FR(pi−1)) (for repression)

pν
i−1

1+pν
i−1

(=:FA(pi−1)) (for activation)
(2)

where ν(≥ 1) ∈ R+ is the Hill coefficient, which represents a degree of
cooperative binding, and determines the nonlinearity of the system [11].

Suppose a1 = a2 = · · · = aN and b1 = b2 = · · · = bN in (1). Then, the
overall dynamics of gene regulatory network systems defined by (1) can be
formulated as shown in Fig. 2(Left), where

h(s) :=
1

(Tas + 1)(Tbs + 1)
, Ta :=

1

a
, Tb :=

1

b
, (3)

and f is a static vector nonlinearity function defined by

f := [R2
1f1(·), R2

2f2(·), · · · , R2
NfN (·)]T (4)

with

Ri :=

√
ciβi√
ab

. (i = 1, 2, · · · , N). (5)

Note that Ri is a dimensionless physical quantity that expresses the ratio
between geometric means of degradation and production rates, and has been
proposed as one of the dominant parameters which determine the existence
of periodic oscillations [12].

2.2 Existence of periodic oscillations

Let δ be defined as

δ :=

(

df1

dp

)

·
(

df2

dp

)

· · ·
(

dfN

dp

)

. (6)

1
ri and pi are normalized by activation/repression coefficient in the Hill function, and

dimensionless quantities.
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Figure 2: (Left) Block diagram of negative cyclic gene regulatory networks,
(Right) Linearized system around an equilibrium

It has been shown that almost all solutions of (1) asymptotically converge
to one of equilibria when δ > 0 [5, 13], while the protein concentrations
exhibit oscillatory behaviors as well as convergence when δ < 0. Therefore,
we focus on the class of cyclic gene regulatory networks that satisfy the
following assumption in this paper.

Assumption 1. For given fi(·) (i = 1, 2, · · · , N), δ < 0.

This assumption implies that there is an odd number of repressive interac-
tions (dfi/dp < 0) between genes, and such feedback structure is referred to
as negative cyclic feedback in this paper.

Next, we briefly review the graphical and analytic criteria for the ex-
istence of periodic oscillations of protein concentrations in cyclic gene reg-
ulatory networks [12]. Let G(s) denote a linearized system of (1) at an
equilibrium state. It is clear from Fig. 2(Left) that G(s) := (φ(s)I − M)−1

as depicted in Fig. 2(Right), where

φ(s) :=
1

h(s)
,M := cyc(R2

1ζ1, R
2
2ζ2, · · ·R2

NζN ) ∈ R
N×N (7)

, and ζi := f ′
i(p

∗
i−1

) is a linearized gain of fi(·) at the equilibrium state
p∗i (i = 1, 2, · · · , N). cyc(·) is defined as

cyc(z1, z2, · · · , zN ) :=

















0 0 0 · · · z1

z2 0 0
. . . 0

0 z3 0
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 zN 0

















. (8)

It has been shown [12] that the equilibrium state of the system (1) is unique,
and the existence of periodic oscillations is guaranteed if the unique equilib-
rium state is locally unstable, because Poincaré-Bendixson type theorem [14]
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Figure 3: (Left) Time plot of oscillatory protein concentrations, (Right)
graphical criterion for the existence of periodic oscillations [12].

holds for the cyclic gene regulatory network system. The following propo-
sition gives a graphical criterion for the existence of periodic oscillations in
the cyclic gene regulatory networks.

Proposition 1. [12] Consider the cyclic gene regulatory network systems
modeled by (1), and the linear system G(s). Then, the system has periodic
oscillations of protein concentrations pi(t) (i = 1, 2, · · · , N) if at least one
of the eigenvalues of M lies inside the domain Ω+ defined by

Ω+ := φ(C+) = {λ ∈ C | ∃s ∈ C+ s.t. φ(s) = λ}. (9)

An example of the region Ω+ and the eigenvalues of M is depicted in Fig.
3(Right). The above theorem allows us to check the existence of periodic
oscillations easily even if the degree of the linearized gene regulatory network
systems G(s) is large, because the region Ω+ is determined from the simple
second-order polynomial φ(s) = (Tas+1)(Tbs+1) and the size of the matrix
M is relatively small compared to the degree of the overall system G(s). Note
that the above graphical condition is necessary and sufficient for instability
of the linearized system G(s) (see [15] for details).

Moreover, analytic criteria for the existence of periodic oscillations have
been obtained based on the simple graphical criterion. In particular, it has
been shown [12] that

Q :=

√
TaTb

(Ta + Tb)/2
(10)

is also another dominant physical quantities that determine the existence
of periodic oscillations. It is a dimensionless parameter expressing the ratio
between arithmetic and geometric means of mRNA and protein degradation
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rates, and satisfies 0 < Q ≤ 1. Thus, it can be a measure of difference
between degradation time constants of mRNA and protein, because it gets
close to unity as Ta and Tb get closer.

In summary, the existence of periodic oscillations in cyclic gene regula-
tory networks is determined by the parameters (N, ν,Q,Rℓ) (ℓ = 1, 2, · · · , N).
Therefore, these parameters have been considered as essential physical quan-
tities for the existence of periodic oscillations [12].

In the following, we assume the existence of periodic oscillations and
investigate oscillation profiles of protein levels in large-scale negative cyclic
gene regulatory networks. The problem considered in this paper can be
summarized as follows.

Problem. For large-scale negative cyclic gene regulatory networks modeled
by (1), derive analytic estimates of frequency, phase and amplitude of oscil-
latory protein concentrations pi(t) (i = 1, 2, · · · , N). Then, find biological
insight into the relation between biochemical parameters and the oscillation
profiles.

3 Oscillation Pattern analysis based on Multivari-

able Harmonic Balance

In this section, we provide a framework of estimating the oscillation profiles.
We first derive quasi-linear systems of (1) by approximating the oscillatory
waveform of protein levels pi(t) and the nonlinearity fi(·) (i = 1, 2, · · · , N) of
the system, then analyze the oscillation profile based on the approximation.

Let the waveform of pi(t) be approximated by

pi(t) ≃ xi + yi sin(̟t + ϕi) (i = 1, 2, · · · , N), (11)

where xi > 0 and yi > 0 denote the bias and the amplitude of the first
order harmonic components of the i-th protein, respectively, and ϕi is the
relative phase of the i-th protein. Throughout this paper, we define ϕ1 := 0
without loss of generality. Then, the nonlinear function fi(pi−1(t)) can be
approximated by its describing functions [9]

ηi(xi−1, yi−1) :=
R2

i

2πxi−1

∫ π

−π
fi (xi−1+yi−1 sin(t)) dt. (12)

and

ξi(xi−1, yi−1) :=
R2

i

πyi−1

∫ π

−π
fi (xi−1+yi−1 sin(t)) sin(t)dt (13)

The describing functions ηi(xi−1, yi−1) and ξi(xi−1, yi−1) represent the gains
of R2

i fi(·) for the bias and the harmonic component, respectively, when the
input is the biased sinusoidal of xi−1+yi−1 sin(̟t).
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Consequently, the closed loop equations that x and y are expected to
satisfy for the quasi-linear system are obtained as

(I − h(0)K0(x, |y|)) x = 0,
(I − h(j̟)K1(x, |y|)) y = 0,

(14)

where K0(x, |y|) := cyc(η1, η2, · · · , ηN ), K1(x, |y|) := cyc(ξ1, ξ2, · · · , ξN ),
x := [x1, x2, · · · , xN ]T ∈ R

N
+ and y := [y1e

jϕ1, y2e
jϕ2, · · · , yNejϕN ]T ∈ C

N .
|y| is defined as an elementwise absolute value, thus |y| = [y1, y2, · · · , yN ]T ∈
R

N
+ . Therefore, the oscillation profile analysis reduces to the problem of

finding 3N variables (̟,x1, x2, · · · , xN , y1, y2, · · · , yN , ϕ2, ϕ3, · · · , ϕN ), or
(̟,x,y), satisfying (14). Note that the first and second equations in (14)
are referred to as bias and harmonic balance equations, respectively.

Let x
∗ and y

∗ denote the constant vectors that simultaneously satisfy
the bias and harmonic balance equations in (14). Define the linear systems
H0(s) and H1(s) as

H•(s) := (φ(s)I − K•)
−1 (• = 0, 1), (15)

where K• is the constant matrices defined by K• := K•(x
∗, |y∗|) (• = 0, 1).

The systems H•(s) (• = 0, 1) are obtained by replacing the nonlinearity
fi(·) with the constant gain computed from the describing functions. Thus,
the associated linear system H•(s) contains some information on the os-
cillations of the original nonlinear system. According to Iwasaki [10], the
predicted oscillation (̟,x∗,y∗) is expected stable if both H0(s) and H1(s)
are marginally stable with the poles of s = 0 and s = ±j̟ on the imagi-
nary axis, and the rest in the open left half plane, respectively. Therefore,
the problem of oscillation profile analysis addressed in Section 2.2 can be
reduced to the following proposition.

Proposition 2. Consider the gene regulatory networks modeled by (1).
Suppose there exist (̟,x,y) satisfying (14). Then, the oscillatory protein
concentrations pi(t) are expected at frequency ̟, with phase ϕi, bias xi and
amplitude yi, i.e.

pi(t) ≃ xi + yi sin(̟t + ϕi) (16)

for i = 1, 2, · · · , N , where ̟,ϕi, xi and yi satisfy both of the following con-
ditions: (i) (14) is satisfied, and (ii) H•(s) (• = 0, 1) are marginally stable.

It should be noted that existence of the solution (̟,x,y) which satisfies (14)
is plausible when the waveform of the oscillations is sufficiently similar to
the biased sinusoidal of (11). For the sake of analysis, we hereafter assume
the existence of a solution in the bias and harmonic balance equations.

Assumption 2. There exist ̟,x and y which satisfy both bias and har-
monic balance equations in (14) simultaneously.
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Figure 4: Graphical interpretation of the harmonic balance equation: (Left)
φ(j̟) = λ1 and φ(j̟) = λN , and the marginal stability condition in
Proposition 2 is satisfied. (Right) φ(j̟) = λ2 and φ(j̟) = λN−1, but
the marginal stability condition is not satisfied.

It has been pointed out in Iwasaki [10] that the problem of solving the
bias and harmonic balance equations is essentially reduced to an eigen-
value/eigenvector problem. The idea is as follows. First, we have

(φ(0)I −K0(x, |y|))x = 0,
(φ(j̟)I −K1(x, |y|))y = 0,

(17)

by dividing the bias and harmonic balance equations by h(0) and h(j̟), re-
spectively. Then, φ(0) and φ(j̟) can be regarded as eigenvalues, and x and
y as eigenvectors of the matrices K0 and K1, respectively. Thus, the problem
is reduced to compute the eigenvalue/eigenvector of the matrices K0 and K1.
However, the above eigenvalue/eigenvector problem is not straightforward,
because K0 and K1 actually depend on x and y. Nevertheless, this view is
helpful in our analysis.

In the next section, we will derive analytic forms of estimating the oscil-
lation profiles based on the above observation.

4 Main result

In this section, we solve the bias and the harmonic balance equations, and
analytically derive profiles of the oscillatory protein concentrations in terms
of the biological parameters. It is assumed in this section that the system (1)
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has an oscillatory solution, and the bias and the harmonic balance equations
have the solution (̟,x,y) that satisfies both (i) and (ii) in Proposition 2.

4.1 Estimation of frequency

We here derive an analytic expression of the oscillation frequency ̟ based
on a graphical interpretation of (17). It follows from (17) that ̟ satisfies
φ(j̟) = λi for some λi (i = 1, 2, · · · , N), which is the eigenvalue of the
matrix K1. This means that the mapping φ(jω) over ω ∈ (−∞,∞) passes
one of the eigenvalues of K1 at the estimated frequency ̟. Using the cyclic
structure of K1, we see that the eigenvalues of K1 becomes

λi :=

∣

∣

∣

∣

∣

N
∏

k=1

ξ∗k

∣

∣

∣

∣

∣

1
N

ej 2i−1
N

π (i = 1, 2, · · · , N) (18)

with ξ∗k := ξk(x
∗
k−1

, y∗k−1
). It is clear from (18) that the eigenvalues are

uniformly located on a circle with a center at the origin and radius of
∏N

k=1
|ξ∗k|1/N as shown in Fig. 4.

Since the solution (x∗,y∗) of (14) is not unique in general and the eigen-
values of K1 may vary depending on (x∗,y∗), there can be multiple can-
didates of oscillation profile (̟,x∗,y∗), which satisfies the bias/harmonic
balance equations, as illustrated in Fig. 4. The most likely frequency of oscil-
lations are then obtained by the marginal stability condition in Proposition
2. In particular, the marginal stability of H•(s) can be easily determined
by the following lemma (see Appendix A for the proof).

Lemma 1. The system H•(s) (• = 0, 1) defined by (15) has at least one
pole on the imaginary axis, and the rest in the open left half plane if and only
if at least one eigenvalue of K• lies on the curve {φ(jω) | ω ∈ R}, and the rest
lies inside the open set Ωc

+, where Ωc
+ := {γ ∈ C | φ(s) 6= γ for ∀ s ∈ C+}.

An example is shown in Fig. 4, where the left figure implies marginal
stability of H1(s), but the right does not. From these arguments, we have the
following analytic estimate of frequency of periodic oscillations in negative
cyclic gene regulatory networks (see Appendix B for the rigorous proof).

Theorem 1. Consider the cyclic gene regulatory networks modeled by (1).
Then, the frequency ̟ of oscillatory protein concentrations is expected as

̟ =
−1 +

√

1 + Q2 tan2( π
N )

Q tan( π
N )

1

TG
, (19)

where TG :=
√

TaTb.

This theorem gives an expected frequency of oscillations in cyclic gene
regulatory networks composed of any number of genes. Since the estimated
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frequency is written only in terms of the kinetic parameters of the system,
namely N,Q and TG, we can easily compute it for large-scale cyclic gene
regulatory networks, and we reveal the relation between the parameters
and the frequency. It should be noted that this result is consistent with the
statement presented in [5] that ̟ is in inverse proportion to the degradation
time constants. It is, however, fair to note that actual oscillation frequency
may somewhat different from the above estimate, because our analysis is
based on the approximation of (11). Discussion on the accuracy of the
estimated values can be found in Section 6.

4.2 Estimation of phase

Next, we consider the phase (ϕ2, ϕ3, · · · , ϕN ) of the oscillations, and derive
analytic estimates by computing the eigenvector y in (17). Note again that
ϕ1 := 0 without loss of generality.

Let us first consider a simple case. Suppose

c1 = c2 = · · · = cN , β1 = β2 = · · · = βN (20)

and all the interactions are repressive, i.e., f1(·) = f2(·) = · · · = fN (·) =
FR(·). Then, the dynamical model in (1) becomes symmetric in that the
dynamics is not affected by replacing the gene’s index i. It implies that
x1 = x2 = · · · = xN and y1 = y2 = y3 = · · · = yN , and only the phase
of the proteins is different between each other. Thus, the matrices K• (• =
0, 1) belong to a class of circulant matrices, since ξ1(xN , yN ) = ξ2(x1, y1) =
· · · = ξN (xN−1, yN−1) holds. Therefore, K1 is diagonalized with the discrete
Fourier transform matrix

F :=
1√
N



















1 1 1 · · · 1

1 e
−2jπ

N e
−4jπ

N · · · e
−2j(N−1)π

N

1 e
−4jπ

N e
−8jπ

N · · · e
−4j(N−1)π

N

...
...

...
. . .

...

1 e
−2j(N−1)π

N e
−4j(N−1)π

N · · · e
−2j(N−1)2π

N



















, (21)

which is unitary [16]. In particular, the corresponding eigenvector to λ1(=
φ(j̟)) in (18) is obtained as

v := [1, e
j(N−1)π

N , e
2j(N−1)π

N ,· · ·, e
j(N−1)2π

N ]T ∈C
N . (22)

Note that the expected frequency ̟ necessarily satisfies φ(j̟) = λi with
i = 1 (see the proof of Theorem 1 in Appendix B). Hence, the expected
phase is obtained as follows.

Proposition 3. Consider the cyclic gene regulatory networks modeled by
(1). Suppose (20) holds and all the interactions between genes are repressive,
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i.e., f1(·) = f2(·) = · · · = fN (·) = FR(·). Then, the phase ϕi is expected as

ϕi =
(i − 1)(N − 1)π

N
(i = 2, 3, · · · , N). (23)

It follows from (23) that ϕi+1 −ϕi = (1− 1/N)π, and we see that the phase
of oscillations is expected to uniformly distribute over 2π.

Next, we consider an analytic estimate of phase of oscillations for the
asymmetric case where (20) is not assumed. Since the matrix K1 is no longer
circulant in this case, the eigenvector which corresponds to λ1(= φ(j̟)) is
different from v.

Then, our approach is to find the similarity transformation matrix which
reduces K1 to a circulant matrix, and obtain the phasor y by using the
transformation matrix and v. The following lemma is a key to obtain our
analytic result.

Lemma 2. Consider a constant matrix K1 := K1(x
∗, |y∗|) ∈ R

N×N . Then,
there exists a diagonal matrix D := diag(d1, d2, · · · , dN ) ∈ C

N×N that diag-
onalizes K1 via

F−1D−1K1DF = diag(λ1, λ2, · · · , λN ), (24)

where λi (i = 1, 2, · · · , N) is defined by (18) and F is the discrete Fourier
transform matrix defined by (21). In particular, the diagonal matrix D can
be determined as

di =

∏i
k=1

ξ∗k
∏N

k=1
|ξ∗k|

i−1
N

e
−jiπ

N (i = 1, 2, · · · , N). (25)

From this lemma, we see that K1 can be transformed to a circulant
matrix via similarity transformation D−1K1D, and thus, the corresponding
eigenvector y

∗ to λ1(= φ(j̟)) is obtained as y
∗ = Dv. This observation

immediately leads to the following analytic estimate of phase for large-scale
negative cyclic gene regulatory networks.

Theorem 2. Consider the cyclic gene regulatory networks modeled by (1).
Then, the phase shift (ϕi+1 − ϕi) between the i + 1-th and the i-th protein
is expected as

ϕi+1 − ϕi =

(

Z − 1

N

)

π (26)

for i = 1, 2, · · · , N , where

Z =

{

1 if fi+1(·) = FR(·)
0 if fi+1(·) = FA(·)

. (27)

12



This theorem provides expected phase differences between oscillatory
proteins. In particular, it is analytically written only in terms of biochem-
ical parameters, and it can be applied to cyclic gene regulatory networks
consisting of any number of genes. Thus, we can easily obtain biological
insights as will be shown in Section 5.2. Note that the symmetric case
considered in Proposition 3 corresponds to Z = 1 for all i = 1, 2, · · · , N .

4.3 Estimation of bias and amplitude

We next estimate bias and amplitude of oscillations by finding x and |y|
which satisfy both of the bias and harmonic balance equations given by
(17).

Recall that the trajectory of the mapping φ(jω) passes one of the eigen-
values of K1 at the estimated frequency ̟, and the eigenvalues are dis-
tributed on a circle as was seen in (18). Thus, it follows that the solution
x
∗ and y

∗ of both bias and harmonic balance equations satisfy

∣

∣

∣

∣

∣

N
∏

i=1

ξi(xi−1, yi−1)

∣

∣

∣

∣

∣

1
N

= |φ(j̟)|. (28)

Note that the estimated frequency ̟ is independently determined regardless
of x

∗ and y
∗, because x

∗ and y
∗ exclusively affect the radius of the circle

where the eigenvalues of K1 are located as shown in (18). Thus, the right-
hand side of (28) is independent on xi and yi (i = 1, 2, · · · , N), and is
determined by (19).

Regarding the bias balance equation, we see from the similar argument
to Section 4.1 that one of the eigenvalues of K0(x, |y|) should be located
at φ(0)(= 1) when the bias balance equation is satisfied. In particular,
the eigenvalues µi (i = 1, 2, · · · , N) of K0(= K0(x

∗, |y∗|)) are computed as

µi = (
∏N

i=1
ηi(xi−1, yi−1))

1
N e

2jiπ

N , and are distributed on a circle. Thus, the
equation which x

∗ and y
∗ should satisfy is obtained as µN = φ(0), i.e.,

(

N
∏

i=1

ηi(xi−1, yi−1)

)

1
N

= 1. (29)

Consequently, we have the following proposition.

Proposition 4. Consider the gene regulatory networks modeled by (1).
Then, the expected bias x and amplitude |y| of periodic oscillations of os-
cillatory protein concentrations pi(t) (i = 1, 2, · · · , N) is expected to satisfy
both (28) and (29) simultaneously.

This proposition gives the equations that the expected bias and amplitude
of oscillations should satisfy. Therefore, the amplitude of oscillations may be

13



obtained by numerically searching the solution of (28) and (29). However,
no analytic solution has been obtained, and to get an analytic solution is one
of our future works. Also, uniqueness of the solution has not been proven for
(28) and (29). Thus, further study is required to obtain a reliable estimate
of amplitude.

5 Numerical examples and Biological insight

In this section, we first show the distinctive features of our results with an
illustrative numerical example, and then, present biological insights obtained
from Theorem 1 and 2.

5.1 Numerical examples

Here, we examine the gene regulatory network where N = 6 genes are in-
volved as depicted in Fig. 5(Left). It means that f1(·) = f4(·) = f6(·) =
FR(·) and f2(·) = f3(·) = f5(·) = FA(·) in (1). Suppose the kinetic parame-
ters of gene expression are given by

a1 = a2 = · · · = a6 = 1.0, b1 = b2 = · · · = b6 = 3.0

c1 = c3 = c4 = c6 = 3.2, c2 = 2.8, c5 = 3.7

β1 = β4 = β5 = 2.1, β2 = β3 = 2.9, β6 = 3.1,

and ν = 2.8. The existence of periodic oscillations can be confirmed by
the graphical criterion presented in Proposition 1 , since two eigenvalues lie
inside the region Ω+ defined by (9).

Now, we investigate frequency of the periodic oscillations. The values of
Q and TG can be easily obtained as Q = 0.866 and TG = 0.577 from the
above parameters. Therefore, the expected frequency is obtained from (19)
as

(Estimated frequency ̟) = 0.409 [rad/s]. (30)

The actual frquency is computed as

(Actual frequency) = 0.428 [rad/s] (31)

by numerical simulation of (1) shown in Fig. 6. Thus, it is concluded
that (19) approximates the actual frequency of the periodic oscillations with
relative error of −4.44%.

We next examine the phase shift between protein levels. It follows from
Theorem 2 that the phase is determined from the number of genes, N ,
involved in gene regulatory networks and the activation-repression patterns
of gene expression in Fig. 5(Left). The table below shows the estimated and

14
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Figure 5: (Left) network motif of the considered negative cyclic gene reg-
ulatory network, (Right) graphical criterion for the existence of periodic
oscillations (Proposition 1).
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Figure 6: Time plot of oscillatory protein concentrations ((
∏

6

i=1
R2

i )
1/6 =

2.67).

actual phase of protein concentrations, where phase of p1(t) is set to zero,
i.e., ϕ1 = 0.

Protein p2 p3 p4 p5 p6

Estimated [deg] 330.0 300.0 90.0 60.0 210.0
Actual [deg] 333.1 303.7 93.1 63.7 213.2

The table indicates that the actual phase shift is approximated by (26) with
high precision.

Note that our estimation can also be easily applied to the existing syn-
thetic biological oscillator named Repressilator, which was implemented in
Escherichia coli with a cyclic network motif as illustrated in Fig. 1 (Center)
[4].
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Figure 7: Estimated and actual frequency of protein concentrations.

5.2 Biological insight

In this section, we present quantitative biological insights into the relation
between the biochemical parameters and the oscillation profile of protein
levels in negative cyclic gene regulatory networks. In particular, we show
that biological insights are easily obtained from Theorems 1 and 2, because
the derived estimates are analytically written in terms of the biochemical
parameters in (1).

First, we focus on the frequency of periodic oscillations. In (19), 1/TG

has the physical dimension of inverse of time, and

−1 +
√

1 + Q2 tan2( π
N )

Q tan( π
N )

(32)

is dimensionless. Thus, the angular frequency of oscillations is expected as
(32) when time is normalized by the geometric means of mRNA and protein
time constants TG =

√
TaTb.

In addition, (32) implies that N , the number of genes involved in the
cyclic gene regulatory networks, and Q, the ratio between arithmetic and
geometric means of mRNA and protein levels defined in (10), are the two
dominant biological quantities that determine the frequency of oscillatory
protein levels. Specifically, we can predict the nature of periodic oscillations
by (32) as follows.

(A) As Q gets larger, the frequency of oscillations is expected to become
larger.

16



-1 1

-1

1

Im

Re

Ω +

: eigenvalue

p
1

p
3

p
5

p
6

p
4

p
2

Figure 8: (Left) network motif of the considered negative cyclic gene reg-
ulatory network, (Right) graphical criterion for the existence of periodic
oscillations (Proposition 1). Four eigenvalues lie inside the region Ω+.

(B) As the number of genes N gets larger, the frequency of oscillations is
expected to become smaller.

In fact, the numerical simulation result in Fig. 7, where estimated and
actual frequency of oscillations are plotted for N = 3, 7 and 11 genes with
TG = 1, is consistent with the above statement. Note that Q defined by
(10) satisfies 0 < Q ≤ 1, and the statement (A) above means that the
frequency of oscillations is expected to become large when the degradation
time constants of mRNA and protein, or Ta and Tb, are close to each other.
Thus, from a synthetic biological viewpoint, it may be possible to obtain a
desired frequency of oscillations by arranging the DNA sequence so that the
resulting mRNA and protein have prescribed degradation rates.

Regarding the phase shift of oscillations between proteins, we see from
Theorem 2 that the kinetic parameters in (1) are less important, but rather
the network motif of activation and repression is dominant. It can be sum-
marized as follows.

(C) The phase shift of oscillations is expected −π/N (phase lag) when
transcription is activated, and 1 − π/N (phase lead) when repressed.

This observation may help generate an oscillation pattern in negative cyclic
gene regulatory networks by genetic engineering.

6 Discussions: Accuracy of Estimation

Since the estimated oscillation profiles in our theorems are obtained by the
approximation of (11), there may be estimation errors. In this section, we
discuss the accuracy of our estimation, and give a criterion to measure the
accuracy of the estimated values.
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Figure 9: Time plot of oscillatory protein concentrations ((
∏
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i )
1/6 =

9.87).

We first show an example where our results show relatively large errors.
Consider the cyclic gene regulatory network depicted in Fig. 8(Left), which
is the same network motif as the one in Section 5.1. Suppose all the param-
eters except ci and βi (i = 1, 2, · · · , N) are identical to the ones in Section
5.1. ci and βi are given as c1 = c3 = c5 = 6.3, c2 = 5.8, c4 = c6 = 5.5
and β1 = β5 = 3.9, β2 = β3 = β4 = 5.1, β7 = 7.6. Then, the estimated
frequency of periodic oscillations in this cyclic gene regulatory network is
obtained from (19) as 0.409[rad/s], and the actual frequency is obtained by
numerical simulation as 0.353 [rad/s]. The relative error is 15.9%, and the
estimated period of oscillations have relatively large error compared to the
example in Section 5.1.

On the other hand, the estimated and actual phase of oscillations are
obtained as follows.

Protein p2 p3 p4 p5 p6

Estimated [deg] 330.0 300.0 90.0 60.0 210.0
Actual [deg] 333.7 301.3 89.0 60.7 206.3

The authors have observed by many numerical simulations that phase esti-
mates are relatively reliable for a large range of parameters.

Since we have assumed (11) in our analysis, our estimates can show large
errors when the actual waveform of protein levels deviate from a biased sinu-
soidal function of (11). It has been observed by numerical simulations that
as the value of (

∏N
i R2

i )
1/N gets larger, waveform of protein levels deviates

from the biased sinusoidal curve, and the estimation tends to give unreliable
values (see Fig. 6 and 9). Note that Ri (i = 1, 2, · · · , N) is defined in (5),
and is one of the dominant biological quantities for determining the existence
of periodic oscillations in cyclic gene regulatory networks. The above obser-
vation can be explained as follows. As (

∏N
i=1

R2
i )

1/N gets larger, the system
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tends to be more unstable, because (
∏N

i=1
R2

i )
1/N is a part of the feedback

gain. This means that flow around the unique equilibrium state becomes
fast , and reaches saturation limit in a short time when (

∏N
i=1

R2
i )

1/N is
large. Therefore, we obtain rectangular-like waveform as illustrated in Fig.
9 when (

∏N
i=1

R2
i )

1/N is large.

Based on the above observation, we here present a rough idea of an ac-
curacy criterion for our estimated values. Recall that the graphical criterion
of Proposition 1 is equivalent to the necessary and sufficient condition for
instability of the unique equilibrium state. In particular, the region Ω+ in
Fig. 9 corresponds to the right half of the complex plane, and thus, we
can conclude that the more the eigenvalues of M lies inside Ω+, the more
unstable the linearized system G(s) becomes. Therefore, we can summarize
the criterion as follows. Consider the graphical condition for the existence
of periodic oscillations of Proposition 1. Then, the expected frequency ̟ in
Theorem 1 is more likely to be accurate when there are only two eigenvalues
inside the region Ω+. In fact, the numerical example in Section 5.1 satis-
fies the above criterion as illustrated in Fig. 6, and has given a relatively
accurate estimation of frequency.

7 Conclusion

We have investigated oscillation profiles of protein levels in large-scale gene
regulatory networks with negative cyclic feedback. First, we have formu-
lated the estimation problem of frequency, phase, bias and amplitude by
using the idea of multivariable harmonic balance [10]. Then, expected fre-
quency and phase of periodic oscillations have been derived by solving the
harmonic balance equations. In particular, these estimates have the follow-
ing features: (i) they can be applied to large-scale cyclic gene regulatory
networks composed of any number of genes. (ii) they are analytically writ-
ten only in terms of biochemical parameters, and thus, the relation between
the parameters and oscillation profiles can be easily obtained. In fact, we
have given several biological insights in Section 6. Finally, the accuracy
of our estimation has been discussed, and the accuracy criterion has been
presented.
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tone cyclic feedback systems,” Journal of Dynamics and Differential Equa-
tions, vol. 2, no. 4, pp. 367–421, 1990.

[15] S. Hara, T. Hayakawa, and H. Sugata, “LTI systems with generalized frequency
variables: A unified framework for homogeneous multi-agent dynamical sys-
tems,” SICE Journal of Control, Measurement and System Integration, vol. 2,
no. 5, pp. 299–306, 2009.

[16] P. J. Davis, Circulant Matrices. John Wiley and Sons, 1979.

20



A Proof of Lemma 1

It should be first noted that H•(s) belongs to a class of linear systems with a
generalized frequency variable proposed in [15]. The lemma can be obtained
by almost the same proof as Proposition 5.1 in [15].

Let the imaginary poles of H•(s) be defined by

I := {jω | |φ(jω)I − K•| = 0}. (33)

It follows that H•(s) has the imaginary poles I and the rest in the open left
half plane, if and only if |φ(s)I−K•| 6= 0 for all s ∈ C+\I and |φ(s)I−K•| =
0 for all s ∈ I. This is also equivalent to φ(s) 6= λ for all s ∈ C+\I and
all λ ∈ spec(K•), and φ(s) = λ for all s ∈ I and some λ ∈ spec(K•). This
immediately concludes Lemma 1.

B Proof of Theorem 1

We consider the condition that at least one eigenvalue of K• lies on the
curve C := {φ(jω) | ω ∈ R}, and the rest lies inside Ωc

+. This implies the
conditions (i) and (ii) in Proposition 2 hold at the frequency ̟, where the
eigenvalue lies on the curve C.

It follows from the definition that the gain |φ(jω)| and the phase arg(φ(jω))
monotonically increase with respect to ω, which are the key properties to
show this theorem. This implies that φ(0) = 1 is the closest point to the
origin in the curve C, and the distance between the origin and the curve C
monotonically increases as illustrated in Fig. 4.

Recall that the eigenvalues {λi}N
i=1 of the matrix K1 are located on a

circle as shown in (18). Then, we can see that λ1 always crosses C first,
when the radius of the circle increases, because of the monotone property of
φ(jω) shown above. Thus, the problem is reduced to finding ̟ satisfying

φ(j̟) = λ1. (34)

It follows from (34) that

arg (φ(j̟)) =
π

N
. (35)

Let θ1 := arctan(Ta̟) and θ2 := arctan(Tb̟). Then, (35) can be written
as

θ1 + θ2 =
π

N
, (36)

and this implies

tan(θ1 + θ2) = tan
( π

N

)

. (37)
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Then, (37) and the trigonometric addition formula yields

(Ta + Tb)̟

1 − TaTb̟2
= tan

( π

N

)

. (38)

The predicted frequency ̟ is obtained by clearing the fraction and applying
the quadratic formula to the above equation.
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