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Abstract

We derive standard imsets for undirected graphical models and
chain graphical models. Standard imsets for undirected graphical mod-
els are described in terms of minimal triangulations for maximal prime
subgraphs of the undirected graphs. For describing standard imsets
for chain graphical models, we first define a triangulation of a chain
graph. We then use the triangulation to generalize our results for the
undirected graphs to chain graphs.

Keywords and phrases: conditional independence, decomposable graph, max-
imal prime subgraph, triangulation.

1 Introduction

The notion of imsets introduced by Studený [17] provides a very convenient
algebraic method for encoding all conditional independence (CI) models
which hold under a discrete probability distribution. However, a class of
imsets does not satisfy the uniqueness property: a number of different imsets
represent the same CI model.

Thus some questions related to the uniqueness property arise [17]. One of
them is the task of characterizing equivalent imsets. For example, in the case
of classical graphical models [10], their equivalence classes are characterized
by Andersson et al. [1] and Frydenberg [4] in graphical terms. Studený [14]
related a CI model induced by a imset to some face of a special polyhedral
cone, and an algorithm for CI inference based on this cone is studied in [2].
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Another question is to find a suitable representative for every equivalence
class. This is motivated by a practical question about learning CI models
(see Section 4.4 in [16] and Section 4 in [22]). As a subproblem of this,
explicit expressions of imsets for important classes of graphical models, such
as directed acyclic graphical (DAG) models and decomposable models, are
given in [17]. Imsets for some chain graphical (CG) models are also known
[19]. They are called standard imsets and have attractive simple forms. One
of their advantages is that they give a simple method to test whether two
graphs have the same CI model. Another advantage is that it provides a
translation of graphical models into the framework of imsets. Thus standard
imsets offer a new algebraic approach for learning graphical models [20, 8]

In this paper we derive standard imsets for undirected graphical (UG)
models and general CG models. Our standard imsets generalize those for
DAG models and decomposable models. For UG models we consider all
minimal triangulations of an undirected graph in accordance with maximal
prime subgraphs and then use the standard imsets for minimal triangulations
(which are decomposable models) for defining our standard imset. For CG
models we first define a triangulation of a chain graph. We then use the
triangulation to generalize our results for undirected graphs to chain graphs.

The organization of the paper is as follows. In Section 2 we summarize
basic definitions and known facts on imsets and graphs, including standard
imsets for DAG models and decomposable models. In Section 3 we derive
standard imsets for UG models. In Section 4 we introduce a notion of
triangulation of a chain graph and based on the triangulation we derive
standard imsets for CG models. We conclude the paper with some remarks
in Section 5.

2 Preliminaries

In this section we summarize our notation, definitions and relevant pre-
liminary results concerning conditional independence, imsets and graphical
models.

2.1 Conditional independence and imsets

First we set up notation for conditional independence and imsets following
Studený [17].

Let N be a finite set of variables and let P(N) = {A : A ⊆ N} denote
the power set of N . For convenience, we write the union A ∪ B of subsets
of N as AB. A singleton set {i} is simply written as i. As usual, R,
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Z, N denote reals, integers and natural numbers, respectively. For pairwise
disjoint subsets, A,B,C ⊆ N , we write this triplet by 〈A,B |C〉, and the set
of all disjoint triplets 〈A,B |C〉 over N by T (N). As usual, for a probability
distribution P over N , A⊥⊥B |C [P] denotes the conditional independence
statement of variables in A and in B given the variables in C under P. The
case C = ∅ corresponds to the marginal independence of A and B. In this
paper, we regard a triplet 〈A,B |C〉 as an independence statement. Then
the set of conditional independence statements under P is denoted as

MP = {〈A,B |C〉 ∈ T (N) : A⊥⊥B |C [P]}.

We callMP the conditional independence model induced by P.
An imset over N is an integer-valued function u : P(N) → Z, or alter-

natively, an element of Z|P(N)| = Z2|N|
. The identifier δA of a set A ⊆ N is

defined as

δA(B) =

{
1, B = A,

0, B 6= A,B ⊆ N.

For a triplet 〈A,B |C〉 ∈ T (N), a semi-elementary imset u〈A,B |C〉 is defined
as

u〈A,B |C〉 = δABC + δC − δAC − δBC .

If A = a and B = b are singletons, the imset u〈a,b |C〉 is called elementary.

The set of all elementary imsets is denoted by E(N). Let cone(E(N)) ⊆ R2|N|

be the polyhedral cone generated by all the elementary imsets. It can be
shown that every elementary imset is a generator of an extreme ray of the
cone(E(N)) [14]. A combinatorial imset is an imset which can be written
as a non-negative integer combination of elementary imsets. The set of all
combinatorial imsets is denoted by C(N). Let

S(N) = cone(E(N)) ∩ Z|P(N)|.

An element of S(N) is called a structural imset. Note that C(N) ⊆ S(N) by
definition, however, it is known that this inclusion is strict for |N | ≥ 5 [7].

A conditional independence statement induced by a structural imset is
defined as follows:

Definition 2.1. For u ∈ S(N) and a triplet 〈A,B |C〉 ∈ T (N), we define a
conditional independence statement with respect to u as

A⊥⊥B |C [u] ⇐⇒ ∃k ∈ N, k · u− u〈A,B |C〉 ∈ S(N).
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The independence model induced by u is denoted by

Mu = {〈A,B |C〉 ∈ T (N) : A⊥⊥B |C [u]}.

It can be shown that the structure of conditional independence models
induced by structural imsets depends only on the face lattice of cone(E(N)),
not on each imset [14]. Therefore implications of conditional independence
models induced by imsets correspond to those of faces of cone(E(N)). Next
lemma, which is very useful for our proofs in later sections, follows from this
fact.

Lemma 2.2. (Studený [17]) For u, u′ ∈ S(N),

Mu′ ⊆Mu ⇐⇒ ∃k ∈ N, k · u− u′ ∈ S(N).

The method of imsets is very powerful, because conditional independence
models induced by discrete probability measures are always represented by
structural imsets.

Theorem 2.3. (Studený [17]) For every discrete probability measure P over
N , there exists a structural imset u ∈ S(N) such thatMu =MP.

2.2 Graphs and graphical models

Here we summarize relevant facts on graphs and graphical models following
Lauritzen [10], Studený, Roverato and Štepànovà[19], Leimer [11], and Hara
and Takemura [5].

Throughout this paper, we consider a simple graph G = (V (G), E(G)),
V (G) = N , E(G) ⊆ N ×N . An edge (a, b) ∈ E(G) is undirected if (b, a) ∈
E(G). We denote an undirected edge by a b. If (b, a) /∈ E(G), we call
(a, b) directed and denote a → b. An undirected graph (UG) contains only
undirected edges, while a directed graph contains only directed ones. The
underlying graph of a graph G is the undirected graph obtained from G by
replacing every directed edge with an undirected one. For a subset S ⊆ N ,
GS denotes the subgraph of G induced by S. A graph is complete if all
vertices are joined by an edge. A subset K ⊆ N is a clique if GK is complete.
In particular, an empty set K = ∅ is a clique. A clique K is maximal if no
proper superset K ′ ⊃ K is a clique in G. KG denotes the set of maximal
cliques of G.

Two vertices a, b ∈ N are adjacent if (a, b) ∈ E(G) or (b, a) ∈ E(G). If
a → b, then a is a parent of b and b is a child of a. For a vertex c ∈ N , we
denote the set of parents and the set of children of c in G by paG(c) and
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chG(c), respectively. For a subset C ⊆ N , let paG(C) =
∪

c∈C paG(c) \ C
and chG(C) =

∪
c∈C chG(c) \ C. We will omit subscript G if it is obvious

from the context.
A path of length k from a to b is a sequence a = c1, . . . , ck+1 = b of

distinct vertices such that (ci, ci+1) ∈ E(G) for i = 1, . . . , k. If a path
contains only undirected edges, it is an undirected path and otherwise (i.e.
it contains at least one directed edge) directed. A vertex a ∈ N is an
ancestor of b ∈ N if there exists a path from a to b. Let anG(a) be the set
of all ancestors of a. The ancestral set anG(C) of a subset C ⊆ N is defined
as anG(C) =

∪
c∈C anG(c). Let c1, . . . , ck a path with (ck, c1) ∈ E(G). Then

we call the sequence c1, . . . , ck, c1 a cycle of length k. Analogously to paths,
a cycle is undirected if it contains only undirected edges, otherwise directed.
A directed acyclic graph (DAG) is a directed graph containing no directed
cycles.

A subset C ⊆ N is said to be connected if there exists an undirected path
form a to b for all a, b ∈ C in the subgraph GC . A connectivity component
of G is a maximal connected subset in G with respect to set inclusion.
The connectivity components in G form a partition of N . A chain graph
(CG) G is a graph whose connectivity components C1, . . . , Cm are ordered
such that every edge a → b ∈ E(G) with a ∈ Ci, b ∈ Cj for i < j is
directed. Equivalently, a chain graph is defined as a graph containing no
directed cycles. The connectivity components of a chain graph are called
chain components. The set of chain components of a chain graph G is
denoted by CG. The chain components are most easily found by removing
all directed edges from G before taking connectivity components. Both
undirected graphs and directed acyclic graphs are chain graphs. In fact,
a chain graph is undirected if m = 1, and directed acyclic if each chain
component contains only one vertex. Suppose two chain graphs G,H have
the same underlying graph. Then we say H is larger than or equal to G if
a b ∈ G implies a b ∈ H. In this case, we write H ≥ G. By definition,
H has more undirected edges than G if H is larger than G.

We now discuss maximal prime subgraphs of an undirected graph G. A
non-empty subset ∅ 6= S ⊂ N is a separator if the number of connectivity
components increases when S is removed from G. S = ∅ is a separator if
(and only if) G is not connected. A separator S is a clique separator if S
is a clique. For two vertices u, v ∈ N with u v 6∈ E(G), a separator S is
called a (u, v)-separator if u and v belong to different components of GN\S .
A minimal vertex separator is a minimal (u, v)-separator for some u, v ∈ N
with respect to set inclusion. For 〈A,B |C〉 ∈ T (N), we say that A and B
are separated by C if C is (a, b)-separator for all a ∈ A and b ∈ B.
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A graph G is prime if G has no clique separators. Let GV , V ⊆ N ,
be prime. Then GV is a maximal prime subgraph (mp-subgraph) and V
is a maximal prime component (mp-component) of G, if there is no proper
superset V ′ ⊃ V such that GV ′ is prime. The set of mp-components of G is
denoted by VG. There exists an order V1, . . . , Vm,m = |VG|, of VG such that

∀i ∈ {2, . . . ,m},∃k ∈ {1, . . . , i− 1}, Si ≡ Vi ∩
∪
j<i

Vj ⊆ Vk.

This sequence is said to be D-ordered, or alternatively, to have a running
intersection property (RIP) [10]. For each i, Si is a clique minimal vertex
separator. Define SG = {S2, . . . , Sm}. Then SG is the set of all clique
minimal vertex separators in G. Moreover, the number of S ∈ SG which
appears among S2, . . . , Sm may be more than one. This number is called
the multiplicity of S in G, and written as νG(S). For any undirected graph
G, VG,SG and {νG(S)}S∈SG

are uniquely defined [11].
In graphical models, the class of models induced by decomposable graphs

are well studied, because it has many good properties. There are several
equivalent definitions of decomposable graphs. One of them is based on
the decomposability of graphs. For an undirected graph G and a triplet
〈A,B |C〉 with N = A ∪ B ∪ C, we say that 〈A,B |C〉 decomposes G into
the subgraphs GAC and GBC if C is a clique and separates A and B. The de-
composition is proper if A,B 6= ∅. An undirected graph G is decomposable
if it is complete or there exists 〈A,B |C〉 which properly decomposes G into
decomposable subgraphs GAC and GBC . Decomposable graphs are charac-
terized in the terms of mp-subgraphs by Leimer [11]. An undirected graph G
is decomposable if and only if all mp-components of G are cliques. Further-
more, for every undirected graph G with mp-components V1, . . . , Vm ∈ VG,
there exists a decomposable graph G′ such that V1, . . . , Vm are maximal
cliques of G′. The graph G′ is obtained by adding edges in such a way that
V1, . . . , Vm are cliques.

Another equivalent definition is a chordal graph, or alternatively trian-
gulated graph. An undirected graph is chordal if every cycle of length more
than or equal to four has a chord. An undirected graph is chordal if and
only of it is decomposable [10].

2.3 Conditional independence models induced by graphs

Here we summarize known facts on conditional independence models in-
duced by graphs.
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For directed acyclic graphs, there are two equivalent separation criteria
d-separation [13, 21] and moralization [9]. However we omit their details
because we do not need them in this paper. For a triplet 〈A,B |C〉 ∈ T (N),
we write A⊥⊥B |C [G] if A and B are separated given C by these criteria.
Every directed acyclic graph G induces the formal independence model

MG = {〈A,B |C〉 ∈ T (N) : A⊥⊥B |C [G]}, (1)

which we call a DAG model. A probability measure P over N is Markovian
with respect to a directed acyclic graph G if MG ⊆ MP and perfectly
Markovian if the converse implication also holds.

For an undirected graphG and 〈A,B |C〉 ∈ T (N), we have A⊥⊥B |C [G]
if A and B are separated by C in G [10, 13]. A UG model MG is again
defined by (1). The definitions of a Markovian and a perfectly Markovian
measure are analogous to the case of DAG models. It is known that a
perfect Markovian discrete measure exists for every undirected graph [3].
A decomposable model is defined as an independence model induced by a
decomposable graph. A decomposable model is simultaneously a UG model
and a DAG model.

Finally we discuss chain graphs. The popular separation criterion for
chain graphs ismoralization [4]. For a chain graphG and a triplet 〈A,B |C〉 ∈
T (N), let H = Gan(ABC). A moral graph Hmor of H is the undirected graph
obtained by adding an undirected edge a b to the underlying graph of H
whenever there is a chain component C ′ ∈ CH such that a, b ∈ pa(C ′) and
a and b are not adjacent in H. We define A⊥⊥B |C [G] if A⊥⊥B |C [Hmor]
holds. The definitions of a CG model, a Markovian measure and a perfectly
Markovian measure are analogous to the other graphs. It is known that a
perfect Markovian discrete measure exists for every chain graph [15].

An important concept about chain graphs is equivalence for graphs [17].
We say that G and H are equivalent ifMG =MH . Equivalent chain graphs
are characterized by Frydenberg [4]. A complex in G is an induced subgraph
of G of the form c0 → c1 · · · ck ← ck+1, k ≥ 1, and no other edges
between c0, c1, . . . , ck+1 exist in G.

Theorem 2.4. (Frydenberg [4]) Two chain graphs are equivalent if and only
if their underlying graphs coincide and they have the same complexes.

More important fact is that every equivalence class has one distinguished
representative.

Theorem 2.5. (Frydenberg [4]) Every equivalence class H of chain graphs
has the largest element H∞ ∈ H such that H ≤ H∞ for all H ∈ H.
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H

Figure 1: A decomposable graph H.

2.4 Standard imsets for directed acyclic graphs and decom-
posable graphs

Let G be a directed acyclic graph. A standard imset for G is defined as
follows [17]:

uG = δN − δ∅ +
∑
i∈N
{δpa(i) − δ{i}∪pa(i)}. (2)

This standard imset is a unique representative for equivalent graphs.

Lemma 2.6. (Studený [17]) Let G a directed acyclic graph. Then uG ∈
C(N) and MG = MuG hold. Moreover, for a directed acyclic graph G′,
MG =MG′ if and only if uG = uG′.

A standard imset for a decomposable graph H is defined by the sets of
maximal cliques and clique minimal vertex separators in H [17]:

uH = δN −
∑

K∈KH

δK +
∑
S∈SH

νH(S) · δS . (3)

Example 2.7. Put N = {a, b, c, d, e} and consider the decomposable graph
H shown in Figure 1. The sets of maximal cliques and clique minimal
vertex separators in H are KH = {abc, acd, cde} and SH = {ac, cd} (with
multiplicities νH(ac) = νH(cd) = 1). Then the standard imset for H is

uH = δabcde − δabc − δacd − δcde + δac + δcd

= u〈b,e | acd〉 + u〈a,e | cd〉 + u〈b,d | ac〉.

For a complete graph, its standard imset is the zero imset.

Since decomposable models can be viewed as DAG models, their imsets
(2) and (3) lead to the same imset.

Lemma 2.8. (Studený [17]) For every decomposable graph H, there exists
a directed acyclic graph G such thatMG =MH and uG = uH .
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This implies that for a decomposable graph H, we have uH ∈ C(N) and
MH =MuH from Lemma 2.6.

As discussed in Section 1, these imsets for directed acyclic and decompos-
able graphs are not the only combinatorial ones representing their graphical
models. However they are the simplest, “standard” representations [2]. A
standard imset gives a simpler criterion of testing a conditional indepen-
dence statement than other imsets.

Lemma 2.9. (Bouckaert et al. [2]) For a directed acyclic (resp. decompos-
able) graph G, 〈A,B |C〉 ∈ MG if and only if uG − u〈A,B |C〉 ∈ C(N), which
is also equivalent to uG − u〈A,B |C〉 ∈ S(N), where uG is the standard imset
in (2) or (3).

3 Standard imsets for general undirected graphs

In this section we derive imsets for general undirected graphs. Our con-
struction is based on a concept of a triangulation.

3.1 General undirected graphical models

For generalizing the result of decomposable graphs to general undirected
graphs, consider constructing a decomposable graph from a given undirected
graph by adding edges. The resulting graph is called a triangulation of the
input graph [6]. A triangulation G′ of G is minimal if there is no trian-
gulation G′′ of G such that E(G′′) ⊂ E(G′). In general, there are many
minimal triangulations of a graph. As for separations of an input graph and
a minimal triangulation, the following lemma holds.

Lemma 3.1. For every undirected graph H and a triplet 〈A,B |C〉 ∈ MH ,
there exists a minimal triangulation H ′ of H such that 〈A,B |C〉 ∈ MH′.

Proof. It suffices to show the existence of a triangulation H ′ such that
〈A,B |C〉 ∈ MH′ . In fact, if H ′ is not minimal, we can obtain a mini-
mal triangulation by removing edges from H ′, because removing edges does
not destroy the relation A⊥⊥B |C.

We construct a desired triangulation as follows (see Figure 2). Let N =
A′ ∪B′ ∪ C ′ ∪D′ be a partition of the vertex set such that

A′ = {i ∈ N : i is connected with A in HN\C},
B′ = {i ∈ N : i is connected with B in HN\C},
C ′ = C and D′ = N \A′B′C ′.
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H H ′

Figure 2: A construction of H ′ from an undirected graph H in Lemma 3.1.

Construct the graph H ′ by adding edges so that H ′
A′C′ ,H ′

B′C′ and H ′
C′D′

are cliques. This H ′ is clearly decomposable, and hence, a triangulation of
H. From the construction, A′ and B′ are not connected to each other in
H ′

N\C′ . Thus A ⊆ A′ and B ⊆ B′ are not connected to each other in H ′
N\C ,

which means 〈A,B |C〉 ∈ MH′ .

For a general undirected graph, we can obtain an imset representing this
UG model by using all minimal triangulations. The following theorem is the
first main result of this paper.

Theorem 3.2. Let H be an undirected graph and let T(H) denote the set
of all minimal triangulations of H. Put

vH =
∑

H′∈T(H)

uH′ , (4)

where uH′ for H ′ ∈ T(H) are defined by (3). Then vH ∈ C(N) and MH =
MvH .

Proof. Since the class of combinatorial imsets is closed under the addition,
it is evident that the imset vH is combinatorial.

For every undirected graphH, there exists a discrete probability measure
P with MP = MH [3]. Moreover, Theorem 2.3 implies that there is a
structural imset w ∈ S(N) such thatMP =Mw. Then, for H

′ ∈ T(H), we
have

MuH′ =MH′ ⊆MH =MP =Mw,

which implies kH′ · w − uH′ ∈ S(N) for some kH′ ∈ N from Lemma 2.2.
Therefore, putting k =

∑
H′∈T(H) kH′ , it follows that k · w − vH ∈ S(N).

That is,MvH ⊆Mw =MH .
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H H1 H2

Figure 3: Non-decomposable graph H and its minimal triangulations
H1,H2.

Conversely, for every 〈A,B |C〉 ∈ MH , there exists H ′ ∈ T(H) such
that 〈A,B |C〉 ∈ MH′ from Lemma 3.1. Thus, uH′−u〈A,B |C〉 ∈ S(N) from
Lemma 2.9. Hence we have

vH − u〈A,B |C〉 =
∑

H′′∈T(H)\H′

uH′′ + (uH′ − u〈A,B |C〉) ∈ S(N),

which implies 〈A,B |C〉 ∈ MvH .

The imset vH in (4) is a generalization of the case of decomposable
graphs, because for a decomposable graph H, the set of minimal triangula-
tions contains H only. An example of this imset is given in the next section.

3.2 Some consideration toward a definition of standard im-
sets for general undirected graphs

The imset defined in the last section through all minimal triangulations has
‘extra’ additional parts as shown in the following example.

Example 3.3. Put N = {a, b, c, d, e}. Consider the graph H in Figure 3 and
its minimal triangulations H1,H2. Then the imset vH in (4) is

vH = uH1 + uH2

= (δN − δabd − δbcd − δcde + δbd + δcd)

+ (δN − δabc − δacd − δcde + δac + δcd)

= 2 · u〈ab,e | cd〉 + u〈a,c | bd〉 + u〈b,d | ac〉.

It can be seen that ab⊥⊥ e | cd holds in both H1 and H2. This is expressed as
the coefficient 2 of u〈ab,e | cd〉. Now consider an imset uH with this coefficient
1, that is,

uH = u〈ab,e | cd〉 + u〈a,c | bd〉 + u〈b,d | ac〉. (5)
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Figure 4: A graph with an exponential number of minimal triangulations.

(a) (b) (c)

Figure 5: mp-subgraphs in the new imset.

From Lemma 3.1, 〈A,B |C〉 ∈ MH is equivalent to 〈A,B |C〉 ∈ MH′ for
some minimal triangulationH ′ ofH. Hence, for example, letting 〈A,B |C〉 ∈
MH1 , we have

uH1 − u〈A,B |C〉 ∈ S(N)

=⇒ uH1 + u〈b,d | ac〉 − u〈A,B |C〉 ∈ S(N)

⇐⇒ uH − u〈A,B |C〉 ∈ S(N)

=⇒ 〈A,B |C〉 ∈ MuH .

Since the same result holds for 〈A,B |C〉 ∈ MH2 , we haveMvH =MH ⊆
MuH . Also, since vH −uH = u〈ab,e | cd〉 ∈ S(N), we haveMvH ⊇MuH from
Lemma 2.2. ThusMvH =MuH =MH .

Note that a graph such as the one in Figure 4 has an exponential number
of minimal triangulations, which makes infeasible to calculate vH in (4)
actually.

The above examples suggest that it suffices to use only minimal triangu-
lations of each mp-subgraph and not of the whole of the graph. In particular,
the new imset (5) in Example 3.3 seems to be defined as follows: First, con-
sider the graph obtained by adding edges to the input graph in such a way
that all mp-subgraphs are complete (Figure 5-(a)), and consider its stan-
dard imset (u〈ab,e | cd〉). Next, for each mp-subgraph which is not complete,
consider their minimal triangulations (Figure 5-(b), (c)) and their standard
imsets (u〈a,c | bd〉, u〈b,d | ac〉). We show in the following sections that this idea
is correct.
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3.3 Minimal triangulations and mp-subgraphs

We show in this section that all minimal triangulations for an undirected
graph are obtained by computing minimal triangulations for each mp-subgraph.

The following fact gives the way of adding edges to obtain a minimal
triangulation:

Lemma 3.4. (Ohtsuki et al. [12]) A triangulation H ′ of an undirected graph
H is minimal if and only if for each u v added by this triangulation, no
(u, v)-separators of H is a clique in H ′.

From this lemma, we have the following result about the relation between
mp-subgraphs and minimal triangulations of a graph.

Lemma 3.5. For an undirected graph H, a graph H ′ obtained by a min-
imal triangulation of each mp-subgraph is a minimal triangulation of H.
Conversely, all minimal triangulations of H are obtained in this way.

Proof. Let w be a cycle a1, . . . , an, an+1 = a1, n ≥ 4, of length more than or
equal to 4 in H ′. Firstly, consider the case that w contains vertices of two
different mp-subgraphs of H. Then w contains two vertices of some clique
minimal vertex separator of H (hence in H ′) which are not consecutive in w.
Thus the cycle w has a chord. We next consider the case {a1, . . . , an} ⊆ V
for some mp-component V ∈ VH in H. Since H ′

V is decomposable, the cycle
w also has a chord in H ′. Therefore H ′ is decomposable. Moreover, from the
definition of a minimal triangulation, removing one edge from the resulting
graph makes it non-decomposable. Thus the first statement is proved.

The converse is shown by contradiction. For an edge u v added by a
triangulationH ′ ofH, assume that u and v belong to different mp-subgraphs
of H. Then u and v are separated by some clique minimal vertex separator
of H from the definition of mp-subgraphs. Since this separator is also a
clique in H ′, H ′ is not a minimal triangulation from Lemma 3.4.

3.4 Definition and properties of standard imsets for undi-
rected graphs

We define a standard imset for an undirected graph using Lemma 3.5.

Definition 3.6. For an undirected graph H, a standard imset uH for H is
defined as

uH = δN −
∑

V ∈VH

δV +
∑
S∈SH

νH(S) · δS +
∑

V ∈VH

∑
G∈T(HV )

uG, (6)
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where for each G ∈ T(HV ), V ∈ VH , uG is the standard imset given by (3):

uG = δV −
∑

K∈KG

δK +
∑
S∈SG

νG(S) · δS .

Note that, if H is decomposable, the last term of uH vanishes because
all mp-components are cliques [11]. Thus this imset coincides with (3).

We show that this imset represents a UG model.

Theorem 3.7. For an undirected graph H, define uH as (6). Then uH ∈
C(N) andMH =MuH .

Proof. The first three terms of (6) correspond to the standard imset for the
decomposable graph such that all V ∈ VH are cliques. Thus, this imset is
combinatorial, and hence, uH ∈ C(N).

Let H ′ be a minimal triangulation of H. Since a minimal triangulation
is done in each mp-subgraph from Lemma 3.5, the following relations hold:

KH′ =
∪

V ∈VH

KH′
V
, SH′ = SH ∪

( ∪
V ∈VH

SH′
V

)
,

KH′
V1
∩ KH′

V2
= ∅, SH′

V1
∩ SH′

V2
= ∅, ∀V1, V2 ∈ VH , V1 6= V2,

SH ∩ SH′
V
= ∅, ∀V ∈ VH ,

νH(S) = νH′(S), ∀S ∈ SH .

Hence a standard imset for the decomposable graph H ′ given by (3) is

uH′ = δN −
∑

K∈KH′

δK +
∑

S∈SH′

νH′(S) · δS

= δN −
∑

V ∈VH

∑
K∈KH′

V

δK +
∑
S∈SH

νH(S) · δS +
∑

V ∈VH

∑
S∈SH′

V

νH′(S) · δS

= δN −
∑

V ∈VH

δV +
∑
S∈SH

νH(S) · δS

+
∑

V ∈VH

{
δV −

∑
K∈KH′

V

δK +
∑

S∈SH′
V

νH′
V
(S) · δS

}
= δN −

∑
V ∈VH

δV +
∑
S∈SH

νH(S) · δS +
∑

V ∈VH

uH′
V
. (7)

Let vH =
∑

H′∈T(H) uH′ given in (4). Then vH is written as

vH =
∑

H′∈T(H)

{
δN −

∑
V ∈VH

δV +
∑
S∈SH

νH(S) · δS +
∑

V ∈VH

uH′
V

}
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= |T(H)| ·
{
δN −

∑
V ∈VH

δV +
∑
S∈SH

νH(S) · δS
}
+

∑
H′∈T(H)

∑
V ∈VH

uH′
V

= |T(H)| ·
{
δN −

∑
V ∈VH

δV +
∑
S∈SH

νH(S) · δS
}

+
∑

V ∈VH

∑
G∈T(HV )

nH(V,G) · uG,

where nH(V,G) = |{H ′ ∈ T(H) : H ′
V = G}| for V ∈ VH and G ∈ T(HV ), is

the number of minimal triangulations H ′ ∈ T(H) such that H ′
V = G. Note

that uH in (6) is obtained by replacing the coefficients of the right-hand side
by one. Thus uH and vH belong to the relative interior of the same face of
cone(E(N)). Hence we haveMuH =MvH , which meansMuH =MH from
Theorem 3.2.

Example 3.8. Consider the graph H in Figure 3 again. The sets of mp-
components and clique minimal vertex separators are VH = {abcd, cde} and
SH = {cd}. Since V2 = cde is a clique, the minimal triangulation of its
subgraph HV2 is itself. As for V1 = abcd, the minimal triangulations of HV1

are given in Figure 5 (b), (c). Then the standard imset for H in (6) is

uH = δabcde − δabcd − δcde + δcd

+ (δabcd − δabc − δacd + δac) + (δabcd − δabd − δbcd + δbd)

= u〈ab,e | cd〉 + u〈a,c | bd〉 + u〈b,d | ac〉,

which coincides with (5).

As in the case of directed acyclic graphs and decomposable graphs, our
standard imset for an undirected graph provides a simpler criterion:

Corollary 3.9. For an undirected graph H and every triplet 〈A,B |C〉 ∈
T (N), the followings are equivalent:

(i) 〈A,B |C〉 ∈ MH ,

(ii) uH − u〈A,B |C〉 ∈ C(N),

(iii) uH − u〈A,B |C〉 ∈ S(N).

Proof. The implication (ii)⇒ (iii)⇒ (i) is obvious from the definition. Thus
we only need to consider the implication (i) ⇒ (ii). For 〈A,B |C〉 ∈ MH ,
Lemma 3.1 implies that 〈A,B |C〉 ∈ MH′ for some minimal triangulation
H ′ of H. Hence uH′−u〈A,B |C〉 ∈ C(N) from Lemma 2.9. For every V ∈ VH ,
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some minimal triangulation G of HV coincides with H ′
V from Lemma 3.5.

Thus uH − uH′ ∈ C(N) from (7), which implies that

uH − u〈A,B |C〉 = (uH − uH′) + (uH′ − u〈A,B |C〉) ∈ C(N).

Remark 3.10. In the case of directed acyclic graphs and chain graphs, some
graphs may induce the same conditional independence model, and we have
to consider the uniqueness of standard imsets for these graphs (cf. Lemma
2.6). However, in the case of undirected graphs, two graphs cannot have the
same conditional independence model. Thus it is not necessary to consider
the uniqueness.

4 Standard imsets for general chain graphs

In this section, we define a standard imset for a chain graph, which is a
generalization of an undirected graph and a directed acyclic graph. Studený
and Vomlel [18], and Studený, Roverato and Štepànovà [19] give standard
imsets for chain graphs which are equivalent to some directed acyclic graph.
Using this result, we can derive imsets for general chain graphs. Moreover
we show that these imsets fully represent CG models by similar arguments
as in the case of undirected graphs. In the later part of this section, we show
the uniqueness of these imsets for equivalent chain graphs using the concept
of feasible merging.

4.1 Generalization of a triangulation to chain graphs

Firstly, we introduce a concept which generalizes a triangulation of an undi-
rected graph. In the case of an undirected graph, a triangulation of a graph
is defined as a decomposable graph obtained by adding edges to the in-
put graph. Since decomposable models can be interpreted as an undirected
graph which is equivalent to some directed acyclic graph, we can define a
triangulation of a chain graph in the same way.

Definition 4.1. A chain graph H ′ = (V (H ′), E(H ′)), V (H ′) = V (H) is
said to be a triangulation of a chain graph H if H ′ satisfies that

(i) a b ∈ E(H ′) whenever a b ∈ E(H),

(ii) a→ b ∈ E(H ′) whenever a→ b ∈ E(H), and

(iii) H ′ is equivalent to some directed acyclic graph G, that is,MH′ =MG.

16



(1) (2) (3)

Figure 6: Examples of chain graphs violating the conditions of Lemma 4.3.

(1) (2) (3)

Figure 7: The closure graphs of Figure 6.

The condition (iii) has been characterized by Andersson et al. [1] in
graphical terms. For a chain graph H and a chain component C ∈ CH , a
closure graph for C is defined as the moral graphH(C) = (HC∪pa(C))

mor.

Proposition 4.2. (Andersson et al. [1]) A chain graph is equivalent to some
directed acyclic graph if and only if H(C) is decomposable for every chain
component C ∈ CH .

Lemma 4.3. (cf. Remark 4.2 in [1]) For a ∈ N and A ⊆ N , let chA(a) =
ch(a) ∩ A be the set of all children in H that occur in A. For any chain
component C ∈ CH , the closure graphH(C) = (HC∪pa(C))

mor is decomposable
if and only if:

(i) HC is decomposable,

(ii) for every a ∈ pa(C), and every non-adjacent pair c, d ∈ chC(a), we
have c⊥⊥ d | (chC(a) \ cd) [HC ] (in particular chC(a) \ cd 6= ∅), and

(iii) for every distinct pair a, b ∈ pa(C), and every c ∈ chC(a) \ chC(b), d ∈
chC(b)\chC(a), we have c⊥⊥ d | (chC(a) chC(b)\cd) [HC ] (in particular,
chC(a) chC(b) \ cd 6= ∅, and c, d are non-adjacent).

Example 4.4. We show in Figure 6 the examples of chain graphs which
violate the conditions of Lemma 4.3. These graphs have only one chain
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component C and its parent set. In Figure 6-(1), the subgraph HC is not
decomposable. In Figure 6-(2), c and d are not separated by chC(a)\ cd = ∅
because of a path c b d. In Figure 6-(3), c ∈ chC(a) \ chC(b) and
d ∈ chC(b) \ chC(a) are adjacent. Thus c and d are not separated by
chC(a) chC(b) \ cd = e. Their closure graphs are shown in Figure 7. These
figures show that they are not decomposable, which implies that the graphs
in Figure 6 are not equivalent to any directed acyclic graph from Proposition
4.2.

These facts show that it is sufficient to consider a minimal triangulation
of HC∪pa(C) for each chain component C ∈ CH instead of the whole H. In
fact, if a CG model induced by H coincides with none of DAG models, then
at least one of the conditions (i), (ii) or (iii) in Lemma 4.3 is violated. When
these conditions are violated, by adding edges between vertices in some C or
between a vertex in C and a vertex in pa(C), we can satisfy these conditions
without adding any other edges. Note that the set of chain components
and the parent set for each chain component in a minimal triangulation
are identical with these of the input graph. Conversely, a graph obtained
by minimal triangulation for each HC∪pa(C), C ∈ CH , is clearly a minimal
triangulation of H.

Remark 4.5. The above argument shows how to calculate minimal triangu-
lations of chain graphs. Let H be a chain graph and G =H(C) be a closure
graph of a chain component C ∈ CH . For a minimal triangulation G′ of G,
put F = E(G′)\E(G). Then a minimal triangulation H ′

C∪pa(C) of HC∪pa(C)

is obtained by adding edges (a, b) such that for a b ∈ F

• if a, b ∈ Ci for some i, then a b, and

• if a ∈ Ci, b ∈ Cj for some i < j, then a→ b,

where C1, . . . , Cm are the ordered chain components in H. We obtain a
minimal triangulation H ′of H by calculating H ′

C∪pa(C) for every C ∈ CH in
this way.

Example 4.6. Consider minimal triangulations of the graphs in Figure 6.
Examples of minimal triangulations of closure graphs (Figure 7) for these
graphs are shown in Figure 8. In Figure 8-(1), a minimal triangulation
of the closure graph is obtained by adding the edge c e. Since c and e
belong to the same chain component, adding the edge c e gives a minimal
triangulation (Figure 9-(1)) of the chain graph in Figure 6-(1). In Figure
8-(2), the edge a b is added. Since a and b belong to different chain
components and there are directed edges from the chain component of a to
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(1) (2) (3)

Figure 8: Examples of minimal triangulations of Figure 7.

(1) (2) (3)

Figure 9: Examples of minimal triangulations of Figure 6.

that of b, a minimal triangulation (Figure 9-(2)) of the graph in Figure 6-(2)
is obtained by adding the edge a→ b. As for the conditions of Lemma 4.3,
c⊥⊥ d | (chH,C(a) \ cd) [HC ] holds because chH,C(a) \ cd = b. In Figure 8-(3),
we add the edge a d, hence, obtain the graph in Figure 9-(3) in the same
way as (2). Since chH,C(b) \ chH,C(a) = ∅ in this graph, the condition (iii)
is satisfied automatically.

The following lemma immediately holds from the above discussion.

Lemma 4.7. For a chain graph H and a chain component C ∈ CH , assume
thatH(C) is decomposable. Then for every minimal triangulation H ′ of H,
we have HC∪paH(C) = H ′

C∪paH′ (C).

Corollary 4.8. For a chain graph H and a subset K ⊆ N of the vertex set,
assume that Han(K) is equivalent to some directed acyclic graph. Then for
every minimal triangulation H ′ of H, HanH(K) = H ′

anH′(K)
holds.

Proof. Evidently, anH(K) = anH′(K) holds. Also, for every chain compo-
nent C ∈ CHan(K)

, the closure graphH(C) is decomposable from Proposition
4.2. Hence, from Lemma 4.7, for every minimal triangulation H ′, we have
HC∪paH(C) = H ′

C∪paH′ (C), which implies the corollary.

As for separations of a chain graph and its minimal triangulation, we
have a similar result to Lemma 3.1 for undirected graphs.
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H G

G′ H+

Figure 10: A construction of H+ from a chain graph H in Lemma 4.9.

Lemma 4.9. For every chain graph H and triplet 〈A,B |C〉 ∈ MH , there
exists a minimal triangulation H ′ of H such that 〈A,B |C〉 ∈ MH′.

Proof. As in the case of undirected graphs, it suffices to find a triangulation
H ′ which satisfies 〈A,B |C〉 ∈ MH′ .

From the definition of the separation criterion of a chain graph, we have
〈A,B |C〉 ∈ MG for G = (Han(ABC))

mor. Then by Lemma 3.1 there exists
a minimal triangulation G′ of G such that 〈A,B |C〉 ∈ MG′ . We construct
a chain graph H+ from G′ as follows (see Figure 10):

• if u v ∈ E(G′) and u, v ∈ Ci for some i, then u v ∈ E(H+),

• if u v ∈ E(G′) and u ∈ Ci, v ∈ Cj for some i < j, then u → v ∈
E(H+),

• if u v ∈ E(H), then u v ∈ E(H+),

• if u→ v ∈ E(H), then u→ v ∈ E(H+),

where C1, . . . , Cm are the ordered chain components in H. From this con-
struction, we have anH+(ABC) = anH(ABC) and G′ = (H+

anH+ (ABC))
mor.

Let H ′ be a minimal triangulation of H+ (which may be H+ itself). Then,
since (H+

anH+ (ABC))
mor is decomposable, H+

anH+ (ABC) = H ′
anH′ (ABC) from
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Corollary 4.8. Therefore, we haveG′ = (H+
anH+ (ABC))

mor = (H ′
anH′ (ABC))

mor,

which implies that 〈A,B |C〉 ∈ MH′ .

4.2 Definition and properties of standard imsets for chain
graphs

In this section, we define a standard imset for a chain graph and show that
it fully represents the CG model induced by this graph.

When a chain graph H is equivalent to some directed acyclic graph, its
standard imset is defined as follows [18, 19] :

uH = δN − δ∅ +
∑
C∈CH

{
δpaH(C) −

∑
K∈KH(C)

δK +
∑

S∈SH(C)

νH(C)(S) · δS
}
. (8)

This definition is a generalization of that of a directed acyclic graph (2) and
a decomposable graph (3). Moreover, we have the following lemma about
this imset:

Proposition 4.10. (Studený et al. [19]) Assume that two chain graphs
H1,H2 are equivalent to some directed acyclic graph. ThenMH1 =MH2 if
and only if uH1 = uH2.

Therefore, for a chain graph H which is equivalent to some directed
acyclic graph, we have uH ∈ C(N) and MH = MuH from Lemma 2.6.
Furthermore we have the following corollary from Lemma 2.9:

Corollary 4.11. Suppose that a chain graph H is equivalent to some di-
rected acyclic graph and let uH be given in (8). For a triplet 〈A,B |C〉 ∈
T (N), the followings are equivalent:

(i) 〈A,B |C〉 ∈ MH ,

(ii) uH − u〈A,B |C〉 ∈ C(N),

(iii) uH − u〈A,B |C〉 ∈ S(N).

Note that every closure graph H(C), C ∈ CH , is decomposable from
Proposition 4.2. Thus (8) is also written as

uH = δN − δ∅ +
∑
C∈CH

{
δpa(C) − δC pa(C) + uH(C)

}
,

where uH(C) is the standard imset (2) for the decomposable graphH(C). This

equation suggests that a generalization of (8) is given by replacing uH(C) as

(6). For C ∈ CH and V ⊆ C ∪ pa(C), letH(C)V be the induced subgraph of
the closure graphH(C) by V .
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Definition 4.12. A standard imset uH for a chain graph H is defined by

uH = δN − δ∅ +
∑
C∈CH

{
δpaH(C) − δC paH(C) + uH(C)

}
, (9)

where uH(C), C ∈ CH , is the standard imset for the undirected graphH(C)

given by (6):

uH(C) = δC paH(C) −
∑

V ∈VH(C)

δV +
∑

S∈SH(C)

νH(C)(S) · δS

+
∑

V ∈VH(C)

∑
G∈T(H(C)V )

uG.

This imset gives a representation of CG models. The proof is similar to
the case of undirected graphs.

Theorem 4.13. For a chain graph H, let a standard imset uH for H be
defined by (9). Then uH ∈ C(N) andMH =MuH .

Proof. The argument in the last section implies that CH = CH′ and paH(C) =
paH′(C), ∀C ∈ CH , for a minimal triangulation H ′ of H. Thus a standard
imset uH′ for H ′ given by (8) is

uH′ = δN − δ∅ +
∑

C∈CH′

{
δpaH′ (C) − δC paH′ (C) + u

H
′
(C)

}
= δN − δ∅ +

∑
C∈CH

{
δpaH(C) − δC paH(C) + u

H
′
(C)

}
.

As in the proof (of implication MH ⊆ MuH ) of Theorem 3.7, we have
uH(C) − u

H
′
(C)
∈ S(N) for C ∈ CH , which shows that uH − uH′ ∈ S(N).

Also, putting vH =
∑

H′∈T(H) uH′ , we have

vH =
∑

H′∈T(H)

[
δN − δ∅ +

∑
C∈CH

{
δpa(C) − δC pa(C) + u

H
′
(C)

}]

= |T(H)| ·
[
δN − δ∅ +

∑
C∈CH

{
δpa(C) − δC pa(C)

}]
+

∑
H′∈T(H)

∑
C∈CH

u
H

′
(C)

= |T(H)| ·
[
δN − δ∅ +

∑
C∈CH

{
δpa(C) − δC pa(C)

}]
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+
∑
C∈CH

∑
G∈T(H(C))

nH(C,G) · uG,

where nH(C,G) = |{H ′ ∈ T(H);H
′
(C) = G}| for C ∈ CH and G ∈ T(H(C)),

is the number of minimal triangulations H ′ of H such that H
′
(C) = G.

Therefore, as in the proof of the case of an undirected graph, uH and vH
belong to the relative interior of the same face of cone(E(N)). Thus we have
MuH =MvH .

For every chain graph, there exists a discrete measure P over N such
that MP =MH [15]. Moreover Theorem 2.3 implies that MP =Mw for
some w ∈ S(N). Hence for every H ′ ∈ T(H), we have

MuH′ =MH′ ⊆MH =MP =Mw,

which implies that kH′ · w − uH′ ∈ S(N) for some kH′ ∈ N from Lemma
2.2. Putting k =

∑
H′∈T(H) kH′ , we have k · w − vH ∈ S(N). Therefore

MuH =MvH ⊆Mw =MH .
Conversely, for every 〈A,B |C〉 ∈ MH , there exists H ′ ∈ T(H) such

that 〈A,B |C〉 ∈ MH′ from Lemma 4.9. Thus uH′ − u〈A,B |C〉 ∈ S(N) from
Corollary 4.11. Hence we have

uH − u〈A,B |C〉 = (uH − uH′) + (uH′ − u〈A,B |C〉) ∈ S(N)

and 〈A,B |C〉 ∈ MuH .

As in the case of undirected graphs, we have the following corollary:

Corollary 4.14. For a chain graph H and every triplet 〈A,B |C〉 ∈ T (N),
the followings are equivalent:

(i) 〈A,B |C〉 ∈ MH ,

(ii) uH − u〈A,B |C〉 ∈ C(N),

(iii) uH − u〈A,B |C〉 ∈ S(N).

4.3 Feasible merging

From now on, we will consider the uniqueness of the standard imsets for
chain graphs in Definition 4.12.

In the case of chain graphs which are equivalent to some directed acyclic
graphs, the uniqueness of their standard imsets defined by (8) is given in
Proposition 4.10. Its proof is based on the concept called a feasible merging
[19]. In this section we review its definition and properties.
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(1) (2)
@

(3) (4)

Figure 11: An examples of a feasible merging (1) and examples of infeasible
merging (2), (3), (4)

Let H be a chain graph. A pair of its chain components U,L ∈ CH is said
to form a meta-arrow U ⇒ L if there exists a directed edge a → b ∈ E(H)
for some a ∈ U, b ∈ L. Merging of a meta-arrow U ⇒ L is the operation
of replacing every directed edge a → b ∈ E(H), a ∈ U, b ∈ L, with a b.
Merging of U ⇒ L is called feasible if the following two conditions are
satisfied:

(i) K ≡ pa(L) ∩ U is a clique in H, and

(ii) pa(L) \ U ⊆ pa(b) for any b ∈ K.

By this definition, merging is feasible if and only if pa(L) is a clique in the
closure graph H(U). Moreover, for the resulting graph H ′ and the chain

component M obtained by merging of U ⇒ L, paH(L) is a clique inH
′
(M).

Example 4.15. We show some examples of feasible and infeasible merging
in Figure 11. The left-hand side graphs of these figures are input graphs
containing K = {b, c}, L = {d, e} and pa(L) = {a, b, c}, and the right-hand
side graphs the resulting graphs obtained by merging U ⇒ L in the input
ones. In Figure (1), K is a clique, and pa(L) \ U = {a} = pa(b) ⊂ pa(c).
Thus both conditions are satisfied, and merging is feasible. Especially, the
input graph and resulting graph have the same complexes. In Figure (2),
since K is not a clique, the condition (i) is not satisfied. Also in Figure
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(3), the condition (ii) is violated because pa(L) \ U = {a} 6⊆ pa(c). Hence
merging of U ⇒ L in (2) and (3) is infeasible. Note that, in Figure (2),
merging of U ⇒ L destroys a complex b→ d e← c. Similarly, a complex
a → d e ← c vanishes in Figure (3). As in Figure (3), the condition (ii)
is not satisfied in (4). In this case, the resulting graph has a directed cycle
a→ d e c→ a, and hence, it is not a chain graph.

As shown in these examples, the resulting graph by feasible merging is
also a chain graph and has the same complexes as the input graph. Thus,
we have the following important lemma from Theorem 2.4.

Lemma 4.16. (Studený et al. [19]) Let H be a chain graph and H ′ be a
graph obtained by merging of U ⇒ L in H. Then MH =MH′ if and only
if merging is feasible.

The operation of merging can be performed without leaving the equiva-
lence class. Especially, every larger equivalent graph is obtained by a series
of feasible merging operations.

Theorem 4.17. (Studený et al. [19]) Let G and H be chain graphs such
that MG =MH and H ≥ G. Then there exists a sequence of chain graphs
G = H1, . . . ,Hr = H, r ≥ 1, such that Hi+1 is obtained by the operation of
feasible merging in Hi for all i = 1, . . . , r − 1 .

From Theorem 2.5, for proving that equivalent chain graphs have a com-
mon property, it suffices to prove that the property is shared by a pair of
graphs of the class such that one is obtained by feasible merging in the other.

4.4 Uniqueness of standard imsets for chain graphs

In this section, we show that equivalent chain graphs have the same standard
imset.

Theorem 4.18. Let H1,H2 be chain graphs. Then MH1 = MH2 if and
only if uH1 = uH2.

To prove this theorem, the following fact is useful:

Lemma 4.19. (cf. the proof of Theorem 20 in [19]) For a chain graph H
which is equivalent to some directed acyclic graph, let H ′ be a graph obtained
from H by feasible merging of a meta-arrow U ⇒ L, and let M denote the
merged chain component. Then K ⊆ N is a maximal clique of H

′
(M) if and

only if it is either a maximal clique of H(L) or a maximal clique of H(U)
different from paH(L).
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In a chain graph H which is equivalent to some directed acyclic graph,
every mp-subgraph ofH(C), C ∈ CH , is complete, because a closure graph
H(C) is decomposable. As mentioned in Section 2.2, the graph obtained by
adding edges to an undirected graph such that its all mp-components are
cliques is decomposable. Hence, let H̃ be the graph obtained by adding
edges to H so that all mp-components V ∈ VH(C) for every chain component

C ∈ CH are cliques. Then H̃ is a chain graph which is equivalent to some
directed acyclic graph and we have the following result adapting the above
lemma to H̃:

Lemma 4.20. For a chain graph H, define H ′ and M as in Lemma 4.19.
Then K ⊆ N is an mp-component of H

′
(M) if and only if it is either an

mp-component of H(L) or an mp-component of H(U) different from paH(L).

We now prove Theorem 4.18 using this result.

Proof of Theorem 4.18. Let H = H1. Then the standard imset for H given
by (9) is

uH = δN − δ∅ +
∑
C∈CH

{
δpa(C) −

∑
V ∈VH(C)

δV +
∑

S∈SH(C)

νH(C)(S) · δS
}

+
∑
C∈CH

∑
V ∈VH(C)

∑
G∈T(H(C)V )

uG.

In this equation, the first three terms are the standard imset for a graph H̃
which is mentioned above. From Proposition 4.2, H̃ is equivalent to some
directed acyclic graph. For the graph H ′, we define H̃ ′ in the same way.
Then we have uH̃ = uH̃′ from Proposition 4.10. Moreover, since the closure
graphs for every chain component C except for U,L,M are the same in H
and H ′, uH = uH′ is reduced to∑
V ∈VH(L)

∑
G∈T(H(L)V )

uG +
∑

V ∈VH(U)

∑
G∈T(H(U)V )

uG =
∑

V ∈V
H

′
(M)

∑
G∈T(H′

(M)V )

uG.

(10)

From Lemma 4.20, mp-components inH
′
(M) except for paH(L) are identical

with that of either H(L) or H(U). Also, since pa(L) is a clique, letting
V = pa(L), we have∑

G∈T(H(U)V )

uG =
∑

G∈T(H(L)V )

uG =
∑

G∈T(H̄′(M)V )

uG = 0.
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Therefore (10) holds whether pa(L) is an mp-component ofH(U) orH
′
(M)

or not.
Let H∞ be the largest chain graph in the equivalence class containing

H1,H2. Then we have uH1 = uH∞ from Theorem 4.17. Also we have
uH2 = uH∞ , which implies Theorem 4.18.

5 Concluding remarks

In this paper we defined standard imsets for undirected graphical models and
chain graphical models. The crucial concept to derive them was a minimal
triangulation. For an undirected graph, its imset was defined through all
minimal triangulations of the graph. Moreover, we gave a more brief form of
a standard imset using the structure of mp-subgraphs. For a chain graph, we
generalized a triangulation of undirected graph. Then a standard imset for
a chain graph was derived through an analogous argument as the undirected
case. We also showed the uniqueness of standard imsets for equivalent chain
graphs.

For directed acyclic graphs and decomposable graphs, the number of
non-zero elements of their standard imsets is linear in |N |, while (6) and (9)
may have exponential number of non-zero elements. Especially, for a prime
undirected graph, imsets defined by (4) coincide with (6). Thus there is a
question whether we can find an imset with smaller numbers of non-zero
elements.

This is related to the degree of combinatorial imsets. The degree of a
combinatorial imset is defined as the sum of positive coefficients when it
is written as a non-negative integer combination of elementary imset [17].
An imset with the smallest degree is considered as a basic representative of
an equivalence class in Section 7.3 in [17]. In fact, a standard imset for a
directed acyclic graph has the smallest degree. Our definition of a standard
imset has the smallest degree for some graphs. One of such examples is a
4-cycle graph. It is easy to see that the smallest degree in the equivalence
class is 2, and (6) achieves this bound. Although, for other cycle graphs, (6)
does not achieve the smallest degree, it may be possible to derive an imset
with the smallest degree through our definition.
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