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Abstract

This paper investigates robustness properties of gene regulatory net-
works with cyclic interconnections. In particular, we treat the hetero-
geneity of the gene’s dynamics using a framework of robustness analy-
sis, and derive necessary and sufficient conditions for robust stability.
To this end, we first present a mathematical formulation of the gene
regulatory network where dynamics of gene expression has a certain
degree of uncertainty. Then, graphical and analytic criteria for robust
stability are derived based on a robustness analysis scheme for large-
scale multi-agent systems. These conditions are easily applicable to
large-scale gene regulatory networks, which involve many components.
Finally, the results are interpreted from a biological viewpoint, and
they are verified by numerical simulations.

1 Introduction

Robustness of biochemical network has been recognized as one of the out-
standing properties of living systems, and it has been widely investigated
in the last decades (see [13] and references therein). It is often argued that
robustness comes from diversity, or heterogeneity, of each component of the
large-scale biological networks as well as complex biochemical pathways [13].
Detailed mechanisms of the robustness is, however, still open to be solved,
since the large-scale nature of biochemical network often becomes an ob-
stacle to examine the properties of the systems. Hence, this paper aims
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to present a systematic analysis method of robust stability for large-scale
uncertain gene-protein regulatory networks, and provide biological insight
based on the proposed method.

Gene expression refers to the biochemical process that produces protein
from genetic information, and consists of two steps, transcription and trans-
lation. In transcription process, a block of DNA sequence is converted to a
messenger RNA (mRNA), the molecule which carries the information of pro-
tein coding. Then, protein is produced based on the information of mRNA
in the translation process. In living cells, this protein production process
is regulated in the way that some protein species chemically activate and
repress the transcription process. Therefore, the schematic diagram of the
regulatory network can be illustrated as in Fig. 1, in which a cyclically
regulated network is considered.

As for robustness analysis, many analysis problems have been consid-
ered to tackle various types of uncertainty [2, 10, 11, 17]. In [11], it was
presented that µ-analysis can be a powerful tool to analyze the robustness
of gene regulatory networks. Henceforth, classical robust control theory was
extensively applied to find critical pathways [10], and to deal with kinetic
perturbations [17]. In most works, however, highly structured uncertainties
of the regulatory network prevented them to obtain analytic conditions for
robust stability, which help us discover general principle of the biological
systems.

One of possible approaches to such analytic conditions was recently pre-
sented for unperturbed systems in [8], where analytic existence conditions
of periodic oscillations were considered based on local stability analysis. In
their formulation, a key assumption is that genes have a common expression
dynamics. This assumption, however, is considered as restrictive for practi-
cal gene regulatory networks. Thus, it is desirable to relax this assumption
to obtain more useful conditions.

In this paper, we generalize the formulation introduced in [8] to the
case where genes have different expression dynamics. Specifically, gene’s
expression dynamics is represented by a nominal dynamics, which is shared
with all the genes, and multiplicative disk uncertainty, which accounts for
the heterogeneity of the dynamics between genes as well as uncertainty of
the dynamics. We here consider the class of gene regulatory network that
is cyclically regulated as illustrated in Fig. 1, which has been focused on
by many previous works [1, 4, 9, 15, 16] so far. Then, we conduct robust
stability analysis for the large-scale uncertain systems, and derive necessary
and sufficient analytic condition for robust stability.

This paper is organized as follows. In Section 2, we introduce a dynam-
ical model of cyclic gene regulatory network with uncertainty considered in
this paper. Then, in Section 3, we present the graphical condition for ro-
bust stability based on a result in [6]. The analytic robust stability condition
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Figure 1: Schematic diagram of cyclic gene regulatory networks.

and its biological interpretations are derived in Section 4. Then, the results
are confirmed with illustrative numerical simulations in Section 5. Finally,
Section 6 concludes the paper.

2 Problem Formulation

2.1 Dynamical Model of Cyclic Gene Regulatory Networks

The gene regulatory networks, where each protein activates or represses an-
other transcription in a cyclic way as illustrated in Fig. 1, are called cyclic
gene regulatory networks. The dynamics of mRNA and protein concentra-
tions in the cyclic gene regulatory networks consisting of N genes is modeled
by the following differential equations [3]:

ṙi(t) = −airi(t) + βifi(pi−1(t)),
ṗi(t) = ciri(t) − bipi(t),

(1)

for i = 1, 2, · · · , N , where ri ∈ R+(:= {x ∈ R | x ≥ 0}) and pi ∈ R+

denote the concentrations of the i-th mRNA and its corresponding protein
synthesized by the i-th gene, respectively. Let the subscript 0 be replaced
by N throughout this paper for the sake of notational simplification. The
kinetic constants ai, bi, ci and βi represent the followings: ai and bi denote
the degradation rates of the i-th mRNA and protein, respectively; ci and
βi denote the translation and transcription rates, respectively. The non-
linear function fi(·) : R+ → R+ stands for the effect of either activation
or repression of the transcription, and it is a monotone function satisfying
fi(0) = 1 and fi(∞) = 0, thus a monotone decreasing function for repres-
sion, and fi(0) = 0 and fi(∞) = 1, thus a monotone increasing function for
activation.

It is known that dynamical behavior of the system (1) is characterized
by

δ :=
N∏

i=1

Zi, where Zi =

{
+1 (fi(·) is increasing)
−1 (fi(·) is decreasing)

. (2)
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Specifically, the protein concentrations asymptotically converge to one of
equilibria when δ > 0, while they exhibit oscillatory behaviors as well as
convergence when δ < 0 [3,12]. Therefore, it is important to study the case
of δ < 0.

Assumption 1. For given fi(·) (i = 1, 2, · · · , N), δ < 0.

This assumption implies that a given cyclic gene regulatory network has an
odd number of repressive interactions between genes, which means an odd
number of decreasing fi(·),

Then, the overall dynamics of gene regulatory network systems defined
by (1) can be formulated by a transfer matrix G(s) and a static vector
nonlinearity function f as shown in Fig. 2 (Left), where

G(s) := diag(g1(s), g2(s), · · · , gN (s)), (3)

f := [f1(·), f2(·), · · · , fN (·)]T (4)

with

gi(s) :=
R2

i

(Tais + 1)(Tbi
s + 1)

, Tai :=
1
ai

, Tbi
:=

1
bi

, (5)

Ri :=
√

ciβi√
aibi

. (i = 1, 2, · · · , N). (6)

The dimensionless quantity Ri (i = 1, 2, · · · , N) in (6) is pointed out as one
of biologically essential quantities that determine the dynamical behavior of
the cyclic gene regulatory network systems (see [8] for details).

It was shown in [8] that the equilibrium point of the system (1) is unique,
and local instability of the equilibrium leads to oscillations of protein levels
in gene regulatory networks. This motivates us to put our attention on local
stability analysis of the system (1) in the vicinity of the unique equilibrium
point.

Let p∗i denote the unique equilibrium concentration of the i-th protein
pi (i = 1, 2, · · · , N), and the linearized gain of fi(·) be defined by ξi :=
f ′

i(p
∗
i−1). The linearized system of (1) can be obtained by replacing f in Fig.

2 (Left) with the corresponding Jacobian matrix K, where

K :=


0 0 0 · · · ξ1

ξ2 0 0 · · · 0
0 ξ3 0 · · · 0
...

...
. . . . . .

...
0 0 · · · ξN 0

 . (7)

Note that the value of ξi (i = 1, 2, · · · , N) depends on the equilibrium point,
which is determined from the system’s parameters.
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Figure 2: (Left) Block diagram of cyclic gene regulatory networks. (Right)
Block diagram of the linearized gene regulatory network system with uncer-
tainty, G(s).

It is worth mentioning that each diagonal entry of G(s), i.e., gi(s), stands
for each gene’s dynamics, and the matrix K specifies the interactions be-
tween genes.

2.2 Uncertainty in gene’s dynamics

It is often the case that dynamics of gene expression is slightly different
between cells, and the resulting dynamical behaviors are deviated from one
another. In this section, a robustness analysis framework is introduced to
deal with such regulatory networks with uncertainty.

We consider that the dynamics of the uncertain gene expression g̃i(s) (i =
1, 2, · · · , N) is represented with a common nominal dynamics of each gene,
g(s), and the heterogeneous uncertainty δi(s) as

g̃i(s) := g(s)(1 + δi(s)), (8)

where

g(s) :=
R2

(Tas + 1)(Tbs + 1)
with Ta :=

1
a
, Tb :=

1
b
,R2 :=

cβ

ab
,

and δi(s) ∈ {δ(s) | ∥δ∥∞ ≤ γi}. (9)

The constants a, b, c and β represent common nominal values of ai, bi, ci and
βi (i = 1, 2, · · · , N), respectively. The uncertainty δi(s) (i = 1, 2, · · · , N)
takes account of the following three uncertainties:

(1) uncertainty of each gene’s dynamics.

(2) heterogeneity of the gene expression dynamics between genes.
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(3) variation of the linearized gain ξi (i = 1, 2, · · · , N) due to the variation
of the equilibrium point.

It should be noted that we can merge ξi into g̃i(s) by using the cyclic struc-
ture of the system, though ξi originally appeared in the matrix K defined
in (7).

Consequently, the gene regulatory network system where each gene’s
dynamics has a certain degree of uncertainty is obtained as depicted in Fig.
2 (Right). In the sequel, this system is defined by

G(s) := G̃(s)
(
I − KG̃(s)

)−1
, (10)

where G̃(s) := diag(g̃1(s), g̃2(s), · · · , g̃N (s)). The transfer matrix G̃(s) can
be equivalently written as G̃(s) = g(s)(I + ∆(s)), where ∆(s) ∈ ∆γ with

∆γ :={∆(s) :=diag(δ1(s), δ2(s), · · · , δN (s)) | ∥δi∥∞≤γi}.

The subscript γ of ∆γ is defined by γ := maxi γi. We see that each entry of
the diagonal transfer matrix G̃(s) stands for the dynamics of gene expression
with uncertainty, of which H∞ norm is bounded by γi, and the matrix K
specifies the interaction structure between genes.

Therefore, the problem of the robust stability analysis of cyclic gene
regulatory networks can be posed as follows.

Problem. Consider the cyclic gene regulatory network system with multi-
plicative dynamic uncertainty, i.e., G(s) in (10). For given ∆γ, derive the
condition that G(s) is robustly stable for all ∆ ∈ ∆γ.

3 Graphical robust stability condition

In this section, we first show an existing robust stability result for the class
of systems presented in the previous section. Then, the simple algorithm,
which allows us to check the robust stability in a graphical way, is derived
based on the result. The developed graphical condition can be further used
to obtain the analytic condition for robust stability, which is the main result
of this paper.

In [5] and [14], the nominal system, i.e., G(s) with ∆(s) = 0, was desig-
nated as linear system with generalized frequency variables, and its properties
have been extensively studied. In particular, various types of robust stability
conditions were obtained for the class of systems formulated in the previous
section [6]. We first introduce one of the robust stability conditions.

Theorem 1. [6] Consider the system G(s) defined by (10). Suppose the
nominal system is stable and there exists a diagonal matrix D such that

6



DKD−1 becomes a normal matrix. Then, G(s) is robustly stable for all
∆(s) ∈ ∆γ, if and only if ∣∣∣∣ λ

ϕ(jω) − λ

∣∣∣∣ <
1
γ

(11)

for all λ ∈ spec(K) and all ω ∈ R, where

ϕ(s) :=
1

g(s)
. (12)

This theorem gives a robust stability condition for G(s) under the as-
sumption of existence of the diagonal matrix D stated in Theorem 1. It
should be emphasized that the robust stability is characterized by g(s) and
the matrix K, which represent a nominal dynamics of each gene and the
structure of the regulatory network, respectively.

In addition, we can verify that the matrix K can always be converted
by a diagonal matrix to the circulant matrix, which is normal.

Lemma 1. Consider the matrix K defined by (7). There exists a diagonal
matrix D := diag(d1, d2, · · · , dN ) ∈ CN×N such that DKD−1 is a normal
matrix. In particular, di is given by

di =
di−1ξ1

dNξi
(i = 1, 2, · · · , N − 1) (13)

with dN = ξ1
∏N

i=1(ξi)−
1
N .

Proof: We will show that there exists a diagonal matrix D such that DKD−1

is normal. Let D be defined as

D = diag(d1, d2, · · · , dN ), di ̸= 0. (14)

Then, we have

V := DKD−1

=


0 · · · · · · d1

dN
ξ1

d2
d1

ξ2
. . . . . . 0

...
. . . . . .

...
0 · · · dN

dN−1
ξN 0

 .

Note that V is normal if and only if V ∗V = V V ∗ holds. Setting di as

di =
di−1ξ1

dNξi
(i = 1, 2, · · · , N − 1),

dN = ξ1

N∏
i=1

(ξi)−
1
N ,

we see that DKD−1 is a circulant matrix, thus normal.
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This lemma allows us to apply Theorem 1 to our system, and we have
the following result.

Proposition 1. Consider the cyclic gene regulatory network system with
uncertainty, G(s). The system G(s) is robustly stable for all ∆ ∈ ∆γ, if and
only if

|ϕ(jω) − λ| > γ|λ| (15)

holds for all λ ∈ spec(K) and all ω ∈ R.

We see that the condition is characterized by g(s),K and γ, and is
easily checked from the each gene’s nominal dynamics, the interconnection
structure of the network and the uncertainty bound.

The equation (15) implies that the distance between the vector locus
ϕ(jω) and the eigenvalues of K, λ, is greater than γ|λ|. In particular, we
see from the cyclic structure of the matrix K that the eigenvalues {λi}N

i=1

of K can be written as

λi =
N∏

k=1

|ξk|
1
N ej

(2i−1)π
N . (16)

This implies that the eigenvalues are located on a circle with center at the
origin and radius L :=

∏N
k=1 |ξk|

1
N . Therefore, the condition provided in

Proposition 1 can be graphically checked as follows.

Procedure: graphical condition

1. Plot the eigenvalues of the matrix K, spec(K), in the complex
plane, which are uniformly located on the circle.

2. Draw the vector locus of ϕ(jω).

3. Draw circles with center at each point on the vector locus ϕ(jω)
and radius γL. We hereafter denote the region inside this circles
by

C := {z ∈ C | ∃ω ∈ R, |z − ϕ(jω)| ≤ γL}. (17)

4. The system G(s) is robustly stable if and only if spec(K) ∩ C = ∅,
i.e., the domain C includes none of the eigenvalues of K.

Following the above procedure, we can easily confirm robust stability of the
cyclic gene regulatory networks. Figure 3, which shall be explained in details
in Section 5, shows an example of our graphical condition.
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4 Main Result

4.1 Analytic robust stability condition

In this section, we derive an analytic robust stability condition by geometric
consideration of the graphical criterion presented in the previous section.
Then, we reveal the relation of the biological parameters and robustness of
the system.

The robust stability condition in the previous section can be graphically
characterized by the vector locus ϕ(jω), the eigenvalues of K and the norm
bound γ of uncertainty. Thus, we approach to an analytic condition by
obtaining explicit form of them, and computing the condition that at least
one eigenvalue goes inside C.

We consider the vector locus ϕ(jω) first. Let Q be defined by

Q :=
√

TaTb

(Ta + Tb)/2
. (18)

Then, we see from the definition that the vector locus ϕ(jω) can be written
as

x(ω) = −1
4
Q2R2y(ω)2 +

1
R2

, (19)

where x(ω) and y(ω) are defined by ϕ(jω) =: x(ω) + jy(ω). Note that (19)
implies that the vector locus ϕ(jω), which the circles C are drawn around,
becomes a parabolic curve (see Fig. 3).

Our next goal is to find the critical eigenvalue, which makes the system
unstable for the first time as γ gets large. It is clear that such an eigenvalue is
given by the closest one to the parabolic curve since the region C is obtained
by drawing circles with center at each point of the parabolic curve. Then,
we define J(y, θ) that stands for a distance between the circle where the
eigenvalues of K are located and the vector locus given by (19). Specifically,

J(y, θ) :=
{
−1

4
Q2R2y2 +

1
R2

− L cos θ

}2

+(y − L sin θ)2 (20)

with θ specifying an angular position on the circle. Note that y and θ in
J(y, θ) specify a point on the parabolic curve (19) and a point on the circle
with radius L, respectively. Since ϕ(jω) and the eigenvalues are symmetric
to the real axis, the function J(y, θ) is defined only for y ≥ 0 and 0 ≤ θ ≤ π
in the following. Therefore, the robust stability analysis problem can be
summarized as the following minimization problem.

Find min
y,θ

J(y, θ) (21)
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subject to θ ∈ {π/N, 3π/N, · · · , (2i− 1)π/N, · · · , (2N − 1)π/N}. The max-
imum allowable γ for robust stability is obtained from the minimum value
of the above problem, and the corresponding critical eigenvalue is located
at argminθ J(y, θ).
Though J(y, θ) becomes fourth-order with respect to y, the above minimiza-
tion problem can be efficiently solved because of some monotone properties
shown below. We first show uniqueness of an extremum with respect to y
(see Appendix A for the proof).

Lemma 2. Consider J(y, θ) defined in (20). For any given θ ∈ (0, π),
J(y, θ) has a unique minimum value y∗ in y > 0. In particular,

y∗ = 3

√
4L sin θ

Q4R4
T (22)

with

T :=
3

√
1 +

√
1 + k +

3

√
1 −

√
1 + k,

k :=
4

(
2 − Q2(1 − LR2 cos θ)

)3

27L2Q4R4 sin2 θ
.

We see from the above lemma that the minimum value of J(y, θ) for given
θ becomes

J(y∗, θ) =
2−(1−LR2 cos θ)Q2

4
y∗2− 3

2
L sin θy∗ +L2− 2L cos θ

R2
+

1
R4

. (23)

It should be noted that (23) is second-order with respect to y, though (20)
is fourth-order, because it can be eliminated by using the relation

∂J

∂y
=

1
4
Q4R4y3 + (2 − (1 − LR2 cos θ)Q2)y − 2L sin θ=0. (24)

The last step to obtain an analytic condition is to find θ minimizing
J(y∗, θ). Here, we show a certain monotone property of J(y∗, θ), which
greatly simplifies the analysis.

Lemma 3. Consider J(y∗, θ) defined by (20). J(y∗, θ) monotonically
increases for θ such that 0 ≤ θ ≤ π and L(cos θ + j sin θ) ∈ Ωc

+, where
Ωc

+ := {λ ∈ C | ϕ(s) ̸= λ for ∀s ∈ C+}.

The proof can be found in Appendix B. Lemma 3 implies that the eigenvalue
λ1 in (16), i.e., θ = π/N , always achieves the minimum of J(y∗, θ). Thus, the
analytic robust stability condition can be obtained from J(y∗, π/N), which
represents the square distance of the eigenvalue at π/N and the vector locus
(see Fig. 3).
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Theorem 2. Consider the gene regulatory network system with uncertainty
G(s) defined by (10). Then, the system is robustly stable for all ∆γ, if and
only if

γ <

√
J∗

L
, (25)

where

J∗ =
2 − (1 − LR2 cos θ0)Q2

4
y∗2− 3

2
L sin θ0y

∗+L2 − 2L cos θ0

R2
+

1
R4

,

y∗ = 3

√
4L sin θ0

Q4R4
T, T =

3

√
1 +

√
1 + k +

3

√
1 −

√
1 + k,

k =
4

(
2 − Q2(1 − LR2 cos θ0)

)3

27L2Q4R4 sin2 θ0
and θ0 =

π

N
.

The above theorem is a direct consequence of Lemma 2 and Lemma 3.
Since J(y∗, π/N) is the square distance between ϕ(jω) and the eigenvalues
at π/N , γL >

√
J(y∗, π/N) is the necessary and sufficient condition for

robust stability (see Fig. 3).
Theorem 2 analytically provides the maximum uncertainty bound that

the system remains robustly stable. It is remarkable that the condition
is analytically written in terms of the three parameters N,L,R and Q, and
thus, we can easily see the relation of the biological quantities and robustness
of the cyclic gene regulatory network systems. In the next section, we shall
see biological insight obtained from the above theorem.

4.2 Interpretation of the analytic condition

In this section, the analytic robust stability condition is interpreted from a
biological viewpoint.

It can be easily verified that J∗ in Theorem 2 monotonically decreases as
the number of genes consisting of the regulatory network increases. Thus,
assuming L does not depend on N , we can conclude that the cyclic gene
regulatory network becomes less robust as the number of genes gets large.

It is also the case that J∗ in Theorem 2 monotonically decreases with
respect to R2. Thus, the system becomes less robust as R2 gets large. The
quantity R2 is the ratio of production and degradation rates of mRNA and
protein as defined in (9). It is related to the equilibrium point of the system,
and large R2 implies large equilibrium concentrations. Thus, the system can
be less robust if its equilibrium concentration is large.

Similarly, J∗ monotonically decreases as Q gets large. Thus, the system
with Q = 1 gives the least robust system when all the other parameters

11
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Figure 3: Graphical stability conditions. The system is robustly stable for
N = 3, but not for N = 5.

are fixed. Note that 0 < Q ≤ 1 holds because Q is defined as the ratio
of geometric and arithmetic means of the degradation rates (see (18)). In
particular, Q gets large as the degradation rates of mRNA and protein get
close to each other. Hence, it is inferred that robust gene regulatory networks
tend to have large difference between mRNA and protein degradation rates.

It can also be seen from (25) that the system becomes less robust as
the linearized gain L gets large. Note that the value of L depends on the
equilibrium point of the system (1), which is nonlinear. The dependence
of the equilibrium point on the system’s parameters can be numerically
obtained with the bisection algorithm (see Section 2 in [7]).

5 Numerical examples

In this section, we confirm the graphical and the analytic conditions (see
the box in Section 3 and Theorem 2 in Section 4, respectively) through
illustrative numerical simulations.

Example 1. We first consider one of the pioneering examples of syn-
thetic gene regulatory network named Repressilator [4], which is a cyclic

12



gene regulatory network consisting of N = 3 genes. Let the parameter of
nominal dynamics be obtained as a = 3.0, b = 1.0, c = 1.0, β = 4.0 and
ξ1 = ξ2 = ξ3 = −0.592. We suppose each gene’s dynamics has uncertainty
up to 51% from nominal dynamics, i.e. γ = 0.51.

Let us confirm the graphical condition. Following the algorithm pre-
sented in Section 3, we first plot the eigenvalues of the matrix A, which
are located on a circle as illustrated in Fig. 3. Then, the vector locus of
ϕ(jω), which is defined from the nominal dynamics g(s) = 4/(s + 1)(s + 3)
by ϕ(jω) = 1/g(jω), is drawn for ω ∈ R. Finally, the circle region C is
hatched with L = 0.592. We see from Fig. 3 that Repressilator with the
above parameters is stable for γ = 0.51 because no eigenvalue is included in
C.

Next, the analytic condition, Theorem 2, is confirmed. It is easily com-
puted from the definition that Q = 0.866. Then, we have J∗ = 0.140 from
Theorem 2, and

√
J∗

L
= 0.631. (26)

Therefore, we conclude that the system is stable for γ = 0.51, and it is stable
for all ∆ satisfying ∥∆∥∞ < 0.631.

Example 2. We consider the cyclic gene regulatory network consisting
of N = 5 genes in the next to compare with the previous example. Let the
parameters be set to the same as the previous example. That is, a = 3.0,
b = 1.0, c = 1.0, β = 4.0 and ξ1 = ξ2 = · · · = ξ5 = −0.592. We again
suppose γ = 0.51.

Since the nominal dynamics g(s) and the uncertainty bound γ are the
same as the previous example, we have the same vector locus and the circle
region C. The only difference is the location of the eigenvalues, which is
illustrated in Fig. 3. We see that two eigenvalues are included by C, thus
the gene regulatory network is no longer robustly stable.

In fact, J∗ is computed from Theorem 2 as 0.0561, and
√

J∗

L
= 0.400. (27)

Thus, the maximum allowable γ for robust stability is 0.400.

6 Conclusion

In this paper, we have considered the cyclic gene regulatory network where
each gene’s dynamics has a certain degree of uncertainty, then the robust
stability conditions have been derived. First, the graphical condition has
been presented, and it has been shown that robust stability can be easily
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checked by eigenvalues of a matrix representing the interconnection struc-
ture and a contour determined from nominal dynamics and norm bound of
the uncertainty. Then, the analytic condition, which is the main result of
this paper, has been derived based on the graphical condition. Since the
condition is explicitly obtained in terms of biological parameters, it is easy
to gain biological insight on how each parameter relates to robustness of the
system. The obtained insight has been presented in Section 4.2, and it has
been confirmed with illustrative numerical simulations.
Acknowledgments: This work is supported in part by Grant-Aid for Ex-
ploratory Research of the Ministry of Education, Culture, Sports, Science
and Technology in Japan, No. 21656106.
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A Proof of Lemma 2

We first show that (24) has a unique positive solution when 0 < θ < π. To
this end we consider the following third-order polynomial equation:

t3 + pt + q = 0. (28)

Letting t = u+v yields u3+v3+q+(3uv+p)(u+v) = 0, which is equivalent
to (28). It is clear that the equality holds when the following relations are
satisfied. {

u3 + v3 + q = 0,
3uv + p = 0,

(29)

We will next show that there exist three different types of t = u + v which
satisfies (29). Substituting the second equation of (29) into the first equation
of (29) to eliminate v, we obtain u6 + qu3 − p3

27 = 0, which leads to

u3 =
−q ±

√
q2 + 4p3

27

2
, v3 =

−q ∓
√

q2 + 4p3

27

2
. (30)

Since u and v have a relation t = u + v, the possible combinations of (u, v)
are given by

u3 =
−q +

√
q2 + 4p3

27

2
, v3 =

−q −
√

q2 + 4p3

27

2
. (31)

15



Without loss of generality we assume q < 0 and consider the following three
cases depending on the sign of q2 + 4p3

27 :

(i) α2 := q2 + 4p3

27 > 0:
This case corresponds to u3 > 0 and the situation where p = −3uv is

real is represented by
u = κk 3

√
−q + α

2

v = κ3−k 3

√
−q − α

2

(k = 0, 1, 2), (32)

where κ = ej 2π
3 . We can see that k = 0 is possible only when t = u + v is

positive, since |u| > |v|.
(ii) −α2 = q2 + 4p3

27 < 0:
Similarly to the case (i), we have

u = κk 3

√
−q + αj

2
, v = κ3−k 3

√
−q − αj

2
. (33)

Again we can see that k = 0 is possible only when t = u+v is positive, since
(u, v) belongs to the first and second orthants.

(iii) q2 + 4p3

27 = 0:
Similarly, we have

u = κk

√
−q

2
, v = κ3−k

√
−q

2
. (34)

These yield t = u + v = (κk + κ3−k) 3

√
−q
2 , and we can show that only k = 0

gives a possible solution.
Consequently, we can conclude that the third-order polynomial equation

(28) has a unique positive solution

t =
3

√√√√−q +
√

q2 + 4p3

27

2
+

3

√√√√−q −
√

q2 + 4p3

27

2
, (35)

when q < 0. Setting t, p, and q as

t = y∗, (36)

p =
8 − 4Q2(1 − LR2 cos θ)

Q4R4
, (37)

q = −8L sin θ

Q4R4
(38)

completes the proof of Lemma 2.

¤
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B Proof of Lemma 3

Note first that J(y∗, θ) is a function of y∗ and θ, and we see from Lemma 2
that y∗ is the solution of ∂J

∂y = 0 and hence it is a function of θ. Therefore, we
can characterize J(y∗, θ) as the optimal solution of the following constrained
minimization problem:

min J(y, θ) s.t. f(y, θ) :=
∂J

∂y
= 0. (39)

This problem can be solved by introducing the corresponding Lagrange func-
tion W (y, θ, µ) which is defined by

W (y, θ, µ) := J(y, θ) − µf(y, θ). (40)

Then a necessary condition for the optimality can be written as
∂W
∂y = ∂J

∂y − µ∂f
∂y = −µ∂f

∂y = 0
∂W
∂θ = ∂J

∂θ − µ∂f
∂θ = 0

∂W
∂µ = −f(y, θ) = 0

(41)

We see from the first equation of (41) that µ = 0 or ∂f
∂y = 0. We now assume

that ∂f
∂y = 3

4Q4R4y2+2 − (1 − LR2 cos θ)Q2 = 0 holds. Multiplying y by this

equation and using the third condition, we have ∂f
∂y y = 1

2Q4R4y3+2L sin θ =
0. This contradicts y > 0, 0 < θ < π, and hence we can conclude that µ = 0.
The second condition with µ = 0 is written by

∂J

∂θ
= −2L sin θ

(
1
4
Q2R2y2 − 1

R2
+ L cos θ

)
−2L cos θ(y − L sin θ)

= −2L(−x sin θ + y cos θ) = 0, (42)

where we use the fact that the locus of ϕ(jω) is given by

x = −1
4
Q2R2y2 +

1
R2

(43)

to derive the last equality. This leads to y
x = tan θ and implies that one

of the candidates for the optimal point is the intersection of the straight
line passing at the origin with angle θ and the boundary of robust stability
region. We can also see from the vector locus that

x2 + y2 =
(

x − 2
Q2R2

)2

− 4(1 − Q2)
Q4R4

(44)

holds. Hence, the distance from the origin to the parabolic curve is monoton-
ically increasing with respect to x due to x ≤ 1 and Q2 ≤ 1. Consequently,
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we can conclude that the distance between the corresponding points on the

circle and parabolic curve, i.e.,
∣∣∣√x2 + y2 − L

∣∣∣2, has no extreme in the in-
terval of θ which satisfies both (L sin θ, L cos θ) ∈ Ωc

+ and 0 < θ < π. This
together with a fact that the distance at θ = 0 is smaller than that at θ = π
leads to Lemma 3.
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