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Abstract

Although quantum hypothesis testing has been recognized as a fun-
damental theoretical tool, it has not been investigated yet even in
the qubit case when the composite hypothesis is adopted. Recently,
Hayashi et al. [2] have shown optimal hypothesis testing under some in-
variance conditions when the null hypothesis is a maximally entangled
state and the alternative hypothesis is except for the state. They also
assume that significance level is set to zero, which seems quite strange
in classical statistics. In the present paper, as a first attempt of quan-
tum composite hypothesis testing with an arbitrary significance level,
we propose the intuitively reasonable testing of the null hypothesis,
which is perfectly mixed state, under composite alternative hypothe-
ses, which is pure states in the qubit case. We show optimality, that
is, that the above test is uniformly most powerful unbiased test.

1 Introduction

Signal detection is fundamentally important in various fields of physics, as-
trophysics, particle physics and so on. When microscopic mechanism is rel-
evant with the detection process, we need to deal with the detection scheme
by using quantum mechanics [5]. With recent development of precise mea-
surement of the quantum system, theoretical signal detection strategy has
been gradually thought of as important.

Quantum hypothesis testing is widely accepted in the field of the quan-
tum information [3, 4]. Basic setting is given in a parallel way to classical
hypothesis testing [7] and fundamental results have been shown by many
researchers. They mainly focus on the theoretical extension of classical re-
sults or fundamental difference between classical results based on measure-
theoretical probability theory and quantum analogue and often deal with
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testing the simple null hypothesis and alternative hypothesis. That is, they
assume that the unknown density operator ρ is either ρ0 or ρ1. In this case,
it is possible to extend well-known classical results like Neyman-Pearson
lemma, Stein’s lemma and so on although its proof is technically very hard.

While their result is not satisfactory from a practical viewpoint, un-
fortunately more reasonable problem of testing hypothesis in the quantum
setting has not been investigated yet except for Hayashi et al. [2]. They
deal with the problem of the hypothesis testing of a maximally entangled
state and show the optimal result in the class of LOCC by imposing on some
invariance conditions. It is important to show a kind of optimality in the
hypothesis testing, but even in the simple cases like the qubit system (two
dimensional Hilbert space), it seems so difficult. Indeed, they simplify the
original problem in order to obtain a solution. For example, they set signifi-
cance level α zero, which is usually set α = 0.01, 0.05, and their assumption
seems quite strange in usual classical statistics.

Thus, as a first attempt to tackle with the composite quantum hypoth-
esis testing, we investigate the qubit system and clarify how the hypothesis
testing is rather difficult than classical cases.

We do mainly focus on the practical testing scheme, which is useful
in the experimental setup. We present an intuitively reasonable test and
show its optimality using the unbiased condition, which is indeed necessary
to restrict a class of test. While the quantum detection problem in the
Bayesian setting has been well investigated and they need to assume the
prior distribution of the possible quantum states, our approach does not
need a prior distribution. Optimality result is obtained analytically without
any assumption of the prior distribution.

In Section 2, we briefly summarize our problem setting, and introduce
some notions and notations. In Section 3, we present main result, a uni-
formly most powerful(UMP) test in the disturbed qubit model. We also
discuss the unbiased condition and compare with invariance condition in
Section 4. Finally we give concluding remarks.

2 Setting

Now we briefly describe the setting where we consider the optimal quantum
hypothesis testing. In the present paper, we consider the qubit system,
which is described in the two-dimensional Hilbert space, or C2 [8]. We
have N identical particles ρ⊗N , whose state is unknown but it is either
H0 : ρ ∈ S0 (Null hypothesis) or H1 : ρ ∈ S1 (Alternative hypothesis),
where S0 and S1 are disjoint subsets of the density operators. Assume that
the null hypothesis is chosen to be a completely mixed state.

S0 = {ρmix :=
1
2
I}
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The alternative hypothesis is that the unknown state is a pure state:

Sp = {|ψ〉〈ψ| : ‖ψ‖ = 1}

As we shall see later, Sp is too large to admit the UMP unbiased test
when we consider individual repeated measurements. Thus, we need to
restrict the above alternative hypothesis to a reasonable class. For simplicity,
we assume that the unknown pure state is in the upper half of the Bloch
sphere. To be more specific, we give a parametrization below.

S1 := {U(ε1, ε2)ρ1U
†(ε1, ε2), 0 ≤ ε1 < 2π, 0 ≤ ε2 <

π

2
},

where

ρ1 := |0〉〈0| =
(

1 0
0 0

)
,

U(ε1, ε2) := e−i
ε1
2

σze−i
ε2
2

σy .

Both σy and σz are Pauli matrices. The explicit form of the above density
operator is given below. Note that there is a one-to-one correspondence
between the Bloch sphere and the parameter space except for ε2 = 0.

Another interpretation of this model is obtained as follows. Suppose that
Alice and Bob communicate with each other by transmitting qubits. First,
Alice prepare the initial state ρ = ρmix or ρ = |0〉〈0|. Then, the transmission
channel may cause a kind of state change of unitary type σ → UσU †. In
other words, the unknown unitary operator denotes an inevitable distur-
bance. Assuming that the transmission channel is stable, the disturbance is
specified by the finite number of parameter. In such cases, the channel pa-
rameter could be estimated by transmitting the known state and analyzing
the output state [1].

However, we do not specify the channel parameter because our objective
is not to specify the whole unitary channel but to determine whether Alice
really sent a pure state to Bob or not. Thus, the output state is either

U(ε1, ε2)ρ0U(ε1, ε2)† = ρmix

or

U(ε1, ε2)ρ1U(ε1, ε2)† =
1
2

(
1 + cos ε2 e−iε1 sin ε2
eiε1 sin ε2 1 − cos ε2

)
.

For convenience, we call this model the disturbed qubit model. We use ρ1,ε

instead of U(ε1, ε2)ρ1U(ε1, ε2)† for simplicity.
Although the above disturbed qubit model is easily generalized, in such

a generalization, nonessential difficulties arise in various ways. Thus, in the
present paper, we only focus on the above simple but meaningful model and
hypothesis testing in details.
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3 UMP unbiased test in the disturbed qubit model

Before we mention main result, we briefly explain the formal definition of
hypothesis testing in the quantum setting, see e.g., section 2, Hayashi et
al. [2] for details. First we fix the significance level α, 0 ≤ α ≤ 1. A
Hermitian operator T , 0 ≤ T ≤ I is said to be a test. Then, binary decision,
like yes or no, is possible based on the measurement outcome, where a pair
of Hermitian matrices {T, I −T} is regarded as a POVM. A test T is called
a test with significance level α, or shortly a test of level -α if it satisfies

TrρT ≤ α, ρ ∈ S0,

where the LHS term is called the first kind of error. Note that the above
condition is equivalent to

sup{TrρT : ρ ∈ S0} ≤ α.

Then, our purpose is to maximize the power function

β̃ρ(T ) := TrρT, ρ ∈ S1,

where βρ(T ) := 1 − β̃ρ(T ) = Trρ(I − T ) is called the second kind of error.
When the alternative hypothesis consists of a single point, i.e., S1 = {ρ′},
then a test of level-α is called most powerful (MP) if for any other test T ′

of level-α
β̃ρ′(T ) ≥ β̃ρ′(T ′)

holds. Quantum Neyman-Pearson lemma claims that there always exists the
MP test. (See, e.g., Helstrom [5] for proof). However, when the alternative
hypothesis does not consist of a single point, it becomes more difficult. A
test of level-α is called uniformly most powerful (UMP) if for any other test
T ′ of level-α

β̃ρ(T ) ≥ β̃ρ(T ′), ρ ∈ S1.

Generally, the UMP test does not necessarily exists.
Now let us introduce the unbiased test, which is analogous to the classical

counterpart. A test T is called an unbiased test with the significance level
α if it satisfies

TrρT ≤ α, ρ ∈ S0

and
β̃ρ(T ) = TrρT ≥ α, ρ ∈ S1.

The definition is the straightforward extension of unbiasedness in classical
hypothesis testing [7]. Intuitively speaking, an unbiased test is not worse
than the random decision, where the null hypothesis is rejected with the
probability of α without any observation, and thus this condition is very
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natural. Unbiasedness seems a weak condition but it excludes a certain
class of pathological tests.

Unfortunately, in spite of simplification, it is shown to that there is
no UMP test for the disturbed qubit model. However, if we restrict the
class of hypothesis testing to the unbiased one, then we show that there
exists the UMP unbiased test in our setting. It is the same situation as in
classical hypothesis testing. For example, in a standard textbook of classical
hypothesis testing, they say “For a large class of problems for which a UMP
test does not exist, there does exist a UMP unbiased test” (Lehmann and
Romano [7], section 4.1). Our main result is given below.

Theorem
In the above setting, there exists a UMP unbiased test of level-α, where
0 < α < 1 is an arbitrary significance level.

Its proof has two steps, first, the unbiased test is restricted to the class
of a classical test based on the outcome of the projective measurement of
z-direction, i.e., {|0〉〈0|, |1〉〈1|}. Then, we construct the UMP test for the
above class of tests by using the one-sided UMP for classical Bernoulli dis-
tribution.

Proof.

Step.1
From the unbiased condition, 1

2TrT ≤ α and β̃|ψ〉〈ψ|(T ) ≥ α, where |ψ〉 is
equal to U(ε1, ε2)|0〉 up to the phase factor, holds. Then, an unbiased test
T must satisfy

β̃|ψ〉〈ψ|(T ) − 1
2
TrT ≥ 0 (1)

for an arbitrary |ψ〉〈ψ| ∈ S1. As we shall see below, Eq.(1) is restrictive,
thus, a test T satisfies Eq.(1) if and only if T is in the following form

T = t0|0〉〈0| + t1|1〉〈1|, (2)

for an appropriate pair of t0 and t1 satisfying 0 ≤ t0, t1 ≤ 1.
In order to prove the above claim, we rewrite T

T = t0|e0〉〈e0| + t1|e1〉〈e1|,

where ti, i = 0, 1 are the eigenvalues and ei, i = 0, 1 are the normalized
eigenvectors. Both states |e0〉〈e0| and |e1〉〈e1| are antipodal points on the
Bloch sphere.

If both of them are on the xy plane, which implies |e0〉〈e0| /∈ S1 and
|e1〉〈e1| /∈ S1, then for small arbitrary ε > 0, we can choose |ψ〉〈ψ| ∈ S1 such
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that

|〈e0|ψ〉|2 = 1 − ε,

|〈e1|ψ〉|2 = ε.

Next, from the unbiased condition we obtain

β̃|ψ〉〈ψ|(T ) = t0(1 − ε) + t1ε ≥ α

Thus, taking limit of ε → 0, we obtain t0 ≥ α. Likewise we obtain t1 ≥ α.
Putting them together with the condition TrρmixT = t0+t1

2 ≥ α, we obtain
t0 = t1 = α and T = αI, which is in the form (2).

Now, without loss of generality, we take |e0〉〈e0| ∈ S1. When |ψ〉〈ψ| =
|e0〉〈e0|, from Eq.(1) we obtain

β̃|e0〉〈e0|(T ) − 1
2
TrT =

1
2
(t0 − t1) ≥ 0.

If t0 = t1, then our claim holds. If t0 > t1, then we can choose |ψ〉〈ψ| ∈ S1

such that |〈e1|ψ〉|2 > |〈e0|ψ〉|2 unless |e0〉〈e0| = |0〉〈0|. Since |〈e0|ψ〉|2 +
|〈e1|ψ〉|2 = 1,

|〈e1|ψ〉|2 >
1
2

> |〈e0|ψ〉|2

holds. Thus, we obtain

β̃|ψ〉〈ψ|(T ) − 1
2
TrT

= t0|〈e0|ψ〉|2 + t1|〈e1|ψ〉|2 −
1
2
(t0 + t1)

= −(t0 − t1)
(
|〈e1|ψ〉|2 −

1
2

)
< 0.

The unbiased condition does not hold unless |e0〉〈e0| = |0〉〈0|. Therefore,
|e0〉〈e0| = |0〉〈0| and |e1〉〈e1| = |1〉〈1| holds.

Step.2
We only consider an unbiased test T in the form (2). Now we consider the
pinching map κ using PVM {|0〉〈0|, |1〉〈1|}, Since κ(T ) = T and Trκ(A)B =
Trκ(A)κ(B) for two Hermitian operators A and B, both kinds of error is
rewritten by

TrρmixT = Trκ(ρmix)T,

β̃ρ1,ε(T ) = Trρ1,εT = Trκ(ρ1,ε)T,

where

κ(ρ1,ε) =
1
2

(
1 + cos ε2 0

0 1 − cos ε2

)
.
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Now seeking the optimal test among the unbiased tests is reduced to
seeking the optimal test in the following classical hypothesis testing in the
Bernoulli model (e.g., coin toss). Suppose that we have a coin whose head
comes with the probability p. Null hypothesis is H0,cl : p = 1

2 and alternative
hypothesis is H1,cl : p = 1

2(1− cos ε2), 0 ≤ ε2 < π
2 . Since we do not know the

parameter ε2, the latter is rewritten as H1,cl : 0 ≤ p < 1
2 . This is a one-sided

hypothesis testing and there exists the UMP test [7]. Q.E.D.

According to theorem, the optimal strategy is as follows. To be specific,
we fix some parameter, say, α = 0.01 and N = 20. First we perform a
measurement based on PVM {|0〉〈0|, |1〉〈1|} for each particle. Then, we
count on the number of 1, say, x. If x = 0, 1, 2, 3 and 4, then reject the
null hypothesis. If x = 5, then reject with the probability of γ = 0.276.
Otherwise, we accept the null hypothesis. For other parameter, testing is
performed in the same manner.

4 Discussion

In the above problem, since S1 has a very simple form, hypothesis testing of
H0 against H1 is rotationally invariant in the direction of z-axis. If we impose
the invariance condition instead of the unbiasedness, we obtain the same
class. However, generally speaking, the invariance condition is so strong
that it often causes too restricted class of tests. On the other hand, the
unbiasedness is rather weak and there could exist an optimal test in a more
complicated model.

In the disturbed qubit model, if there are two points ψ and ψ′ such that
|〈e0|ψ〉|2 < |〈e1|ψ〉|2 and |〈e0|ψ′〉|2 > |〈e1|ψ′〉|2 hold, the unbiased condition
fails. If we introduce the Bures distance, dF [8, 4], which is defined by

dF (|ψ〉, |φ〉) := 1 − |〈ψ|φ〉|2,

we obtain a more geometrical interpretation of the unbiased condition. We
introduce a semisphere whose point is strictly closer to |e0〉 than |e1〉, i.e.,

M := {|ψ〉〈ψ| : dF (|e0〉, |ψ〉) < dF (|e1〉, |ψ〉) }.

Then, S1 is totally covered with M if and only if T = t0|e0〉〈e0| + t1|e1〉〈e1|
with an appropriate choice of t0 and t1 satisfies the unbiased condition.
Otherwise, noncommutative unbiased tests appear. In particular, the full
model of pure states, Sp is not covered with M and thus there is no unbiased
test. Then, what we can do is at most only to guess randomly according
to the significance level α. Further analysis from geometrical perspective is
left for future study.
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Example
We restrict the alternative hypothesis to a bit complicated form, which
breaks rotational invariance.

S2 = {ρ1,ε : 0 ≤ ε1 < 2π,
π

3
cos2 ε1 ≤ ε2 <

π

2
}

Still, it is shown that there exists the UMP unbiased test by the similar
argument to theorem.

In the present paper, we assume that the unitary channel is stable. Thus,
we consider the unknown parameter ε1, ε2 fixed. One may think what hap-
pens if the channel parameter is also random. Then, we have to adopt the
Bayesian scheme. We assume that the distribution of the unknown param-
eter is given by π(ε1, ε2), where

∫
π(ε1, ε2)dε1dε2 = 1. Suppose that we use

the repeated measurement. We define

Sπ := {ρπ},

ρπ :=
∫

ρ1,επ(ε1, ε2)dε1dε2

Then, this problem is equivalent to the hypothesis testing of the simple
null hypothesis S0 under the simple alternative hypothesis Sπ instead of
S1, which is easily solved due to quantum Neyman-Pearson lemma and the
UMP test is given.

5 Concluding Remarks

We have obtained the UMP unbiased test in the disturbed qubit model.
Since Helstrom’s work, composite hypothesis testing in the quantum setting
has not been investigated even in the qubit model in spite of its importance
in a practical application.

There are much of problems remaining. For example, collective mea-
surements may enhance the performance of testing, that is, β is improved
for fixed α. It is also interesting to consider a nonunitary channel (TPCP
map) in the disturbed qubit model and an extension to higher dimensional
Hilbert spaces. Due to the unbiasedness condition, which seems weaker
than invariance, it would be possible to give the UMP unbiased test for the
null hypothesis of maximally entangled states and Gaussian states under
composite hypotheses.
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