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Algorithms for Nested Reductions
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†Graduate School of Information Science and Technology, University of Tokyo
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Abstract Nested reductions are important computation patterns, in which we take
a sum of individual sums on a data set using two binary operators. For example, naive
parallel programs for important combinatorial problems including optimal segment
query problems and shortest path problems can be described as nested reductions.
Therefore, derivation of efficient parallel algorithms from their naive descriptions is
an important issue for concise development of efficient and correct parallel programs
for these problems. In previous work, we have shown some optimization theorems for
nested reductions, but their application area is somewhat restrictive. In this paper,
we propose a novel technique to build useful mathematical structures, i.e., semirings
to reuse existing results, which brings a wider application area of the previous results.
Also, as a consequent of the technique, we show that one simple optimization can
produce efficient parallel algorithms for many instances of nested reductions. The
derived algorithms are efficient in the sense that they are simple list homomorphisms
with O(n/p+ log p) parallel time-cost.

1 Introduction

Parallel programming is now an essential task for programmers to make efficient programs, be-
cause hardware vendors have tent to improve the total hardware performance by parallelism but
not sequential performance due to physical limitation. It is, however, quite difficult for most
programmers to make efficient parallel programs because of extra considerations such as division
of work into multiple independent tasks, synchronization of processes run in parallel, and data
distribution among processes, which make parallel programming more difficult than sequential
programming.

Automatic or systematic derivation of efficient parallel programs from naive descriptions is an
important technique to support concise development of correct and efficient parallel programs.
Such technique enables users to write naive but correct parallel programs and to get the results
efficiently by automatically- or systematically-derived efficient parallel programs. The derived
programs must compute the correct results, because such a derivation preserves the correctness
of programs.

Nested reduction is an important computation pattern that capture a wide range of naive
(potentially parallel) programs, in which we take nested ‘summations’ with two associative binary
operators. A general form of nested reductions is given in comprehension notation as follows.
Here, ⊕ and ⊗ are binary operators to take ‘summations’, g is a collection of lists (sequences),
and f is a function applied to every element of the lists.⊕

[
⊗

[f a | a← y] | y ← g]

We can easily make a naive but correct program within the form. For example, we can
describe a naive program to find the maximum subsequence sum of a given list x, letting ⊕ = ↑
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(the maximum operator), ⊗ = +, f be the identity function, and g = subs x to generate all
subsequences of x. Its concrete description is as follows.

mss x =
x[
∑

[a | a← y] | y ← subs x] .

For example, given x = [3,−1, 2], its computation is as follow. It first generates all subsequences
by subs x = [[3,−1, 2], [3,−1], [3, 2], [3], [−1, 2], [−1], [2], []]. It then take sums of them to get a
list [4, 2, 5, 3, 1,−1, 2, 0], and finally find the maximum sum to be 5. Various problems including
combinatorial problems are instances of the pattern (see Section 6), although these naive programs
may be inefficient.

Fortunately, semirings sometimes give us efficient algorithms to compute nested reductions.
For example, since ↑ and + make a semiring, we have the following efficient computation of the
maximum subsequence sum problem above. Here, the distributivity laws (a + b) ↑ (a + c) =
a+ (b ↑ c) and (a+ c) ↑ (b+ c) = (a ↑ b) + c of the semiring play an important role.

mss x =
∑

[a ↑ 0 | a← x]

This algorithm uses the operators (+ and ↑) only O(|x|) times, and is far more efficient than
the naive computation above uses them O(2|x|). Moreover, the efficient computation is a sim-
ple parallel computation called homomorphism, and can be easily executed in parallel on var-
ious frameworks such as MapReduce [DG08], parallel skeleton libraries [ME10, LHP10, CK10],
OpenMP [CJvdP07], and so on.

Previous work [EHK+08a, EHK+08b, EHK+10] shows such several derivations of efficient al-
gorithms for a certain subset of nested reductions, but the results are very limited. For example,
the result cannot be directly applied to the following naive program to compute the maximum
sum of subsequences that have even sums. Here, the nested reduction does filtering by predicate
evensum that returns true if the sum of the given list is even. The result of this problem for
x = [3,−1, 2] is 4 but not 5.

e-mss x =
x[
∑

[a | a← y] | y ← subs x, evensum y]

This paper proposes a novel technique to scale the above clear optimization to nested reduc-
tions with a certain class of substructure generations and a certain class of filtering predicates,
which includes the example above and various examples shown in Section 6. The key point is a
semiring construction to embed filters into semirings. For example, we can make the following
new semiring (↑̂, +̂) from the semiring (↑,+) and the predicate evensum. Here, the new operators
act on pairs in which each pair consists of a value for the ‘even’ state and a value for the ‘odd’
state.(
e1, o1

)
↑̂
(
e1, o1

)
=
(
e1↑e2, o1↑o2

)
,
(
e1, o1

)
+̂
(
e1, o1

)
=
(
(e1 + e2)↑(o1 + o2), (e1 + o2)↑(o1 + e2)

)
The new semiring satisfies the following equation. Here, π extracts the first value of the given
pair, and f(a) = if even a then

(
a, 0
)

else
(
0, a
)
.x[

∑
[a | a← y] | y ← subs x, evensum y] = π (

x̂[
∑̂

[f(a) | a← y] | y ← subs x])

Since the right hand side has the same form as the computation of the maximum subsequence
sum, we can compute it efficiently by π(

∑̂
[f(a) ↑̂ (0, 0) | a← x]).

The main contributions of this paper are as follows. The proposed technique frees users
from making complicated efficient parallel programs, and they can concentrate on making naive
descriptions with semirings to solve their problems efficiently. This paper gives efficient algo-
rithms for a wide class of nested reductions, and it covers a wide range of applications that the
existing similar work [Mat07, Mor09, SHTO00, SHT01, SOH05] can deal with. Also, it includes
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interesting applications that the existing work cannot deal with because it focuses on the specific
semiring (↑,+) only. Some of such applications are shown in Section 6. As far as the authors
know, this is the first study about a serious and powerful optimization for nested reductions
(i.e., homomorphisms) with arbitrary semirings, while there exist various studies about optimiza-
tions of flat competitions of homomorphisms [HITT97, HIT02, CRP+10] or balancing of nested
computations [LCK06,CK01]. The efficient algorithms are derived from one very clear optimiza-
tion about semirings, which enables us to understand well what happens in the optimizations
and helps us develop further involved optimizations. Also, the technique preserves properties of
semirings regardless of substructure generations, which means that the application of the semiring
construction technique is not limited to the optimization proposed in this paper.

The rest of this paper is organized as follows. Section 2 lists definitions used in the following
sections. Section 3 explains the basic idea of the semiring construction. Section 4 formalizes the
semiring construction to embed filters. Section 5 introduces GoGs that have efficient algorithms
for nested reductions with semirings. Section 6 shows various examples that can be dealt with
the formalization in this paper. Section 7 discusses related work, and Section 8 finally concludes
this paper.

2 Preliminaries

In this section, we would like to prepare definitions for the following sections. Notation in this
paper follows that of Haskell [Bir98]. Function application is denoted by a space and the argument
may be written without brackets so that f a means f(a) in ordinary notation. Functions are
curried, i.e. functions take one argument and return a function or a value, and the function
application associates to the left and binds more strongly than any other operator so that f a b
means (f a) b and f a⊗ b means (f a)⊗ b. Function composition is denoted by ◦, so (f ◦ g)x =
f (g x) from its definition. Binary operators can be used as functions by sectioning as follows:
a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.

2.1 Binary Operators

First, we would like to define two special elements for binary operators. The identity element
preserves the other operand, while the zero annihilates the other operand.

Definition 1 (Identity). For a binary operator (⊕) :: α→ α→ α and an element ı⊕, element ı⊕
is said to be the identity of operator ⊕, if the following equations hold for any a ∈ α.

a⊕ ı⊕ = a
ı⊕ ⊕ a = a �

Definition 2 (Zero). For a binary operator (⊕) :: α→ α→ α and an element ν⊕, element ν⊕ is
said to be the zero of operator ⊕, if the following equations hold for any a ∈ α.

a⊕ ν⊕ = ν⊕
ν⊕ ⊕ a = ν⊕ �

Next, we would like to introduce several mathematical properties of binary operators.

Definition 3 (Associativity). A binary operator (⊕) :: α → α → α is said to be associative, if
the following equation holds for any a, b, c ∈ α.

(a⊕ b)⊕ c = a⊕ (b⊕ c) �

Definition 4 (Commutaqtivity). A binary operator (⊕) :: α→ α→ α is said to be commutative,
if the following equation holds for any a, b ∈ α.

a⊕ b = b⊕ a �
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Definition 5 (Distributivity). For two binary operators (⊗) :: α→ α→ α and (⊕) :: α→ α→ α,
operator ⊗ is said to distribute over operator ⊕, if the following equations hold for any a, b, c ∈ α.

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) �

The associativity is important for parallel computation, and the distributivity is important
for optimization via elimination of redundant computation.

2.2 Algebras

Since this paper focuses on algebras called semirings, we would like to define them here, as well
as monoids and commutative monoids that are constructs of semirings.

Definition 6 (Monoid). Given an associative binary operator (⊕) :: α→ α→ α with the identity
ı⊕, the pair (α,⊕) is said to be a monoid.

Definition 7 (Commutative Monoid). Given an associative, commutative binary operator (⊕) ::
α→ α→ α with the identity ı⊕, the pair (α,⊕) is said to be a commutative monoid.

Definition 8 (Semiring). Given a commutative monoid (α,⊕) and a monoid (α,⊗) such that
⊗ distributes over ⊕ and ı⊕ is the zero of ⊗ (i.e., ν⊗ = ı⊕), the triple (α,⊕,⊗) is said to be a
semiring.

A (commutative) monoid is an algebra with one (commutative) associative binary operator,
while a semiring is an algebra with two binary operators with distributivity. The distributivity
is the most important property of semirings, because it plays an important role in derivation
of efficient algorithms. The commutativity is important to build extended algebras with useful
properties from semirings.

2.3 Homomorphism and Parallel Computation

Now, we would like to introduce useful parallel computation pattern called homomorphism.

Definition 9 (List Homomorphism). Given a function f and an associative binary operator ⊕,
a list homomorphism h is a function defined by the following equations.

h (x++ y) = h x⊕ h y
h [a] = f a

For notational convenience, we write ([⊕, f ]) to denote h. When it is clear from the context, we
just call ([⊕, f ]) homomorphism.

In addition to the above definition, we assume that ([⊕, f ]) [ ] = ı⊕ for empty lists.
We can compute a homomorphism efficiently in parallel by a simple divide-and-conquer com-

putation as follows.

([⊕, f ]) [a1, a2, . . . , an]
= { Diving the list at the middle point using associativity of ++ }

([⊕, f ]) ([a1, a2, . . . , adn/2e] ++ [adn/2e+1, . . . , an])

= { Definition of homomorphism }
(([⊕, f ]) [a1, a2, . . . , adn/2e])⊕ (([⊕, f ]) [adn/2e+1, . . . , an])

The above equation means that we can compute the result in simple divide-and-conquer manner:
first compute two independent sub-results ([⊕, f ]) [a1, a2, . . . , adn/2e] and ([⊕, f ]) [adn/2e+1, . . . , an]
in parallel, and then (2) combine those results with the operator ⊕. Repeatedly applying the
similar divisions to the computations of sub-results, we can compute the result of the homomor-
phism in O((Tf +T⊕)n/p+T⊕ log p) parallel time with p processors, in which Tf and T⊕ are costs
of f and ⊕.

When f and ⊕ can be computed in constant time, we call ([⊕, f ]) a linear-work homomorphism,
because its total work is proportional to the length of the input and its cost is simply O(n/p+log p).
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2.4 Nested Reductions and Comprehension Notation

We would like to introduce our target computation pattern called nested reductions.

Definition 10 (Nested reduction). Given a function f , two associative binary operators ⊕ and
⊗, and a list g of lists, a nested reduction is computation defined as follows.⊕

[
⊗

[f a | a← y] | y ← g] �

The meaning of the comprehension notation is given as follows.

Definition 11 (Comprehension notation by homomorphism). Given a function f , an associative
binary operator ⊗, a predicate p, and a list y, expressions in the comprehension notation are
defined as follows. ⊗

[f a | a← y] = ([⊗, f ]) y⊗
y = ([⊗, id ]) y⊗
[f a | a← y, p a] = ([⊗, λa.if p a then f a else ı⊗]) y �

Basically, an expression in comprehension notation corresponds to a homomorphism. Note
that [f a | a ← y] is an abbreviation of ([++, [·] ◦ f ]) y. Also, we have

⊕
[
⊗

[f a | a ← y] | y ←
g] = ([⊕, ([⊗, f ])]) g, which means a nested reduction is a nested use of homomorphisms.

It would be noted that not all instances of the nested reductions can be dealt with the technique
proposed in this paper. The class of nested reductions that can be dealt with the proposed
technique is given later.

3 Getting Intuition: Even-sum Maximum Initial-segment Sum

To get intuition of the technique, let’s start with making an efficient parallel algorithm by hand
for an example problem: the even-sum maximum initial-segment sum (even-sum MIS for short).
The objective of this problem is to find the maximum sum of initial (i.e., prefix) segments in
which each of them has an even sum. Its specification is given as follows.

e-mis x =
x[
∑

y | y ← inits x, evensum y]

The development will give us a clue for building lifted semirings from combinations of semirings
and predicates in general cases.

We begin the development with an efficient parallel algorithm for the maximum initial-segment
sum (MIS for short), i.e., the original simple version of even-sum MIS:

mis x =
x[
∑

y | y ← inits x] .

The efficient algorithm mis ′ such that mis ′ = mis is given as the following linear-work homomor-
phism [EHK+08a,EHK+08b,EHK+10].

mis ′(↑,+) x = inits-opt (↑,+,id) x

where inits-opt (⊕,⊗,f) x = πmis(
⊙

mis [fmis a | a← x])

(i1, s1)⊕mis (i2, s2) = (i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)
fmis a = (f a, f a)
πmis (i, s) = i

(1)

Meaning of the efficient algorithm by homomorphism is as follows. The operator ⊕mis takes two
pairs (i1, s1) and (i2, s2) to make a new pair: For each k ∈ {1, 2}, the pair (ik, sk) consists of the
MIS ik and the whole sum sk of a list zk (this list must be a segment of the input list of the
algorithm). Similarly, the resulting pair consists of the MIS and the whole sum of list z = z1++z2,
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because the whole sum of z is clearly s1 + s2 (a sum of the sums of z1 and z2), and the MIS of z
is the greater value of i1 (the maximum sum of initial-segments in z1) and s1 + i2 (the maximum
sum of initial-segments beyond z1). Note that we cannot compute the MIS of z only from MISs
of z1 and z2 and we need the whole sum of z1 here, although the objective of the computation
is to find the MIS only. Since this situation occurs recursively, we need to compute the whole
sums throughout the algorithm, as well as MISs. The function fmis makes a pair for a singleton
list: Both of the MIS and the whole sum are clearly the element itself in the singleton. Finally,
the function πmis takes the first component of the final pair, because we don’t need the second
component.

Now, let’s start making an efficient parallel algorithm for the even-sum MIS based on the
above algorithm for MIS. The key point is how we can compute the even-sum MIS of a merged
list from results of two smaller lists.

First of all, we would like to know properties of the predicate evensum in a simple divide-
and-conquer computation, i.e., the computation of the homomorphism. It is summarized as the
following matrix. There are two possible states for each sublists, and the state of the total list is
determined by by those of the sublists.

evensum (x++ y) evensum y = False evensum y = True

evensum x = False True False
evensum y = True False True

Now, let’s consider to compute the even-sum MIS, say ieven, of z = z1 ++ z2 from results of z1
and z2. One candidate of ieven is the even-sum MIS, say ieven1 , of z1. Similar to the MIS, we must
have another candidate. Is it a sum s1 + ieven2 of the whole sum s1 of z1 and the even-sum MIS
ieven2 of z2? No, it isn’t in general case. Let y2 be the even-sum initial-segment of z2 such that
the sum of y2 is ieven2 . The sum s1 + ieven2 is not the even-sum MIS when the whole sum s1 of z1 is
not even, because evensum z1 = False and evensum y2 = True means evensum (z1 ++ y2) = False
and thus z1 ++ y2 is not an even-sum initial-segment of z = z1 ++ z2. In this case, we need the
odd-sum MIS iodd2 of z2 to make another candidate sodd1 + iodd2 (here, sodd1 denotes the sum of z1
for the case evensum z1 = False). So, we have to compute odd-versions of the MIS and the whole
sum, as well as those of even-versions.

Introducing odd-versions of the MIS and the whole sum, the efficient parallel algorithm for
the even-sum MIS is given as follows. It is worth noting that −∞ is the identity of the maximum
operator ↑, and three of the four sums (seven1 +seven2 ), (sodd1 +sodd2 ), (sodd1 +seven2 ), and (seven1 +sodd2 )
are −∞ and only one of them has a valid value, i.e., the sum of the merged list.

e-mis ′ x = πe-mis(
⊙

e-mis [fe-mis a | a← x])
where (i, s)⊕e-mis () = (ieven, iodd, seven, sodd)

where ieven = ieven1 ↑ (seven1 + ieven2 ) ↑ (sodd1 + iodd2 )
iodd = iodd1 ↑ (sodd1 + ieven2 ) ↑ (seven1 + iodd2 )
seven = (seven1 + seven2 ) ↑ (sodd1 + sodd2 )
sodd = (sodd1 + seven2 ) ↑ (seven1 + sodd2 )

fe-mis a = if even a then (a,−∞, a,−∞) else (−∞, a,−∞, a)
πe-mis (ieven, iodd, seven, sodd) = ieven

Here, some questions arise. Is this program correct? How can we make such efficient algorithms
for other predicates? To answer the first question, and to get intuition about the second question,
let’s rearrange this program into a clearer form.

Looking at the program, we can find that there are many similar subexpressions among the
computation of �e-mis . For example, the computation of seven is very similar to that of sodd, and
the tail part of ieven is similar to the computation of seven. Thus, we would like to introduce two
operators ↑̂ and +̂ on pairs of even-versions and corresponding odd-versions. We call these pairs
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as even-odd pairs.

(aeven, aodd) ↑̂ (beven, bodd) = (aeven ↑ beven, aodd ↑ bodd)
(aeven, aodd) +̂ (beven, bodd) = ((aeven + beven) ↑ (aodd + bodd), (aeven + bodd) ↑ (aodd + beven))

We also introduce a lift function f ′ and an unlift function π′ for even-odd pairs.

f ′ a = if even a then (a,−∞) else (−∞, a)
π′ (ieven, iodd) = ieven

Using the above operators and functions, the efficient program becomes clearer as follows.

e-mis ′ x = π′ (π (
⊙

[f (f ′ a) | a← x]))

where (i1, s1)� (i2, s2) = (i1 ↑̂ (s1 +̂ i2), s1 +̂ s2)
f a = (a, a)
π (i, s) = i

This result is very interesting, because this program is completely the same as the efficient program
mis ′ (Equation (1)) for the MIS, except that the operators ↑ and + are lifted to those on the
even-odd pairs. Therefore, we get the following very clear result.

e-mis ′ x = π′(inits-opt (↑̂,+̂,f ′) x)

To see what has happened, let’s check properties of the lifted operators. If these operators
makes a semiring, then the program can be deoptimized into a naive program, which may help
us understand the situation.

Although we can straightforwardly check whether they make a semiring or not, we would like

to use clearer explanation here. Let’s consider 2 × 2 matrices of the form

(
aeven aodd

aodd aeven

)
. It

is easily seen that there is a one-to-one correspondence between such a matrix and an even-odd
pair (aeven, aodd) (the idea is the same as that of the well-known matrix representation of complex
numbers). It is also easily checked that the lifted operators ↑̂ and +̂ correspond to the matrix
addition and the matrix multiplication on the semiring of ↑ and +. Therefore, we can conclude
that the lifted operators ↑̂ and +̂ makes a semiring on even-odd pairs.

Now, we have got the following equation of the efficient program e-mis ′ for the even-sum MIS,
by applying the optimization of inits inversely.

e-mis ′ x = π′(
x̂[
∑̂

[f ′ a | a← y] | y ← inits x])

To show the correctness of the above e-mis ′, we have to show e-mis ′ x = e-mis x, which is
shown as follows.

e-mis ′ x
= { the above deoptimization }

π′ (
x̂[
∑̂

[f ′ a | a← y] | y ← inits x])

=
{

π′ (a ↑̂ b) = π′ a ↑ π′ b
}

x[π′ (
∑̂

[f ′ a | a← y]) | y ← inits x])

=
{

(shown below) π′ (
∑̂

[f ′ a | a← y]) = if evensum y then
∑

y else −∞
}x[if evensum y then

∑
y else −∞ | y ← inits x])

= { Definition of a predicate in comprehension notation, and the identity of ↑ }x[
∑
y | y ← inits x, evensum y])

= { definition of mis }
mis x
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The rest of our concern is to show the third step. To show the equation, we also show
π′′ (

∑̂
[f ′ a | a ← y]) = if evensum y then −∞ else

∑
y, where π′′ (aeven, aodd) = aodd, at

the same time. Thus, our goal is to show
∑̂

[f ′ a | a← y] = (
∑

even y,
∑

odd y) with the following
definitions of

∑
even y and

∑
odd y.∑

even y = if evensum y then
∑

y else −∞∑
odd y = if evensum y then −∞ else

∑
y

For the base case y = [a], we have∑̂
[f ′ a | a← [a]]

= { Definitions comprehension notation }
f ′ a

= { Definitions of f ′ }
if even a then (a,−∞) else (−∞, a)

= { Promotion of if }

(if even a then a else −∞, if even a then −∞ else a)
= { evensum [a] = even a and definition of

∑
}

(if evensum [a] then
∑

[a] else −∞, if evensum [a] then −∞ else
∑

[a])
= { Notation }

(
∑

even[a],
∑

odd[a]) .

The inductive case y = x++ z is shown as follows.∑̂
[f ′ a | a← (x++ z)]

= { Definitions of comprehension notation }∑̂
[f ′ a | a← x] +̂

∑̂
[f ′ a | a← z]

= { Induction hypothesis }
(
∑

even x,
∑

odd x) +̂ (
∑

even z,
∑

odd z)
=

{
Definition of +̂

}
((
∑

even x+
∑

even z) ↑ (
∑

odd x+
∑

odd z), (
∑

even x+
∑

odd z) ↑ (
∑

odd x+
∑

even z))
= { observation below }

(
∑

even(x++ z),
∑

odd(x++ z))

The last step is shown according to values of evensum x and evensum z. When the both are
true, i.e., (evensum x, evensum z) = (True,True), we have

∑
even x +

∑
even z =

∑
(x ++ z)

and the other sums are −∞. Also, we have evensum y = True in this case. Similarly, when
(evensum x, evensum z) = (False,False), we have

∑
odd x +

∑
odd z =

∑
(x ++ z), the other

sums are −∞, and evensum y = True. Thus, in these two cases, we have evensum y = True
and the last expression of the above calculation is (

∑
y,−∞). Similarly, in other cases, we have

evensum y = False and the last expression of the above calculation is (−∞,
∑

y). Combining
these results, we have got the last step.

Now, we have shown
∑̂

[f ′ a | a← (x++ z)] = (
∑

even y,
∑

odd y) and hence we have

π′ (
∑̂

[f ′ a | a← (x++ z)]) = if evensum y then
∑

y else −∞ .

As a result of the above proof, we have shown the correctness of the efficient algorithm e-mis ′

for the even-sum MIS, i.e., e-mis ′ = e-mis. Also, we have got an important conjecture that we
can construct a lifted semiring (and lift/unlift functions f̂ and π̂) from a semiring and a predicate
such that the following similar equation holds.

π̂ (
⊗̂

[f̂ a | a← y]) = if p y then
⊗

y else ı⊕

8



This conjecture will be shown true for any predicate defined by a finite-range homomorphism.
Also, as a consequence of the conjecture, we can use the theorems in previous work [EHK+08a,
EHK+08b,EHK+10] freely for a wider range of applications.

The key points in the above development are (1) that the lifted operators by predicate evensum
form a semiring and (2) that products with the lifted operators are equivalent to products filtered
by the predicate. In the following section, we will see that these points scale to any predicates
defined by homomorphisms.

4 Embedding Filters into Semirings

First, we would like to define a class of target predicates that have good properties for efficient
parallel computation.

Definition 12 (Finite-range homomorphic predicate). Given a finite domain Cp, a homomor-
phism ([⊕p, fp]) :: [α] → Cp, and a function acceptp :: Cp → Bool, a predicate p is said to be a
finite-range homomorphic predicate (FRH predicate for short) if it is written as follows.

p = acceptp ◦ ([⊕p, fp]) �

A FRH predicate p consists of a homomorphism ([⊕p, fp]) to compute a state for the whole list
and a function acceptp to determine the state is acceptable or not. For example, the predicate
evensum is a FRH predicate with two states {even, odd} as follows.

evensum = acceptevensum ◦ ([⊕evensum , fevensum ])
where acceptevensum even = True

acceptevensum odd = False
a⊕evensum b = if a = b then even else odd
fevensum a = if even a then even else odd

A FRH predicate of which ⊕p has the identity ı⊕p is useful in building lifted semirings. The
following lemma guarantees that we can always assume that ⊕p has the identity, because we can
always add the identity to a FRH predicate without the identity.

Lemma 13 (Monoidalization of FRH predicate). Given a FRH predicate p = acceptp ◦ ([⊕p, fp]),
there exists a FRH predicate q = acceptq ◦ ([⊕q, fq]) such that q = p and ⊕q has the identity ı⊕q .

Proof. We can make such a FRH as follows. Let Cp be the domain of acceptp. Introducing a
new element ı⊕q 6∈ Cp, let the domain Cq of acceptq be Cp ∪ {ı⊕q}. The following definitions of
acceptq, fq, and ⊕q give us such a FRH q.

acceptq a = if a = ı⊕q then False else acceptp a

fq a = fp a
ı⊕q ⊕q ı⊕q = ı⊕q

a⊕q ı⊕q = a (a ∈ Cp)
ı⊕q ⊕q b = b (b ∈ Cp)
a⊕q b = a⊕p b (a, b ∈ Cp)

Clearly, ı⊕q is the identity of ⊕q, and ⊕q is associative. It is also clear that q = p, because the
newly introduced element ı⊕q does not occur during computations of q x and p x for any list
x.

It is worth noting that a FRH predicate without the identity means that it is not defined on
empty lists.

The class of FRH predicates is big because FRH predicates are closed under negation, dis-
junction, and conjunction.
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Lemma 14 (Operations on FRH predicates). The following statements hold.

1. Given a FRH predicate p, its negation q = not ◦ p is a FRH predicate.

2. Given FRH predicates p1 and p2, their disjunction q x = p1 x ∧ p2 x is a FRH predicate.

3. Given FRH predicates p1 and p2, their conjunction q x = p1 x ∨ p2 x is a FRH predicate.

Proof. Each case is shown as follows.

1. q = not ◦ p = (not ◦ accept) ◦ ([⊕p, fp]) means q is a FRH predicate.

2. Let acceptq(a, b) = acceptp1a ∧ acceptp2 , (a1, a2) ⊕q (b1, b2) = (a1 ⊕p1 b1, a2 ⊕p2 b2), and
fq a = (fp1 a, fp2 a), then q x = p1 x ∧ p2 x = (acceptq ◦ ([⊕q, fq])) x, which means q is a
FRH predicate.

3. Similar to the disjunction.

Next, we would like to introduce carriers of lifted semirings.

Definition 15 (Lifted domain). Given a finite domain C and a domain α, a lifted domain of α
with C is denoted by αC . An element e in αC can be seen as an array of size |C| of which index
space is C. For each k in C, its corresponding component of e is denoted by e〈k〉.

For example, each element e in the domain lifted with evensum has two components e〈even〉

and e〈odd〉 corresponding to the states even and odd. It is worth noting that here is another
understanding of elements in the lifted domain: an element corresponds to a polynominal of
which coefficients are elements in α and bases are elements in C. For example, element e in the
domain lifted with evensum can be understood as e = e〈even〉even ⊕ e〈odd〉odd, where ⊕ is an
addition operator of a semiring. This may help us to understand the following lemma.

Now, we would like to introduce a lemma that gives us a way to build a lifted semiring from
a semiring and a FRH predicate.

Lemma 16 (Lifted semiring). Given a semiring (α,⊕,⊗) and a FRH predicate p = acceptp ◦
([⊕p, fp]) (where acceptp :: Cp → Bool), a triple (αCp , ⊕̂, ⊗̂) with the following definitions is a
semiring. We call it a lifted semiring of (α,⊕,⊗) with p.

a ⊕̂ b = c where c〈k〉 = a〈k〉 ⊕ b〈k〉 (k ∈ Cp)
a ⊗̂ b = c where c〈k〉 =

⊕
[a〈i〉 ⊗ b〈j〉 | i← Cp, j ← Cp, i⊕p j = k] (k ∈ Cp)

Note that the lifted operators ⊕̂ and ⊗̂ uses the original operators ⊕ and ⊗ only finite times
(O(|Cp|) and O(|Cp|2) times for the given finite set Cp).

Proof. Given a FRH predicate p = acceptp◦([⊕p, fp]) where fp :: α→ Cp, and a semiring (α,⊕,⊗),

a pair G = (Cp,⊕p) is a monoid, so the triple (αCp , ⊕̂, ⊗̂) is a variant of group ring α[Cp] [Haz02],
which may be called a monoid semiring.

On the other hand, we can give a direct proof as follows.
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For any a, b, c ∈ αCp , letting d = (a ⊕̂ b) ⊕̂ c and e = a ⊕̂ (b ⊕̂ c), the associativity of ⊕̂ is shown
as follows. For any k ∈ Cp, we have the following equality.

d〈k〉

= { Definition of d }
((a ⊕̂ b) ⊕̂ c)〈k〉

=
{

Definition of ⊕̂
}

(a〈k〉 ⊕ b〈k〉)⊕ c〈k〉
= { Associativity of ⊕ }

a〈k〉 ⊕ (b〈k〉 ⊕ c〈k〉)
=

{
Definition of ⊕̂

}
(a ⊕̂ (b ⊕̂ c))〈k〉

= { Definition of e }
e〈k〉

Therefore, we have (a ⊕̂ b) ⊕̂ c = a ⊕̂ (b ⊕̂ c), and ⊕̂ is shown to be associative.

We can show commutativity of ⊕̂ in a similar way.

Clearly, the identity ı⊕̂ is given by letting ı⊕̂
〈k〉 = ı⊕ for any k ∈ Cp.

It is also clear that the identity ı⊕̂ is the zero of ⊗̂, because ı⊕ is the zero of ⊗.

For any a, b, c ∈ αCp , letting d = (a ⊗̂ b) ⊗̂ c and e = a ⊗̂ (b ⊗̂ c), the associativity of ⊗̂ is shown
as follows. For any k ∈ Cp, we have the following equality.

d〈k〉

= { Definition of d }
((a ⊗̂ b) ⊗̂ c)〈k〉

=
{

Definition of ⊗̂
}⊕

[(a ⊗̂ b)〈i〉 ⊗ c〈j〉 | i← Cp, j ← Cp, i⊕p j = k]
=

{
Definition of ⊗̂

}⊕
[
⊕

[a〈s〉 ⊗ b〈t〉 | s← Cp, t← Cp, s⊕p t = i]⊗ c〈j〉 | i← Cp, j ← Cp, i⊕p j = k]
= { Distributivity of ⊗ over ⊕ }⊕

[
⊕

[a〈s〉 ⊗ b〈t〉 ⊗ c〈j〉 | s← Cp, t← Cp, s⊕p t = i] | i← Cp, j ← Cp, i⊕p j = k]
= { Associativity and commutativity of ⊕ }⊕

[a〈s〉 ⊗ b〈t〉 ⊗ c〈j〉 | j ← Cp, s← Cp, t← Cp, i← Cp, s⊕p t = i, i⊕p j = k]
= { Removing the fixed variable i, and associativity of ⊕p }⊕

[a〈s〉 ⊗ b〈t〉 ⊗ c〈j〉 | j ← Cp, s← Cp, t← Cp, s⊕p t⊕p j = k]
= { Introducing another fixed variable i, and associativity of ⊕p }⊕

[a〈s〉 ⊗ b〈t〉 ⊗ c〈j〉 | j ← Cp, s← Cp, t← Cp, i← Cp, t⊕p j = i, s⊕p t⊕p j = k]
= { Associativity and commutativity of ⊕ }⊕

[
⊕

[a〈s〉 ⊗ b〈t〉 ⊗ c〈j〉 | j ← Cp, t← Cp, j ⊕p t = i] | i← Cp, s← Cp, s⊕p i = k]
= { Distributivity of ⊗ over ⊕ }⊕

[a〈s〉 ⊗
⊕

[b〈t〉 ⊗ c〈j〉 | j ← Cp, t← Cp, j ⊕p t = i] | i← Cp, s← Cp, s⊕p i = k]
=

{
Definition of ⊗̂

}
(a ⊗̂ (b ⊗̂ c))〈k〉

= { Definition of e }
e〈k〉

Therefore, we have (a ⊗̂ b) ⊗̂ c = a ⊗̂ (b ⊗̂ c), and ⊗̂ is shown to be associative.

Clearly, the identity ı⊗̂ is given by letting ı⊗̂
〈k〉 = if k = ı⊕p then ı⊗ else ı⊕ for k ∈ Cp. Note

that we can always assume that ⊕p has its identity owing to Lemma 13.

Finally, we show distributivity of ⊗̂ over ⊕̂. For any a, b, c ∈ αCp , let d = a ⊗̂ (b ⊕̂ c) and
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e = (a ⊗̂ b) ⊕̂ (a ⊗̂ c). For any k ∈ Cp, we have the following equality.

d〈k〉

= { Definition of d }
(a ⊗̂ (b ⊕̂ c))〈k〉

=
{

Definitions of ⊗̂ and ⊕̂
}⊕

[a〈i〉 ⊗ (b〈j〉 ⊕ c〈j〉) | i← Cp, j ← Cp, i⊕p j = k]
= { Distributivity of ⊗ over ⊕ }⊕

[(a〈i〉 ⊗ b〈j〉)⊕ (a〈i〉 ⊗ c〈j〉) | i← Cp, j ← Cp, i⊕p j = k]
= { Commutativity and associativity of ⊕ }⊕

[a〈i〉 ⊗ b〈j〉 | i← Cp, j ← Cp, i⊕p j = k]⊕
⊕

[a〈i〉 ⊗ c〈j〉 | i← Cp, j ← Cp, i⊕p j = k]
=

{
Definition of ⊗̂

}
(a ⊗̂ b〈k〉 ⊕ a ⊗̂ c)〈k〉

=
{

Definition of ⊕̂
}

((a ⊗̂ b) ⊕̂ (a ⊗̂ c))〈k〉

= { Definition of e }
e〈k〉

Therefore, we have a ⊗̂ (b ⊕̂ c) = (a ⊗̂ b) ⊕̂ (a ⊗̂ c). Similarly, we have (a ⊕̂ b) ⊗̂ c = (a ⊗̂ c) ⊕̂ (b ⊗̂ c).
These equations shows that ⊗̂ distributes over ⊕̂.

The above results show that (αCp , ⊕̂, ⊗̂) is a semiring.

The lifted operator ⊕̂ merges two input values in the same state and stores the result into
the state of the output, in which states do not affect each other during the computation. On the
other hand, the other lifted operator ⊗̂ updates a value of state k to be a sum of products of all
possible pairs of states i and j such that the combination of i and j moves to the state k by ⊕p.

We have shown the first key point for the general case. Next, we will see the second key point
for the general case.

Before proceed to the second key point, we would like to introduce the following notation
about lifted singletons for readability.

Definition 17 (Lifted single value). Given a value v ∈ α, a finite domain Cp, and a semiring
(α,⊕,⊗), we define a lifted singleton value v〉〉k〈〈 in αCp as follows.

(v〉〉k〈〈)
〈i〉

= if i = k then v else ı⊕

So, we have (v〉〉i〈〈)
〈i〉

= v and otherwise (v〉〉k〈〈)
〈i〉

= ı⊕.

The next lemma gives us a connection between a product on the lifted semiring and a combi-
nation of filtering by a FRH predicate and a product on the original semiring.

Lemma 18 (Lifted product). Given a semiring (α,⊕,⊗), a FRH predicate p = acceptp ◦([⊕p, fp])
(where acceptp :: Cp → Bool), and a function f , the following equation holds.

⊗̂
[f̂ a | a← y] = (

⊗
[f a | a← y])〉〉([⊕p,fp]) y〈〈

where f̂ a = (f a)〉〉fp a〈〈

Here, (αCp , ⊕̂, ⊗̂) is the lifted semiring of (α,⊕,⊗) with p. We call the function f̂ a lifted function
of f with p. Note that the right hand side is an array v such that the component v〈([⊕p,fp]) y〉 is
the product

⊗
[f a | a← y] and the other components are ı⊕.
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Proof. We use induction on the list y.

Let LHS =
⊗̂

[f̂ a | a← y] and RHS = (
⊗

[f a | a← y])〉〉([⊕p,fp]) y〈〈.

For the base case y = [a], we have the following equation.

LHS
= { Definition of LHS , and y = [a] }⊗̂

[f̂ a | a← [a]]
= { Comprehension notation }

f̂ a

=
{

Definition of f̂
}

(f a)〉〉fp a〈〈

= { Definition of RHS , comprehension notation, and y = [a] }
RHS

For the inductive case y = x++ z, we have the following equation.

LHS
= { Definition of LHS , and y = x++ z }⊗̂

[f̂ a | a← x++ z]
= { Comprehension notation }⊗̂

[f̂ a | a← x] ⊗̂
⊗̂

[f̂ a | a← z]
= { Induction hypothesis }

(
⊗

[f a | a← x])〉〉([⊕p,fp]) x〈〈 ⊗̂ (
⊗

[f a | a← z])〉〉([⊕p,fp]) z〈〈

Now, we will see component k of the last expression.(
(
⊗

[f a | a← x])〉〉([⊕p,fp]) x〈〈 ⊗̂ (
⊗

[f a | a← z])〉〉([⊕p,fp]) z〈〈
)〈k〉

=
{

Definition of ⊗̂
}⊕[(

(
⊗

[f a | a← x])〉〉([⊕p,fp]) x〈〈
)〈i〉 ⊗ ((⊗[f a | a← z])〉〉([⊕p,fp]) z〈〈

)〈j〉 ∣∣∣
i← Cp, j ← Cp, i⊕p j = k

]
= { Definition of lifted single values, and ı⊕ is the zero of ⊗ }⊕

[
⊗

[f a | a← x]⊗
⊗

[f a | a← z] | i = ([⊕p, fp]) x, j = ([⊕p, fp]) z, i⊕p j = k]
= { Definitions of homomorphism ([⊕p, fp]) and comprehension notation }⊕

[
⊗

[f a | a← x++ z] | ([⊕p, fp]) (x++ z) = k]
= { Filtering by the expression ([⊕p, fp]) (x++ z) = k }

if k = ([⊕p, fp]) (x++ z) then
⊗

[f a | a← x++ z] else ı⊕
= { Definition of lifted single values }

((
⊗

[f a | a← x++ z])〉〉([⊕p,fp]) (x++z)〈〈)
〈k〉

Therefore, we have the following equation.

LHS
= { the suspended calculation above }

(
⊗

[f a | a← x])〉〉([⊕p,fp]) x〈〈 ⊗̂ (
⊗

[f a | a← z])〉〉([⊕p,fp]) z〈〈

= { the component-wise calculation above }
(
⊗

[f a | a← x++ z])〉〉([⊕p,fp]) (x++z)〈〈

= { Definition of RHS , and y = x++ z }
RHS

These results show the equation in the statement.
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The product
⊗̂

[f̂ a | a← y] on the lifted semiring, which is the left hand side of the equation
in the lemma, computes both the simple product

⊗
[f a | a← y] and state transitions according

to the homomorphism ([⊕p, fp]) y of the predicate at the same time. During the computation of
lifted product, a partial result of the simple product, say

⊗
[f a | a ← z] for some segment z in

y, is stored in the state ([⊕p, fp]) z, and the other states store the identity ı⊕, i.e., the zero of ⊗.
Of course, for simple simultaneous computation of the simple product and the state transitions,
we can use a simple pair of both, i.e., tupling [HITT97]. However, we need to give storage for all
states if we want to overlay computations of simple products that may have started from multiple
initial states, which is necessary to derive efficient algorithm using the distributivity of semirings.
In other words, simple tupling does not guarantee the distributivity of lifted operators.

As a consequence of the lemma, we have the following result, which corresponds to the con-
jecture in the previous section.

Corollary 19 (Projection of lifted product). Given a semiring (α,⊕,⊗), a FRH predicate p =
acceptp ◦ ([⊕p, fp]) (where acceptp :: Cp → Bool), and a function f , the following holds.

π̂ (
⊗̂

[f̂ a | a← y]) = if p y then
⊗

[f a | a← y] else ı⊕
where π̂ a =

⊕
[a〈k〉 | k ← Cp, acceptp k]

Here, (αCp , ⊕̂, ⊗̂) is the lifted semiring of (α,⊕,⊗) with p, and f̂ is the lifted function of f with
p. We call the function π̂ an unlifter function with p.

Proof. The equation is shown by the following calculation.

π̂ (
⊗̂

[f̂ a | a← y])
= { Lemma 18 }

π̂ ((
⊗

[f a | a← y])〉〉([⊕p,fp]) y〈〈)
= { Definition of π̂ }⊕

[
(
(
⊗

[f a | a← y])〉〉([⊕p,fp]) y〈〈
)〈k〉 | k ← Cp, acceptp k]

= { Definition of lifted single values, and filtering }⊕
[
⊗

[f a | a← y] | k ← Cp, acceptp k, k = ([⊕p, fp]) y]

= { Eliminating the fixed variable k }⊕
[
⊗

[f a | a← y] | acceptp (([⊕p, fp]) y)]

= { Definition of
⊕
}

if acceptp (([⊕p, fp]) y) then
⊗

[f a | a← y] else ı⊕
= { Definition of p }

if p y then
⊗

[f a | a← y] else ı⊕

Now, we are ready to show a theorem to embed filters with FRH predicates into semirings.

Theorem 20 (Embeding filters into semiring). Given a semiring (α,⊕,⊗), a FRH predicate
p = acceptp ◦ ([⊕p, fp]) (where acceptp :: Cp → Bool), a list g, and a function f , the following
equation holds.

⊕
[
⊗

[f a | a← y] | y ← g, p y] = π̂(
⊕̂

[
⊗̂

[f̂ a | a← y] | y ← g])

Here, (αCp , ⊕̂, ⊗̂) is the lifted semiring of (α,⊕,⊗) with p, f is the lifted function of f with p,
and π̂ is the unlifter with p.

Proof. We have the following calculation.
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⊕
[
⊗

[f a | a← y] | y ← g, p y]
= { Definition of filtering, and the identity of ⊕ }⊕

[if p y then
⊗

[f a | a← y] else ı⊕ | y ← g]
= { Corollary 19 }⊕

[π̂ (
⊗̂

[f̂ a | a← y]) | y ← g]
=

{
( π̂ a⊕ π̂ b) = π̂ (a ⊕̂ b), because of commutativity and associativity of ⊕

}
π̂(
⊕̂

[
⊗̂

[(f̂) a | a← y] | y ← g])

Theorem 20 says that if the list g has an efficient parallel algorithm to compute a nested
reduction

⊕
[
⊗

[f a | a ← y] | y ← g] with a semiring (α,⊕,⊗), then we can freely reuse it for
nested reductions with filtering by FRH predicates. For example, choosing g = gog x for an input
list x and a GoG gog [EHK+08a, EHK+08b, EHK+10], we can reuse theorems in the previous
work [EHK+08a, EHK+08b, EHK+10] freely so that we can compute the following computation
patterns efficiently in parallel by simple homomorphisms with linear costs. Here, p is a finite-range
homomorphic predicate, pR is a relational predicate, and gog = inits, tails or segs.⊕

[
⊗

[f a | a← y] | y ← gog x, p y]⊕
[
⊗

[f a | a← y] | y ← gog x, pR y, p y]

5 Formalizing Optimizable Generators

In this section, we would like to introduce GoGs1 that have efficient algorithms for nested reduc-
tions on their generating collections. A GoG takes an input list and generates a collection of its
sublists. Also, we will see that their optimizations can be derived from the combination of a very
simple optimization and the filter-embedding technique shown in the previous section. The basic
idea here is to adopt the idea of the existing work [SHTO00,SHT01,SOH05] to use predicates to
represent GoGs, i.e., use predicates to select an interesting subset of all possible subsequences of
an input list.

First of all, we would like to introduce a collection called a bag (also called a multi-set), in
which we can ignore the order of elements. A bag is denoted by enclosing its elements by special
brackets

∫
b and

∫
b, and operator ] denotes the concatenation operator of bags. Also,

∫
b
∫
bdenotes

an empty bag. For example, a bag with elements 1, 2, and 3 is denoted by
∫
b1, 2, 3

∫
b, and it is

equivalent to
∫
b1, 3, 2

∫
band so on. Comprehension notation about bags is defined similarly to that

of lists, in which the binary operator must have commutativity for well-definedness.
First, we would like to define a function to generate all possible marking on an input list with

a given finite marks [SHTO00,SHT01,SOH05].

Definition 21 (All marking). Given a finite mark set marks, the all-marking generator is defined
as follows.

all marks = ([⊕all , fall ]) where x⊕all y =
∫
bu++ v | u← x, v ← y

∫
b

fall a =
∫
b[(a,m)] | m← marks

∫
b �

For example, all {T,F} [1, 2] =
∫
b[(1,T), (2,T)], [(1,T), (2,F)], [(1,F), (2,T)], [(1,F), (2,F)]

∫
b.

One important feature of the all-marking generator is that it has the following very clear but
very powerful optimization. Basically, this optimization is a reformalization of the well known
equation like (a1 + a2)(b1 + b2)(c1 + c2) = a1b1c1 + a1b1c2 + a1b2c1 + a1b2c2 + a2b1c1 + a2b1c2 +
a2b2c1 + a2b2c2.

Lemma 22 (Linear algorithm for multi marking weighted product sum). Given a semiring
(α,⊕,⊗), and a finite mark set marks, the following equation holds.⊕

[
⊗

[f a | a← y] | y ← all marks x] =
⊗

[
⊕

[f (b,m) | m← marks] | b← x]

1GoG is an abbreviation of a generator of generators [EHK+08a,EHK+08b,EHK+10], since a GoG generates a
list of lists and a list is called a generator in comprehension notation.
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Proof. We use induction on the input x.
For the base case x = [b], we have the following equation.⊕

[
⊗

[f a | a← y] | y ← all marks [b]]
= { Definition of all }⊕

[
⊗

[f a | a← y] | y ←
∫
b[(b,m)] | m← marks

∫
b]

= { y is always a singleton of the form [(b,m)], commutativity of ⊕ }⊕
[f (b,m) | m← marks]

= { Singleton case of
⊗
}⊗

[
⊕

[f (b,m) | m← marks] | b← [b]]

For the induction case x = u++ v, we have the following equation.⊕
[
⊗

[f a | a← y] | y ← all marks (u++ v)]
= { Definition of all }⊕

[
⊗

[f a | a← y] | y ←
∫
bw ++ z | w ← all marks u, z ← all marks v

∫
b]

= { Removing the intermediate variable y, commutativity of ⊕ }⊕
[
⊗

[f a | a← w ++ z] | w ← all marks u, z ← all marks v]
= { Nesting the reduction }⊕

[
⊕

[
⊗

[f a | a← w ++ z] | z ← all marks v] | w ← all marks u]
= { Splitting the comprehension }⊕

[
⊕

[
⊗

[f a | a← w]⊗
⊗

[f a | a← z] | z ← all marks v] | w ← all marks u]
= { Distributivity of ⊗ over ⊕ }⊕

[
⊗

[f a | a← w]⊗ (
⊕

[
⊗

[f a | a← z] | z ← all marks v]) | w ← all marks u]
= { Distributivity of ⊗ over ⊕ }

(
⊕

[
⊗

[f a | a← w] | w ← all marks u])⊗ (
⊕

[
⊗

[f a | a← z] | z ← all marks v])
= { Induction hypothesis }⊗

[
⊕

[f (b,m) | m← marks] | b← u]⊗
⊗

[
⊕

[f (b,m) | m← marks] | b← v]
= { Definition of comprehension }⊗

[
⊕

[f (b,m) | m← marks] | b← (u++ v)]

The left hand side of the equation in Lemma 22 is a general basic computation pattern
for semirings2, and this pattern has the optimized implementation on the right hand side. The
combination of this theorem and the semiring construction to embed filters in the previous section
brings optimizations for a wide range of GoGs.

Now, we would like to introduce a class of GoGs that have good properties about nested
reductions with semirings.

Definition 23 (Finite range homomorphic GoG). Given a FRH predicate pgog on a finite set
marksgog and a function okgog :: marksgog → Bool, a FRH GoG gog is defined as follows.

gog x = [mmclean okgog y | y ← all marksgog x, pgog y]

Here, mmclean ok x = ++[if ok m then [a] else [] | (a,m)← x] is a cleaner to remove all marks
and elements with non acceptable marks.

For example, the GoG inits to generate initial-segments is a FRH GoG defined as follows.

inits x = [mmclean ok inits y | y ← all marks inits x, accept inits (([⊕inits , finits ]) y)]
where marks inits = {True,False}

ok inits m = m
finits (m, a) = (m,m,not m)
(i1, a1, n1)⊕inits (i2, a2, n2) = ((i1 ∧ n2) ∨ (a1 ∧ i2), a1 ∧ a2, n1 ∧ n2)

2If we substitute a semiring (
∫
b[α]

∫
b,],⊕all) and a function λa.

∫
b [a]

∫
bto the pattern, we get the generator

all marks x again.
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We can define tails to generate suffix-segments in a similar way.
For any FRH GoG, we have efficient algorithm to compute nested reductions on it. This result

is given by the combination of Theorem 20 and Lemma 22.

Theorem 24 (Linear algorithm for nested reductions on FRH GoG). Given a semiring (α,⊕,⊗),
a function f, and a FRH GoG gog x = [mmclean ok y | y ← all marks x, p y] in which p =
(acceptp ◦ ([⊕p, fp])), there exist a semiring (αCp , ⊕̂, ⊗̂), a function ˆfok , and a function π̂ such that
the following equation holds.⊕

[
⊗

[f a | a← y] | y ← gog x] = π̂

(⊗̂
[
⊕̂

[ ˆfok (a,m) | m← marks] | a← x]

)
Here, fok (a,m) = if ok m then f a else ı⊗.

Proof. Remember that we have the following equations.⊕
[
⊗

[f a | a← y] | y ← gog x] = ([⊕, ([⊗, f ])]) ◦ gog
gog = ([++, [·] ◦mmclean ok ]) ◦ ([++, [·]p]) ◦ all marks

mmclean ok = ([++, λ(m, a).if ok m then [a] else [ ]])

We first fuse gog and the nested reduction. Here, filter p = ([++, λa.if p a then [a] else [ ]]).

([⊕, ([⊗, f ])]) ◦ gog
= { Expanding the definition of gog }

([⊕, ([⊗, f ])]) ◦ ([++, [·] ◦mmclean ok ]) ◦ filter p ◦ all marks
= { Homomorphism fusion }

([⊕, ([⊗, f ]) ◦mmclean ok ]) ◦ filter p ◦ all marks
= { Expanding the definition of mmclean }

([⊕, ([⊗, f ]) ◦ ([++, λ(m, a).if ok m then [a] else [ ]])]) ◦ filter p ◦ all marks
= { Homomorphism fusion with the identity }

([⊕, ([⊗, λ(m, a).if ok m then f a else ı⊗])]) ◦ filter p ◦ all marks
= { Definition of fok }

([⊕, ([⊗, fok ])]) ◦ filter p ◦ all marks

Thus, we have the following equation.⊕
[
⊗

[f a | a← y] | y ← gog x] =
⊕

[
⊗

[fok a | a← y] | y ← all marks x, p y]

Now, we use the results so far to get the equation of the theorem.⊕
[
⊗

[f a | a← y] | y ← gog x]
= { The above calculation }⊕

[
⊗

[fok a | a← y] | y ← all marks x, p y]
= { p is a FRH predicate, and Theorem 20 }

π̂
(⊕̂

[
⊗̂

[ ˆfok a | a← y] | y ← all marks x]
)

= { Lemma 22 }
π̂
(⊗̂

[
⊕̂

[ ˆfok (a,m) | m← marks] | a← x]
)

The right hand side gives an efficient parallel algorithm to compute the nested reduction on a
FRH GoG in the left hand side. The derived algorithm uses the given function f and operators
⊕ and ⊗ only O(|x|) times, in which |x| is the length of the input x. Substituting concrete
FRH GoGs to the equation, we can derive various optimization theorems for them. For example,
substituting inits defined as FRH GoG above, we can get an optimization about inits that is
equivalent (but with some redundancy) to one in the previous work.

Finally, we would like to introduce a result about a good feature of FRH GoGs about their
composition.
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Lemma 25 (Composition of FRH GoGs). Given two FRH GoGs gog1 and gog2, their composition
gog = concat ◦map gog2 ◦ gog1 is a FRH GoG. That is, letting

gog1 x = [mmclean ok1 y | y ← all marks1 x, (accept1 ◦ ([⊕1, f1])) y],
gog2 x = [mmclean ok2 y | y ← all marks2 x, (accept2 ◦ ([⊕2, f2])) y],
gog x = [z | y ← gog1 x, z ← gog2 y],

the following equation holds.

gog x = [mmclean ok y | y ← all marks x, (accept ◦ ([⊕, f ])) y]
where marks = {(m1,m2) | m1 ← marks1,m2 ← marks2, ok1 m1}

∪{(m1,⊥) | m1 ← marks1,not (ok1 m1)}
ok (m1,⊥) = False
ok (m1,m2) = ok1 m1 ∧ ok2 m2

f (a, (m1,⊥)) = (f1 (a,m1), ı⊕2)
f (a, (m1,m2)) = (f1 (a,m1), f2 (a,m2))
accept (c1, c2) = accept1 c1 ∧ accept2 c2
(c1, c2)⊕ (c′1, c

′
2) = (c1 ⊕ c′1, c2 ⊕ c′2)

Intuitively, the new homomorphism ([⊕, f ]) runs the given two homomorphisms ([⊕1, f1]) and
([⊕2, f2]) simultaneously on a list marked by the product marking, say (m1,m2), except that the
second homomorphism ignores elements to be removed by the cleaning mmclean ok1 of the first
GoG. These ignored elements are marked by (m1,⊥).

Proof. Note that GoGs generate bags of lists.
To show the lemma, we would like to delay the cleaning mmclean ok1. To this end, we would

like to prepare some equations about cleaning and other functions.
Given lists x :: [α], u1 :: [marks1], and u2 :: [marks2] of the same length, let u′2 be a list made

by changing every element in u2 to a special value ⊥ if its corresponding element in u1 is not
accepted by ok1, i.e.,

u′2 = zipwith (λ(m1,m2).if ok1 m1 then m2 else ⊥) u1 u2.

Then, the following holds.

([⊕2, f2]) (zip (mmclean ok1 (zip x u1)) (mmclean ok1 (zip u′2 u1)))
= ([⊕2, f

′
2]) (zip (zip x u1) u

′
2)

where f ′2 ((a,m1),⊥) = ı⊕2

f ′2 ((a,m1),m2) = f2 (a,m2)

This equation is clear: Elements removed by mmclean ok1 in the left hand side do not affect the
result of the right hand side, because they are projected into the identity ı⊕2 .

Similarly, we have the following equation about ([⊕1, f1]).

([⊕1, f1]) (zip x u1) = ([⊕1, f
′
1]) (zip (zip x u1) u

′
2)

where f ′1 ((a,m1),⊥) = f1 (a,m1)
f ′1 ((a,m1),m2) = f1 (a,m1)

This equation clearly holds, because u′2 is completely ignored by f ′1.
To swap mmclean and all , we have the following equation.

all marks2 (mmclean ok1 y)
= [mmclean ok1 (map (λ((a,m1),m2)).((a,m2),m1)) z | z ← all marks ′2 y, p⊥ (zip y z)]
where
p⊥ = ([∧, λ((a,m1), ((a

′,m′1),m2)).(ok1 m1 ∧ not (m2 = ⊥)) ∨ (not (ok1 m1) ∧m2 = ⊥)])
marks ′2 = marks2 ∪ {⊥}
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Here, p⊥ checks that every element in u2 is ⊥ iff its corresponding element in u1 is not accepted
by ok1.

Now, we have the following equation to combine GoGs.

gog x
= { Definition of gog }

[z | y ← gog1 x, z ← gog2 y]
= { Definitions of gog1 and gog2 }

[z | y ← [mmclean ok1 y
∗ | y∗ ← all marks1 x, (accept1 ◦ ([⊕1, f1])) y

∗],
z ← [mmclean ok2 z

∗ | z∗ ← all marks2 y, (accept2 ◦ ([⊕2, f2])) z
∗]]

= { Removing y and z }

[mmclean ok2 z
∗ | y∗ ← all marks1 x, (accept1 ◦ ([⊕1, f1])) y

∗,
z∗ ← all marks2 (mmclean ok1 y

∗), (accept2 ◦ ([⊕2, f2])) z
∗]

= { Swapping the filtering and generation }
[mmclean ok2 z

∗ | y∗ ← all marks1 x, z
∗ ← all marks2 (mmclean ok1 y

∗),
(accept1 ◦ ([⊕1, f1])) y

∗, (accept2 ◦ ([⊕2, f2])) z
∗]

= { Delaying the mmclean }
[mmclean ok2 (mmclean ok1 (map (λ((a,m1),m2)).((a,m2),m1)) z

∗)
| y∗ ← all marks1 x, z

∗ ← all marks2 y
∗, p⊥ (zip y∗ z∗),

(accept1 ◦ ([⊕1, f1])) y
∗, (accept2 ◦ ([⊕2, f

′
2])) z

∗]
= { Using z∗ instead of y∗ in the first filtering }

[mmclean ok2 (mmclean ok1 (map (λ((a,m1),m2)).((a,m2),m1)) z
∗)

| y∗ ← all marks1 x, z
∗ ← all marks ′2 y

∗, p⊥ (zip y∗ z∗),
(accept1 ◦ ([⊕1, f

′
1])) z

∗, (accept2 ◦ ([⊕2, f
′
2])) z

∗]
= { Tupling the predicates and cleanings }

[mmclean ok (map (λ((a,m1),m2)).(a, (m2,m1)) z
∗)

| y∗ ← all marks1 x, z
∗ ← all marks ′2 y

∗, p⊥ (zip y∗ z∗),
(accept ◦ ([⊕, f ′1 4 f ′2])) z

∗]
=

{
Taking a product of markings: marks ′ = marks1 ×marks ′2

}
[mmclean ok z∗ | z∗ ← all marks ′ x, p′⊥ z, (accept ◦ ([⊕, f ])) z∗]

where
p′⊥ z = ([∧, λ(a, (m1,m2)).(ok1 m1 ∧ not (m2 = ⊥)) ∨ (not (ok1 m1) ∧m2 = ⊥)])

= { Embedding the constraint p′⊥ about marks into the set of marks }
[mmclean ok z∗ | z∗ ← all marks x, (accept ◦ ([⊕, f ])) z∗]

For example, we can derive a FRH GoG definition of well-known generator segs = concat ◦
map inits ◦ tails to generate all segments. As a result, we can obtain an optimization for nested
reductions with segs.

6 Example Problems

First of all, we would like to summarize the results so far to determine a class of nested reductions
with efficient parallel algorithms, i.e., simple homomorphism implementations. For example,
we can get such an efficient parallel algorithm for

⊕
[
⊗

[f a | a ← y] | y ← gog x, p1 y ∧
p2 y,not (p3 y) ∧ (p5 y ∨ p6 y)] and so on, as far as (⊕,⊗) forms a semiring and gog and all pis
are FRH ones.

Theorem 26 (Nested reductions with efficient parallel algorithms). The following nested reduc-
tion can be computed by a simple homomorphism that uses given f , ⊕ and ⊗ only O(n) times
for an input list x of length n, if (1) (α,⊕,⊗) is a semiring, (2) gog is either ‘all marks’ for a
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finite set marks or composition of FRH GoGs, and (3) every ei is a Boolean expression (negation,
disjunction, and conjunction) of FRH predicates applied to y.⊕

[
⊗

[f a | a← y] | y ← gog x, e1, . . . , el]

Proof. Lemma 14, Theorem 20, Lemma 22, Theorem 24, and Lemma 25.

The parallel time cost of the homomorphism is O((Tf +T⊕+T⊗)n/p+ (T⊕+T⊗) log p) using
p processors, in which T• is a cost of •.

6.1 Generate-and-test Querying

Substituting (],⊕all , λa.
∫
b[a]

∫
b) into (⊕,⊗, f) in Theorem 26, we can obtain linear-work algorithms

for generate-and-test querying on gog x with testing expressions eis satisfying the conditions.
Note that for efficient computation we need to freeze the operators during the homomorphism
computation and afterward generate all candidates from the result.

6.2 Maximum marking problems on lists

Since maximum (multi-) marking problem on lists [SHTO00,SHT01] are instances of our nested
reductions, our proposed technique can derive linear-work homomorphism implementations for ex-
amples shown in the previous papers such as paragraph formatting problem, security van problem,
knapsack problem, and so on. Here, we have to use the following fact about conversion from se-
quential predicates into homomorphic predicates owing to the finiteness, although a naive conver-
sion leads to some redundancy: Given a finite accumulative predicate (property) p [SHT01] there
exists a FRH predicate acceptp ◦ ([⊕p, fp]) such that p = acceptp ◦ ([⊕p, fp]). It is worth noting that
the nested reductions can compute the maximum solution as well as the maximum sum; for exam-
ple, we can use function f ′ a = (f a, [a]), operator (a, x) ↑′ (b, y) = if a > a then (a, x) else (b, y),
and (a, x) +′ (b, y) = (a + b, x ++ y), instead of given function f , total order >, and monotonic
addition +. It would be noted that we need to consider that lists that have the same sum are
equivalent to guarantee the commutativity of ↑′. In other words, if there are multiple solutions to
achieve the maximum sum, the algorithm returns one of the solutions depending on the concrete
execution of the homomorphism.

6.3 k-maximum marking problems on lists

Since we can use arbitrary semirings in nested reductions, we can easily extend the maximum
marking problem to compute the first k maximum values (and solutions). Given function f ,
total order >, and monotonic addition +, we can use function f ′ a = [f a], operator x ↑k y =
take k (sort> (x ++ y)), and x +k y = take k (sort> ([u + v | u ← x, v ← y])) to compute the
k-maximum. Since ([α], ↑k,+k) is a semiring, we can compute the following nested reductions for
k-maximum marking problems with a FRH predicate p efficiently by linear-work homomorphisms.x

k
[
∑

k
[f ′ a | a← y] | y ← all marks x, p y]

It is worth noting that we can also compute the solutions by using operators defined in the section
about maximum marking problems on lists.

A proof to show ([α], ↑k,+k) is a semiring is as follows. To this end, we use take k (sort> (x++
take k (sort> y))) = take k (sort> (x ++ y)). This is shown as follows: If a ∈ y is not in
take k (sort> y), there exist k elements in y which are all bigger than a, which means that a also
does not appear in take k (sort> (x++y)). Similarly, we have take k (sort> (take k (sort> x)++y)) =
take k (sort> (x++ y)) .
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The associativity of ↑k is shown by the following computation.

x ↑k (y ↑k z)
= { Definition of ↑k }

take k (sort> (x++ (take k (sort> (y ++ z)))))
= { The above equation. }

take k (sort> (x++ y ++ z))
= { The above equation. }

take k (sort> (take k (sort> (x++ y)) ++ z))
= { Definition of ↑k }

(x ↑k y) ↑k z

The associativity of +k is shown by the following computation.

x+k (y +k z)
= { Definition of +k }

take k (sort> ([u+ v | u← x, v ← take k (sort> ([u′ + v′ | u′ ← y, v′ ← z]])]))
= { Similar to the above equation }

take k (sort> ([u+ v | u← x, v ← [u′ + v′ | u′ ← y, v′ ← z]]))
= { Flattening }

take k (sort> ([u+ u′ + v′ | u← x, u′ ← y, v′ ← z]))
= { Nesting }

take k (sort> ([w + v′ | w ← [u+ u′ | u← x, u′ ← y], v′ ← z]))
= { Similar to the above equation }

take k (sort> ([w + v′ | w ← take k (sort> ([u+ u′ | u← x, u′ ← y])), v′ ← z]))
= { Definition of +k }

(x+k y) +k z

The identities of ↑k and +k are clearly [] and [0]. Also, [] is the zero of +k.
Finally, the distributivity is shown as follows.

x+k (y ↑k z)
= { Definitions of +k and ↑k }

take k (sort> ([u+ v | u← x, v ← take k (sort> (y ++ z))]))
= { Similar to the above equation }

take k (sort> ([u+ v | u← x, v ← y ++ z]))
= { Splitting }

take k (sort> ([u+ v | u← x, v ← y] ++ [u+ w | u← x,w ← z]))
= { The above equation }

take k (sort> (take k (sort> ([u+ v | u← x, v ← y]))
++ take k (sort> ([u+ w | u← x,w ← z]))))

= { Definitions of +k and ↑k }
(x+k y) ↑k (x+k z))

Therefore, ([α], ↑k,+k) is a semiring.

6.4 Counting regular expressions

Since a DFA of a regular expression RE can be converted into a FRH predicate pRE , we can
count the number of segments matching RE in the input x as follows.∑

[
∏

[1 | a← y] | y ← segs x, pRE y]

Since this nested reduction satisfies the condition of Theorem 26, we can compute it efficiently in
parallel. It is worth noting that we can also count the number of all subsequences matching RE
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and so on, by using other GoGs. Also, we can generate all candidates similar to the generate-and-
test querying, take a sum of weighted products, or find the maximum candidate like the maximum
marking problems.

The conversion from a regular expression RE to a FRH predicate pRE is as follows. First,
we can make a DFA DFA = (Q,Σ, δ, q0, F ) equivalent to RE , i.e., such that a string x =
[x1, x2, . . . , xn] is matched by RE iff x is accepted by DFA. Here, the acceptance of x by DFA is
defined as follows.

DFA = (Q,Σ, δ, q0, F ) accepts a string x = [x1, x2, . . . , xn]
4⇔ δx(q0) = (δx1

→◦ δx2
→◦ · · · →◦ δxn)(q0) ∈ F

where δa = λq.δ(q, a) ; (f
→◦ g) x = g(f(x))

Then, we can make a FRH predicate p = accept ◦ ([◦, λa.δa]) such that DFA accepts x iff p x is
true, where accept δx = δx(q0) ∈ F . Since Q is a finite set, the set {δx | x ∈ Σ∗} is a finite set
closed under the function composition. Each of such functions is a map from Q to Q (and the
total number of such maps are |Q||Q|), and a map can be represented by a vector of size |Q|. The

composition of maps can be computed straightforwardly as (δa
→◦ δb)

〈k〉
= δb

〈δa〈k〉〉. Therefore,
the range of ([◦, λa.δa]) is finite and p is a FRH predicate (and implementable simply by using
vectors).

7 Related Work

Maximum marking problems [SHTO00, SHT01, SOH05] can be seen as special cases of nested
reductions, in which we use the semiring of the usual addition and the maximum operator. Our
proposed results cover the results of maximum (multi-) marking problems on lists without non-
accumulative weight-functions, although their goal is to derive efficient sequential programs and
their optimization work for arbitrary tree structures. Actually, we can extend the proposed results
to arbitrary tree structures if we do not impose parallelism (see Appendix A). Integration of
accumulative weight-functions (which correspond to relational predicates [EHK+08a, EHK+08b,
EHK+10] in our setting) is a part of future work. The advantage of the proposed results is that we
can use arbitrary semiring operators, e.g., operators to take the first k maximums that cannot be
dealt with the simple maximum marking problems. Another advantage is we can make efficient
algorithms incrementally by applying the proposed results; i.e., we can get a new algorithm from
an existing algorithm regardless of its details, while the existing results requires us to develop
algorithms at once.

The incremental development by semiring constructions corresponds to a simple product con-
struction of automata. When the computation includes two predicates p1 and p2 as

⊕
[
⊗
y |

y ← gog x, p1 y, p2 y], the automaton generated by a combination of gog , p1, and p2 is basi-
cally a product of automata generated from each of the items. The substitution of an extended
semiring about p2 to the computation of

⊕
[
⊗
y | y ← gog x, p1 y] corresponds to making a

product automaton of p2 and the existing product of gog and p1. Basically, these automatons
are independent, so we can incrementally make bigger automatons implicitly using extensions of
semirings.

Morihata [Mor09] has proposed a similar framework to derive efficient algorithms for combina-
torial optimization problems, of which objective is to find the maximum sum under preorders. In
his paper, he has proposed a method to build preorders incrementally from predicates, which can
be seen as instance of our proposed results, because the pair of the maximum operator according
to preorders and the addition operator form a semiring. On the other hand, his results cover a
wider rage of generators than ours and give a generic optimization for generic data structures,
while our proposed results have mainly focused on FRH GoGs that lead to linear-work parallel
algorithms. Both results may be combined together to build a stronger framework, which will be
a part of future work.
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8 Conclusion

We have determined a wide class of nested reductions that have efficient parallel algorithms given
as simple list homomorphisms. The key technique is the construction of semirings from semirings
and finite-range homomorphic predicates. The combination of the technique and the very simple
optimization can derive optimizations for various problems.

Theoretical part of our future work includes the following studies. In the previous study, we
have introduced interesting predicates that are not FRH predicates but have efficient algorithms.
Integration of such predicates into the proposed technique is an interesting future study. The
finiteness condition on predicates can be relaxed, although we cannot guarantee the total work
of derived algorithms to be linear, because the finiteness is used only to guarantee that derived
algorithms have linear work. We think it is interesting to study non-finite predicates that have
reasonable efficient algorithms. It is also important to study elimination of redundancy in FRH
predicates, especially in conversion from sequential predicates.

Practical part of our future work includes implementation of (DSL) libraries with optimization
mechanisms for nested reductions. Since the proposed optimizations transform nested reductions
into simple homomorphisms, we can use various backends for executing them in parallel.
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A Generic Version without Parallelism

In this section, we would like to see similar results about arbitrary tree structures.

A.1 Preliminaries

First of all, we would like to introduce the target data structure, i.e., polynominal algebraic data
types (PADT for short).

Definition 27 (Polynominal algebraic data type). Given a polynominal functor Dα defined in
the following form, its initial Dα-algebra is called a PADT and denoted as D α.

Dα =

n∑
i=1

(

ki∏
j=1

α×
li∏
j=1

Bij ×
mi∏
j=1

I)
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Here, each Bij is a constant functor other than I and α, i.e., Bij ∈ B where B ∩ {I, α} = ∅.
Corresponding Haskell-like definition of D α is as follows.

D α = C1 α11 · · · α1k1 β11 · · · β1l1 D11 · · · D1m1

| · · ·
| Cn αn1 · · · αnkn βn1 · · · βnln Dn1 · · · Dnmn �

Then, we would like to introduce common basic computation patterns on PADTs.

Definition 28 (Catamorphism). Given A PADT D α and a function f :: Dα β → β, its cata-
morphism is denoted as foldD.

That is, given a function f = f1 O · · · O fn, it is defined as follows.

foldD f (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi)
= fi ai1 · · · aiki bi1 · · · bili (foldD f xi1) · · · (foldD f ximi) �

A.2 Lifted F-semirings

We would like to introduce F-semirings that are generalization of semirings for PADTs.

First, we extend the distributivity.

Definition 29 (D-distributivity). Given a PADT D α, a binary operator (⊕) :: α → α → α,
and a function φ :: Dα α → α, the function is said to be D-distributive over ⊕ if the following
equations hold.

φ = φ1 O · · · O φn
φi ai1 · · · (aij ⊕ a′ij) · · · aiki bi1 · · · bili xi1 · · · ximi

= φi ai1 · · · aij · · · aiki bi1 · · · bili xi1 · · · ximi

⊕ φi ai1 · · · a′ij · · · aiki bi1 · · · bili xi1 · · · ximi

(j ∈ {1, . . . , ki})
φi ai1 · · · aiki bi1 · · · bili xi1 · · · (xij ⊕ x′ij) · · · ximi

= φi ai1 · · · aiki bi1 · · · bili xi1 · · · xij · · · ximi

⊕ φi ai1 · · · aiki bi1 · · · bili xi1 · · · x′ij · · · ximi

(j ∈ {1, . . . ,mi})

The usual distributivity corresponds to D-distributivity of binary trees, i.e., arity 2.

Then, the zero is defined as follows.

Definition 30 (D-zero). Given a PADT D α, an element νφ, and a function φ :: Dα α→ α, the
element νφ is said to be D-zero of φ if the following equations hold.

φ = φ1 O · · · O φn
φi ai1 · · · aiki bi1 · · · bili xi1 · · · νφ · · · ximi = νφ (j ∈ {1, . . . ,mi})
φi ai1 · · · νφ · · · aiki bi1 · · · bili xi1 · · · ximi = νφ (j ∈ {1, . . . , ki})

Now, we are ready to define generalized semirings.

Definition 31 (D-semirings). Given a PADT D α, a binary operator (⊕) :: α → α → α, and a
function φ :: Dα α → α, a triple (α,⊕, φ) is said to be a D-semiring if the following conditions
hold.

• ⊕ is associative and commutative.
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• ⊕ has an identity ı⊕.

• φ is D-distributive over ⊕.

• ı⊕ is the D-zero of φ.

For the generalized semirings, we can derive a lemma to build lifted generalized semirings,
which is a generalization of Lemma 16.

Lemma 32 (Lifted D-semiring). Given a PADT D α, a finite set Cp, a function φp :: DCp Cp →
Cp, and a D-semiring (α,⊕, φ), a triple (αCp , ⊕̂, φ̂) with the following definitions is a D-semiring.
We call it a lifted D-semiring of (α,⊕,⊗) with φp.

a ⊕̂ b = c where c〈k〉 = a〈k〉 ⊕ b〈k〉 (k ∈ Cp)
φ̂ = φ̂1 O · · · O φ̂n
φ̂ ai1 · · · aiki bi1 · · · bili xi1 · · · ximi = c

where c〈k〉 =
⊕

[φ ai1
〈ja1〉 · · · aiki

〈jaki 〉 bi1 · · · bili xi1〈jx1〉 · · · ximi
〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ] (k ∈ Cp)

Proof. It is clear that ⊕̂ is associative and commutative, because ⊕̂ just does component-wise
operations. Its identity ı⊕̂ is clearly given as follows.

ı⊕̂
〈k〉 = ı⊕ (k ∈ Cp)

It is also clear that ı⊕̂ is the D-zero of φ̂.

D-distributivity of φ̂ over ⊕̂ is shown below. The kth component is as follows.

(φ̂ ai1 · · · (aij ⊕̂ a′ij) · · · aiki bi1 · · · bili xi1 · · · ximi)
〈k〉

=
{

Definition of φ̂
}

⊕
[φ ai1

〈ja1〉 · · · (aij ⊕̂ a′ij)
〈jaj〉 · · · aiki

〈jaki 〉 bi1 · · · bili xi1〈jx1〉 · · · ximi
〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

=
{

Definition of ⊕̂
}⊕

[φ ai1
〈ja1〉 · · · (aij

〈jaj〉 ⊕ a′ij
〈jaj〉) · · · aiki

〈jaki 〉 bi1 · · · bili xi1〈jx1〉 · · · ximi
〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

= { D-distributivity of φ over ⊕, and commutativity of ⊕ }⊕
[φ ai1

〈ja1〉 · · · aij〈jaj〉 · · · aiki
〈jaki 〉 bi1 · · · bili xi1〈jx1〉 · · · ximi

〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

⊕
⊕

[φ ai1
〈ja1〉 · · · a′ij

〈jaj〉 · · · aiki
〈jaki 〉 bi1 · · · bili xi1〈jx1〉 · · · ximi

〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

=
{

Definitions of φ̂ and ⊕̂
}

(φ̂ ai1 · · · aij · · · aiki bi1 · · · bili xi1 · · · ximi

⊕̂ φ̂ ai1 · · · a′ij · · · aiki bi1 · · · bili xi1 · · · ximi)
〈k〉

The above equation holds for all k ∈ Cp, so φ̂ has D-distributivity over ⊕̂.
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To involve the usual map operations into nested reductions, we would like to define the map
operations here. The next functor is used to define types of functions used in maps.

Definition 33 (Constant part functor). Given a PADT functor Dα =
∑n

i=1(
∏ki
j=1 α×

∏li
j=1 Bij×∏mi

j=1 I), we define Dα
′
i = α×

∏li
j=1 Bij for i ∈ {1, . . . , n}, and Dα

′ =
∑n

i=1 Dα
′
i. Note that Dα

′
i x

and Dα
′ x are constant for all x.

Now, the map operation is defiend as follows.

Definition 34 (D-map). Given a PADT D α, and a function f :: D′α β → β in which D′α is the
constant part of Dα, a D-map mapD f :: D α→ D β is defined as follows.

mapD f = foldD φ
where

φ = φ1 O · · · O φn
φi ai1 · · · aiki bi1 · · · bili xi1 · · · ximi

= Ci (fi ai1 bi1 · · · bili) · · · (fi aiki bi1 · · · bili) bi1 · · · bili xi1 · · · ximi

Note that D′α β is a constant functor and independent of β, and also that f = f1 O · · · O fn.

Now, we would like to introduce a computation pattern that is a generalization of list homo-
morphism that is the combination of a map and a reduction.

Definition 35 (D-product). Given a PADT D α, and functions φ :: Dβ β → β and f :: D′α β → β,
a D-product prodD (φ, f) is defined as follows.

prodD (φ, f) = foldD φ ◦mapD f

Similar to FRH predicates, we would like to define finite-range predicates for PADTs.

Definition 36 (Finite-range D-predicate). Given a PADT D α, a finite set Cp, a function
acceptp :: Cp → Bool and D-product prodD (φp, fp), a predicate p :: D α → Bool is said to be
a finite-range D-predicate if it is defined as follows.

p = acceptp ◦ prodD (φp, fp)

For readability, we introduce the following notation for lifted singletons, which is almost the
same as one used in main part of this paper.

Definition 37 (Lifted single value). Given a value v ∈ α, and a D-semiring (α,⊕, φ), we define
a lifted singleton value v〉〉k〈〈 in αCp as follows.

(v〉〉k〈〈)
〈i〉

= if i = k then v else ı⊕

So, we have (v〉〉i〈〈)
〈i〉

= v and otherwise (v〉〉k〈〈)
〈i〉

= ı⊕.

Now, the following lemma gives the generalized result of Lemma 16.

Lemma 38 (Lifted D-product). Given a PADT D α, a finite-range D-product prodD (φp, fp) ::
D α→ Cp, a function f :: D′α β → β, and a D-semiring (β,⊕, φ), the following equation holds.

prodD (φ̂, f̂) y = (prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈

where f̂ = f̂1 O · · · O f̂n
f̂ i a bi1 · · · bili = (fi a bi1 · · · bili)

〉〉fpi a bi1 ··· bili 〈〈

Here, fp = fp1 O · · · O fpn, f = f1 O · · · O fn, and (βCp , ⊕̂, φ̂) is the lifted D-semiring of (β,⊕, φ)
with φp. Note that the result of the lifted product stores the simple product prodD (φ, f) z with the

simple D-semiring (β,⊕, φ) in its corresponding state prodD (φp, fp) z. We call the function f̂ a
lifted function of f with prodD (φp, fp).
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Proof. We use induction on the data type. For the constructor Ci, we have the following equation
about the kth component.

(prodD (φ̂, f̂) (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi))
〈k〉

=
{

Definition of prodD (φ̂, f̂)
}

(φ̂i ui1 · · · uiki bi1 · · · bili vi1 · · · vimi)
〈k〉

where uij = f̂ i aij bi1 · · · bili
vij = prodD (φ̂, f̂) xij

=
{

Definition of the lifted semiring operator φ̂i

}
⊕

[φ ui1
〈ja1〉 · · · uiki

〈jaki 〉 bi1 · · · bili vi1〈jx1〉 · · · vimi
〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

where uij = f̂ i aij bi1 · · · bili
vij = prodD (φ̂, f̂) xij

=
{

Induction hypothesis, and definition of lifted functions f̂ i

}
⊕

[φ ui1
〈ja1〉 · · · uiki

〈jaki 〉 bi1 · · · bili vi1〈jx1〉 · · · vimi
〈jxmi 〉

| ja1 ← Cp, . . . , jaki ← Cp, jx1 ← Cp, . . . , jxki ← Cp,
k = φpi ja1 · · · jaki bi1 · · · bili jx1 · · · jxmi ]

where uij = (fi aij bi1 · · · bili)
〉〉fpi aij bi1 ··· bili 〈〈

vij = (prodD (φ, f) xij)
〉〉prodD (φp,fp) xij〈〈

= { Definition of lifted singleton values, and ı⊕ is the identity of ⊕ and D-zero of φ. }⊕
[φ ci1 · · · ciki bi1 · · · bili yi1 · · · yimi | k = φpi di1 · · · diki bi1 · · · bili zi1 · · · zimi ]

where cij = fi aij bi1 · · · bili
yij = prodD (φ, f) xij
dij = fpi aij bi1 · · · bili
zij = prodD (φp, fp) xij

= { Definition of prodD (φ, f) and prodD (φp, fp) }⊕
[prodD (φ, f) (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi)

| k = prodD (φp, fp) (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi)]
= { Definitions of the comprehension notation and the single value }

((prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈)
〈k〉

where y = (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi)

Since the above equation holds for every constructor Ci, we have the equation prodD (φ̂, f̂) y =
(prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈 for all y.

As a consequence of the lemma, we have the following result.

Corollary 39 (Projection of lifted D-product). Given a PADT D α, a finite-range D-predicate
p = acceptp ◦ prodD (φp, fp), a function f :: D′α β → β, and a D-semiring (β,⊕, φ), the following
equation holds.

π̂(prodD (φ̂, f̂) y) = if p y then prodD (φ, f) y else ı⊕

Here, the function π̂ is defined below.

π̂ a =
⊕

[a〈k〉 | k ← Cp, acceptp k]

We call π̂ the unlifter (projector) with p.
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Proof. We have the following equation.

π̂(prodD (φ̂, f̂) y)
= { Lemma 38 }

π̂((prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈)
= { Definition of π̂ }⊕

[((prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈)
〈k〉 | k ← Cp, acceptp k]

= { Definition of filtering }⊕
[if acceptp k then ((prodD (φ, f) y)〉〉prodD (φp,fp) y〈〈)

〈k〉
else ı⊕ | k ← Cp]

= { Definition of the lifted singleton value, and the identity of ⊕ }
if acceptp (prodD (φp, fp) y) then prodD (φ, f) y else ı⊕

= { Definition of p }
if p y then prodD (φ, f) y else ı⊕

Using the above result, we successfully have the following generalization of embedding filters
into semirings.

Theorem 40 (Embedding filters into D-semiring). Given a PADT D α, a finite-range D-predicate
p = acceptp ◦ prodD (φp, fp) in which acceptp :: Cp → Bool, a D-semiring (β,⊕, φ), a D-product
prodD (φ, f), and a list g, the following equation holds.⊕

[prodD (φ, f) y | y ← g, p y] = π̂(
⊕̂

[prodD (φ̂, f̂) y | y ← g])

Here, (βCp , ⊕̂, φ̂) is the lifted D-semiring of (β,⊕, φ) with φp, f̂ is the lifted function of f with
prodD (φp, fp), and π̂ is the unlifter with p.

Proof. We have the following calculation.⊕
[prodD (φ, f) y | y ← g, p y]

= { Definition of filtering, and the identity of ⊕ }⊕
[if p y then

⊗
[f a | a← y] else ı⊕ | y ← g]

= { Corollary 39 }⊕
[π̂ (prodD (φ̂, f̂) y) | y ← g]

=
{

( π̂ a⊕ π̂ b) = π̂ (a ⊕̂ b), because of commutativity and associativity of ⊕
}

π̂(
⊕̂

[prodD (φ̂, f̂) y | y ← g])

Now, we would like to introduce generators that have efficient algorithms for generalized nested
reductions. The following is the generator to produce a collection of all possible marking.

Definition 41 (Generic all marking on D). Given a PADT D α, and a finite mark set marks,
the all-marking generator allD marks :: D α→ [D (α,marks)] is defined as follows.

allD marks = foldD f
f = f1 O · · · O fn
fi ai1 · · · aiki bi1 · · · bili xi1 · · · ximi

=
∫
bCi (ai1,m1) · · · (aiki ,mki) bi1 · · · bili yi1 · · · yimi |

m1 ← marks, . . .mki ← marks, yi1 ← xi1, . . . , yiki ← xiki
∫
b

Then, the following clearly holds.
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Lemma 42 (Multi marking weighted product sum by D-semirings). Given a PADT D α, a
D-semiring (β,⊕, φ), a D-product prodD (φ, f), and a value x ∈ D α, the following equation
holds. ⊕

[prodD (φ, f) y | y ← allD marks x] = prodD (φ, f̃) x

Here, the function f̃ is defined as follows.

f̃ = f̃1 O · · · O f̃n
f̃i a bi1 · · · bili =

⊕
[fi (a,m) bi1 · · · bili | m← marks]

Proof. It is clear because of the D-distributivity of φ over ⊕.

For the case x = Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi , we have the following equation.⊕
[prodD (φ, f) y | y ← allD marks x]

= { x = Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi }⊕
[prodD (φ, f) y | y ← allD marks (Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi)]

= { Definition of all marking }⊕
[prodD (φ, f) y | y ←

∫
bCi (ai1,m1) · · · (aiki ,mki) bi1 · · · bili yi1 · · · yimi |
m1 ← marks, . . .mki ← marks, yi1 ← zi1, . . . , yiki ← ziki

∫
b]

where zij = allD marks xij
= { Substitution of y, commutativity of ⊕ }⊕

[prodD (φ, f) (Ci (ai1,m1) · · · (aiki ,mki) bi1 · · · bili yi1 · · · yimi) |
m1 ← marks, . . .mki ← marks, yi1 ← zi1, . . . , yiki ← ziki ]

where zij = allD marks xij
= { Definition of prodD (φ, f) }⊕

[φi ci1 · · · ciki bi1 · · · bili ui1 · · · uimi |
m1 ← marks, . . .mki ← marks, yi1 ← zi1, . . . , yiki ← ziki ]

where zij = allD marks xij
cij = f (aij ,m1) bi1 · · · bili
uij = prodD (φ, f) yij

= { D-distributivity of φ over ⊕, and commutativity of ⊕ }⊕
[φi ci1 · · · ciki bi1 · · · bili ui1 · · · uimi | yi1 ← zi1, . . . , yiki ← ziki ]

where zij = allD marks xij
cij =

⊕
[fi (a,m) bi1 · · · bili | m← marks]

uij = prodD (φ, f) yij
= { D-distributivity of φ over ⊕, and commutativity of ⊕ }

φi ci1 · · · ciki bi1 · · · bili ui1 · · · uimi

where cij =
⊕

[fi (a,m) bi1 · · · bili | m← marks]
uij =

⊕
[prodD (φ, f) yij | yij ← allD marks xij ]

= { Induction hypothesis }
φi ci1 · · · ciki bi1 · · · bili ui1 · · · uimi

where cij =
⊕

[fi (a,m) bi1 · · · bili | m← marks]

uij = prodD (φ, f̃) xij

=
{

Definition of prodD (φ, f̃), and x = Ci ai1 · · · aiki bi1 · · · bili xi1 · · · ximi

}
prodD (φ, f̃) x

Combination of Lemma 42 and Theorem 40 provides the similar compositional framework for
generic nested reductions.

The following lemma connects the usual semirings and the D-semirings.
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Lemma 43 (D-traversal with semirings). Given a PADT D α and a semiring (α,⊕,⊗), the
triplet (α,⊕, f⊗) is the D-semiring.

f⊗ = f⊗1 O · · · O f⊗n
f⊗i ai1 · · · aiki bi1 · · · bili xi1 · · · ximi = foldr (⊗) ı⊗ [ai1, . . . , aiki , xi1, . . . , ximi ]

Proof. Clear.

In general, other similar traversals can be used to make D-semirings from usual semirings.
Also, we can use the results in the main part to embed filters running on the traversal into the
semirings.

Anyway, the results shown in this section do not immediately give efficient parallel imple-
mentation of the generalized nested reductions. However, they preserve important features of
generalized sermirings such as the generalized distributivities, so that they may help paralleliza-
tion of the algorithms as the distributivity plays an inportant role in parallelization of algorithms
on trees [Mat07].
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