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Abstract

Let B be a real hyperplane arrangement which is stable under the action of
a Coxeter group W . Then W acts naturally on the set of chambers of B. We
assume that B is disjoint from the Coxeter arrangement A = A(W ) of W . In
this paper, we show that the W -orbits of the set of chambers of B are in one-to-
one correspondence with the chambers of C = A ∪ B which are contained in an
arbitrarily fixed chamber of A. From this fact, we find that the number ofW -orbits
of the set of chambers of B is given by the number of chambers of C divided by
the order of W . We will also study the set of chambers of C which are contained
in a chamber b of B. We prove that the cardinality of this set is equal to the order
of the isotropy subgroup Wb of b. We illustrate these results with some examples,
and solve an open problem in Kamiya, Takemura and Terao [Ranking patterns of
unfolding models of codimension one, Adv. in Appl. Math. (2010)] by using our
results.

Keywords: all-subset arrangement, braid arrangement, characteristic polynomial, Cox-
eter arrangement, Coxeter group, finite-field method, mid-hyperplane arrangement, sym-
metric group.

MSC2010: 20F55, 32S22, 52C35.

1 Introduction

Let B be a real hyperplane arrangement which is stable under the action of a Coxeter
group W . Then W acts naturally on the set Ch(B) of chambers of B. We want to find
the number of W -orbits of Ch(B). A particular case of this problem was considered in

∗This work was partially supported by JSPS KAKENHI (22540134).
†This research was supported by JST CREST.
‡This work was partially supported by JSPS KAKENHI (21340001).
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the authors’ previous paper (Kamiya, Takemura and Terao [9]) and the present paper
is motivated by an open problem left in Section 6 of [9]. By the general results of the
present paper, we give the affirmative answer to the open problem in Theorem 3.1.

Suppose throughout that B ∩ A = ∅, where A = A(W ) is the Coxeter arrangement
of W . In this paper, we will show that the orbit space of Ch(B) is in one-to-one
correspondence with the set of chambers c of C = A ∪ B which are contained in a,
{c ∈ Ch(C) | c ⊆ a}, where a ∈ Ch(A) is an arbitrary chamber of A. From this fact,
we find that the number of W -orbits of Ch(B) is given by |Ch(C)|/|W |.

On the other hand, we will also study the set of chambers c ∈ Ch(C) which are
contained in a chamber b ∈ Ch(B) of B, {c ∈ Ch(C) | c ⊆ b}. We will prove that the
cardinality of this set is equal to the order of the isotropy subgroup Wb of b. Moreover,
we will investigate the structure of Wb.

Kamiya, Takemura and Terao [9] tried to find the number of “inequivalent ranking
patterns generated by unfolding models of codimension one” in psychometrics, and ob-
tained an upper bound for this number. It was left open to determine whether this upper
bound is actually the exact number. The problem boils down to proving (or disprov-
ing) that the orbit space of the chambers of the restricted all-subset arrangement ([9])
B under the action of the symmetric group Sm is in one-to-one correspondence with
{c ∈ Ch(A(Sm) ∪ B) | c ⊆ a} for a chamber a ∈ Ch(A(Sm)) of the braid arrangement
A(Sm). The results of the present paper establish the one-to-one correspondence.

The paper is organized as follows. In Section 2, we verify our main results. Next,
in Section 3, we illustrate our general results with four examples. Those examples are
mainly taken from the authors’ previous studies of unfolding models in psychometrics
([5], [9]). In Section 3, we also solve the open problem of [9] (Theorem 3.1) using our
general results in Section 2 applied to one of our examples.

2 Main results

In this section, we state and prove our main results.
Let V be a Euclidean space. Consider a Coxeter group W acting on V . Then the

Coxeter arrangement A = A(W ) is the set of all reflecting hyperplanes of W . Suppose
that B is a hyperplane arrangement which is stable under the natural action of W . We
assume A ∩ B = ∅ and define

C := A ∪ B.

LetCh(A), Ch(B) andCh(C) denote the set of chambers of A, B and C, respectively.
Define

φA : Ch(C) → Ch(A), φB : Ch(C) → Ch(B)

by

φA(c) := the chamber of A containing c,

φB(c) := the chamber of B containing c

for c ∈ Ch(C). Note that the Coxeter group W naturally acts on Ch(A), Ch(B) and
Ch(C).
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Lemma 2.1. φA and φB are both W -equivariant, i.e.,

φA(wc) = w(φA(c)), φB(wc) = w(φB(c))

for any w ∈ W and c ∈ Ch(C).

The proof is easy and omitted.
The following result is classical (see, e.g., [3, Ch. V, §3. 2. Theorem 1 (iii) ]):

Theorem 2.2. The group W acts on Ch(A) effectively and transitively. In particular,
|W | = |Ch(A)|.

By Theorem 2.2, we can prove the following lemma.

Lemma 2.3. The group W acts on Ch(C) effectively. In particular, each W -orbit of
Ch(C) is of size |W |.

Proof. If wc = c for w ∈ W and c ∈ Ch(C), then we have φA(c) = wφA(c), which
implies w = 1 by Theorem 2.2.

For b ∈ Ch(B), define the isotropy subgroup Wb := {w ∈ W | wb = b}. Then we
have

Lemma 2.4. For b ∈ Ch(B), the group Wb acts on φ−1
B (b) effectively and transitively.

Proof. The effective part follows from Lemma 2.3, so let us prove the transitivity.
Let c1, c2 ∈ φ−1

B (b). Define

A(c1, c2) := {H ∈ A | c1 and c2 are on different sides of H}.

Let us prove that there exists w ∈ W such that wc1 = c2 by an induction on |A(c1, c2)|.
When |A(c1, c2)| = 0, we have A(c1, c2) = ∅ and c1 = c2. Thus we may choose w = 1. If
A(c1, c2) is non-empty, then there exists H1 ∈ A(c1, c2) such that H1 contains a wall of
c1. Let s1 denote the reflection with respect to H1. Then

A(s1c1, c2) = A(c1, c2) \ {H1}.

By the induction assumption, there exists w1 ∈ W with w1s1c1 = c2. Set w := w1s1.
Then wc1 = c2 and c2 = (wc1)∩ c2 ⊆ (wb)∩ b, which implies that (wb)∩ b is not empty.
Thus wb = b and w ∈ Wb.

The following lemma states that the W -orbits of Ch(C) and those of Ch(B) are in
one-to-one correspondence.

Lemma 2.5. The map φB : Ch(C) → Ch(B) induces a bijection from the set of W -orbits
of Ch(C) to the set of W -orbits of Ch(B).

Proof. For b ∈ Ch(B) and c ∈ Ch(C), we denote the W -orbit of b and the W -orbit
of c by O(b) and by O(c), respectively. It is easy to see that

φB(O(c)) = O(φB(c)), c ∈ Ch(C),
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by Lemma 2.1. Thus φB induces a map from the set of W -orbits of Ch(C) to the set of
W -orbits of Ch(B). We will show the map is bijective.

Surjectivity: Let O(b) be an arbitrary orbit of Ch(B) with a representative point
b ∈ Ch(B). Take an arbitrary c ∈ φ−1

B (b). Then

φB(O(c)) = O(φB(c)) = O(b),

which shows the surjectivity.
Injectivity: Suppose φB(O(c1)) = φB(O(c2)) (c1, c2 ∈ Ch(C)). Set bi := φB(ci) for

i = 1, 2. We have

O(b1) = O(φB(c1)) = φB(O(c1)) = φB(O(c2)) = O(φB(c2)) = O(b2),

so we can pick w ∈ W such that wb2 = b1. Then

φB(wc2) = w(φB(c2)) = wb2 = b1.

Therefore, both c1 and wc2 lie in φ−1
B (b1). By Lemma 2.4, we have O(c1) = O(wc2) =

O(c2).

We are now in a position to state the main results of this paper.

Theorem 2.6. The cardinalities of φ−1
A (a), φ−1

B (b) for a ∈ Ch(A), b ∈ Ch(B) are given
as follows:

1. For a ∈ Ch(A), we have

|φ−1
A (a)| = |Ch(C)|

|Ch(A)|
=

|Ch(C)|
|W |

= |{W -orbits of Ch(C)}|

= |{W -orbits of Ch(B)}|.

2. For b ∈ Ch(B), we have |φ−1
B (b)| = |Wb|.

Proof. Part 2 follows from Lemma 2.4, so we will prove Part 1. Since the map
φA : Ch(C) → Ch(A) is W -equivariant (Lemma 2.1), we have for each w ∈ W a
bijection

φ−1
A (a) → φ−1

A (wa)

sending c ∈ φ−1
A (a) to wc. Thus every fiber of φA has the same cardinality because W

acts transitively on Ch(A) (Theorem 2.2). The cardinality is equal to

|Ch(C)|
|Ch(A)|

=
|Ch(C)|
|W |

.

By Lemma 2.3, we have

|{W -orbits of Ch(C)}| = |Ch(C)|
|W |

.

Finally, Lemma 2.5 proves the last equality.
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Next, let x ∈ V \
∪

H∈B H. Let b ∈ Ch(B) denote the unique chamber that contains
x. Define the average z(x) of x over the action of Wb:

z(x) =
1

|Wb|
∑
w∈Wb

wx.

Then it is easily seen that z(x) lies in b because of the convexity of b, and that the map
z is W -equivariant. Concerning the structure of Wb, we obtain

Proposition 2.7. The following statements hold true:

1. For any b ∈ Ch(B), the set {z(x) | x ∈ b} is equal to the set of all Wb-invariant
points of b.

2. For any x ∈ V \
∪

H∈B H, the isotropy subgroup Wz(x) of z(x) is equal to Wb, where
b ∈ Ch(B) is the unique chamber that contains x. In particular, Wz(x) depends
only on the chamber b ∈ Ch(B) containing x.

Proof.
1. By the linearity of the action of W on V , the average z(x) ∈ b of x ∈ b is Wb-

invariant: wz(x) = z(x), w ∈ Wb. Conversely, the average of any Wb-invariant point of
b is the point itself.

2. Assume w ∈ Wz(x). Then z(x) = wz(x) ∈ b ∩ wb, which implies b ∩ wb ̸= ∅.
Since b and wb are both chambers, they coincide: wb = b. Thus w ∈ Wb and we obtain
Wz(x) ⊆ Wb. We also have the reverse inclusion because the average z(x) is Wb-invariant
by Part 1.

When W is the symmetric group Sm = S{1,...,m}, we have the following obvious fact
(Proposition 2.8). Define

H0 := {x = (x1, . . . , xm)
T ∈ Rm | x1 + · · ·+ xm = 0}.

The group W = Sm acts on V = Rm or V = H0 by permuting coordinates. When
W = Sm and V = Rm or V = H0, we agree that this action is considered.

Proposition 2.8. Let W = Sm and V = Rm or V = H0. Then we have

Wb = Sk1 ×Sk2 × · · · ×Skℓ , b ∈ Ch(B),

where k1, . . . , kℓ (k1 + · · ·+ kℓ = m, 1 ≤ ℓ ≤ m) are defined by

zσ(1) = · · · = zσ(k1) > zσ(k1+1) = · · · = zσ(k1+k2) > · · · > zσ(k1+···+kℓ−1+1) = · · · = zσ(m)

for z = (z1, . . . , zm)
T = z(x), x ∈ b, and a permutation σ ∈ S{1,...,m}.

Remark 2.9. Consider the map b 7→ Wb from Ch(B) to the set of subgroups of W .
Since Wwb = wWbw

−1, w ∈ W , this induces a map τ from the set of W -orbits of Ch(B)
to the set of conjugacy classes of subgroups of W :

τ(O(b)) = [Wb], b ∈ Ch(B), (1)

where [Wb] := {wWbw
−1 | w ∈ W}. This map τ is not injective in general. See Remark

3.3 in Subsection 3.2.
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3 Examples

In this section, we examine four examples. Those in the first three subsections are
taken from problems in psychometrics—the arrangements in Subsections 3.1 and 3.2
(the braid arrangement in conjunction with the all-subset arrangement) appear natu-
rally in the study of ranking patterns of unfolding models of codimension one (Kamiya,
Takemura and Terao [9]), while the mid-hyperplane arrangement in Subsection 3.3 is
needed in examining ranking patterns of unidimensional unfolding models (Kamiya, Or-
lik, Takemura and Terao [5]). In these three examples, the Coxeter group W is of type
Am−1. In Subsection 3.4, we provide an illustration with the Coxeter group of type Bm.

In Subsection 3.1, we also solve the open problem of [9].

3.1 Coxeter group of type Am−1 and restricted all-subset ar-
rangement

Let W = Sm and V = H0. Then A = A(W ) is the braid arrangement in H0, consisting
of the hyperplanes defined by xi = xj, 1 ≤ i < j ≤ m. All the |A| = m(m − 1)/2
hyperplanes form one orbit under the action of W on A.

Let B be the restricted all-subset arrangement (Kamiya, Takemura and Terao [9]):

B = {H0
I | ∅ ̸= I ( {1, . . . ,m}},

where
H0

I := {x = (x1, . . . , xm)
T ∈ H0 |

∑
i∈I

xi = 0}.

Since H0
I = H0

{1,...,m}\I for I ̸= ∅, {1, . . . ,m}, we have |B| = (2m − 2)/2 = 2m−1 − 1. The

number of W -orbits of B is (m− 1)/2 if m is odd and m/2 if m is even.
Theorem 2.6 applied to this case gives the affirmative answer to the open problem

left in Section 6 of [9]. Using the terminology in Corollary 6.2 in [9], we state:

Theorem 3.1. The number of inequivalent ranking patterns of unfolding models of codi-
mension one is

|Ch(A ∪ B)|
m!

− 1

for the braid arrangement A in H0 and the restricted all-subset arrangement B.

Proof. Part 1 of Theorem 2.6 implies that the number of W -orbits of Ch(B) for the
restricted all-subset arrangement B is equal to |Ch(A ∪ B)|/(m!). This completes the
proof because of the last sentence of Corollary 6.2 in [9].

Now, let us investigate the case m = 3.
The arrangement A consists of three lines in V = H0, dimH0 = 2, each of which is

defined by one of the following equations:

x1 = x2, x1 = x3, x2 = x3, (2)

and B comprises three lines:

x1 = 0, x2 = 0, x3 = 0.
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x
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x
2>0

x
3>0

x
1>0

x
1>x3

x
1>x2

x
2>x3

x
1>x2

c

c ’

Figure 1: Braid plus restricted all-subset arrangement for m = 3.

Figure 1 displays A and B in V = H0. Note that the action of W on B is transitive.
As a chamber of A, let us take a ∈ A defined by x1 > x2 > x3 (a is shaded in Figure

1). This chamber a of A contains exactly two chambers c, c′ of C: φ−1
A (a) = {c, c′}.

These two chambers c, c′ have the following walls:

Walls of c : x1 = x2, x2 = 0 (x1 > x2 > 0),

Walls of c′ : x3 = x2, x2 = 0 (x3 < x2 < 0).

Note that c and c′ are obtained from each other by changing (x1, x2, x3) to (−x3,−x2,−x1).
Since a ∈ Ch(A) consists of |φ−1

A (a)| = 2 chambers c, c′ of C, we have |Ch(C)| =
|φ−1

A (a)| × |W | = 2 × 3! = 12. The set φ−1
A (a) = {c, c′} ⊂ Ch(C) is a complete set of

representatives of the W -orbits of Ch(C), i.e., Ch(C) has exactly two orbits O(c),O(c′)
under the action of W .

Now, the chambers b := φB(c), b′ := φB(c
′) of B containing c, c′ have the following

walls:

Walls of b : x1 = 0, x2 = 0 (x1 > 0, x2 > 0),

Walls of b′ : x3 = 0, x2 = 0 (x3 < 0, x2 < 0).

See Figure 2. The chamber b ∈ Ch(B) (resp. b′ ∈ Ch(B)) is divided by the line of A
defined by x1 = x2 (resp. x3 = x2) into two chambers of C, |φ−1

B (b)| = |φ−1
B (b′)| = 2. The

Wb-invariant points z of b are z = d(1, 1,−2)T , d > 0, while the Wb′-invariant points
z of b′ are z = d(2,−1,−1)T , d > 0, so we have Wb = S{1,2}, Wb′ = S{3,2}. Thus we
confirm |φ−1

B (b)| = |Wb|, |φ−1
B (b′)| = |Wb′| (Part 2 of Theorem 2.6).

We have {W -orbits of Ch(B)} = {O(b),O(b′)}, so

|{W -orbits of Ch(B)}| = 2.
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x
1>0
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1>x3

x
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b
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Figure 2: Braid plus restricted all-subset arrangement for m = 3. O(b) and O(b′).

The chambers in O(b) are shaded in Figure 2, while those in O(b′) are not. The chambers
of B on the same W -orbit as b (resp. b′) have walls of the form xi > 0, xj > 0, i ̸= j
(resp. xi < 0, xj < 0, i ̸= j). Thus the orbit sizes are |O(b)| = |O(b′)| =

(
3
2

)
= 3 (=

|W |/|Wb| = |W |/|Wb′|). Therefore, |Ch(C)| can be computed also as

|Ch(C)| = |φ−1
B (b)| × |O(b)|+ |φ−1

B (b′)| × |O(b′)|
=

(
|φ−1

B (b)| × |O(b)|
)
× 2 = (2× 3)× 2 = 12

=

(
|Wb| ×

|W |
|Wb|

)
× 2 = |W | × |{W -orbits of Ch(B)}|.

In addition, |Ch(B)| = |O(b)|+ |O(b′)| = 2|O(b)| = 2× 3 = 6.
We have found

φ−1
A (a) = {c, c′}, {W -orbits of Ch(C)} = {O(c),O(c′)},

{W -orbits of Ch(B)} = {O(b),O(b′)}, |Ch(C)| = 12,

so we see that Part 1 of Theorem 2.6 holds true:

|φ−1
A (a)| = |{W -orbits of Ch(C)}| = |{W -orbits of Ch(B)}| = |Ch(C)|

|W |
= 2.

Alternatively, we can compute |Ch(C)| by using Zaslavsky’s result ([13]) on the
chamber-counting problem as follows. The characteristic polynomial χ(C, t) of C (Orlik
and Terao [11, Definition 2.52]) is

χ(C, t) = (t− 1)(t− 5)

(Kamiya,Takemura and Terao [9, Sec. 6.2.1]). Together with this polynomial, Za-
slavsky’s result yields

|Ch(C)| = (−1)2χ(C,−1) = 12
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([13, Theorem A], [11, Theorem 2.68]), which is consistent with our observation above.

Let us move on to the case m = 4.
The elements of A are the six planes in V = H0, dimH0 = 3, defined by the following

equations:

x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4, x3 = x4, (3)

whereas those of B are the seven planes below:

x1 = 0, x2 = 0, x3 = 0, x4 = 0; (4)

x1 + x2 = 0, x1 + x3 = 0, x1 + x4 = 0. (5)

Figure 3 shows the intersection with the unit sphere S2 = {(x1, . . . , x4)
T ∈ H0 | x2

1 +
· · ·+ x2

4 = 1} in H0. Note that B has two orbits under the action of W—the four planes
in (4) constitute one orbit, and the three in (5) form the other one. (In Figure 3, the
planes in (4) are drawn in blue and those in (5) are sketched in red.)

x
2>x4

x
1+x4>0

x
1>x2

x
1>x4

x
1>x3
x
3>x4

x
2>x3

x
1+x3>0

x
1+x2>0

x
1>0

x
4>0

x
2>0

x
3>0

c1

c2

c2’ c1’

Figure 3: Braid plus restricted all-subset arrangement for m = 4.

As a chamber of A, let us take a ∈ Ch(A) defined by x1 > x2 > x3 > x4 (a is
shaded in Figure 3). This chamber a of A contains exactly four chambers c1, c2, c

′
1, c

′
2 of

C: φ−1
A (a) = {c1, c2, c′1, c′2}. These chambers have the following walls:

Walls of c1 : x1 = x2, x2 = x3, x3 = 0 (x1 > x2 > x3 > 0),

Walls of c2 : x1 = x2, x1 + x4 = 0, x3 = 0 (−x4 > x1 > x2, x3 < 0),

Walls of c′1 : x4 = x3, x3 = x2, x2 = 0 (x4 < x3 < x2 < 0),

Walls of c′2 : x4 = x3, x4 + x1 = 0, x2 = 0 (−x1 < x4 < x3, x2 > 0).
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Note that c′1 (resp. c′2) is obtained from c1 (resp. c2) by changing (x1, x2, x3, x4) to
(−x4,−x3,−x2,−x1). Since |φ−1

A (a)| = 4, we have |Ch(C)| = |φ−1
A (a)| × |W | = 4× 4! =

96. The set φ−1
A (a) = {c1, c2, c′1, c′2} ⊂ Ch(C) is a complete set of representatives of the

W -orbits of Ch(C), namely, Ch(C) has exactly four orbits O(c1),O(c2),O(c′1),O(c′2).
The chambers bi := φB(ci), b′i := φB(c

′
i), i = 1, 2, of B containing c1, c2, c

′
1, c

′
2 have

the following walls:

Walls of b1 : x1 = 0, x2 = 0, x3 = 0 (x1 > 0, x2 > 0, x3 > 0),

Walls of b2 : x1 + x3 = 0, x1 + x4 = 0, x3 = 0 (−x4 > x1 > −x3 > 0),

Walls of b′1 : x4 = 0, x3 = 0, x2 = 0 (x4 < 0, x3 < 0, x2 < 0),

Walls of b′2 : x4 + x2 = 0, x4 + x1 = 0, x2 = 0 (−x1 < x4 < −x2 < 0)

(Figure 4). The chamber b1 ∈ Ch(B) is divided by the three planes of A defined by
x1 = x2, x1 = x3, x2 = x3 into six chambers of C, whereas b2 is divided by the plane
x1 = x2 into two chambers of C. For b1, we have Wb1 = S{1,2,3} (the Wb1-invariant
points z of b1 are z = d(1, 1, 1,−3)T , d > 0), and for b2, we find Wb2 = S{1,2} (the
Wb2-invariant points z of b2 are z = d1(1, 1,−1,−1)T + d2(1, 1, 0,−2)T , d1, d2 > 0). So
we see |Wb1 | = |φ−1

B (b1)| (= 6) and |Wb2 | = |φ−1
B (b2)| (= 2) hold true.

b1 b2

x
1+x3=0

x
1=x2

x
3=0

x
1+x4=0

x
1=x3

x
3=0

x
1=x2

x
2=x3

x
1=0

x
2=0

c1

c2

Figure 4: Braid plus restricted all-subset arrangement for m = 4. b1 and b2.

We have {W -orbits of Ch(B)} = {O(b1),O(b2),O(b′1),O(b′2)} and hence

|{W -orbits of Ch(B)}| = 4.

The chambers b ∈ Ch(B) on the sameW -orbit as b1, O(b) = O(b1), have walls of the form
xi > 0, xj > 0, xk > 0 (i, j, k are all distinct), while b ∈ Ch(B) such that O(b) = O(b2)
have walls of the form xi < 0, xi + xj > 0, xi + xk > 0 (i, j, k are all distinct). Thus the
orbit sizes are |O(b1)| =

(
4
3

)
= 4 (= |W |/|Wb1 |) and |O(b2)| =

(
4
3

)
×3 = 12 (= |W |/|Wb2 |).

Accordingly, |Ch(C)| is again

|Ch(C)| =
(
|φ−1

B (b1)| · |O(b1)|+ |φ−1
B (b2)| · |O(b2)|

)
× 2 = (6× 4 + 2× 12)× 2 = 96

=

(
|Wb1 | ·

|W |
|Wb1 |

+ |Wb2 | ·
|W |
|Wb2 |

)
× 2 = |W | × |{W -orbits of Ch(B)}|.

Besides, |Ch(B)| = 2(|O(b1)|+ |O(b2)|) = 2(4 + 12) = 32.
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The characteristic polynomial χ(C, t) of C is

χ(C, t) = (t− 1)(t− 5)(t− 7)

(Kamiya,Takemura and Terao [9, Sec. 6.2.2]). This polynomial yields

|Ch(C)| = (−1)3χ(C,−1) = 96

in agreement with our observation above.

For 5 ≤ m ≤ 9, we used the finite-field method (Athanasiadis [1, 2], Stanley
[12, Lecture 5], Crapo and Rota [4], Kamiya, Takemura and Terao [6, 7, 8]) to cal-
culate the characteristic polynomials χ(C, t) of C, and obtained the numbers of W -
orbits of Ch(B) by using Zaslavsky’s result [13, Theorem A] and Part 1 of Theorem 2.6:
|{W -orbits of Ch(B)}| = |φ−1

A (a)| = |Ch(C)|/|W | as follows.

m = 5 : χ(C, t) = (t− 1)(t− 7)(t− 8)(t− 9), |Ch(C)| = 1440, |φ−1
A (a)| = 12,

m = 6 : χ(C, t) = (t− 1)(t− 7)(t− 11)(t− 13)(t− 14),

|Ch(C)| = 40320, |φ−1
A (a)| = 56,

m = 7 : χ(C, t) = (t− 1)(t− 11)(t− 13)(t− 17)(t− 19)(t− 23),

|Ch(C)| = 2903040, |φ−1
A (a)| = 576,

m = 8 : χ(C, t) = (t− 1)(t− 19)(t− 23)(t− 25)(t− 27)(t− 29)(t− 31),

|Ch(C)| = 670924800, |φ−1
A (a)| = 16640,

m = 9 : χ(C, t) = (t− 1)(t7 − 290t6 + 36456t5 − 2573760t4 + 110142669t3

− 2855339970t2 + 41492561354t− 260558129500),

|Ch(C)| = 610037568000, |φ−1
A (a)| = 1681100.

Note that the characteristic polynomial χ(C, t) factors into polynomials of degree one
over Z for m ≤ 8.

Remark 3.2. For m = 5 and m = 6, Kamiya, Takemura and Terao [9] identified all
the elements c of φ−1

A (a) for a : x1 > · · · > xm and gave an example of the Wb-invariant
points z of b = φB(c) for each c. From those z, we immediately obtain Wb by Proposition
2.8.

3.2 Coxeter group of type Am−1 and unrestricted all-subset ar-
rangement

Let W = Sm and V = Rm. Then A = A(W ) is the braid arrangement in Rm. Let B be
the (unrestricted) all-subset arrangement ([9]):

B = {HI | ∅ ̸= I ⊆ {1, . . . ,m}},

where
HI := {x = (x1, . . . , xm)

T ∈ Rm |
∑
i∈I

xi = 0}.
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Note |B| = 2m − 1. The number of orbits of B under the action of W is m.

We will examine the case m = 3.
The arrangement A has exactly the three planes in V = R3 defined by the same

equations as those in (2). On the other hand, B consists of the seven planes defined by

x1 = 0, x2 = 0, x3 = 0;

x1 + x2 = 0, x1 + x3 = 0, x2 + x3 = 0;

x1 + x2 + x3 = 0

with each line corresponding to one orbit under the action of W on B. Figure 5 exhibits
the intersection with the unit sphere in V = R3.
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x
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x
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c1

c2

c4

c3

c5

Figure 5: Braid plus unrestricted all-subset arrangement.

Let us take a ∈ Ch(A) defined by x1 > x2 > x3 (a with x1 + x2 + x3 > 0 is shaded
in Figure 5). Then φ−1

A (a) = {c1, c2, c3, c4, c5, c′1, c′2, c′3, c′4, c′5}, where

c1 : x1 > x2, x1 + x3 < 0, x1 + x2 + x3 > 0,

c2 : x2 > 0, x1 + x3 > 0, x2 + x3 < 0,

c3 : x2 > x3, x2 < 0, x1 + x2 + x3 > 0,

c4 : x1 > x2, x3 < 0, x2 + x3 > 0,

c5 : x1 > x2, x2 > x3, x3 > 0,

and c′i, i = 1, . . . , 5, are the chambers obtained from ci, i = 1, . . . , 5, by chang-
ing (x1, x2, x3) to (−x3,−x2,−x1). Thus |φ−1

A (a)| = |{W -orbits of Ch(C)}| = 10 and
|Ch(C)| = |φ−1

A (a)| × |W | = 10× 3! = 60.
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Table 1: Wb and z for b = b1, . . . , b5.

b Wb Wb-invariant points z of b

b1 S{1,2} d1(1, 1,−1)T + d2(1, 1,−2)T , d1, d2 > 0
b2 {1} d1(1, 1,−1)T + d2(1, 0,−1)T + d3(1, 0, 0)

T , d1, d2, d3 > 0
b3 S{2,3} d1(1, 0, 0)

T + d2(2,−1,−1)T , d1, d2 > 0
b4 S{1,2} d1(1, 1,−1)T + d2(1, 1, 0)

T , d1, d2 > 0
b5 S{1,2,3} d(1, 1, 1)T , d > 0

The chambers bi := φB(ci) ∈ Ch(B), i = 1, . . . , 5, are

b1 : x1 + x3 < 0, x2 + x3 < 0, x1 + x2 + x3 > 0,

b2 : x2 > 0, x1 + x3 > 0, x2 + x3 < 0,

b3 : x2 < 0, x3 < 0, x1 + x2 + x3 > 0, (6)

b4 : x3 < 0, x1 + x3 > 0, x2 + x3 > 0,

b5 : x1 > 0, x2 > 0, x3 > 0,

and b′i := φB(c
′
i) ∈ Ch(B), i = 1, . . . , 5, can be obtained from bi, i = 1, . . . , 5, by the

above-mentioned rule. See Figure 6. The chamber b1 is divided by the plane x1 = x2

into two chambers; b2 is not divided by any plane in A; b3 is divided by x2 = x3 into two;
b4 is divided by x1 = x2 into two; and b5 is divided by the three planes x1 = x2, x1 =
x3, x2 = x3 into six. The isotropy subgroups Wb and the Wb-invariant points z of b for
b = b1, . . . , b5 are given in Table 1. We can confirm |Wb1| = 2! = |φ−1

B (b1)|, |Wb2 | = 1 =
|φ−1

B (b2)|, |Wb3 | = 2! = |φ−1
B (b3)|, |Wb4 | = 2! = |φ−1

B (b4)|, |Wb5 | = 3! = |φ−1
B (b5)|.

We have {W -orbits of Ch(B)} = {O(b1), . . . ,O(b5),O(b′1), . . . ,O(b′5)} and thus

|{W -orbits of Ch(B)}| = 10.

From (6), we see |O(b1)| = 3, |O(b2)| = 3×2 = 6, |O(b3)| = 3, |O(b4)| = 3, |O(b5)| = 1,
which coincide with |W |/|Wbi|, i = 1, . . . , 5. Hence, |Ch(C)| = 60 can be obtained also
from

|Ch(C)| = 2
5∑

i=1

|φ−1
B (bi)| · |O(bi)| = 2 (2 · 3 + 1 · 6 + 2 · 3 + 2 · 3 + 6 · 1) = 60.

We can also get |Ch(B)| = 2
∑5

i=1 |O(bi)| = 2 (3 + 6 + 3 + 3 + 1) = 32.

Remark 3.3. In Table 1, we find that Wb1 = Wb4 = S{1,2}, Wb3 = S{2,3} are all
conjugate to one another, although b1, b3, b4 are on different orbits. Using τ in (1), we
have

τ−1([S{1,2}]) = {O(b1),O(b3),O(b4)},
and τ is not injective. The chambers b1, b3, b4 are triangular cones (triangles in Figure
6) cut by a single plane (line) xi = xj from the braid arrangement. However, these
chambers are easily seen to be on different orbits, since their three walls (edges) are of
different combinations of orbits of B.
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Figure 6: Braid plus unrestricted all-subset arrangement. b1, . . . , b5.

For m ≤ 7, we computed χ(C, t) using the finite-field method, and obtained the
numbers of W -orbits of Ch(B) as follows:

m = 3 : χ(C, t) = (t− 1)(t− 4)(t− 5), |Ch(C)| = 60, |φ−1
A (a)| = 10,

m = 4 : χ(C, t) = (t− 1)(t− 5)(t− 7)(t− 8), |Ch(C)| = 864, |φ−1
A (a)| = 36,

m = 5 : χ(C, t) = (t− 1)(t− 7)(t− 9)(t− 11)(t− 13),

|Ch(C)| = 26880, |φ−1
A (a)| = 224,

m = 6 : χ(C, t) = (t− 1)(t− 11)(t− 13)(t− 17)2(t− 19),

|Ch(C)| = 2177280, |φ−1
A (a)| = 3024,

m = 7 : χ(C, t) = (t− 1)(t− 19)(t− 23)(t4 − 105t3 + 4190t2 − 75180t+ 510834),

|Ch(C)| = 566697600, |φ−1
A (a)| = 112440.

Note that the characteristic polynomial χ(C, t) factors into polynomials of degree one
over Z for m ≤ 6.

3.3 Mid-hyperplane arrangement

Let W = Sm and V = H0, so A = A(W ) is the braid arrangement in H0. We take

B = {Hijkl | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, i < k, |{i, j, k, l}| = 4},

where
Hijkl := {x = (x1, . . . , xm)

T ∈ H0 | xi + xj = xk + xl},
so that C = A ∪ B is an essentialization of the mid-hyperplane arrangement (Kamiya,
Orlik, Takemura and Terao [5]). We have |B| = 3

(
m
4

)
, and the action of W on B is

transitive.
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Let us consider the case m = 4.
The elements of A are the six planes in V = H0, dimH0 = 3, defined by the equations

in (3), whereas those of B are the three planes defined by the following equations:

x1 + x2 = x3 + x4, x1 + x3 = x2 + x4, x1 + x4 = x2 + x3.

Figure 7 shows the intersection with the unit sphere S2 in H0.
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x
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c

c

’

Figure 7: Essentialization of mid-hyperplane arrangement.

Let us take a ∈ Ch(A) defined by x1 > x2 > x3 > x4 (a is shaded in Figure 7). Then
φ−1
A (a) = {c, c′}, where

c : x2 > x3, x3 > x4, x1 + x4 > x2 + x3,

c′ : x3 < x2, x2 < x1, x4 + x1 < x3 + x2.

Note that c′ is obtained from c by changing (x1, x2, x3, x4) to (−x4,−x3,−x2,−x1). We
have |φ−1

A (a)| = |{W -orbits of Ch(C)}| = 2 and |Ch(C)| = |φ−1
A (a)|× |W | = 2×4! = 48.

The chamber b := φB(c) ∈ Ch(B) is

b : x1 + x2 > x3 + x4, x1 + x3 > x2 + x4, x1 + x4 > x2 + x3, (7)

which is divided by the three planes x2 = x3, x2 = x4, x3 = x4 into six chambers
(Figure 8). We find the Wb-invariant points z of b to be z = d(3,−1,−1,−1)T , d > 0,
so Wb = S{2,3,4} and |Wb| = 3! = |φ−1

B (b)|.
We have {W -orbits of Ch(B)} = {O(b),O(b′)} with b′ := φB(c

′). Thus

|{W -orbits of Ch(B)}| = 2.
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Figure 8: Essentialization of mid-hyperplane arrangement. b.

From (7), we see |O(b)| = 4 (= |W |/|Wb| = 4!/(3!)), so we can calculate |Ch(C)|
alternatively as

|Ch(C)| = 2(|φ−1
B (b)| · |O(b)|) = 2× 6 · 4 = 48.

Moreover, we get |Ch(B)| = 2|O(b)| = 2× 4 = 8.

For m ≤ 10, the characteristic polynomials of C are known ([5], [10]), so we can find
the numbers of W -orbits of Ch(B):

m = 4 : χ(C, t) = (t− 1)(t− 3)(t− 5), |Ch(C)| = 48, |φ−1
A (a)| = 2,

m = 5 : χ(C, t) = (t− 1)(t− 7)(t− 8)(t− 9), |Ch(C)| = 1440, |φ−1
A (a)| = 12,

m = 6 : χ(C, t) = (t− 1)(t− 13)(t− 14)(t− 15)(t− 17),

|Ch(C)| = 120960, |φ−1
A (a)| = 168,

m = 7 : χ(C, t) = (t− 1)(t− 23)(t− 24)(t− 25)(t− 26)(t− 27),

|Ch(C)| = 23587200, |φ−1
A (a)| = 4680,

m = 8 : χ(C, t) = (t− 1)(t− 35)(t− 37)(t− 39)(t− 41)(t2 − 85t+ 1926),

|Ch(C)| = 9248117760, |φ−1
A (a)| = 229386,

m = 9 : χ(C, t) = (t− 1)(t7 − 413t6 + 73780t5 − 7387310t4 + 447514669t3

− 16393719797t2 + 336081719070t− 2972902161600),

|Ch(C)| = 6651665153280, |φ−1
A (a)| = 18330206,

m = 10 : χ(C, t) = (t− 1)(t8 − 674t7 + 201481t6 − 34896134t5 + 3830348179t4

− 272839984046t3 + 12315189583899t2

− 321989533359786t+ 3732690616086600),

|Ch(C)| = 4067272044460800, |φ−1
A (a)| = 1120831141.

3.4 Signed all-subset arrangement

Let W be the Coxeter group of type Bm, i.e., the semidirect product of Sm by (Z/2Z)m:
W = (Z/2Z)moSm, |W | = 2m ·m!. Then W acts on V = Rm by permuting coordinates
by Sm and changing signs of coordinates by (Z/2Z)m. The Coxeter arrangement A =
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A(W ) consists of the hyperplanes defined by

xi = 0, 1 ≤ i ≤ m; (8)

xi + xj = 0, xi − xj = 0, 1 ≤ i < j ≤ m. (9)

We have |A| = m + m(m − 1) = m2. Moreover, the number of orbits of A under the
action of W is two: one consisting of the m hyperplanes in (8) and the other made up
of the m(m− 1) hyperplanes in (9).

Let

B = {H(ϵ1,...,ϵm) | ϵ1, . . . , ϵm ∈ {−1, 0, 1},
m∑
i=1

|ϵi| ≥ 3},

where

H(ϵ1,...,ϵm) := {x = (x1, . . . , xm)
T ∈ Rm |

m∑
i=1

ϵixi = 0}.

Note H(ϵ1,...,ϵm) = H(−ϵ1,...,−ϵm) so that |B| =
∑m

i=3 2
i−1

(
m
i

)
. The number of W -orbits of

B is m− 2.

Let us study the case m = 3.
In this case, A comprises the nine planes in V = R3 defined by

x1 = 0, x2 = 0, x3 = 0; (10)

x1 + x2 = 0, x1 − x2 = 0, x1 + x3 = 0, x1 − x3 = 0, x2 + x3 = 0, x2 − x3 = 0 (11)

with each line corresponding to one orbit, and B consists of one orbit containing the four
planes defined by

−x1 + x2 + x3 = 0, x1 − x2 + x3 = 0, x1 + x2 − x3 = 0, x1 + x2 + x3 = 0. (12)

Figure 9 shows the intersection with the unit sphere in V = R3. (In Figure 9, the planes
in (10), (11) and (12) are drawn in blue, black and purple, respectively.)

Let us take a ∈ Ch(A) defined by x1 > x2 > x3 > 0 (this chamber is shaded in
Figure 9). Then φ−1

A (a) = {c1, c2}, where

c1 : x1 − x2 > 0, x2 − x3 > 0, −x1 + x2 + x3 > 0,

c2 : x3 > 0, x2 − x3 > 0, −x1 + x2 + x3 < 0.

So |φ−1
A (a)| = |{W -orbits of Ch(C)}| = 2 and |Ch(C)| = |φ−1

A (a)|×|W | = 2×23 ·3! = 96.
The chambers bi := φB(ci) ∈ Ch(B), i = 1, 2, are

b1 : −x1 + x2 + x3 > 0, x1 − x2 + x3 > 0, x1 + x2 − x3 > 0,

b2 : −x1 + x2 + x3 < 0, x1 − x2 + x3 > 0, x1 + x2 − x3 > 0, x1 + x2 + x3 > 0

(Figure 10). The chamber b1 is divided by the three planes x1 − x2 = 0, x1 − x3 =
0, x2 − x3 = 0 into six chambers, and b2 is divided by the four planes x2 = 0, x3 =
0, x2 + x3 = 0, x2 − x3 = 0 into eight. We see Wb1 = S{1,2,3} is the Coxeter group
of type A2 (the Wb1-invariant points z of b1 are z = d(1, 1, 1)T , d > 0), and that
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Figure 10: Signed all-subset arrangement. b1 and b2.

Wb2 = (Z/2Z)2 oS{2,3} is the Coxeter group of type B2 (the Wb2-invariant points z of
b2 are z = d(1, 0, 0)T , d > 0). Hence |Wb1 | = 3! = |φ−1

B (b1)|, |Wb2 | = 22 · 2! = |φ−1
B (b2)|.

We have {W -orbits of Ch(B)} = {O(b1),O(b2)}, so

|{W -orbits of Ch(B)}| = 2.

From Figures 9 and 10, we see |O(b1)| = 4×2 = 8 (= |W |/|Wb1 | = (23·3!)/(3!)), |O(b2)| =
3× 2 = 6 (= |W |/|Wb2 | = (23 · 3!)/(22 · 2!)), so |Ch(C)| can be computed also as

|Ch(C)| = |φ−1
B (b1)| · |O(b1)|+ |φ−1

B (b2)| · |O(b2)| = 6 · 8 + 8 · 6 = 96.

Furthermore, we can get |Ch(B)| = |O(b1)|+ |O(b2)| = 8 + 6 = 14.
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For m ≤ 6, we computed χ(C, t) and obtained the numbers of W -orbits of Ch(B) as
follows:

m = 3 : χ(C, t) = (t− 1)(t− 5)(t− 7), |Ch(C)| = 96, |φ−1
A (a)| = 2,

m = 4 : χ(C, t) = (t− 1)(t− 11)(t− 13)(t− 15), |Ch(C)| = 5376, |φ−1
A (a)| = 14,

m = 5 : χ(C, t) = (t− 1)(t− 29)(t− 31)(t2 − 60t+ 971),

|Ch(C)| = 1981440, |φ−1
A (a)| = 516,

m = 6 : χ(C, t) = (t− 1)(t5 − 363t4 + 54310t3 − 4182690t2 + 165591769t− 2691439347),

|Ch(C)| = 5722536960, |φ−1
A (a)| = 124187.

Note that the characteristic polynomial χ(C, t) factors into polynomials of degree one
over Z for m ≤ 4.
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