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Abstract

We give a unified treatment of the convergence of random series and
the rate of convergence of strong law of large numbers in the framework
of game-theoretic probability of Shafer and Vovk [24]. We consider games
with the quadratic hedge as well as more general weaker hedges. The lat-
ter corresponds to existence of an absolute moment of order smaller than
two in the measure-theoretic framework. We prove some precise relations
between the convergence of centered random series and the convergence of
the series of prices of the hedges. When interpreted in measure-theoretic
framework, these results characterize convergence of a martingale in terms
of convergence of the series of conditional absolute moments. In order to
prove these results we derive some fundamental results on deterministic
strategies of Reality, who is a player in a protocol of game-theoretic proba-
bility. It is of particular interest, since Reality’s strategies do not have any
counterparts in measure-theoretic framework, ant yet they can be used to
prove results, which can be interpreted in measure-theoretic framework.

Keywords and phrases: Kronecker’s lemma, law of the iterated logarithm,
Levy’s extension of Borel-Cantelli lemma, Marcinkiewicz-Zygmund strong law,
three-series theorem.

1 Introduction

In standard textbooks on measure-theoretic probability, the strong law of large
numbers (SLLN) is proved using Kronecker’s lemma. As a precondition for
Kronecker’s lemma, the convergence of a random series is usually stated in
the form of three-series theorem. Game-theoretic counterpart in Section 4.2 of
Shafer and Vovk ([24]) basically follows the same line of argument. However
game-theoretic forms of various conditions for convergence of random series have
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not been studied in detail. Indeed, game-theoretic counterparts of the standard
three-series theorem have to be stated more carefully than in the measure-
theoretic setting in several respects, such as the treatment of truncation of
random variables and the martingale nature of game-theoretic framework. In
particular we need to take into account Gilat’s counter example ([7], see also
[2], [3]) to three-series theorem for martingales.

In this paper we give a unified game-theoretic treatment of convergence of
random series and the rate of convergence of SLLN. We consider games with
the quadratic hedge. For an i.i.d. case in the terminology of measure-theoretic
probability, the law of the iterated logarithm (LIL) gives the precise rate. In
game-theoretic probability which corresponds to a non-identical case, the rate
of convergence may be slower. We give the precise rate in the game-theoretic
framework.

We also consider games with more general weaker hedges. Marcinkiewicz-
Zygmund strong law ([15], [8], [13]) suggests that the rate of convergence of
random series and SLLN should depend on the existence of moments. In Section
5 we will show that the rate is determined by the inverse function of the hedge
function.

In order to derive results on convergence of random series, we study some
topics. One topic is the set of convergence of a martingale. If a capital process is
required to be non-negative, the convergence theorem for a non-negative capital
process stated in [24] is sufficient. However it is useful to consider the set of
convergence for an arbitrary capital process which may be negative.

Another topic is deterministic strategies of Reality. We propose a funda-
mental notion concerning deterministic strategies of Reality and prove some
results on them. In [24], Reality’s strategy is only briefly discussed. Further-
more only randomized strategies of Reality are considered in Section 4.3 of [24]
and Section 7 of [13]. Our deterministic strategies of Reality can be understood
as “derandomizations” of the randomized strategies in [24] and [13]. It is of
interest that deterministic strategies of Reality, which do not have any counter-
parts in measure-theoretic probability, can be used to prove results, which can
be interpreted in measure-theoretic probability.

The organization of this paper is as follows. In Section 2 we consider sets of
convergence in the bounded forecasting game and establish preliminary results
on the implication of the convergence of a random series to the convergence of
the series of prices for Reality’s moves. We also treat the coin-tossing game
as a special case of the bounded forecasting game. In Section 3 we consider
bounded forecasting game with quadratic hedge and prove various results on
convergence of random series. In Section 4 we study the rate of convergence of
SLLN in unbounded forecasting game with quadratic hedge and in Section 5 we
generalize our results to games with more general weaker hedges. We end the
paper with some discussion on further topics in Section 6.



2 Preliminary results for bounded forecasting
game and the coin-tossing game

In this section we consider the bounded forecasting game of Section 3.3 of [24]
and the coin-tossing game as a special case. This section also serves as a brief
introduction to game-theoretic probability.

2.1 Definitions and some notions

Consider a perfect information game among three players: Forecaster, Skeptic
and Reality. Let C' > 0 be given. Before the start of the game, Skeptic an-
nounces his initial capital o = D > 0. Ky = 1 in Section 3.3 of [24], but
in this section, for our discussion of the bounded forecasting game, it is more
convenient to let Skeptic announce his initial capital o = D. Then, at each
round n = 1,2, ..., of the game, these players announce their moves in the or-
der: Forecaster, Skeptic and Reality. At each round, Forecaster first announces
my,, which is interpreted as the price for Reality’s move x,. Forecaster has to
announce a coherent price m,, (Section 1.2 of [24]), that is, with the announced
price m,,, Reality should always be able to prevent Skeptic from strictly in-
creasing his capital IC,,. Given the price, Skeptic then announces the amount
M,, he bets. Finally Reality announces her move z, € [-C,C]. The payoff
to Skeptic at the n-th round is M, (z, — m,) and his capital is updated as
Kn =Kno1+ My (x, —my).

More precisely, the protocol of bounded forecasting game is written as fol-
lows.

BOUNDED FORECASTING GAME
Parameter: C >0
Players: Forecaster, Skeptic, Reality

Protocol:
Skeptic announces his initial capital Ky = D > 0.
FORn=1,2,...

Forecaster announces m,, € [—-C, C].

Skeptic announces M,, € R.

Reality announces z,, € [-C,C].

Ky i=Kno1+ My (2, —my).
Collateral Duties: Skeptic must keep IC,, non-negative. Reality
must keep IC,, from tending to infinity. Forecaster must keep the
game coherent.

Note that Forecaster’s price m,, € [—C,C] is clearly coherent, because Re-
ality can always choose x,, = m,,, so that IC, = I,,_; irrespective of M,,.

A strategy P = {P,}n>1 of Skeptic specifies M,,, n > 1, in terms of past
moves of other players my,xr, kK =1,...,n — 1, and the current price m,:

M, = Pp(mi1,z1, ..., Mpy_1,Tn_1,Myp).



We define the capital process K7 = {K7'},,>0 for a given strategy P recursively
by K =0 and

K:ZLJ = K:zfl +7)n(m17$17 cee amnflaxnflamn)(xn - mn); n Z 1.

KP is the cumulative payoff to Skeptic up to round n under the strategy P
(without the initial capital Ko = D). With our definition, K} = 0 is dis-
tinguished from the initial capital Ky = D announced by Skeptic. We call a
sequence of real-valued functions S, (my,x1,..., &, my) of my,x1,..., My, Ty,
n > 0, a capital process if S,, = K for some strategy P.

An infinite sequence & = (my,x1,mo,Ta,...) of moves of Forecaster and
Reality is called a path. Define the sample space

E={¢=(m1,x1,ma,za,...) | My, x, € [-C,C],¥n > 1}

as the set of paths. We regard K7 and P as functions of £. They are denoted
by KF(€¢) and P, (€), which actually depend only on prefixes of & of length 2n
and 2n — 1, respectively.

Any subset E of = is called an event. We say that Skeptic can force E if
there exists a strategy P of Skeptic, such that

and
£¢E = limsupK? (€) = o0. (2)

In this paper we do not make the distinction between forcing (lim,, K7 = o)
and weak forcing (limsup,, K7 = 00) in view of Lemma 3.1 of [24]. A strategy
P satisfying (1) is called prudent, i.e., if Skeptic observes his collateral using P
with the initial capital g = 1.

For two events E1, Ey C =, the event E; = FE, stands for Elc U Es,, where
Elc is the complement of Fy. F; < FEs stands for both implications:

(ECUE)N(E1UES) = (BE1 N Ey) U (EE NEY) = (F1AE,)C,

where A denotes the symmetric difference. Note that Ey < Ey and E{ < EY
are the same as a subset of =. In view of Lemma 3.1 of [24], Skeptic can force
FE, < Es if and only if Skeptic can force both Fy = Fy and Ey = Ej.

2.2 A set of convergence

Martingale convergence theorems in measure-theoretic probability state that
the limit of a martingale exists and is finite almost surely if the martingale is
bounded in £!. In Section VIL5 of [27] the set of convergence was studied when
the condition is not satisfied.

Game-theoretic probability also has convergence theorems. If a capital pro-
cess is required to be non-negative, the convergence always holds. However it is
useful to consider a strategy whose capital process may be negative in order to



construct a strategy whose capital process is non-negative as we will do later.
Then we will prove a game-theoretic version of a simple case of results in [27].
The results are used in a later section.

Let P be a strategy of Skeptic. Denote the maximum possible loss L, =
L,(my,21,...,Mp_1,Tn_1,My,) to Skeptic at the round n (after he knows Fore-
caster’s move m,,) under P by

L, = min Pn(mlaxh'-~7m7L—17xn—17mn)($_mn)
z€[—C,C]

) Pux (=C=my) ifP, >0
| P.x(C—m,) otherwise.

For D > 0, we define the stopping time 75 = 75 (£) as the first time D + K7
may be negative:

75 =min{n>1: K" >-D,....,.K" ,>-D, kY ,+L,<-D}. (3)

n—1 =

As usual 779 = +oo if the set on the right-hand side is empty. The truncation
PP of P at the loss —D is defined as

. D
Pn(mi,z1,...,my) ifn <715

Pf(ml,xl,...,mn) {

0 otherwise.

Note that starting with the initial capital of D > 0, Skeptic observes his collat-
eral duty by employing PP, i.e., D + ICED is always nonnegative.
We now prove the following proposition.

Proposition 2.1. Let P be any strategy in the bounded forecasting game. Let
B7 denote the event

B = {P,, is bounded } = {£ | sup [P, ()| < oo}. (4)

Skeptic can force

B” = (KF converges in R or (limsupK} = +oo and liminf K7 = —oc0)).
(5)

By “convergence in R” we mean that lim,, K exists and is finite. In later
statements we will omit “in R” for simplicity. Proposition 2.1 means that given
any strategy P, there exists another prudent strategy Q of Skeptic, such that
lim sup,, K = oo if (5) is violated.

Proof. Note that the convergence or divergence of K7 is classified into the fol-
lowing five exclusive cases:

(i) —oo < liminf,, K7 = limsup,, K < oo  (convergence),

(ii) —oo < liminf, K7 < limsup, K¥ < oo  (bounded oscillation),



(iii) —oo < liminf,, K7 < limsup, K? = oo,
(iv) —oo = liminf,, K7 < limsup,, K? < oo,
(v) —oo = liminf, K7, limsup, K} = 0o (two-sided unbounded oscillation).

According to this classification, the sample space = is partitioned into five sub-
sets ET, ..., ET. By Lemma 3.2 of [24], it suffices to construct a prudent strat-
egy Q of Skeptic for each of the cases ET, i = 2,3,4, such that ¢ € BP N EF
implies lim sup,, IC,? =00, 1=2,3,4.

We consider the case (iii) in detail. Asnoted above, for each D > 0, D—HCZ;D
is always nonnegative. Consider dividing the initial capital of 1 into countably
infinite accounts with initial capitals 1/2+1/4+--- = 1. For the D-th account
with the initial capital of 1/2%, we apply the strategy PP /(D2P). The resulting
combined strategy Q is written as

e’} 1 b
D=1

Then the capital process of Q is written as

o0

= 1 1 b= 1 D
Qo _ Z Z PP _ Z P
D=1 D:ll D:ll

and hence Q is prudent. Now for each £ € BPNEj3, there exist positive constants
Dl = Dl(f),DQ = Dg(f), such that

K3 (€) > =Di(€), [Pu(€)l < Da(§), ¥n=>1.
Then since [my), .| < C
|Ln (&) < 20Dy (&), Vn > 1.
Consider D > D1(§) + 2CD5(&). Then for all n > 1, we have
KP(€) > -Di(€)>-D, k=1,....,n—1,

and
KP_1(€) + Ln(€) > —D1(€) — 2CDo(€) > —D.

Hence for this D we have 75 (£) = oo and K7 = ICED, Vn > 1. Therefore
¢ € BPNE3; = limsup, K£(¢) = oo. This proves the case of (iii).

The case (iv) is proved by the symmetry of the bounded forecasting protocol,
i.e. by considering —P instead of P.

Finally (ii) can be proved by the standard argument involving Doob’s up-
crossing lemma (see Lemma 4.5 of [24]). Note that Lemma 4.5 of [24] is for
the case of prudent P. In our case, P is not necessarily prudent. However

again combining truncations PP, D = 1,2,..., with the argument of upcross-
ing lemma, we can construct a prudent Q such that limsup, K2(&) = oo for
each ¢ € BP N Ey. This proves the proposition. O



We call a strategy P uniformly cautious if

sup |Pn(§)] < oo.
£eE,n>1

For uniformly cautious P, BP = Z. Therefore if P is uniformly cautious, then
Skeptic can force the right-hand side of (5). The reason for considering B”
in (4) and uniformly cautious strategies is that they eliminate doubling type
strategies.

Using Proposition 2.1 we can prove the following result, which is a general-
ization of results in Section 2.2.2 of [10].

Proposition 2.2. In the bounded forecasting game Skeptic can force

E Ty, converges = E my converges or

n n

(limsupka =400 and liminfz:m;€ = —o0) (6)
T k=1 "=

and

E m, converges = E In cConverges or

n n
n

n
(limsupka =+o00 and lim ianmk =—o00) (7)
Tok=1 -

Proof. Let Y,, = >°}_,(zx — my). Consider a uniformly cautious strategy P
such that M,, = 1. Then K7 =Y,,. By Proposition 2.1, Skeptic can force

Y,, converges or (limsupY,, = +oo and liminfY, = —c0).

We separate the sums in Y,, as Y,, = 2221 Tp — 22:1 my, and restrict relevant
events to the particular event Eq = {)_ x, converges}. Then clearly Skeptic
can force (6). (7) is proved similarly, by switching the roles of z,, and m,,. O

2.3 Some applications

Consider the multi-dimensional bounded forecasting game (cf. [14]) defined as
follows. Reality’s move space is a compact region X of R%. Forecaster’s move
space is the convex hull co(X) of X and Skeptic’s move space is R?. Denote
the moves by Forecaster, Skeptic and Reality by pu,, m, and x,, respectively.
The payoff to Skeptic is m,, - (X — tn), where “” denotes the standard inner
product in R, The protocol of the multi-dimensional bounded forecasting game
is written as follows.

MULTI-DIMENSIONAL BOUNDED FORECASTING GAME
Parameter: a compact region X C RY



Players: Forecaster, Skeptic, Reality

Protocol:
Skeptic announces his initial capital Ko = D > 0.
FORn=1,2,...

Forecaster announces pi,, € coX.

Skeptic announces m,, € R%.

Reality announces x, € X.

K:n = ’Cn—l +my - (Xn - /f"n)
Collateral Duties: Skeptic must keep K,, non-negative. Reality
must keep IC,, from tending to infinity. Forecaster must keep the
game coherent.

It is easily seen that Proposition 2.1 holds in the multi-dimensional bounded
forecasting game.

We now consider the coin-tossing game and prove a game-theoretic proba-
bility version of Levy’s extension of Borel-Cantelli lemma. The protocol of the
coin-tossing game is written as follows.

COIN-TOSSING GAME
Protocol:
Ko =1.
FORn=1,2,...
Forecaster announces p,, € [0, 1]
Skeptic announces M,, € R.
Reality announces z,, € {0,1}.
’Cn = Icnfl + Mn(-rn - pn)

We have the following theorem.

Theorem 2.3. (A game-theoretic version of Levy’s extension of Borel-Cantelli
lemma) In the coin-tossing game Skeptic can force

an<oo = an<oo. (8)

Remark 2.4. The statement may be easier to understand if we rewrite it as
follows: Skeptic can force

an<oo:>2xn<oo
n n

and

anzoo:>2xn=oo.
n n

Proof. Coin-tossing game is a special case of the bounded forecasting game
(with C = D = 1), in such a way that the move space of Reality is restricted
to {0,1} and the move space of Forecaster is restricted to [0,1] by coherence.



Therefore, if Skeptic can force an event E in the bounded forecasting game, then
Skeptic can force E in the coin-tossing game. In the coin-tossing game, )z,
and ) p, are non-negative series and they either converge to finite values or
diverge to +00. Therefore the case of two-sided unbounded oscillation on the
right-hand side of (6) and (7) is impossible, which implies that Skeptic can force
(8). O

Levy’s extension of Borel-Cantelli lemma in measure-theoretic probability is
usually stated as follows (cf. Theorem 12.15 of [31]).

Proposition 2.5. Let X,,, n=1,2,..., be a sequence of 0-1 random variables
adapted to filtration {F,}. Let p, = E(X, | Fn—1). Then almost surely

(i) Doppn <00 = > x, <00,

(ii) ¥, pn =00 = limy(X0 2,/ N p,) =1.

If we weaken (ii) to ), pn =00 = > @, = 00, then the measure-theoretic
extension looks similar to Theorem 2.3. However there are some basic differ-
ences. In our setting, p,’s are only “prequentially” (eg. [30]) announced by
Forecaster and there is no need to specify the full probability measure on x,,
n = 1,2,.... Also, in measure-theoretic framework the null set, where these
implications do not hold, may depend on the underlying probability measure.
On the other hand, in the game-theoretic setting, we have constructed an ex-
plicit strategy Q forcing (8) and the behavior of its capital process K< on the
symmetric difference of two sets in (8) is explicitly understood. Furthermore in
Proposition 4.8 of Section 4 we will strengthen the rate of convergence in (ii).

3 Bounded forecasting game with quadratic hedge

The standard measure-theoretic three-series theorem involves truncation of ran-
dom variables and their means and variances. In considering game-theoretic
counterpart of the standard setup, we here consider the simple case that the
truncation is given before the game, i.e. we consider a variant of bounded fore-
casting game. In addition we assume that the quadratic hedge is available to
Skeptic. From now on for simplicity we assume Ky = 1. The protocol for this
section is written as follows.

BOUNDED FORECASTING WITH QUADRATIC HEDGE (BFQH)
Parameter: C' >0
Players: Forecaster, Skeptic, Reality
Protocol:
Ko =1
FORn=1,2,...
Forecaster announces m,, € [-C,C] and v,, € [0,C? —m2].
Skeptic announces M,, € R and V,, € R.
Reality announces z,, € [-C, C].



Kni=Kn_1+ My(zn —my) + V(2 — mp)? —vyp).
Collateral Duties: Skeptic must keep K,, non-negative. Reality
must keep IC,, from tending to infinity. Forecaster must keep the
game coherent.

In this protocol the following theorem holds.
Theorem 3.1. In BFQH Skeptic can force

Zvn <00 — Z(mn —my,) converges.
n n

Before giving a proof of this theorem, we discuss some features of the theorem
and the protocol BFQH.

The implication “)° v, < oo = > (2, —my,) converges” holds even for
the case of C = +o00, but the the converse implication does not hold for C' =
400, as shown in Lemma 4.3 below. Therefore the main point of Theorem 3.1
is that Skeptic can force the equivalence of both sides in the case 0 < C < +o0.

In BFQH the ranges of V,, and v, are different from both the bounded
forecasting game in Section 3.1 of [24] and the unbounded forecasting game in
Section 4.1 of [24]. First, we allow V;, to be negative. In the usual unbounded
protocol, if Skeptic announces negative V,, then it violates his collateral duty
because K,, - —oo as x,, — 0o. However this does not happen in the above
protocol because |z,,| < C' is bounded. Second, we restrict v,, € [0,C? —m?2] for
the game to be coherent. For example, consider the case m,, = 0, v, = C% + ¢
(e>0), M, =0and V,, = =1, Then K, = K,,_1 — 22 +C? + € > K,,_1 + ¢ for
all z,, € [-C, C]. More precisely we should restrict m,, and v,, such that

my, = / zdp,, and v, = / (z — mn)zdpn (9)
[-C,C] [-C,C]

for some probability measure p,,. For v, € [0, C? —m?] it is easily checked that
(9) holds for a two-point measure p,({a,}) = # and p, ({b,}) = %

where a, =m, + (-C — mn)\/ CQU—# and b, = m, + (C — mn)\/ sz‘_"m2*~

3

BFQH can be regarded as a variant of the two-dimensional bounded forecast-
ing game in Section 2.3 with an additional restriction at each round to Reality.
In the multi-dimensional bounded forecasting game let X = [—2C, C] x [0,4C?],
o = (M, v0), My = (M, Viu)y X = (T, (2, — myp)?). Also at each round of
the game put an additional restriction to Reality’s move space depending on
Forecaster’s move as x, € X, = {(z,(z — m,)?)| — C < z < C}. Since the
restriction is advantageous to Skeptic, Proposition 2.1 holds for BFQH.

Now we give a proof of Theorem 3.1. We use the notation

Y, = Z(xk _mk)a Yo = 0, Ap = ka» Ay = ka'
k=1 k=1 k=1

10



Proof of Theorem 3.1. (=) Consider a capital process

T, = Ynz — A, = 22}/;6,1(1']C — mk) + Z((;Ek - mk)2 - Uk),
k=1 k=1

for Skeptic’s strategy M,, = 2Y,,_; and V,, = 1. A,, is the compensator for Y,2.
Then by Lemma 4.6 and Lemma 4.7 of [24], Skeptic can force that Y}, converges.

(<) Although the argument for this implication is essentially the same as the
first part, we can not directly apply Lemma 4.6 of [24]. We prove this implication
by Proposition 2.1. Consider Skeptic’s strategy

Po: M, = —2Y,_ 1, Vi = —1<0, (10)

which is the negative of the above strategy. The capital process of Py is given
as KPo = A,, — V2. Note that B”° of Proposition 2.1 for this strategy is the set
of paths such that {Y,} is bounded. Therefore by a multi-dimensional version
of Proposition 2.1, Skeptic can force

{Y,,} is bounded = (A, —Y,? converges or
(limsup(A,, — Y;?) = +oco and liminf(A4, — Y;?) = —00)).

(11)

By assumption Y,, converges. Then {Y,,} is bounded. Also Y,? converges. Fur-
thermore since A,, is non-decreasing, the second case of the right-hand side
of (11) is impossible. Therefore Skeptic can force the event: Y, converges
= Ay < 00. O

In Theorem 3.1 we considered the convergence of the series ) (2, —m,). In
standard measure-theoretic three-series theorem, in the bounded case, the series
is split as >, (xn —mp) = >, Tn — >, My. Then the convergence of ), is
discussed in terms of convergence of ) m,, and ), v,. Under the assumption
of independence ) x, converges if and only if v, converges and » m,,
converges. However, without the assumption of independence, the case where
>, My does not converge and ), v, = 00, is very subtle. Indeed, Gilat [7]
gave two sequences of random variables with the same sequences of conditional
expectations and conditional variances, one of which converges to 0 and the
other of which diverges (more precisely, oscillates in a two-sided unbounded
way). Therefore we are interested in when we can determine the convergence of
Y Tn by >, m, and > v,, and when we can not.

From Theorem 3.1 combined with Proposition 2.2, we can easily prove the
following relations.

Corollary 3.2. In BFQH Skeptic can force the following events:
(i) >, mn converges and ), v, < 00 =Y. X, converges,

(ii) >=,, mn does not converge and ), v, < 00 = Y. x, does not converge,

11



(iii) Y, my, converges and )y, v, =00 =y, does not converge.

(iv) >, @n converges = ( (3, mn converges and Y, v, < o0) or

(limsupka = 00, hmianmk = —o0 and Zvn = 00) ) (12)
" k=1 - n

(i) and (ii) follow from (=) of Theorem 3.1, (iii) follows from (<) of Theorem
3.1 and (iv) follows from the fact that if Skeptic can force an event E in the
bounded forecasting game, then he can force E in BFQH.

In the classical three-series theorem, the second case of the right-hand side of
(12) is eliminated by the assumption of independence of the random variables.
In view of Gilat’s counter example, it seems that a simple general statement for
the game-theoretic framework can not be given for this case. However in some
special cases, where the behaviors of )~ m, and ), v, are simple, we can give
definite statements. In Corollary 3.3 and Corollary 3.4 we discuss such cases.

One simple case is that Reality’s move z,, is restricted to be non-negative.

Corollary 3.3. (One-sided BFQH) Consider the following special case: x,, €
[0,C] in BFQH. Then Skeptic can force

E my CONVErges and E Up converges <& E Iy CONVETGES

n n n

This corollary easily follows because by coherence m, > 0 and and ) m,,
is a non-negative series, which eliminates the second case on the right-hand side
of (6).

We now consider the case that the move space of Reality is restricted to be
a set of three points (trinomial game, cf. [18]). This case will play an essential
role in Section 4.3. Indeed the counter-examples to SLLN in Section 4.3 of [24]
and Section 7 of [13] are constructed as probability distributions on a set of
three points.

Corollary 3.4. (Trinomial Game) We consider the following special case in
BFQH:
m, =0, v, €[0,1], z, € {0,+1}.

Then Skeptic can force

Zvn <00 <= x, =0 for all but finite n.

n

Proof. This follows from Theorem 3.1 because for =, € {0,£1}, > x, con-
verges if and only if z,, = 0 for all but finite n. O

For the rest of this section we again consider the coherence of BFQH men-
tioned just after Theorem 3.1 in relation to Corollary 3.4. The coherence can

12



also be proved by a direct calculation as follows. If V,, > 0 then Reality an-
nounces r, = my,. Then M, (z, —m,) + Vi ((xn — my)? —v,) < 0. Suppose
Vo <0. It my, > 5 M” then Reahty announces x,, = —C. Then

My (2n, — M) + V(20 — mn)2 — Vp)
<M, (—=C —my,) + Vo ((—C — mn)2 - (CQ - mi))
=— M, (C+my,) +2V,m,(C +m,)
=2V,m,, — M,)(C +m,) <0.

Ifv, <0and m, <3 M" then Reality announces x, = C. The calculation is
the same as above. ThlS fact is important for our argument in Section 4.3, so
we state it as a proposition.

Proposition 3.5. BFQH remains coherent even with the restriction x, €
{mp,, =C}.

4 The rate of convergence of SLLN

In this section we consider the rate of convergence of SLLN in the usual un-
bounded forecasting game with quadratic hedge.

UNBOUNDED FORECASTING
Players: Forecaster, Skeptic, Reality
Protocol:
Ko=1.
FORn=1,2,...
Forecaster announces m,, € R and v,, > 0.
Skeptic announces M,, € R and V,, > 0.
Reality announces z,, € R.
Kpn = Kn_1+ My(zn —mp) + Vo((xp — mp)? —vp).
Collateral Duties: Skeptic must keep K,, non-negative. Reality
must keep C,, from tending to infinity.

As in the last section we use the notation Y, = Y ;_;(zx — my), 4, =

ZZZI vk and Ay = lim, A,. In many cases we assume that m,, = 0 for all n
without loss of generality.

4.1 Motivation

The rate of convergence of SLLN for i.i.d. case was completely solved by LIL of
Hartman and Wintner [9]. We refer to [23].

Theorem 4.1 (Hartman-Wintner’s law of the iterated logarithm). Let {X,,}
be a sequence of independent identically distributed random variables with zero
mean and finite variance 0. We put S, = S p_, X, a, = (2nloglogn)/2.
Then

limsup S,,/a, = o a.s., liminf S,,/a, = —0c a.s.
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The theorem was a generalization of the case of binary sequences by Khinchin
[11]. If we drop the condition of i.i.d., we need some additional conditions.

Theorem 4.2 (Kolmogorov [12]). Let {X,,} be a sequence of independent ran-
dom wvariables with zero means and finite variances. Put o2 = VarX,, and
B, = 22:1 o?. Suppose By, — co. Suppose also that there exists a sequence of
positive constants {M,} such that

B 1/2
M, = _n
0<(logloan) >

and
| Xn| < M, a.s.
Then
lim su S =1a.s
P (2B, loglog B,)V/2 = 7

Some other condition for LIL than in Theorem 4.2 is given in [29] and LIL
for martingales are discussed for example in [28] and [5]. For game-theoretic
LIL see Chapter 5 of [24] and a recent paper by Takazawa [25].

In game-theoretic probability we can not assume that the sequence {x,,} an-
nounced by Reality is i.i.d. Furthermore we can not assume the existence of M,
either such that |z,| < M,. From now on we consider the rate of convergence
of SLLN in game-theoretic probability. In the view point of measure-theoretic
probability it is the rate of convergence of SLLN in a non-identical case.

4.2 Results on convergences in unbounded forecasting

Here we derive several results on the rate of convergence of Kronecker’s lemma
and hence the strong law of large numbers.

Lemma 4.3. In the unbounded forecasting Skeptic can force

n
Z v, < 00 = Z(xk —my) converges.
n k=1

Skeptic can not force

n

Z(xk —my) converges = Zvn < 0.
k=1 n

Proof. The proof of the first statement is exactly the same as the proof of (=)
in Theorem 3.1. For the second statement, consider Reality’s strategy x,, = mu,,
Vn. Then IC,, = K¢ — 22:1 Vv and clearly Skeptic has no control over v,’s
and hence can not achieve ) v, < ooc. O
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Theorem 4.4. Let g be a positive increasing function. In the unbounded fore-
casting Skeptic can force

>

n

Z Tk converges. (13)

k<n V9 Ak

Proof. We assume that m,, = 0 for all n without loss of generality. We consider
the capital process

g(

W,
2

The compensator of W2 is

—g(A
If Boo < 00, then W, converges by Lemma 4.6 and Lemma 4.7 in [24]. O

Corollary 4.5. Let g be a positive increasing function on [0, 00) with g(co) =
00. Skeptic can force

T —m
Zvn:ooandz Un <002>M—>0. (14)
Proof. This follows easily from Theorem 4.4 and Kronecker’s lemma. O

In some cases we can drop ) v,/g(A;,) < oo from (14). The following is
an example.

Corollary 4.6. Let g be a positive increasing function such that

* 1
——dr < 0.
/0 g(z)

Then Skeptic can force

> k<n (@K —my)

A =00= =20 2 40,
9(Ay)

Proof. Tt suffices to show that ) v,/g(A4,) < oo when A, = oco. This holds

because
/ Z/ % i nil g(il
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Ezample 4.7. We write In* to mean the function such that In*(z) = In(In"~*(z))
and In°(z) = z defined recursively. Let

gi(x) := (Hlnj) x In”.
7=0

In other words,

go(z) =22, gi(z) = 2(Inx)?, go(x) = rInz(Inlnzx)?.

1 1
de = ———.
/ @ T iz

Zkgn(xk — )
# e —
gi(An)

Then

Hence Skeptic can force
Ay = 00

for all 1.
For example, consider the special case v, =v. Then Ay = o0 is automatic
and with g2(z) above we have ), (x, —mg)/(VnInnlnlnn) — 0.

Note that it does not follow ), . (zx —my)/vVnlnnlnlnn — 0. This is
because ) m = 00. However this does not mean that Theorem 4.4 is
a weaker result compared to LIL. Recall that we are considering a non-identical
case in the measure-theoretic point of view. In fact Theorem 4.4 is strict as we
will see in the next subsection.

We now apply Corollary 4.5 to the coin-tossing game. We first show that
the coin-tossing game is a special case of BFQH. Restrict x,, € {0,1}, m,, =

Pn € [0,1] and v, = p,(1 — p,) in BFQH. For M,V € R, p € [0, 1], consider
M(z —p) +V((x—p)* = p(1 - p))
For both # = 0 and z = 1 we have (z—p)2—p(1—p) = (z—p)(1—2p). Therefore
M(z —p) +V((x—p)* = p(1 —p)) = M(z — p) + V(z — p)(1 - 2p)
= (M +V(1-2p)(z—p).

By considering Skeptic’s move M, + V(1 — 2p,,), we see that BFQH for z,, €
{0,1} reduces to the coin-tossing game. Therefore from Corollary 4.6 applied
to the coin-tossing game, we have the following result.

Proposition 4.8. Let g be a positive increasing function such that fooo ﬁdw <

0o. Let A, = > h_1 Pk Then in the coin-tossing game Skeptic can force

Aoo — 00 = Zkgn(‘rli_pk)
9(4An)
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Proof. Let A,, = >"7_, pe(1 — pi). Then A,, < A,. If Ay, = Ay = 00, then by
Corollary 4.6 Skeptic can force

Zkgn(xk — Dr) _ Zkgn(xk — k) g({ln)
V g(f_ln) V9(An) 9(An)

On the other hand, if Ao, < A, = 0o, then Skeptic can force the convergence

of 3, (x, — pn). However in this case >, ., (zr — pr)/v/g(An) — 0, because
g(o0) = 0. B O

— 0.

Note that Proposition 4.8 strengthens (ii) of Remark 2.5, which only states

< N k<n (Tl — Pr) - > k<n Tk

A = 00 = —1—0.
Ap Zkgnpk

4.3 Results on divergence in unbounded forecasting

As the converse to the convergence result in the previous subsection, we will
prove that Skeptic can not force the convergence on the right-hand side of (13)
when ) v,/g(Ay) = co. The novelty in our approach is that in order to prove
this fact we use deterministic strategies of Reality.

We formulate Reality’s strategies and introduce the notion of compliance of
Reality with an event. We propose to use the term “compliance” for Reality’s
strategies and reserve the word “forcing” to Skeptic for clarity of our arguments.
For notational simplicity, as in the multi-dimensional bounded forecasting game,
write fin, = (Mp, V), My, = (M, V,,). Consider Reality’s strategy R = {Ry, }n>1
which determines Reality’s move z,, based on the moves pg, mg, & < n, of
Forecaster and Skeptic:

xn:Rn(,ulamla"'a,unamn)a n>1
Definition 4.9. By a strategy R Reality complies with the event E C =, if

(i) irrespective of the moves pn,, My, n > 1, of Forecaster and Skeptic, both
observing their collateral duties, it holds that

(1, Ra(pr, my), po, Ro(pr, my, pio, ma),...) € E,
and
(i) sup,, K, < 0.

We say that by R Reality strongly complies with E if the supremum in (ii) is
uniformly bounded from above by 1 = Ky, i.e., IC;y < 1 irrespective of the moves
of Forecaster and Skeptic, both observing their collateral duties.

We simply say that Reality (strongly) complies with the event E C E if there
exists a strategy R such that by R Reality (strongly) complies with E.
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Concerning the notion of compliance we prove the following fundamental
proposition.

Proposition 4.10. In the unbounded forecasting, if Skeptic can force an event
E, then Reality strongly complies with E.

Remark 4.11. As seen in the proof of this proposition below, the statement holds
not only for the unbounded forecasting, but for more general protocols of game-
theoretic probability, such as the trinomial game.

The idea of the proof is as follows. First of all Reality needs to prevent the
capital from tending to infinity. By coherence this is possible for Reality. Next
the path must be in E. Since Skeptic can force E, Skeptic has the strategy such
that if the path is not in F, then the capital goes to infinity. It follows that if
the capital does not tend to infinity, then the path is in E. Then all Reality has
to do is to prevent the capital of the strategy from tending to infinity. Again by
coherence this is possible for Reality. Can Reality prevent the capitals of two
strategies from tending to infinity? It is possible by considering the strategy
that is the average of two strategies. In other words Reality’s strategy can
be constructed by considering a single sufficiently powerful strategy of Skeptic.
Furthermore Reality’s strategy can be deterministic. To make the strategy
“strongly” comply we need a more precise argument as is in the proof.

Such an argument is commonly used in algorithmic randomness. Especially
some examples of random sets are sets on which a single sufficiently powerful
(super)martingale fails. See [19, 6, 16, 20, 17]. One way to obtain a set on
which the (super)martingale fails is to choose the leftmost non-ascending path
in binary sequences. This choice corresponds to the coherence in game-theoretic
probability. Although the constructed random sets may not be computable in
general, it can be constructed deterministically by the (super)martingale.

We set up some more notation for clarity. When the moves of all the players
are individually specified we write Skeptic’s capital as

Kol e, wr)i=1)], - (Ko = 1).
In this notation Skeptic’s capital under a strategy P is written as
L+ KT = Kl (s Py i) i1 -
We now give a proof of Proposition 4.10.
Proof. Since Skeptic can force E, there exists Skeptic’s strategy P such that

limsup K7 < 00 = (n, ,)5%, € E. (15)

First we give a strategy R of reality such that /C, is uniformly bounded from
above by 1 + €, where € > 0 is arbitrarily fixed.

Consider Reality’s move at the first round n = 1 after Forecaster’s move p; =
(m1,v1) and Reality’s move m; = (Mj, V) were announced. Write Py(p1) =
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P1((my,v1)) = (M, V), which is the move of the strategy P at the first
round. Let & = 1/(1+¢€) and let

my = (M, Vi) = (1 — a)(MT, V") + a(My, W1). (16)
Because of coherence, Reality can (deterministically) choose x; such that

Kilpr, my, z1] = (1 — @)Ky [pr, Pr(pa), 21] + ally[pr, my, 2]
<Kyp=1.

Since both Ki[u1, P1(p1), z1], K1[1, m1, z1] are non-negative, it follows that

1 1+e 1
Kilpa, Pr(p), z1] < 1 = , Kaifp,my, ] < — =1+e
— € (07

We now make an inductive argument. Suppose that Reality could determin-
istically choose z1,...,x,_1 such that

n_ 1+e ne
’Cn—l[(ﬂk7pk7zk)k:11] < T7 Kn- [(/lk,mk,$k)k 11] <l+e

As in the first round define

where (M, V;,) = m,, is the actual move announced by Skeptic and (M, V,7)
is the move of strategy P. By coherence, Reality can now choose x,, such that

My (2 — M) + Vi (2 — my)? — vy,) < 0.
Then

a) [(/’Lkaphxk)Z:l] +O"Cn[(uk7mkaxk)2:1]

Kﬂ[(ukvﬁlk?xk)zzl] (
K1 (e, gy 1) 1 |
1.

<
< (18)

Thus as in the first round
’Cn[(/‘kﬂphxk)k:l] < ) Kn[(uhmk’xk)k:l] <l+e (19)

By (15) and the first term of (19), (i) of Definition 4.9 is satisfied. By the second
term of (19), Kp[(pk, Mk, T)}_,] is uniformly bounded from above by 1 +e.

It remains to show that we can let e = 0. We argue as follows. By coherence,
Reality can always choose x,, such that M, (2, —m,)+V, (2, —mp)? —v,) < 0.
In the unbounded forecasting, unless (M,,V,) = (0,0), Reality can choose
Ty such that this inequality is strict. Reality will look for the fist time n =
ng such that (M,,V,) # (0,0). At round ng Reality chooses z,, such that
Ko [(pre, My, 1) 12 1] < 1. For n = 1,...,n9 — 1, Reality chooses z,, such that
KP? < 0. Now define o = Ky, [(pt, M, 7x) 72, ] and after the round ng Reality
follows the strategy ensuring K,, < 1, n > ng, as in (18). On the other hand, if
there is no such ng, then Reality keeps choosing z,, such that K7 < 0. In this
case KCp[(tx, Mg, zk)p_q] = 1 for all n and also (i) of Definition 4.9 is satisfied
by (15). O
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We now state the following theorem.
Theorem 4.12. Let g : R — R be a positive increasing function. Then in the

unbounded forecasting Reality strongly complies with the event

=00 = ————=———=—— does not converge. (20)

9(An) 9(Ay)

T Uy, > h<n (@K —my)

As an immediate consequence of this theorem we have the following corollary.

Corollary 4.13. Let g : R — R be a positive increasing function Let Ey be
any event depending only on vi,va, ..., such that By N{>", —* Ty = = oo} # 0.
In the unbounded forecasting Skeptic can not force

D k(T — M)

Ey = —=——— conwveryges.

9(An)

For proving Theorem 4.12 we prove two technical lemmas.

Lemma 4.14. Let {y,} be a sequence of reals and let {g,} be a non-decreasing
sequence of positive reals. If (3, ., Yk)/gn converges to d, then |yn/gn| < |d|+1
for all but finite n. B

Proof. First note that

yn_ (1_gn—1>‘+‘d<1_g )’<|d|+ (1_971—1)’.
In In 9n gn dn

Therefore it suffices to show that the second term on the right-hand side is
bounded by 1 for all sufficiently large n.
Let € be such that 0 < € < %. Then there exists N such that

y’fL
In

n
n>N:>’Zk:1yk—d‘<e

It follows that, for all n — 1 > N,

Yn 4. (1 ~ 9—1) ‘

gn gn

Yn Zk 1 Yk <1 . >
gn 9n—1 9n
22:1 Yk Zk 1 Yk

In Gn—

—d

IA

. <1 _ gn1>
In

== —d

9n—1

‘Zk 1Yk ‘

+e< + € < 3e.

In—1

O

Lemma 4.15. Let {a,} be a sequence of posit